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In this work we probe the anisotropy of gauge theory plasma at strong coupling regime within the
framework of holographic AdS/CFT correspondence. To be specific, we compute the Chern-Simons
diffusion rate in an anisotropic, strongly coupled N ¼ 4 super-Yang-Mills plasma by working with its
supergravity dual in an anisotropic spacetime. The Chern-Simons diffusion rate is an important observable
in CP-odd phenomena, which may happen in the quark-gluon plasma. Weworked out a generically analytic
formula for the Chern-Simons diffusion rate using both linear hydrodynamic expansion and holographic
renormalization group flow equation methods. In the high temperature phase (compared to the spatial
anisotropy), we found that the anisotropy will decrease the Chern-Simons diffusion rate. We also used the
generic formula to extract the stringy/higher order gravity corrections to the Chern-Simons diffusion rate.
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I. INTRODUCTION

In the past few years, a lot of effort has been made to
understand the heavy ion collisions and the properties of
the quark-gluon plasma (QGP). However, the theoretical
analysis based on the experimental discoveries made at the
Relativistic Heavy Ion Collider (RHIC) experiments points
out that the QGP is most probably a strongly coupled fluid
[1,2], which should be quite different from the weakly
coupled quasiparticle gas. Furthermore, the elliptic flow
observed in RHIC experiments can be effectively described
by hydrodynamical models, which further favors small
values of the ratio of the shear viscosity over entropy
density η=s of the QGP [1–4]. These indications pose one
significant challenge for the methods used to describe the
QGP: conventional calculations based on perturbative QCD
are in general not appropriate. On the other hand, the lattice
simulation can be useful in computing some quantities such
as hadron mass spectrum and thermodynamical behaviors,
but is still impotent in real-time dynamics due to a
formidable problem of analytic continuation.
The gauge/gravity duality [5] conjectures that a strongly

coupled quantum field theory living in a flat spacetime is
equivalent to a weakly interacting (classical) gravity propa-
gating in an asymptotically anti-de Sitter (AdS) spacetime
but with one more dimension. Moreover, gauge/gravity
duality is a holographic correspondence: the quantum field
theory lives at the boundary of the asymptotically AdS
spacetime. Quite shortly after its discovery, a promising
approach within gauge/gravity duality was developed in
order to study the phenomena in the strongly coupled QGP,
an updated progress on this topic can be found in one recent
review [6]. Attractively, gauge/gravity duality provides us
with an analytical treatment of non-Abelian gauge theories
in the strong coupling regime.

Although an exact gravity dual of the QCD is not known
yet, the calculations based on gauge/gravity duality have
predicted several important results that appear to have some
kind of universality among the different theories. In particu-
lar, some computations based on large Nc gauge theory
(likeN ¼ 4 super-Yang-Mills theory) can match quite well
with some QCD phenomena. In the limit of infinite ’t Hooft
couplingand infiniteNc, the ratioη=s forN ¼ 4 super-Yang-
Mills plasma has been found to be 1=4π [7]. The smallness of
η=s obtained from gauge/gravity duality is quite close to the
value extracted from RHIC experiments. What is more, this
small value for η=s has been further proven to be universal
within a large number of examples of gauge/gravity duality.
Therefore, gauge/gravity duality should be a very useful tool
in computing field theory predictions at strong coupling
regimeandeven revealing someuniversal featuresof strongly
coupled dynamics.
The relativistic hydrodynamics, which can quite accu-

