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We study the Regge and hard-scattering limits of the one-loop amplitude for massless open string states
in the type I theory in flat space. For hard scattering we find the exact kinematic dependence in terms of the
scattering angle of the factor multiplying the known exponential falloff, without relying on a saddle point
approximation for the integration over the cross ratio. This bypasses the issues of estimating the
contributions from flat directions as well as those that arise from fluctuations of the Gaussian integration
about the saddle point. This result allows for a straightforward computation of the small-angle behavior of
the hard-scattering regime and we find complete agreement with the Regge limit at high momentum
transfer, as expected.
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I. INTRODUCTION

Open string amplitudes, including one-loop corrections
in the high energy regime, have been studied since the very
early days of string theory [1–3], and subsequently the
subject was taken up again by many other authors in the
1980s [4,5]. In [5], the authors analyzed the (2þ 2)
nonplanar amplitude at one loop, i.e., the annulus diagram
with two external states attached to each boundary, and
found the (now well-known) characteristic exponential
falloff of stringy amplitudes in this regime. The coefficient
multiplying this exponential behavior, which contains
dependence on the scattering angle, involves the typical
problem of inversion in the theory of elliptic modular
functions. As a consequence of this, the angular depend-
ence in the aforementioned coefficient could only be
expressed in terms of an infinite series.
For the case of the planar and nonorientable amplitudes,

Gross and Mañes [5] studied this high energy regime at a
fixed scattering angle and found that, contrary to the
(2þ 2) nonplanar case, they do not possess a dominant
saddle point in the interior of the integration region.
Moreover, they were able to show that the dominant
contributions come from the boundaries of this region,
the one where the annulus shrinks to a point being the
dominant boundary in this case.
The study of the fixed-angle limit of the one-loop

amplitude in different situations has been carried out by
many authors [5–8], but as far as we aware of, we believe
that the exact dependence on the scattering angle for the
amplitude we study here has not been worked out in the
literature in a closed form.
We organize this short paper as follows: in Sec. II we

review the calculation of the Regge limit of the sum of the
planar and nonorientable diagrams of the type I theory. We

also compute its large momentum transfer limit (α0jtj → ∞)
in order to make a comparison with the small-angle
behavior of the hard-scattering limit which we also review
in this section. In Sec. III, by making use of an identity
originally used in [9], although in a different context, we
compute the exact form of the coefficient that multiplies the
exponential falloff of the amplitude in the high energy
regime at a fixed scattering angle. This permits a straight-
forward evaluation of the hard-scattering amplitude in the
limit where t ≪ s, which indeed matches with the Regge
behavior at high momentum transfer computed in Sec. II.

II. HIGH ENERGY SCATTERING OF THE TYPE I
OPEN SUPERSTRINGS

A. Regge behavior at one loop

We begin by computing the Regge limit; i.e., we take
large α0jsj (holding α0t fixed) of the one-loop amplitude for
type I open superstrings. With the metric signature
f−þþ � � �g, the Mandelstam variables are conventionally
defined as s ¼ −ðk1 þ k2Þ2, t ¼ −ðk2 þ k3Þ2, and
u ¼ −ðk2 þ k4Þ2. The details of the calculation are basi-
cally the same as the ones computed for the type 0 string in
[10], with the only difference being the nature of the
cancellation of divergences due to the propagation of
closed string tachyons and dilatons. In [10], the remnants
of closed string tachyon divergences were canceled by the
inclusion of a counterterm which, after analytic continu-
ation using a momentum conservation regulator, turned out
to be zero in the Regge limit. The “would-be” subleading
divergences due to closed string dilatons were simply
absent with the inclusion of Dp-branes as long as p < 7.
The amplitude for four massless vector states is much

simpler in the superstring compared to the type 0 theory,
because in the former the full polarization structure can be
factored out of the integration over the moduli, whereas in
the latter each combination of polarization vectors must be*frojasf@phys.ufl.edu
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worked out separately. For the SOð32Þ gauge group, the
planar and nonorientable one-loop diagrams combine to
give a finite expression [11] and we focus our attention on
this case in this article. The amplitude for each diagram
(planar and nonorientable) was computed a long time ago
(see for instance [12]), and for the SOð32Þ gauge group
they can be combined as

