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We embed spherical Rindler space—a geometry with a spherical hole in its center—in asymptotically
anti– de Sitter (AdS) spacetime and show that it carries a gravitational entropy proportional to the area of
the hole. Spherical AdS-Rindler space is holographically dual to an ultraviolet sector of the boundary field
theory given by restriction to a strip of finite duration in time. Because measurements have finite durations,
local observers in the field theory can only access information about bounded spatial regions. We propose a
notion of differential entropy that captures uncertainty about the state of a system left by the collection of
local, finite-time observables. For two-dimensional conformal field theories we use holography and the
strong subadditivity of entanglement to propose a formula for differential entropy and show that it precisely
reproduces the areas of circular holes in AdS3. Extending the notion to field theories on strips with variable
durations in time, we show more generally that differential entropy computes the areas of all closed,
inhomogeneous curves on a spatial slice of AdS3. We discuss the extension to higher-dimensional field
theories, the relation of differential entropy to entanglement between scales, and some implications for the
emergence of space from the renormalization group flow of entangled field theories.
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I. INTRODUCTION

We recently reported a calculation of the gravitational
entropy of spherical Rindler space [1].1 This is a region of
Minkowski space, which consists of points that can
exchange signals with at least one out of a family of radially
accelerating observers. The salient feature of spherical
Rindler space is that it has a hole in its center, and the area
of the hole in units of 4Gmeasures the gravitational entropy.
The present paper embeds this construction in anti–de

Sitter space, which allows us to study a spacetime with a
hole holographically. In analogy to spherical Rindler-
Minkowski space, we consider a family of observers
who accelerate away from the center of anti–de Sitter
(AdS) space. The worldlines of these observers are causally
disconnected from a spherical hole in AdS, whose coor-
dinate radius we call R0. In the holographic description of
AdS space, the exterior of the hole (R > R0) and the

interior of the hole (R < R0) should be associated to the
ultraviolet (UV) and, respectively, the infrared (IR) of the
dual field theory, a qualitative fact that the holographic
renormalization group (RG) attempts to capture [3–5].
Therefore, given the relation between geometry and entan-
glement discovered in [6] and studied in [7–14],2 it would
be natural to guess that areas of radial surfaces in AdS
space are related to some sort of UV/IR entanglement in the
dual field theory [20]. But what is the appropriate division
into UV and IR observables?
The relevant separation is in terms of the time scales

over which local observers in the field theory can make
measurements. To see this simply, project future- and past-
directed outward light rays from the edge of the hole,
R ¼ R0. These light rays reach the boundary in finite global
time �T0. Given the structure of holographic duality, this
means that information about the interior of the hole can only
be locally encoded in the boundary field theory outside the
time interval −T0 < T < T0. Equivalently, local observ-
ables in the boundary field theory within a strip of finite

*vijay@physics.upenn.edu
†bdchowdh@asu.edu
‡czech@stanford.edu
§J.deBoer@uva.nl
¶m.p.heller@uva.nl
1Recall that acceleration horizons can carry gravitational

entropy, similarly to black hole and cosmological horizons [2].

2See also [15] for an early qualitative formulation and [16–19]
for procedures to reconstruct the spacetime from entanglement.
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duration 2T0 fully encode the physics in the R > R0 region
of anti–de Sitter space.
Restricting attention to observables over a finite duration

in a field theory may seem exotic. It is more common to
restrict oneself to observables in a finite region of space.
But whenever we specify initial data on a bounded spatial
region D on a time slice, we implicitly specify it every-
where in the domain of dependence of D, i.e. in the
spacetime region whose physics is entirely determined by
the data on D.3 Thus, it is more precise to say that we
understand well how to restrict to the observables of a field
theory in a domain of dependence of a spatial region (a
causal diamond in the case when the spatial region is an
interval). As we will see below, the way to restrict a field
theory to local observables of a finite duration in time is to
assemble the associated space from the causal diamonds of
local observers. Specifically, a strip of time duration 2T0

can be regarded as the union of causal diamonds of
intervals of length 2T0, where we associate each causal
diamond to a local observer. This union is a holographic
representation of the way in which we construct spherical-
Rindler-AdS space as the union of a set of regions that can
exchange signals with a single accelerated observer. Each
of these bulk regions will be related to a single causal
diamond on the boundary.
When we specify initial data on every spatial interval of

length 2T0, does this not specify the entire future develop-
ment of the system? It does not—the missing data are the
pattern of entanglement. The simplest example is two
spins: all states of the form

jΨi ¼ cosϕj↑↑i þ eiθ sinϕj↓↓i (1)

restrict to the same density matrices of the individual spins,
independent of θ. In general, it is difficult to quantify the
uncertainty in a quantum state that remains after restricting
to finite-time local observables, or equivalently to the
information that can be retrieved from a set of finite
duration causal diamonds (but see [22]). Here we use
holography to propose a formula [Eq. (22)] quantifying this
“differential entropy” in the vacuum of two-dimensional
field theory. It is a combination of entanglement entropies
or, equivalently, causal holographic information [23] of
spatial regions of size 2T0. Formula (22) precisely repro-
duces the areas of circular holes in AdS3 and saturates the
strong subadditivity bound for quantum information. In
other words, we show that a circular hole in AdS3 has
maximal area that is consistent with strong subadditivity in
the dual field theory. Generalizing these results, we propose
a measure of differential entropy for two-dimensional field
theories on a strip of variable duration in time [Eq. (31)]
and show that this quantity exactly reproduces the lengths

of all inhomogeneous closed curves on a spatial slice in
AdS3. As we will discuss, this novel quantity does not
appear to have come from a reduced density matrix, so it
should not be interpreted as entanglement entropy in a strict
sense. This observation suggests that the Hilbert space of
quantum gravity does not factorize between the inside and
outside of a closed surface, contradicting the expectation
from the presumed locality of spacetime. Thus, our results
raise questions about the validity of local low-energy
effective field theory in a theory containing gravity. This
issue does not affect typical low-energy experiments such
as scattering problems, but it is relevant to discussions of
holographic entanglement entropy.
The organization of this paper is as follows. In Sec. II

we introduce the spherical-Rindler-AdS space and discuss
its field theory dual, which is a finite time strip of the
field theory living on the global boundary. We discuss the
assembly of this sector of the field theory from causal
diamonds, which correspond to individual accelerating
observers in the bulk. In Sec. III we focus on two-
dimensional field theory and propose a measure of differ-
ential entropy, quantifying ignorance of the underlying
quantum state that remains after making all local finite-time
observations. We show that the resulting quantity repro-
duces the areas of spatially inhomogeneous holes in AdS3
and saturates the strong subadditivity bound for quantum
information. The paper closes in Sec. 4 with a discussion.