rately describe some problems of the QGP, usually assumes
an isotropic pressure. While just after the collision the
energy momentum tensor is definitely anisotropic. In other
words, the QGP system is locally anisotropic for a very
short time just after the collision and soon experiences a
quick isotropization process toward locally isotropic. The
work [8] proposed a formalism of intrinsically anisotropic
hydrodynamics to study the very early stage after the
collisions. A recent review about aspects of anisotropic
QGP can be found in Ref. [9]. However, due to the mixed
weak/strong coupling physics in the early stage of the QGP,
we are still lacking a definite understanding of its essential
aspects. On the other hand, some attempts within gauge/
gravity duality have been made to construct a gravity dual
of an anisotropic gauge theory plasma at strong coupling
regime [10–12]. The anisotropic version of N ¼ 4 super-
Yang-Mills plasma proposed in Refs. [11,12] was soon
used to probe some useful properties of anisotropic QGP in
Refs. [13–23].*yybu@post.bgu.ac.il
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In this work we probe the anisotropic feature of the model
[11,12] by computing the Chern-Simons diffusion rate ΓCS,
which is determined by the zero momentum, zero frequency
limit of the retarded Green’s function of the CP-odd operator
OðxÞ ¼ εμνρσFa

μνðxÞFa
ρσðxÞ where Fa

μνðxÞ is the Yang-Mills
field strength. Previous calculations for this quantity within
the gauge/gravity duality framework can be found in
Refs. [24–27]. In particular, the computations of [25] show
that, due to the strong interactions between the charged
fields and non-Abelian gauge fields, the external magnetic
field has the effect of increasing the diffusion rate, regardless
of its strength. However, we found that the anisotropy
introduced in the Chern-Simons deformed gauge theory
[11,12] will decrease the diffusion rate, at least to quadratic
order in the anisotropic parameter a. Apparently, this is due
to the nonminimal coupling for the axion field in the bulk
side, which is the gravity dual of the CP-odd operatorOðxÞ.
In the next section, we will review the gravity dual of an

anisotropic version of N ¼ 4 super-Yang-Mills plasma
constructedbyMateos andTrancanelli in [11,12] andclassify
our conventions. Section III is the main part of this work,
where we use two different approaches to compute the
diffusion rate. In Sec. III B we solve the holographic
renormalization group (RG) flow equations taken from
Ref. [28] of the retarded Green’s function for the CP-odd
operator OðxÞ. In Sec. III C we directly solve the bulk
equation of motion in the conventional linear hydrodynamic
regime following the trickofRef. [29].With the twomethods,
wecanobtainoneverygeneric analytic formula forΓCS.Then
we briefly compare our results with those in Refs. [24–27].
Section IV is devoted to discussions of confronting our
formula for the Chern-Simons diffusion rate with corrected
gravity dual of the N ¼ 4 super-Yang-Mills plasma.

II. THE MODEL: MATEOS-TRANCANELLI
GEOMETRY

The type IIB supergravity solution dual to an anisotropic
N ¼ 4 super-Yang-Mills plasma at strong coupling

constructed by Mateos and Trancanelli is a finite temper-
ature generalization of Ref. [30]. More precisely, on the
field theory side the anisotropic version of N ¼ 4 SUðNcÞ
super-Yang-Mills plasma is given by deforming its
isotropic counterpart by the Chern-Simons term,

δS ¼ 1

8π2

Z
θðzÞTrF∧F; (1)

where the theta angle θðzÞ ¼ 2πaz linearly depends on one
spatial coordinate z. In other words, the total gauge theory
action for an anisotropic N ¼ 4 super-Yang-Mills plasma
contains two parts

Stotal ¼ SN¼4 þ δS: (2)

Holographically, the anisotropic parameter a can be
thought of as the density of D7-brane homogeneously
distributed along the anisotropic direction z. As argued in
Refs. [11,12], in the dual gravity side it suffices to consider
a five-dimensional gravity-dilaton-axion action, which
takes the form (in the Einstein frame)

Sbulk ¼
1

2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p �
Rþ12−

ð∂ϕÞ2
2

−e2ϕ
ð∂χÞ2
2

�

þSbdry; (3)

where the gravitational constant κ2 is related to the degree
of freedom on the dual gauge theory side by κ2 ¼ 4π2=N2

c.
The boundary term Sbdry is added to make the variational
problem well defined and does not modify the equations of
motion.
The metric that solves the action (3) is given by an ansatz

of the form

ds2 ¼ gMNdxMdxN ¼ gttdt2 þ gxxdx2 þ gyydy2 þ gzzdz2 þ guudu2

¼ e−ϕðuÞ=2

u2

�
−F ðuÞBðuÞdt2 þ du2

F ðuÞ þ dx2 þ dy2 þHðuÞdz2
�
; (4)

and the axion χ ¼ az. For generic anisotropy parameter a, one can numerically construct the metric. In this work, we are
interested in the high temperature limit (compared to the parameter a), which allows one to obtain one analytical solution
for these coefficients in the metric (4). In other words, if a ≪ T, we have