AP þ AN ¼ 16π3g4GPK
Z

1

0

dq
q
½Fðq2Þ − Fð−q2Þ�; (1)

with

Fðq2Þ ¼
Z
R

Y3
i¼1

dθi
Y
i<j

ψðθjiÞ2α0ki·kj

ψðq; θÞ ¼ sin θ
Y∞
n¼1

1 − 2q2n cos 2θ þ q4n

ð1 − q2nÞ2 ; (2)

and K is the kinematic factor which can be found, for
example, in [12]. The region of integration R is given by
0 < θ2 < θ3 < θ4 < π, θji ≡ θj − θi, and GP is the group
theory factor GP ¼ Trðλ1λ2λ3λ4Þ. It is convenient to define
the expression

Vs ≡ ln

�
ψðθ43Þψðθ2Þ
ψðθ42Þψðθ3Þ

�
; (3)

therefore,

Y
i<j

ψðθjiÞ2α0ki·kj ¼
�
ψðθ43Þψðθ2Þ
ψðθ42Þψðθ3Þ

�
−α0s

�
ψðθ4Þψðθ32Þ
ψðθ42Þψðθ3Þ

�
−α0t

(4)

¼ exp

�
−α0sVs

��
ψðθ4Þψðθ32Þ
ψðθ42Þψðθ3Þ

�
−α0t

: (5)

Recall that the amplitude above has physical resonances in
both the s and t channels, i.e., the integral representation (1)
has open-string poles whenever α0s ¼ 0; 1; 2;… (and also
when α0t ¼ 0; 1; 2;…). Thus, in order to avoid these poles
for computing the Regge limit, we take α0s → −∞. Note
that a similar situation also appears at tree level string
scattering. For example, if we take the Regge limit in the
Veneziano amplitude

Aðs; tÞ ¼ Γð−α0s − 1ÞΓð−α0t − 1Þ
Γð−α0s − α0t − 2Þ ; (6)

we would also “hit” all the poles at α0s ¼ n for large values
of the positive integer n as we take α0s → ∞. Note also that,
although the usual integral representation of the Veneziano
amplitude

Aðs; tÞ ¼
Z

1

0

x−α
0s−2ð1 − xÞ−α0t−2dx (7)

only converges for Reðα0sÞ < −1 [and Reðα0tÞ < −1], the
Regge limit obtained by evaluating this integral for α0s →
−∞ with α0t fixed gives the same answer as the one
computed from (6) which defines the analytic continuation
of (7) to the full complex plane.
We now go ahead and compute the Regge limit of the

amplitude (1). The dominant contributions come from the
integration regions where α0sVs is finite at large energies. It
is also important to note that, due to the fact that the angular
variables are ordered 0 < θ2 < θ3 < θ4 < π (contrary to
the nonplanar case), Vs is negative definite in the full
integration region [2]. Thus, in the α0s → −∞ limit, the
amplitude is dominated by the regions where Vs vanishes.
The dominant region corresponds to the simultaneous
limits θ2 ∼ θ3 and θ4 ∼ π. It is worth noting that the single
limits, either θ2 ∼ θ3 or θ4 ∼ π separately, also produce
contributions that are not exponentially suppressed and, in
principle, could also contribute to the Regge limit.
However, as we will show later on, these contributions
are subleading with respect to the double-limit one.
In the double limit θ2 ∼ θ3 and θ4 ∼ π, we will need the

following approximations:

�
ψðθ43Þψðθ2Þ
ψðθ42Þψðθ3Þ

�
−α0s

∼ expf−α0sθ32ðπ − θ4ÞðlnψÞ00g�
ψðθ41Þψðθ32Þ
ψðθ42Þψðθ3Þ

�
−α0t

∼
�
θ32ðπ − θ4Þ
ψ2ðθ3Þ

�
−α0t

: (8)