II. SPHERICAL RINDLER-ADS SPACE

A. A spherical hole in Minkowski space—a review

We start with a lightning review of the spherical Rindler
space cut out of flat spacetime [1]. In radial coordinates,

ds2 ¼ −dT2 þ dR2 þ R2dΩ2
d−1; (2)

trajectories with a constant radial acceleration take the form

TðtÞ ¼ r sinh t and RðtÞ ¼ R0 þ r cosh t; (3)

with proper acceleration a ¼ r−1 and proper time along the
trajectory given by rt. To Rindlerize, we treat Eqs. (3) as a
coordinate transformation. The Rindler coordinate t param-
eterizes time along the accelerated trajectories while
the Rindler coordinate r parameterizes the acceleration.
The resulting metric is

ds2 ¼ −r2dt2 þ dr2 þ ðR0 þ r cosh tÞ2dΩ2
d−1: (4)

The quantity R0 is a constant, which determines the size of
the region in the center that remains out of causal contact
with the accelerated observers. Said differently, R0 is the
radius of the hole.
Metric (4) has a horizon at r ¼ 0. In the parent

Minkowski space, this horizon is the edge of the causal
past and future of the hole. The gravitational entropy of the

3See [21] for how this observation relates strong subadditivity
to the c theorem in two dimensions.
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space (4) is related to the area of this horizon in the usual
way:

S ¼ A
4G

¼ volðSd−1ÞRd−1
0

4G
: (5)

Although metric (4) is time dependent, its near-horizon
limit

ds2 ¼ −r2dt2 þ dr2 þ R2
0dΩ2

d−1 (6)

is static, so one expects a well-defined and time-
independent entropy. More rigorously, Eq. (5) can be
derived using the replica trick, which generalizes the
conical deficit method to rotationally noninvariant space-
times [24–26]. Consider the Euclidean continuation of (4):

ds2 ¼ r2dt2E þ dr2 þ ðR0 þ r cos tEÞ2dΩ2
d−1: (7)

The Euclidean time tE is an angular coordinate, whose
periodicity β0 ¼ 2π can be read off both from the regularity
at the origin and from the single-valuedness of gΩΩ. Call its
action Z1. The action of an integer cover of (7) with
periodicity β ¼ nβ0 is given by

Zn ¼
β

β0
Z1 þ ðβ − β0Þ

A
8πG

: (8)

The first term arises from the region away from r ¼ 0
while the second term, proportional to the transversal
size of the locus r ¼ 0, is the conical surplus term. The
action is related to the free energy FðβÞ via Z ¼ βFðβÞ,
which means that the entropy is given by S ¼ ðβ∂β − 1ÞZ
evaluated at β0. Applying this to the obvious analytic
continuation of (8) gives result (5).
A shortcut way to read off the entropy is to neglect the

time-dependent physics away from the horizon by dropping
the term r cosh t in gΩΩ. This reflects the intuition that a
static horizon captures an equilibrium between a gravita-
tional system and a heat bath so that, as a consequence,
whenever two spacetimes share the same near-horizon
geometry, they must also have the same entropy. For the
metric (4), the near-horizon limit r → 0 is the same as the
near-horizon limit of a Schwarzschild black hole, whose
entropy is known to be (5).
Both ways of deriving (5) are discussed in greater detail

in [1].

B. Spherical Rindler-AdS space

We start with AdS space in the global coordinates:

ds2 ¼ −
�
1þ R2

L2

�
dT2 þ

�
1þ R2

L2

�−1
dR2 þ R2dΩ2

d−1:

(9)

Our goal is to cut a hole in it, thereby generalizing metric
(4) to anti–de Sitter space. To proceed as before, we must
find the radially accelerated trajectories and treat the
acceleration and time along the trajectory as a pair of
coordinates. The trajectories are derived in Appendix A.
To reach the boundary, the acceleration a must exceed L−1,
so we use the parameterization aL ¼ cosh ρ. The final form
of the trajectories is

Rðt; ρÞ ¼ L
sinhϕ sinh ρ

ðcosh ρþ coshϕ cosh tÞ; (10)

Tðt; ρÞ ¼ L cot−1 coshϕ cosh ρþ cosh t
sinhϕ sinh t

: (11)

Here ϕ is a parameter, which controls the global time at
which the trajectory reaches the asymptotic boundary
R → ∞:

T0 ¼ L tan−1 sinhϕ: (12)

In other words, all trajectories with the same ϕ asymp-
tote to a common radial outgoing light ray, which
intersects the slice of time symmetry T ¼ 0 at a
coordinate radius R0:

T0 ¼
Z

∞

R0

dR

1þ R2

L2

¼ Lcot−1 R0

L
⇒ R0 ¼

L
sinhϕ

: (13)

Treating Eqs. (10) and (11) as a coordinate redefinition,
the AdS metric takes the form

ds2 ¼ L2

sinh2ρ

�
−dt2 þ dρ2 þ

�
cosh ρþ coshϕ cosh t

sinhϕ

�
2

× dΩ2
d−1

�
. (14)

When ρ ranges over positive numbers, this metric covers
only the region which is causally disconnected from a
sphere of radius R0 ¼ L= sinhϕ at T ¼ 0. This region is
the spherical Rindler-AdS space. It contains a horizon at
ρ ¼ ∞, which is the limit where the accelerated trajec-
tory becomes arbitrarily close to the light ray projected
from R ¼ R0.
To highlight the analogy with metric (4), perform one

final change of coordinates:

dρ
sinh ρ

¼ −dr ⇒ sinh r ¼ 1

sinh ρ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaLÞ2 − 1
p : (15)

This is an AdS analogue of the definition of the
Minkowski-Rindler radial coordinate r ¼ a−1. Now the
spherical Rindler-AdS metric becomes
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ds2 ¼ L2ð−sinh2rdt2 þ dr2Þ

þ ðR0 cosh rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 þ L2

q
sinh r cosh tÞ2dΩ2

d−1:
(16)