ϕðuÞ ¼ −
a2u2h
4

log

�
1þ u2

u2h

�
þOða4Þ;

HðuÞ ¼ e−ϕðuÞ;F ðuÞ ¼ 1 −
u4

u4h
þ a2

24u2h

�
8u2ðu2h − u2Þ − 10u4 log 2þ ð3u4h þ 7u4Þ log

�
1þ u2

u2h

��
þOða4Þ;

BðuÞ ¼ 1 −
a2u2h
24

�
10u2

u2h þ u2
þ log

�
1þ u2

u2h

��
þOða4Þ:

(5)
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Explicitly, the above metric has a regular, nondegenerate
horizon at u ¼ uh, which is related to the Hawking
temperature of the black hole by

uh ¼
1

πT
þ 5 log 2 − 2

48π2T3
a2 þOða4Þ: (6)

The thermodynamics and instability analysis of the above
gravity-dilaton-axion system has been completely studied
in Refs. [11,12]. However, for our purpose of computing
the Chern-Simons diffusion rate, we will focus on the axion
part in the bulk action.

III. CALCULATION OF CHERN-SIMONS
DIFFUSION RATE

A. Preliminary

Let us proceed by explaining the physics of Chern-
Simons diffusion rate from the field theory point of view.
Our discussions below mainly follow the associated
descriptions in Refs. [24,25].
The vacuum of the non-Abelian gauge theories contains

an infinite number of degenerate states which are charac-
terized by an integer—the Chern-Simons number NCS.
Furthermore, the integer NCS is a topological quantity and
is determined by the global structure of non-Abelian gauge
theories. At zero temperature, the quantum tunneling effect
allows the transition between the states with different NCS.
Consider non-Abelian gauge theories at finite temperature.
The thermal effect can also activate the change between the
states characterized by a different Chern-Simons number
NCS. In particular, as opposed to the tunneling effect at zero
temperature, the change rate due to thermal activation is not
necessarily exponentially suppressed. Quantitatively, the
change of the Chern-Simons number in such a process due
to thermal effect is given by a formula

ΔNCS ¼
g2

32π2

Z
d4xOðxÞ; OðxÞ≡ εμνρσFa

μνFa
ρσ;

(7)

where g is the Yang-Mills coupling constant. Then the
Chern-Simons diffusion rate ΓCS, defined by the rate of
change of the Chern-Simons number, is nothing but simply
the probability of the Chern-Simons number changing
process to occur per unit volume and unit time,

ΓCS ¼
hΔN2

CSi
Vt

¼
Z

d4x

�
g2

32π2
OðxÞ g2

32π2
Oð0Þ

�
: (8)

The diffusion rate ΓCS is by itself important in CP-odd
phenomena, like the chiral magnetic effect, which may
happen in heavy ion collisions. A simple formula relating
the diffusion rate ΓCS with the generation of chiral charge
N5 ¼ hJ05i is given by

dN5

dt
¼ −CN5

ΓCS

T3
; (9)

where the constant C is determined by the specific theory
considered.
Transferred to the momentum space, the diffusion rate

defined in Eq. (8) is given by [24]

ΓCS ¼ −
�

g2

8π2

�
2

lim
ω→0

2T
ω

½GRðω; ~k ¼ 0Þ�; (10)

where the retarded Green’s function GRðω; ~kÞ is defined by

GRðω; ~kÞ≡ −i
Z

d4xe−ikxθðtÞ
��

1

4
OðxÞ; 1

4
Oð0Þ

��
:

(11)