The dominant term in K for this limit is

K ∼
1

4
ϵ2 · ϵ3ϵ1 · ϵ4s2: (9)

Using the approximations above, we see that we need to
compute the integral

I ≡
Z

ϵ

0

dx
Z

ϵ

0

dyðxyÞae−xyk (10)

in the limit when k → ∞. After some algebra, this becomes

I ¼ k−a−1
�
lnðϵ2Þ

Z
ϵ2k

0

dzzae−z þ ln k
Z

ϵ2k

0

dzzae−z −
Z

ϵ2k

0

dzzae−z ln z

�
∼ k−a−1½Γð1þ aÞ ln k − lnðϵ2ÞΓð1þ aÞ − Γ0ð1þ aÞ� þOðk−a−2 ln kÞ
∼ k−a−1Γð1þ aÞ ln k: (11)
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Using this formula for k ¼ ð−α0sÞð− lnψÞ00 and a ¼ −α0t,
we obtain the Regge limit of the amplitude, which becomes

AP þ AM ∼ g4ð−α0sÞ1þα0tΓð−α0tÞ lnð−α0sÞΣðtÞ; (12)

where

ΣðtÞ≡ α0t
Z

1

0

dq
q

Z
π

0

dθðψ2α0t½− lnψ 00�α0t−1

− ψ2α0t
N ½− lnψ 00

N �α0t−1Þ (13)

and ψNðθ; q2Þ ¼ ψðθ;−q2Þ. This completes the calculation
of the asymptotic behavior of the amplitude in the Regge
limit. Notice also that the function ΣðtÞ gives the one-loop
correction to the open string Regge trajectory. This can be
easily seen as follows. At tree level, Regge behavior implies
that the amplitude is of the form A ∼ βðtÞsαðtÞ, with
αðtÞ ¼ 1þ α0t. Including one-loop corrections modifies
both the Regge trajectory αðtÞ and the residue βðtÞ by small
corrections, say, δα and δβ, respectively, i.e.,

ðβðtÞþδβÞsαðtÞþδα∼βsαðtÞ þβsαðtÞδα logsþδβsαðtÞ: (14)

Thus, the new trajectory αðtÞnew ¼ 1þ α0tþ δα is captured
by the term containing the log s factor above.
Before continuing, and as mentioned previously, we

should also evaluate the contributions from the regions
represented by the single limits θ2 ∼ θ3 or θ4 ∼ π sepa-
rately, since they can also render the exponent α0sVs finite
at large jsj. Consider first the single limit region where
θ2 ∼ θ3. Notice that in this case the integral we need to
estimate now is

I0 ≡
Z

ϵ

0

dxxae−xk (15)

in the limit k → ∞. Making the change x → kx yields

I0 ¼ k−1−a
Z

ϵk

0

dxxae−x ∼ k−1−aΓð1þ aÞ (16)

from where we see that, comparing it with (11), it is
suppressed by a factor of ln k. In other words, the joint
region ðθ2 ∼ θ3Þ∩ðθ4 ∼ πÞ has an enhanced contribution to
the amplitude over the single region θ2 ∼ θ3 by a factor of
lnð−α0sÞ. One also arrives at the same conclusion by
analyzing the other single limit θ4 ∼ π, since the integrand
takes the same form as in (15) in the appropriate variables.
Given that we are also interested in recovering the Regge

behavior from the hard-scattering limit, we need to extract
the large t limit of ΣðtÞ. In order to do so, we rewrite the
integral (13) as

ΣðtÞ ¼ α0t
Z

1

0

dq
q

Z
π

0

dθðeα0t lnð−ψ2½lnψ �00Þ½− lnψ �00−1

− eα
0t lnð−ψ2

N ½lnψN �00Þ½− lnψN �00−1Þ; (17)

from which we see that its leading behavior at large t is
given by the critical points of lnð−ψ2½lnψ �00Þ and
lnð−ψ2