This metric should be compared with the spherical
Rindler metric (4) obtained from flat space. The horizon
is again at r ¼ 0, which is the limit of large acceleration a.
In the neighborhood of r ¼ 0, the Euclidean continuation
of (16) looks once more like a plane in polar coordinates
times a transversal sphere of constant size. This means that
the computations of the gravitational entropy carried out in
[1] apply to metric (16) without modifications. The result is
again

S ¼ A
4G

¼ volðSd−1ÞRd−1
0

4G
: (17)

C. Field theory on a finite-time interval

The horizons which bound the spherical Rindler-AdS
space in the bulk extend to the global asymptotic boundary.
They reach it at �T0 given in Eq. (13), which is the global
time at which light rays projected from R ¼ R0 arrive at the
boundary. Holographically, the physics in the spherical
Rindler-AdS space (the region that is causally disconnected
from the interior of an R0-sized hole at T ¼ 0) is fully
encoded in local field theory observables in the time
interval ð−T0; T0Þ.
To understand this sector, consider the way in which

spherical Rindler space is constructed. It is the union of
ordinary Rindler spaces for a family of radially accelerating
observers. The trajectory of each of these observers starts
on the boundary at time T ¼ −T0 and ends on the boundary
at time T ¼ T0. Causality alone then suggests that the
observations carried out by this accelerated observer must
be encoded on the field theory side in the causal diamond
extending between T ¼ �T0. Indeed, the bulk causal
wedge associated with the boundary causal diamond
extending between T ¼ �T0 is precisely the ordinary
AdS-Rindler space associated with a single accelerating
observer [11,14,23,27]
Figure 1 shows spherical Rindler space as the union of

causal wedges, each of which is associated with a boundary
causal diamond spanning the time interval between T0

and −T0. This is a pictorial representation of the definition
of the spherical Rindler-AdS space, which is the union of
regions that can exchange signals with at least one of a
family of radially accelerated observers. The union over all
the accelerating observers in the bulk corresponds to the
union of all the causal diamonds on the boundary. This
union is simply the strip of the boundary field theory that
spans the time interval between −T0 and T0.
Local observers in the field theory with a finite-time

duration cannot access the physics of wavelengths longer

that 2T0, because those would not fit inside any one causal
diamond. Thus, local observers can only access the physics
of short wavelengths which, according to the AdS/CFT
dictionary, encode bulk regions at large radii. In this way,
local observables on the strip effectively isolate a UV sector
of the field theory. The construction is summarized
in Fig. 1.
It is well understood how to restrict observations to one

component of a Hilbert space that enjoys a tensor product
decomposition A ⊗ B. In this circumstance, the restricted
observations will effectively be carried out in a density
matrix obtained by tracing out the unobserved component.
The von Neumann entropy of this density matrix quantifies
the entanglement between the observed and unobserved
parts of the Hilbert space. The conventional example of this
scenario arises in quantum field theory when we restrict
observations to a spatial box. Another example, in pertur-
bative field theory, arises by separating the theory into UV
and IR components with a momentum cutoff [20]. Here we
are considering a subspace of observables that do not
necessarily define a tensor factor of the Hilbert space.
Nevertheless, because the set of observables is incomplete,
it leaves uncertainty about the underlying quantum state,
e.g. about entanglement between distant causal diamonds.
We seek a measure of this differential entropy. A natural
definition of differential entropy could be that it is equal to
the maximal entropy Smax attainable by a density matrix,
which correctly describes all measurements of finite-time
local observers.4 It is in general difficult to compute such an
entropy exactly. In the next section we propose an explicit

FIG. 1 (color online). Spherical Rindler-AdS space, with a hole
inside it, is built up of regions visible to individual accelerating
observers, each of whom observes physics that is holographically
dual to the content of a single causal diamond. The union of the
diamonds makes up a finite-time strip in the boundary field
theory.

4This is similar to the proposed field theory interpretation of
causal holographic information [28].
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and tractable quantity for differential entropy in two-
dimensional holographic theories. The evidence for our
proposal is that it reproduces the lengths of arbitrary closed
curves on a time slice of AdS3.

III. DIFFERENTIAL ENTROPY FOR 2 D
HOLOGRAPHIC FIELD THEORIES

The gravitational entropy of spherical Rindler-AdS3
space is

Sgr ¼
2πR0

4G
: (18)

We would like to recover this formula from information-
theoretic quantities in the dual conformal field theory.

A. A formula for differential entropy

We are interested in quantifying the collective ignorance
of a family of local observers in the conformal field theory
who make measurements over a finite duration 2T0. First
consider one observer, whose associated causal diamond
is illustrated on the left of Fig. 2. Measurements performed
by this observer can access data on an interval of length 2T0

on the T ¼ 0 surface of the time strip. Thus, they will
effectively be carried out in a density matrix obtained by
tracing out the exterior of the interval in the vacuum of the
field theory. The associated entanglement entropy, quanti-
fying this observer’s ignorance of the full state of the
system, is given by

Sðα0Þ ¼
c
3
log

�
2L
μ
sin α0

�
; (19)

where 2α0 ¼ 2T0=L is the angular size of the interval.
The quantity c is the central charge and μ is a UV cutoff.
Removing the cutoff would cause the entanglement entropy
to diverge because of the large number of UV modes that
straddle any spatial boundary. By contrast, the gravitational
entropy in (18) has no UV divergence. Canceling off the

UV divergence will be a guide to the correct formula for
differential entropy.
If we now consider adding a second observer whose causal

diamond is disjoint from the first, we could add the entangle-
ment entropies of both observers (the center panel of Fig. 2).
Note that this would effectively double the UV divergence of
the resulting quantity. However, our task is to consider the
family of all local, finite-time observers whose causal
diamonds overlap. Consider two such neighboring observers
(the right panel of Fig. 2) with an angular separation Δθ.
Adding their entanglement entropies clearly overcounts their
ignorance of the underlying entanglement. We might attempt
to correct this overcount by subtracting the entanglement
entropy of the overlap of the two causal diamonds:

E2 ¼ Sðα0Þ þ Sðα0Þ − Sðα0 − Δθ=2Þ: (20)

Note that the subtractionhas removed someof the undesirable
UV divergence: after the subtraction (20) has the same UV
divergence as (19).
We now consider a family of 2K evenly spaced observers.