Gauge/gravity duality relates the operator 1
4
O with the

Ramond-Ramond scalar C0, which is exactly the axion
field χ in type IIB supergravity theory. In particular, as
shown in Ref. [25], the axion field behaves the same as a
free massless scalar in the consistent Kaluza-Klein reduc-
tion of the ten-dimensional type IIB supergravity to the
five-dimensional bulk theory.
However, there is a slight difference in our case due to

the nontrivial profile of the dilaton mode. The equation of
motion for the axion χ comes from the variation of the
action S,

δS
δχ

¼ 0 ⇒ ∂Mð
ffiffiffiffiffiffi
−g

p
e2ϕgMN∂NχÞ ¼ 0: (12)

In order to calculate the retarded Green’s function
GRðω; ~k ¼ 0Þ using gauge/gravity duality, one needs to
do perturbations of the gravitational system,

gMN → gMN þ δgMN; ϕ → ϕþ δϕ; χ → χ þ δχ:

(13)

Linearizing the equation of motion for χ results in

0 ¼ ∂Mðδ
ffiffiffiffiffiffi
−g

p
e2ϕgMN∂NχÞ þ ∂Mð

ffiffiffiffiffiffi
−g

p
δe2ϕgMN∂NχÞ

þ ∂Mð
ffiffiffiffiffiffi
−g

p
e2ϕδgMN∂NχÞ þ ∂Mð

ffiffiffiffiffiffi
−g

p
e2ϕgMN∂NδχÞ:

(14)

At first glance, the different perturbations
fδgMN; δϕ; δχg will couple together, which makes the
problem quite sophisticated. However, recall that we only
need to compute GRðω; ~k ¼ 0Þ, which means that we can
set all spatial momenta to zero,

δχðu; xμÞ ¼
Z

dt
2π

e−iωtδχðu;ωÞ; (15)

and similar Fourier expansions can be done for δgMN and
δϕ. Combining the Fourier ansatz (15) with the profiles of
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fgMN;ϕ; χg, it is not difficult to see that the first two terms
in the linearized equation (14) exactly vanish. However, the
fluctuations of the metric and the axion still couple
together. Explicitly, Eq. (14) takes the following form,

0 ¼ iω
ffiffiffiffiffiffi
−g

p
e2ϕgttgzzδgtz × aþ ∂Mð

ffiffiffiffiffiffi
−g

p
e2ϕgMN∂NδχÞ:

(16)

Since we will work under the condition a ≪ T, it is
reasonable to ignore the first term in the above equation
if one further assumes that the fluctuations and the
anisotropy parameter are of the same order, δgtz; δχ ∼ a.
In this work we will take this assumption to simplify the
computations and leave the complete treatments about the
coupling between δgtz and δχ for further work. In other
words, we will switch off all the fluctuations except the
axion part,

δgMN ¼ δϕ ¼ 0:

The approximation adopted here is quite similar to the
probe limit widely used in the literature.
Hence, in the Fourier space, the linearized equation of

motion (14) is simply

∂Mð
ffiffiffiffiffiffi
−g

p
e2ϕgMN∂NδχÞ ¼ 0 ⇒

∂2
uδχ þ ∂u ln ð

ffiffiffiffiffiffi
−g

p
e2ϕguuÞ∂uδχ − ω2

gtt

guu
δχ ¼ 0: (17)

To quadratic order in the perturbations, the action relevant
for the axion part is

Sχ ¼ −
1

4κ2

Z
d5x

ffiffiffiffiffiffi
−g

p
e2ϕgMN∂Mδχ∂Nδχ

¼ −
1

4κ2

Z
dω
2π

ffiffiffiffiffiffi
−g

p
e2ϕguuδχðu;−ωÞ∂uδχðu;ωÞju¼uh

u¼0 ;

(18)

where in the second line of the above action we have
reduced it to the surface term by making use of the equation
of motion and Fourier ansatz.
The remaining task is to solve the equation of motion

(17) and extract the retarded Green’s function from the
on-shell action (18) using the prescription proposed in
Ref. [24]. However, to make our derivations as general as
possible, in what follows we will not substitute for the
explicit form of the metric and dilaton profile until the final
step toward obtaining the diffusion rate. Doing so allows us
to derive one generic formula for ΓCS as alluded at the
beginning.