N ½lnψN �00Þ. Notice that now we only have a two-
dimensional integration region, for which the critical points
should be easier to analyze in principle.
The leading contribution comes from the q ∼ 0 region

(the closed string channel). Notice that the open string
channel (q → 1) is exponentially suppressed at high t. This
can be seen as follows: performing the transformation
w ¼ expf2π2= logqg, which maps q → 1 to w → 0, yields
(for fixed θ)

lnψ ¼ ln

�
π

− lnw

�
−
θðπ − θÞ lnw

2π2
þ lnð1 − wθ=πÞ

þ
X∞
n¼1

ln
ð1 − wnþθ=πÞð1 − wn−θ=πÞ

ð1 − wnÞ2

¼ ln

�
π

− lnw

�
−
θðπ − θÞ lnw

2π2
þOðwÞ: (18)

Thus, for w ∼ 0, the factor multiplying α0t in the exponent
in the integrand of (17) becomes

lnð−ψ2½lnψ �00Þ≃ −
θðπ − θÞ

π2
lnw; (19)

from which we see that the exponent α0t lnð−ψ2½lnψ �00Þ is
not finite in the large t limit (for fixed θ held a finite amount
away from 0 or π), making the w ∼ 0 contribution expo-
nentially suppressed. On the contrary, in the q ∼ 0 region
we have

lnð−ψ2½lnψ �00Þ ∼ − lnð−ψ2
N ½lnψN �00Þ

∼ 16q2sin4θ þOðq4Þ; (20)

implying that the q ∼ 0 region will become important as α0t
increases.
Notice that the regions θ ∼ 0, π could also produce

important contributions to the integral for large t and need
to be analyzed separately. For this purpose, we would need
the corresponding asymptotic expressions for the functions
ψ and ψN near these points and to integrate over the full
range 0 < q < 1 (Fig. 1 shows the diagram corresponding
to the planar amplitude at fixed q). We will come back to
this point at the end of this section and we will find that
these regions produce subleading behavior with respect to
the contribution coming from q ∼ 0.
For small q, and also using ½− lnψ �00 ∼ ½− lnψN �00∼

csc2θ, the Regge trajectory ΣðtÞ becomes

NOTE ON HIGH ENERGY SCATTERING OF OPEN … PHYSICAL REVIEW D 89, 086002 (2014)

086002-3



ΣðtÞ ∼ iα0t
Z

ϵ

0

dq
q

Z
π

0

dθsin2θðei16q2sin4θα0t − e−i16q
2sin4θα0tÞ:

(21)

Note that we have also defined the integral above by
analytical continuation (t → it) as in [5]. Therefore, we
wish to obtain the large jtj behavior of the expression

ΣðtÞ∼ iα0t
Z

π−δ

δ
dθsin2θ

Z
ϵ

0

dq
q
ðeitaq2 −e−itaq

2Þ (22)

for fixed ϵ with a ¼ 16sin4θ. We have also introduced the
cutoff δ to stress the fact that we need to examine the
contributions from the regions where θ ∼ 0, π separately.
Performing the change atq2 ≡ u, we have

ΣðtÞ ∼ iα0t
Z

π−δ

δ
sin2θdθi

Z
ϵ2ta

0

du
u
sin u: (23)

Since ϵ is small but fixed we can take the upper limit of the
u integral to be ∞ in the jtj → ∞ limit. Also, in this limit,
the θ dependence in the integration over u disappears,
which allows us to send δ to zero; thus,

ΣðtÞ ∼ −α0t
Z

π

0

sin2θdθ
Z

∞

0

du
u
sin u ¼ −α0t

π2

4
: (24)

Therefore, continuing back to t → −it, we have

ΣðtÞ ∼ iα0t as t → −∞: (25)

Finally, as t → −∞, combining Eqs. (12) and (25) yields

AP þ AM ∼ ið−α0sÞ1þα0tΓð−α0tÞ lnð−α0sÞα0t
¼ ið−α0sÞ1þα0tΓð1 − α0tÞ lnð−α0sÞ: (26)