Nearest neighbors have an angular separation Δθ ¼ π=K.
Iterating (20) gives the formula

E2K ¼ 2KðSðα0Þ − Sðα0 − Δθ=2ÞÞ

¼ 2Kc
3

�
log

2L
μ
sin α0 − log

2L
μ
sin

�
α0 − π

2K

��
:

(21)

The UV divergences cancel telescopically around the circle
supporting the field theory. The continuum limit, which
gives our proposed definition of the differential entropy, is

E ¼ π
dSðαÞ
dα

����
α0

¼ πc
3
cot α0: (22)

Using the holographic relation c ¼ 3L=2G and the relation
between the size of the hole and the duration of the time
strip (13) gives

FIG. 2. Combinations of boundary causal diamonds considered in the derivation in Sec. III A.
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E ¼ 2πR0

4G
¼ Sgr; (23)

which precisely reproduces the area of the hole.
Holographic derivation.— In a general field theory, it

would be quite surprising if subtracting the entanglement
entropy of overlaps was an adequate way to deal with
overlapping causal diamonds. But we are here considering
theories with a holographic dual. A simple geometric argu-
ment in such theories rationalizes our proposal. Recall first
that Ryu and Takayanagi have shown that the entanglement
entropy of an interval in the field theory (19) is equal to
the length of a spatial geodesic in AdS3 that subtends
the boundary interval [6]. In our case these geodesics are
given by

tan2 ~θðRÞ ¼ R2tan2α0 − L2

R2 þ L2
; (24)

where the geodesic is parameterized by its angular coor-
dinate ~θ at each radial position R in the metric (9) and 2α0 is
the angle subtended at the boundary. Importantly, the
minimal radius reached by the geodesic is

L cot α0 ¼ R0: (25)

In assembling a finite-time strip of the field theory from
causal diamonds, we have defined �T0 as the time at which
a light ray projected from R ¼ R0 reaches the boundary
and then translated it into an angular interval of size
2α0 ¼ 2T0=L. Equation (25) states that the spatial geodesic
encoding the entanglement entropy of this interval is tangent
to the bulk circle we started with. This reflects a relation
between entanglement entropy and causal holographic
information that holds in the vacuum of two-dimensional
holographic theories [23], but not in general settings such as
excited states in higher dimensions.
The result (25) immediately provides a holographic

explanation for the match between our proposed formula
for differential entropy and the area of a hole in AdS3.
Consider the discretized formula for K observers (21).

Pictorially, the entropy of the intervals of angular size 2α0 is
measured by the length of the black, continuous geodesics
in Fig. 3. Meanwhile, the subtraction terms are measured
by the red, dashed geodesics in Fig. 3. The difference in the
lengths of the black, continuous and red, dashed curves
comes entirely from the near-tip segments of the black,
continuous geodesics. In the limit that K → ∞ these
segments form a circle of radius R0 and mark
the boundary of the hole in the spherical Rindler-AdS
space.
Differential entropy and the strong subadditivity

bound.—The argument above is reminiscent of the holo-
graphic proof of the strong subadditivity bound for quan-
tum information [29]. This is not a coincidence. In fact, our
formula for differential entropy precisely saturates the
strong subadditivity bound on the information in a union
of short intervals.5 In fact, this result holds even for
nonholographic theories. To see this, recall that given
spatial intervals I1 and I2, the entanglement entropy of
the union I1∪I2 satisfies the bound

SðI1∪I2Þ ≤ SðI1Þ þ SðI2Þ − SðI1∩I2Þ: (26)

Applied to intervals of angular size 2α0 and separation Δθ,
the bound coincides with differential entropy of two
observers (20). Iterating this formula for K evenly spaced
intervals on a line gives

Sð∪K
j¼1IjÞ ≤

XK
j¼1

SðIjÞ −
XK−1
j¼1

SðIj∩Ijþ1Þ: (27)

An analogous quantity bounds the entanglement entropy of
∪2K

j¼Kþ1Ij. We now combine the two unions to form a circle.
The overlap term consists of two disconnected pieces:
IK∩IKþ1 and I2K∩I1. When α0 < π=4, the entanglement
entropy of this bipartite overlap region is the sum of the
entanglement entropies of the two parts. Applying strong
subadditivity for the final time, we obtain

FIG. 3 (color online). The spatial geodesics that extend across intervals of length 2α0 and 2α0 − π=K. In the limit K → ∞, the
differences between their lengths arise only from the tips of the geodesics and make up a circle of radius R0 in the center. The graphs
show 2K ¼ 16, 32, 64. For arbitrary curves the cancellations are more subtle (see below).

5The observation in this paragraph applies when α0 < π=4.
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Sð∪2K
j¼1IjÞ ≤

X2K
j¼1

SðIjÞ −
X2K
j¼1

SðIj∩Ijþ1Þ

¼
X2K
j¼1

ðSðIjÞ − SðIj∩Ijþ1ÞÞ; (28)

where I2Kþ1 ≡ I1. For intervals of angular size 2α0, the
bound on the right-hand side precisely reproduces our
proposed formula for differential entropy (21). This is rather
surprising, because (28) is trivial as a bound on the entangle-
ment entropy of the union of intervals that cover a Cauchy
slice of a theory in a pure state, because in this case the left-
hand side of (28) vanishes. This suggests a novel interpre-
tation of strong subadditivity: E ≥ Sent, where E is the
differential entropy associated to local, finite-time observers
and Sent is the entanglement entropy of their associated causal
domains. As a final corollary, note that Sent of a spatial region
is equal to the differential entropy when the region of the
field theory in which measurements are performed covers the
whole domain of dependence of the spatial region.