B. Holographic RG flow equation

In this section, using the equation of motion for the axion
field, we derive the holographic RG flow equation for the

retarded Green’s function. The canonical momentum con-
jugate to δχ with respect to a foliation in the holographic
direction u is given by

Π≡ ∂L
∂ð∂uδχÞ

¼ −
ffiffiffiffiffiffi
−g

p
e2ϕguu∂uδχ; (19)

where L is the Lagrangian density of the action Sχ given in
Eq. (18). We have thrown away the prefactor in the final
expression for Π to make the equation more concise. The
Hamilton equation forΠ can be worked out with help of the
equation for δχ and is given by

∂uΠ ¼ −
ffiffiffiffiffiffi
−g

p
e2ϕω2δχ: (20)

As in the Ref. [28], we define a generalized response
function ξðω; uÞ by

ξðω; uÞ≡ Π
iωδχ

; with GRðω; ~k ¼ 0Þ ¼ Π
δχ

����
u¼0

: (21)

Using Eqs. (19) and (20), one can show that the res-
ponse function satisfies a first order nonlinear differential
equation

∂uξ ¼ iω
ffiffiffiffiffiffiffiffiffiffiffi
−
guu
gtt

r �
ξ2

ΣðuÞ − ΣðuÞ
�
;

ΣðuÞ ¼ e2ϕ
ffiffiffiffiffiffiffiffiffiffiffi
−g

guugtt

r
; (22)

where we have factorized out the singular term in the above
equation.
In the hydrodynamic limit, we can perturbatively solve

the RG flow equation (22) by expanding the response
function in terms of ω

ξðω; uÞ ¼ ξ0ðuÞ þ ωξ1ðuÞ þOðω2Þ: (23)

At the zeroth order, there is no holographic RG flow for
ξ0ðuÞ as

∂uξ0ðuÞ ¼ 0 ⇒ ξ0ðuÞ ¼ Constant: (24)

However, due to the appearance of a singularity for the

prefactor
ffiffiffiffiffiffiffiffiffi
− guu

gtt

q
at the horizon u ¼ uh, the expression in

the parentheses of Eq. (22) must vanish at the horizon,

ξ0ðu ¼ uhÞ ¼ Σðu ¼ uhÞ ¼ e2ϕ
ffiffiffiffiffiffiffiffiffiffiffi
−g

guugtt

r ����
u¼uh

¼ e2ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxgyygzz

p ju¼uh : (25)

Combining Eqs. (24) and (25) tells us that, to lowest order
in ω, the retarded Green’s function is given by
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GRðω; ~k ¼ 0Þ ¼ −
1

2κ2
× iω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxgyygzz

p
e2ϕju¼uh þOðω2Þ:

(26)

In the next section, we will derive this formula by direct
linear hydrodynamic expansion method, which is a little
slower than the method presented here.

C. Linear hydrodynamic expansion

In this section we will use the conventional linear
hydrodynamic expansion method to solve the equation
of motion for δχ. We will also use the trick of Ref. [29] to
make the derivation more general, and concise as well.
As stated by the authors of Ref. [29], the equations of

motion for δχ can be solved as follows. First, one should
consider the equation of motion near the black hole horizon
and impose the ingoing wave boundary condition there (for
the purpose of retarded Green’s function). Then, in the
hydrodynamic limit, one considers the whole region in the
bulk and solves the equation of motion. After doing these,
one can match the solutions and extract the retarded
Green’s function.
Let us proceed by studying the behavior of Eq. (17) near

the horizon u ¼ uh. As alluded above, there is a non-
degenerate horizon at u ¼ uh, which means that the metric
components have the following behavior near the horizon

gtt → ctðuh − uÞ; guu → cuðuh − uÞ−1;
gxx;yy;zz → gxx;yy;zzðuhÞ: (27)

In particular, the Hawking temperature T is given by

T ¼ 1

4π

ffiffiffiffiffiffiffiffiffi
−
ct
cu

r
: (28)