We could use Stirling’s approximation Γð1 − α0tÞ ∼ffiffiffiffiffiffi
2π

p ð−α0tÞ1=2−α0teα0t valid for −α0t ≫ 1, which yields

AP þ AM ∼ ið−α0sÞ1þα0tð−α0tÞ1=2−α0teα0t lnð−α0sÞ: (27)

To conclude, we take a moment to analyze the regions
where θ ∼ 0; π, which are also important as jtj becomes
large. Using the following expression for the logarithm of
ψ ,

lnψðθÞ ¼ ln sin θ þ 2
X∞
n¼1

1

m
q2m

1 − q2m
ð1 − cos 2mθÞ; (28)

one can see that

lnð−ψ2½lnψ �00Þ ∼ − lnð−ψ2
N ½lnψN �00Þ ∼Oðθ4Þ: (29)

Thus, the main contribution at large t comes from the
region where θ is of the order of ∼ð−α0tÞ−1=4. A rough
estimation from these regions gives ΣðtÞ ∼ ð−α0tÞ−3=4,
which is subleading with respect to the q ∼ 0 contribution
given in (25).

B. Hard scattering at one loop

The high energy limit at fixed scattering angle for the
one-loop amplitude was first computed in [2] in the early
days of string theory. There, the computation was done for
the nonplanar amplitude which had a dominant saddle point
in the interior of the integration region. In [5], Gross and
Mañes showed that only the (2þ 2) nonplanar amplitude
(i.e., the amplitude with two particles on each boundary of
the annulus) has a saddle point in the interior of the region
of integration. The planar, nonorientable and the (3þ 1)
nonplanar amplitudes do not possess a dominant saddle
point in the interior, but points in the boundary of the region
do give subdominant contributions [with respect to the
(2þ 2) nonplanar]. They also showed that the leading
contribution for the sum of the planar and nonorientable
diagrams (1) comes from the region where q ∼ 0,
x≡ sin θ2 sin θ43

sin θ42 sin θ3
∼ ð1þ t=sÞ−1. We begin this section by

recalculating the leading behavior known in the literature
using the saddle point approximation for the cross ratio,
although we use a different set of integration variables [13]
where θ2 → x, θ3 → r≡ sin θ43= sin θ3. Starting from
Eqs. (1) and (2), the relevant factor in the integrand when
all kinematic invariants α0ki · kj are large is

Y
i<j

ψ2α0ki·kj ¼ expf−α0sVλg; (30)

where

Vλ≡ lnx−λ lnð1−xÞþ2
X∞
n¼1

1

n
q2n

1−q2n
ðSn−λTnÞ; (31)

with

FIG. 1 (color online). For the planar one-loop amplitude, all the
external states lie at only one of the two boundaries, and the
integration over q is represented as a radial variable. The region
q ∼ 0 corresponds to highly energetic open strings, and it gives
the dominant contribution in the hard-scattering regime.
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x≡ sin θ43 sin θ2
sin θ42 sin θ3

(32)

Sn ≡ 2 cos nðθ2 − θ43Þ½cos nðθ42 þ θ3Þ − cos nðθ2 þ θ43Þ�
Tn ≡ 2 cos nðθ42 þ θ3Þ½cos nðθ2 − θ43Þ − cos nðθ2 þ θ43Þ�

(33)

and λ ¼ −t=s < 0. Expanding the function Vλ about the
critical region mentioned above yields

e−α
0sVλ ≈ e−E0e−α

0s½ð1−λÞ3
2λ ðx−xcÞ2�2q2ðS1−λT1Þ�; (34)

where

E0 ≡ α0jsj½λ lnð−λÞ þ ð1 − λÞ lnð1 − λÞ�
¼ α0s lnð−α0sÞ þ α0t lnð−α0tÞ þ α0u lnðα0uÞ: (35)