B. Differential entropy and the area
of arbitrary closed curves

Our formula for differential entropy (22) can be gener-
alized to a family of observers whose time intervals vary
continuously as a function of their spatial location. A discrete
version of this problem is defined by a collection of 2K
evenly spaced finite segments Ij, whose sizes we denote 2αj:

Ij ¼
�
πj
K

− αj;
πj
K

þ αj

�
: (29)

Let us try formula (28), which is sufficiently general to apply
to our current setup. We obtain

E¼?
X2K
j¼1

ðSðIjÞ − SðIj∩Ijþ1ÞÞ

¼ c
3

X2K
j¼1

�
log

2L
μ
sin αj − log

2L
μ
sin

αj þ αjþ1 − π=K

2

�
:

(30)

To take the continuum limit, we replace π=K with dθ:

E¼ c
3

Z
2π

0

�
log sinαðθÞ− log sin

αðθÞ þ αðθþ dθÞ− dθ
2

�

¼ c
6

Z
2π

0

�
2 log sinαðθÞ− logsin

αðθÞ þ αðθþ dθÞ− dθ
2

− logsin
αðθ− dθÞ þ αðθÞ− dθ

2

�

¼ c
6

Z
2π

0

dθ cotαðθÞ ¼ 1

2

Z
2π

0

dθ
dSðαÞ
dα

����
αðθÞ

: (31)

Previously we found that the duration of observations
in the field theory was related to the radius of a
corresponding hole in spacetime. Hence it should be
the case that the differential entropy formula (31) repro-
duces the area of an inhomogeneous hole in AdS3. To test
this, consider a closed curve on a spatial slice of AdS3:

cðR; ~θÞ ¼ R − ~Rð~θÞ ¼ 0: (32)

We parameterize the curve by ~θ, reserving θ for the
angular coordinate on the boundary field theory (see the
left panel in Fig. 4). The length of the curve (32), which
we denote A, evaluates to

A
4G

¼ 1

4G

Z
2π

0

d~θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ

�
1þ R2

L2

�−1�dR
d~θ

�
2

s

¼ 1

4G

Z
2π

0

d~θR
cosΔθ

. (33)

We wish to isolate a time strip of the field theory, in which
local observers contain complete information about the
exterior of cðR; ~θÞ ¼ 0. Generalizing the discussion of
Sec. II C, the exterior of the hole can be probed by a
continuous family of Rindler observers whose acceler-
ation horizons are tangent to the curve (32). The trajec-
tories of these observers asymptote to the null rays
projected orthogonally from the curve.
At ~θ, the vector orthogonal to (32) is

~∇c ¼
�
1þ R2

L2

� ∂
∂Rþ 1

R2

∂ ~R
∂ ~θ

∂
∂ ~θ : (34)

The angle it makes with the radial vector ∂=∂R is given by

cosΔθð~θÞ ¼
�
1þ L2

L2 þ ~Rð~θÞ2
�
d log ~Rð~θÞ

d~θ

�2�−1=2
:

(35)

θ∼
θ

∆

c
∆θ

FIG. 4 (color online). Left: The notation of Eqs. (32)–(35).
Right: The geodesics which make up Eq. (30).
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We take Δθ to have the opposite sign from d ~R=d~θ.
Equation (B8) from Appendix B tells us that a null ray
projected in this relative direction from the point ð ~Rð~θÞ; ~θÞ
hits the boundary at

Tð~θÞ ¼ Lcot−1
~Rð~θÞ cosΔθð~θÞ

L
≡ Lαð~θÞ and

θð~θÞ ¼ ~θ þ tan−1 L tanΔθð~θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ ~Rð~θÞ2

q : (36)

From here on we write R for ~Rð~θÞ. The size and location
of the boundary causal diamond simplify to

αð~θÞ ¼ tan−1 L
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2

L2 þ R2

�
d logR

d~θ

�
2

s
; (37)

θð~θÞ ¼ ~θ − tan−1 L2

L2 þ R2

d logR

d~θ
: (38)

Alternative derivations of Eqs. (37) and (38) can be found
in Appendix C. Using these expressions in the formula for
differential entropy (31), we obtain

E ¼ L
4G

Z
2π

0

dθ cot αðθÞ ¼ 1

4G

Z
2π

0

d~θ
dθ

d~θ
R cosΔθ: (39)

Equations (39) and (33) do not look similar.

C. Proof that differential entropy reproduces
lengths of curves

To prove the equivalence of Eqs. (33) and (31) [or
Eq. (39) after substitutions], add to (31) the integral of the
exact form

c
6
· d

�
1

2
log

sinðα − ðθ − ~θÞÞ
sinðαþ ðθ − ~θÞÞ

�
: (40)

The choice of form is geometrically motivated. The
expression in the parentheses is the length of the spatial
geodesic between the angular location θð~θÞ and ~θ. Adding
this form to the integrand reshuffles the negative contri-
butions to (31) without changing its total value. The
geometric effect of adding (40) is illustrated in Fig. 5.
Adding the integral of (40) to (31), we obtain

E ¼ c
6

Z ~θ¼2π

~θ¼0

sin 2ðθ − ~θÞdα − 2 cot α sin2ðθ − ~θÞdθ þ sin 2αd~θ

cos 2ðθ − ~θÞ − cos 2α
: (41)

After plugging in Eqs. (37) and (38) and c ¼ 3L=2G,
this reproduces the length of the curve in AdS3 given in
(33). Note that the agreement extends to nonconvex
curves, which cannot define a (nonhomogeneous)
“spherical” Rindler-AdS space of the type discussed
in Sec. II.
Our proof has an immediate corollary. Suppose we

attempted to compute the length of an open curve in
AdS3 using formula (39). The mistake we would have
made is

L
Z

θf

θi

dθ cot αðθÞ −
Z ~θf

~θi

d~θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ

�
1þ R2

L2

�−1�dR
d~θ

�
2

s

¼ L
Z ~θf

~θi

d

�
1

2
log

sinðαþ ðθ − ~θÞÞ
sinðα − ðθ − ~θÞÞ

�

¼ L
2
log

sinðαþ ðθ − ~θÞÞ
sinðα − ðθ − ~θÞÞ

����~θf
~θi

: (42)

This vanishes if θð~θÞ ¼ ~θ, which happens when

FIG. 5 (color online). Left: The integrand in Eq. (31) is the length of the black, continuous geodesic minus the lengths of the red,
dashed half-geodesics. The angle between the two straight red lines is dθ. Center: The form (40) adds the red, thickly dashed length
and subtracts the green, finely dotted length. Right: The resulting integrand is that in Eq. (41), the length element along the curve Rð~θÞ.
The angle between the two straight black lines is d~θ.
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dRð~θiÞ
d~θ

¼ dRð~θfÞ
d~θ

¼ 0: (43)

We have learned that formula (39) applies also to open curves,
which satisfy condition (43) at both end points. This opens
the possibility of associating a differential entropy to field
theory regions, which are bounded both in space and time.