Equation (17) takes the form as approaching the horizon

∂2
uδχ −

1

ðuh − uÞ ∂uδχ þ
~ω2

ðuh − uÞ2 δχ ¼ 0; ~ω≡ ω

4πT
:

(29)

The Frobenius analysis tells us that

δχ ≈ ðuh − uÞ−i ~ω; u → uh; (30)

where we have kept only the ingoing mode in the above
solution. In the hydrodynamic limit, the above ingoing
wave can be further expanded in terms of small parameter
~ω ≪ 1,

δχ ≈ 1 − i ~ω logðuh − uÞ þOð ~ω2Þ;
u → uh; ~ω ≪ 1: (31)

To solve the equation over the whole region in the
bulk, the hydrodynamic limit greatly facilitates the

computations. Expand the solution over the whole region
by orders of ~ω,

δχðu; ~ωÞ ¼ δχð0ÞðuÞ þ ~ωδχð1ÞðuÞ þOð ~ω2Þ: (32)

To each order, δχðiÞðuÞ are determined by

∂2
uδχðiÞ þ ∂u ln ð

ffiffiffiffiffiffi
−g

p
guue2ϕÞ∂uδχðiÞ ¼ 0; i ¼ 0; 1:

(33)

The general solutions to δχðiÞ can be found by direct
integration and given by

δχðiÞðuÞ ¼ CðiÞ
1 þ CðiÞ

2

Z
u

0

duffiffiffiffiffiffi−gp
guue2ϕ

; i ¼ 0; 1;

(34)

where the integration constants CðiÞ
1;2 can be partially fixed

by the Dirichlet boundary conditions at the conformal
boundary u ¼ 0 (we set the total scale of δχ at the
conformal boundary to unit for convenience)

Cð0Þ
1 ¼ 1; Cð1Þ

1 ¼ 0: (35)

The final step is to match the solutions. For this purpose,
we need to take a close look at the solutions given by (34)
near the horizon. When u⟶uh, the integrand behaves as
follows

1ffiffiffiffiffiffi−gp
guue2ϕ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffigxxgyygzz
p e2ϕ

ffiffiffiffiffiffiffiffiffiffiffi
−
guu
gtt

r

→
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffigxxgyygzz

p e2ϕ

����
u¼uh

ffiffiffiffiffiffiffiffiffi
−
cu
ct

r
1

ðuh − uÞ : (36)

Then, the horizon behavior for the general solutions is

δχðiÞðu → uhÞ ¼ CðiÞ
1 − CðiÞ

2

1

4πT
1

ϑðuhÞ
logðuh − uÞ;

ϑðuhÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxgyygzz

p
e2ϕju¼uh : (37)

Combining Eqs. (37) and (32), then matching it with the
solution around the horizon (31) determines the remained
integration constants

Cð0Þ
2 ¼ 0; Cð1Þ

2 ¼ iϑðuhÞ × 4πT: (38)

In other words, the solution over the whole region in the
bulk is given by (to first order in ~ω)

δχðu;ωÞ ¼ 1 − iωϑðuhÞ
Z

u

0

duffiffiffiffiffiffi−gp
guue2ϕ

þOðω2Þ: (39)

Using the Minkowskian prescription of Ref. [24] gives the
retarded Green’s function
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GRðω; ~k ¼ 0Þ

¼ −2 ×
�
−

1

4κ2

� ffiffiffiffiffiffi
−g

p
guue2ϕδχðu;ωÞ∂uδχðu;−ωÞju¼0

¼ −
1

2κ2
× iωϑðuhÞ þOðω2Þ; (40)

which is exactly the same as the solution obtained from
holographic RG flow equation method once substituting
for the expression of the ϑðuhÞ function defined
in Eq. (37).
The Chern-Simons diffusion rate ΓCS can now be easily

obtained using the formula given in Sec. III A,

ΓCS ¼
�

g2

8π2

�
2

×
N2

c

8π2
× 2T ×

exp ½3ϕðuhÞ=4�
uh

¼ ðg2NcÞ2
256π3

T4ð1 − γ ~a2Þ; ~a≡ a
πT

; (41)

where we have used the relation between the horizon radius
and the Hawking temperature T given in Eq. (6). Notice
that the constant γ is a positive number

γ ¼ 4 log 2 − 1

8
> 0; (42)

which implies that the anisotropy introduced by nonzero a
will decrease the Chern-Simons diffusion rate ΓCS. This
should be compared with the result of Ref. [25] where the
Uð1ÞR magnetic field also makes the spatial directions
anisotropic but increases the ΓCS.
In the next section, we will use the formula obtained

here to probe the effect of some corrections in the bulk
gravity (higher gravity corrections and stringy ones). In
particular, we will find that the stringy corrections also
decrease the Chern-Simons diffusion rate while the
minimal Gauss-Bonnet corrections will enhance the
diffusion rate.

IV. DISCUSSION

Using the formula (26), one can easily produce the
Chern-Simons diffusion rate once knowing the background
metric. Here, we will consider the corrections in the bulk
gravity and probe their effect by computing the diffusion
rate ΓCS. Two examples worthy of being considered are the
α0 corrected black D3-brane geometry [31,32] and the
Gauss-Bonnet corrected Schwarzschild-AdS5 black hole
[33,34]. In particular, it was found that the conjectured
shear viscosity bound η=s ≥ 1=4π can be violated by
higher order gravity corrections [35]. However, the com-
putations of Ref. [36] show that the stringy α0 corrections
do not violate the viscosity bound.

After a five-dimensional reduction over the compact
space S5, the α0 corrected metric for a black D3-brane is
given by (with the notations of Ref. [36])

ds25 ¼
r20
u
ecðuÞð−feaðuÞdt2 þ dx2 þ dy2 þ dz2Þ þ du2

4u2f
ebðuÞ;

f ¼ 1− u2: (43)

To leading order in β ¼ ζð3Þα03, the functions
aðuÞ; bðuÞ; cðuÞ are given by

aðuÞ ¼ 15βð5u2 þ 5u4 − 3u6Þ;
bðuÞ ¼ 15βð5u2 þ 5u4 − 19u6Þ;
cðuÞ ¼ 0: (44)

The parameter r0 gives the Hawking temperature T as

T ¼ r0
π
ð1þ 15βÞ: (45)

On the other hand, adding one specific combination of
four derivative gravity corrections to the Einstein-Hilbert
action, one is led to the Gauss-Bonnet gravity action

S ¼ 1

2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p

×

�
Rþ 12þ α

2
ðRMNPQRMNPQ − 4RMNRMN þ R2Þ

�
:

(46)

Fortunately, the following analytic metric solves the above
action

ds2 ¼ −
fðrÞ
fð∞Þ dt

2 þ dr2

fðrÞ þ r2ðdx2 þ dy2 þ dz2Þ;

fðrÞ ¼ r2

2α

h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4αð1 − r4h=r

4Þ
q i

;

fð∞Þ ¼ lim
r→∞

fðrÞ
r2

¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

p

2α
; (47)

and the Hawking temperature is simply given by

T ¼ rh
π

ffiffiffiffiffiffiffiffiffiffiffi
fð∞Þp : (48)

With the generic formula for the retarded Green’s
function dual to the axion field χ obtained in Sec. III,
the Chern-Simons diffusion rate ΓCS can be quickly
extracted
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ΓCS ¼
ðg2NcÞ2
256π3

T4ð1 − 45βÞ; α0 − correctedD3 black hole;

ΓCS ¼
ðg2NcÞ2
256π3

T4

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

p

2α

�3=2

; Gauss-Bonnet corrected Schwarzschild-AdS5: (49)

Clearly, the stringy α0 correction has the same effect of decreasing the Chern-Simons diffusion rate as in the anisotropic
N ¼ 4 super-Yang-Mills plasma at strong coupling, while the Gauss-Bonnet corrections will enhance the ΓCS, especially
when α is quite close to its upper bound 1=4.
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