IV. DISCUSSION

In this paper we have proposed a new notion of
uncertainty called differential entropy, which applies to
field theory regions that are bounded in time. It is a measure
of the amount of information about the system, which is
inaccessible to local observers. The new notion raises many
interesting issues and open questions, some of which we
discuss below.
Interpreting differential entropy.—We set out to quan-

tify the uncertainty about a state given the outcomes of a set
of local measurements in field theory. In the quantum
information theory literature, a formal solution of this
problem was presented in [30]. In a holographic context,
Kelly and Wall [28] have argued that causal holographic
information [23] of a spatial region in the boundary
quantifies the uncertainty left over after local observers
measure all one-point functions in the associated causal
domain (see also [31]). This notion is clearly related to the
concept that we have attempted to capture in this article.
Our focus has been on domains which are bounded in time
but are not necessarily causal domains of any spatial region.
One hint we may take from the proposal of [28] is that
differential entropy may be more directly related to causal
holographic information than to entanglement entropy. In
the settings of the present work—the vacuum of AdS3—
these two concepts agree, but they differ in more general
situations [23].
Another related concept is topological entanglement

entropy [32,33], which has been exploited in the holo-
graphic context in [34–36]. Its definition mirrors our
requirement that the differential entropy be UV finite.
This appears to be associated with the universal contribu-
tion to the entanglement entropy (see “Going to higher
dimensions” below.)
Differential entropy and the time-energy uncertainty.—

Our arguments have assumed that an accelerated observer
has access to the full reduced density matrix of the
associated boundary causal diamond. This is the maximal
amount of information that the observer can access without
violations of bulk causality. From the boundary point of
view, a potentially more stringent restriction arises from the
time-energy uncertainty relation. We expect that observers
who make measurements over a time interval ΔT can
resolve energy differences of order ðΔTÞ−1, but not smaller.
Consider a boundary observer who makes measurements
over a time interval of order 2πL, i.e. the minimal interval
sufficient for observing a whole Cauchy slice. Such an

observer should be able to distinguish the ground state from
the first excited state (ΔE ∼ L−1) but may not be able to
distinguish one excited state from another—because there
energy splittings can be exponentially small. This qualita-
tive argument is consistent with the result that the differ-
ential entropy vanishes when α0 ¼ π=2. It also implies that
in thermally excited states the differential entropy should
not vanish until the time strip covers an exponentially
long time—an expectation which is borne out by a simple
calculation in the BTZ (Bañados, Teitelboim and Zanelli)
black hole geometry. This is also consistent with the
argument in [37] that information about the precise micro-
state of a black hole can always be recovered by sufficiently
precise measurements of the mass from infinity, but that
this requires exponentially long time scales that are
inaccessible to conventional semiclassical observers, thus
leading to effective entropy and information loss.
Differential entropy in BTZ.—It is not obvious that

formula (31) will apply to excited states without modifi-
cation. However, as a motivational example, consider a
regular time strip in a thermal state, which should be dual to
a circular hole in the BTZ spacetime:

ds2 ¼ −R2 − R2þ
L2

dT2 þ L2

R2 − R2þ
dR2 þ R2d~θ2: (44)

A light ray projected orthogonally from an R0-sized hole
reaches theboundary at a timeT0 ¼ ðL2=RþÞ coth−1 R0=Rþ.
Substituting the thermal state entanglement entropy

Sðα0Þ ¼
c
3
log

2L2 sinhðRþα0=LÞ
Rþμ

(45)

for α0 ¼ T0=L in formula (31) returns the area of the hole in
appropriate units: E ¼ 2πR0=4G (here again c ¼ 3L=2G).
The apparent success of this formula is puzzling, because
it extends beyond the regime of validity of Eq. (45). In
particular, we still recover the circumference of the hole
when α0 exceeds the critical value at which the Araki-Lieb
inequality is saturated (the regime dubbed the “entanglement
plateau” in [38]) and even when α0 > 2π—that is to say,
when the relevant spatial geodesics no longer compute
entanglement entropies. Note that arbitrarily small holes
R0→þ Rþ translate to α0 ≫ 2π—which resonates with the
observations of the previous paragraph. In sum, it appears
that the differential entropy of excited states likely involves a
more general quantity than entanglement entropy, whose
definition incorporates the constraints of the time-energy
uncertainty relation. The correct generalization of (31) may
offer a holographic interpretation of the focusing theorem
[39]. The problem is related to identifying a holographic
dual to a density matrix, which has been discussed in [40–43]
(see also [44]). A helpful intermediate step might be to
covariantize the proposal (31) using the time-dependent
generalization of the Ryu-Takayanagi relation [45].

BULK CURVES FROM BOUNDARY DATA IN HOLOGRAPHY PHYSICAL REVIEW D 89, 086004 (2014)

086004-9



Going to higher dimensions.—An obvious direction for
future work is to lift our calculation to higher dimensions.
To appreciate why this is challenging, recall that our
derivation of Eq. (31) involved decomposing a finite-time
strip of a two-dimensional field theory into a union of
causal diamonds. On the time slice of symmetry, this
translates into decomposing a circle into a union of over-
lapping intervals. In higher-dimensional settings, one
would have to cover a sphere with disks, but an overlap
of two disks does not have a regular shape. The appearance
of “corners” reflects a richer structure of divergences in
the entanglement entropy in higher dimensions [46], which
are more difficult to cancel out than the simple logarithmic
divergence of Eq. (19). Conversely, a generalization of
formula (31) to more dimensions is likely to carry a deep
lesson about how the emergence of space ties in with the
holographic renormalization group. For two-dimensional
field theories, one such lesson is offered by [21,29]: the first
of these papers relates the c theorem to strong subadditivity
while the second relates strong subadditivity to general
properties of geodesics in the bulk spacetime. Some
relevant references include [47–50]; see also [51] on the
holographic emergence of Einstein’s equations.
Effective Hamiltonian for differential entropy.—We

have defined differential entropy in terms of the finite-
time measurements accessible to local observers. There
may be many underlying pure or mixed states that give rise
to a particular set of such measurements. It would be good
to characterize this set of states in generality. One special
state in this class is a mixed state with maximal von
Neumann entropy.6 The density matrix of this distinguished
state can be written as [22,28]

ρ ¼ Z−1e−
P

m
λmOm: (46)

The Om are observables whose expectation values are
given and the λm are a set of chemical potentials, which
are selected by these expectation values. The exponent on
the right-hand side has the structure of an effective
Hamiltonian.7 In our case Om are observations made by
local observers over a finite time T0, which are hence
consistent with interactions that span only a finite spatial
range α0. Thus, the effective Hamiltonian defined by the
exponent of (46) might be nonlocal but will contain
interactions that have a maximal spatial range α0.
Holographically, the idea is that the interior of the hole
is related to the highly nonlocal interactions in this
Hamiltonian (see [52] for related comments in the setting
of the holographic renormalization group). It appears that
the differential entropy could be computed by writing down
the most general Hamiltonian H, which contains

interactions over the same distance as those over which
observers can make measurements. If we insist that the
reduced density matrices obtained from ρ ¼ e−H (after
normalization) are exactly the ones that were a priori given,
this uniquely fixes H. Finally, the entropy is simply the
entropy associated to ρ ¼ e−H, i.e. that of a system
described by H at finite temperature. We notice a sugges-
tive similarity with the structure of the reduced density
matrix for Rindler space. One difference is that in the latter
case the effective Hamiltonian turns out to be local [27].
This may be related to the fact that AdS-Rindler space is
associated to a boundary causal diamond, which is not
capped at any maximal time except as determined by
causality.
The Hamiltonian that we obtained above depends on α0,

the size of the spatial interval. Its interactions become
longer range as we increase α0. This suggests that we
should be able to interpret the change in α0 as some kind of
RG flow. What type of flow could this be? Local finite-time
observers have access to short distance physics but not to
long distance physics. Therefore, by restricting to such
observers we have effectively integrated out IR degrees of
freedom with energies less than 1=α0. As we decrease α0,
we are integrating out more and more IR degrees of
freedom, so this flow is exactly the opposite of standard
RG flow. The differential entropy then has a natural
interpretation as a generalization of entanglement entropy
between the UVand IR degrees of freedom. Some types of
UV-IR entanglement were studied previously in [20].
However, in our case the Hamiltonian H and the density
matrix ρ ¼ e−H still act on the full Hilbert space of the CFT
and not only on a tensor factor, and therefore there is not a
precise interpretation as entanglement entropy between UV
and IR degrees of freedom. This also suggests that there
may not be an effective field theory associated with low-
energy gravity, where the Hilbert space factorizes between
the interior and exterior of a closed surface. From the
viewpoint of Sec. II, this follows directly from noting that
unlike in the usual Rindler decomposition of Minkowski or
AdS space, there is no set of coordinates which would
allow us to insert an object inside a hole without leaving an
imprint on the outside. If one could quantify the departure
of the Hilbert space from a tensor product ansatz, it would
provide a systematic way to understand the breakdown of
bulk low-energy effective field theory and potentially
resolve the recently publicized “firewall” problem of black
holes [53,54]. It would be interesting to understand the
factorization of the Hilbert space in light of how local bulk
observables are constructed on the boundary [55,56].
Related questions.—Although we phrased everything in

terms of field theory and AdS/CFT, similar notions of
differential entropy can be easily defined for all kinds of
quantum mechanical systems such as spin chains, where
they might be studied in much more detail. For a periodic
spin chain, one could for example ask how much

6We thank Matt Headrick for a discussion on this point.
7If ρ were a reduced density matrix of some tensor factor of the

Hilbert space, this would be the modular Hamiltonian.
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differential entropy the system has if one knows the
reduced density matrices for all sequences of L consecutive
spins in the spin chain. This is an interesting new probe of
such quantum mechanical systems, which to our knowl-
edge has not been studied so far.
These types of questions are closely related to a

question in quantum information theory known as the
quantum marginal problem [57]. There, one typically
asks whether a state or a density matrix exists in case
one is given reduced density matrices for various sub-
systems. For example, for a spin chain with L ¼ 1wherein
one only knows the reduced density matrices for the
individual spins, [58] gave explicit necessary and suffi-
cient conditions in terms of the eigenvalues of the reduced
density matrices for the existence of a single pure state
with the required projections. It would be interesting to
study whether this technology can be of use for the study
of differential entropy as well.
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APPENDIX A: RADIALLY ACCELERATED
TRAJECTORIES

We wish to find radially accelerated trajectories in the
metric (9). Expressing the trajectory as ξμðτÞ in terms of the
proper time τ, the equations that normalize the velocity and
set the acceleration read

−1 ¼ gμν
dξμðτÞ
dτ

dξνðτÞ
dτ

; (A1)

a2 ¼ gμν

�
D
Dτ

dξμðτÞ
dτ

��
D
Dτ

dξνðτÞ
dτ

�
: (A2)

For radially accelerated trajectories, ξμ varies over T and R
and the conditions become

−1 ¼ −
�
1þ RðτÞ2

L2

��
dTðτÞ
dτ

�
2

þ
�
1þ RðτÞ2

L2

�−1�dRðτÞ
dτ

�
2

; (A3)

a2 ¼−
�
1þRðτÞ2

L2

��
d2TðτÞ
dτ2

þ 2RðτÞ
L2þRðτÞ2

dTðτÞ
dτ

dRðτÞ
dτ

�
2

þ
�
1þRðτÞ2

L2

�−1�d2RðτÞ
dτ2

− RðτÞ
L2þRðτÞ2

�
dRðτÞ
dτ

�
2

þRðτÞðL2þRðτÞ2Þ
L4

�
dTðτÞ
dτ

�
2
�

2

: (A4)

Eliminating dTðτÞ=dτ from (A3) and substituting in (A4)
gives

ðRðτÞ þ L2R″ðτÞÞ2
RðτÞ2 þ L2ð1þ R0ðτÞ2Þ ¼ a2L2: (A5)

The simplest solution is

RðτÞ ¼ R and TðτÞ ¼ τ

�
1þ R2

L2

�−1=2
; (A6)

for which

a2L2 ¼ R2

L2 þ R2
(A7)

and aL < 1. We can relate this trajectory to all other
radially accelerated trajectories with aL < 1 by going to
the embedding coordinates in R2;d

ðT1;T2;RÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ R2

p
cosT=L;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ R2

p
sinT=L;RÞ

(A8)

and performing a boost in the T1, R variables

T1
0 ¼ T1 þR cosϕ

sinϕ
and R0 ¼ Rþ T1 cosϕ

sinϕ
:

(A9)

The boost, which preserves the AdS hyperboloid T2
1 þ T2

2−
R2 ¼ L2, defines new coordinates T 0, R0 in the sameway as
Eq. (A8). Their relation to the old coordinates T, R is
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R0 ¼ Rþ cosϕ cosðT=LÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ R2

p

sinϕ
; (A10)

T 0 ¼ L cot−1
�
cotðT=LÞ
sinϕ

þ R cotϕ

sinðT=LÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ R2

p
�
: (A11)

Under this transformation, the trajectory (A6) becomes

R0ðτÞ ¼ L

sinϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2L2

p
�
aLþ cosϕ cos

τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2L2

p

L

�
;

(A12)

T 0ðτÞ ¼ Lcot−1 aL cosϕþ cos ððτ=LÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2L2

p
Þ

sinϕ sin ððτ=LÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2L2

p
Þ

:

(A13)

Here we have used Eq. (A7) to eliminate R and T in favor of
a. This is the general form of radially accelerated trajecto-
ries with aL < 1. These trajectories do not escape to the
asymptotic boundary.
The trajectories with aL > 1 are obtained from

Eqs. (A12) and (A13) by an analytic continuation.
Denote aL ¼ cos ρ and substitute ρ → iρ and ϕ → iϕ.
Dropping the primes and overall minus signs, the trajecto-
ries become

RðτÞ ¼ L
sinhϕ sinh ρ

�
cosh ρþ coshϕ cosh

τ sinh ρ
L

�
;

(A14)

TðτÞ ¼ L cot−1 coshϕ cosh ρþ cosh ððτ=LÞ sinh ρÞ
sinhϕ sinh ððτ=LÞ sinh ρÞ :

(A15)

For setting up the spherical Rindler coordinate system, it is
convenient to parameterize the trajectories with

t ¼ τ sinh ρ
L

: (A16)

The trajectories (A14) and (A15) expressed in terms of t are
given in Eqs. (10) and (11) in the text.

APPENDIX B: NULL GEODESICS

Here we derive the form of arbitrary null geodesics in
anti– de Sitter space. It is convenient to start with the null
geodesics passing through the origin

T ¼ Ltan−1 R
L

and θ ¼ θ0: (B1)

Since AdS is homogeneous, any null geodesic that passes
through ðT; R; θÞ ¼ ð0; R0; 0Þ can be mapped to (B1) with

a change of coordinates that puts ð0; R0; 0Þ at the origin.
In the embedding coordinates

ðT1;T2;X1;X2Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ R2
p

cosT=L;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ R2

p
sinT=L;R cos θ;

R sin θ
�
; (B2)

this is accomplished with a boost in the T1, X1 variables:

T1
0 ¼ T1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ R2

0

p −X1R0

L

and X1
0 ¼ X1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ R2

0

p − T1R0

L
: (B3)

Relating the boosted embedding coordinates to T 0, R0, θ0
defined as in Eq. (B2), we obtain the requisite coordinate
transformation:

T 0 ¼ L tan−1 L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ R2

p
sinT=Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL2 þ R2ÞðL2 þ R2
0Þ

p
cosT=L − R0R cos θ

;

(B4)

θ0 ¼ tan−1 LR sin θ

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ R2

0

p
cos θ − R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ R2

p
cosT=L

:

(B5)

We shall not need the explicit form of R0, only the fact that
the boundaries R0 → ∞ and R → ∞ coincide. The inverse
transformation, which maps the origin to ð0; R0; 0Þ, is of
the same form as Eqs. (B4) and (B5) except R0 → −R0.
As a final step, we substitute the null geodesic (B1) into

the inverse of Eqs. (B4) and (B5):

T 0ðRÞ ¼ L tan−1 LR

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ R2

0

p þ R0R cos θ0
; (B6)

θ0ðRÞ ¼ tan−1 LR sin θ0
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ R2

0

p
cos θ0 þ LR0

: (B7)

This null geodesic hits the boundary at

T 0ð∞Þ ¼ Lcot−1 R0 cos θ0
L

and

θ0ð∞Þ ¼ tan−1 Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ R2

0

p tan θ0: (B8)

APPENDIX C: ALTERNATIVE DERIVATIONS OF
THE IRREGULAR TIME STRIP

Alternative derivation.—An elegant check on Eqs. (37)
and (38) is as follows. A Rindler observer whose
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acceleration horizon is tangent to the curve (32) at ~θ
defines a boundary causal diamond centered at θð~θÞ, which
extends between T ¼ �Lαð~θÞ. This means that the geodesic
distance between ðT; R; θÞ ¼ ð0; RðϕÞ;ϕÞ and ðLαð~θÞ;
∞; θð~θÞÞ must be null for ϕ ¼ ~θ and spacelike in a ϕ
neighborhood. Two events in metric (9) are spacelike
separated if

cos
T1 − T2

L
− L2 þ R1R2 cos ðθ1 − θ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL2 þ R2
1ÞðL2 þ R2

2Þ
p > 0; (C1)

with equality holding for null separated events. Substituting
ð0; RðϕÞ;ϕÞ and ðLαð~θÞ;∞; θð~θÞÞ into this condition, we
conclude that

d~θðϕÞ ¼ cosαð~θÞ − RðϕÞ cos ðθð~θÞ − ϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ RðϕÞ2

p (C2)

must attain the minimum value 0 at ϕ ¼ ~θ. Equations (37)
and (38) solve this extremization problem.
The simplest derivation.—If we hold the left-hand sides

of Eqs. (37) and (38) fixed and vary ~θ, we obtain a curve

Rð~θÞ. This curve is the spatial geodesic (24) recentered at
θð~θÞ. This means that when two points on the bulk curve
c are tangent to a common spatial geodesic, they define
the same boundary causal diamond. This is a conse-
quence of the fact [23] that in three bulk dimensions, the
causal holographic information and the entanglement
entropy for any boundary causal diamond agree. Using
this fact, an alternative way to derive Eqs. (37) and (38)
is to start with the recentered spatial geodesic (24) and its
~θ derivative:

tan2ðθ − ~θÞ ¼ R2tan2α − L2

R2 þ L2
⇒

R2 ¼ L2sec2ðθ − ~θÞ
tan2α − tan2ðθ − ~θÞ ; (C3)

d logR

d~θ
¼ sinðθ − ~θÞ cosðθ − ~θÞ

cos2ðθ − ~θÞ − cos2 α
(C4)

and solve for α and θ − ~θ in terms of R and d logR=d~θ.
Equations (37) and (38) solve this system of equations.
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