In the α0s → −∞ limit, the integration over x can be
approximated by a Gaussian, giving

Z
∞

−∞
dxe−α

0sð1−λÞ
3

2λ ðx−xcÞ2 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2πλ

ð1 − λÞ3
s

ð−α0sÞ−1=2: (36)

The integral over q is dominated by the small q region
which, after analytic continuation to s → is, behaves as

Z
ϵ

0

dq
q
ðe2iα0sq2ðS1−λT1Þ − e−2iα

0sq2ðS1−λT1ÞÞ ∼ iπ
2
; (37)

a result which we already encountered in (21). All in all, for
the coefficient of ϵ1 · ϵ4ϵ2 · ϵ3, we obtain

AP þ AM ∼ sue−E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2πλ

ð1 − λÞ3
s

ð−α0sÞ−1=2FðλÞ

∼ s2ð1þ t=sÞe−E0ð−α0tÞ1=2ð−α0sÞ−1=2
× ð1þ t=sÞ−3=2ð−α0sÞ−1=2FðλÞ

∼ ð−α0sÞ3=2e−E0ð−λÞ1=2ð1 − λÞ−1=2FðλÞ; (38)

which shows the usual exponential suppression e−E0 factor,
and the function FðλÞ is given by

FðλÞ¼
Z

∞

0

dr
Z

π

0

dθ
rsin2θðr2þ2rcosθþ1Þ−1

r2ð1−λÞ2þ2rð1−λÞcosθþ1
: (39)

Writing the exponential factor as

e−E0 ¼ ð−α0sÞα0tð−α0tÞ−α0tð1þ t=sÞα0sþα0t; (40)

we have

APþAM∼ ið−α0sÞ1þα0tð−α0tÞ1=2−α0tð1þ t=sÞα0sþα0t−1=2FðλÞ
(41)

which completes the hard-scattering limit of the one-loop
amplitude.
Before closing this section, a few remarks are important

to note about (39). First, the integral is divergent for λ ¼ 0.
Second, since λ ¼ −t=s and s and t are both negative, it is
convergent in the entire range of interest −∞ < λ < 0. If
we would like to study the λ ∼ 0 behavior of FðλÞ, we need
to examine the divergent regions of the integral for λ ¼ 0.
In the next section, we will study the s ≫ t limit (i.e.,

λ ∼ 0) of the hard-scattering amplitude and we will have at
our disposal a full analytic result (no integrals are left to be
evaluated) for the leading behavior of the amplitude.
However, this is not the case in the study of other theories,
such as the type 0 string studied in [10]. Thus, in those
cases, one only has at one’s disposal the hard-scattering
limit in terms of integral representations similar to (39), and
an estimation of FðλÞ for λ ∼ 0 is indeed necessary. We will
come back to these remarks at the end of Sec. III, but for
now we will go ahead and conclude this section by
estimating the small λ behavior of FðλÞ.
By simple inspection we see that, as λ → 0, the only

singular integration region is the joint region θ ∼ π and
r ∼ 1. It is straightforward to see this by recalling that, in
terms of the cross ratio x, the dominant saddle point is given
by xc ¼ ð1 − λÞ−1. This perfectly matches with the fact that
the Regge behavior of the amplitude is obtained from the
region θ2 ∼ θ3, θ4 ∼ π, since x ∼ θ32ðπ − θ4Þ, which gives
the leading behavior [3,10]. Thus, the Regge limit occurs
when x → 1. Therefore, in the small scattering angle limit
(i.e., λ ∼ 0), the integral above is singular where θ ∼ π,
r ∼ x; thus

FðλÞ ∼
Z

xþδ

x−δ
dr

Z
π

π−ϵ
dθ

×
ðπ − θÞ2

ððx − 1Þ2 þ xðπ − θÞ2Þððr=x − 1Þ2 þ ðπ − θÞ2Þ
∼ 2

Z
ϵ

0

θ

ðx − 1Þ2 þ xθ2

¼ −2 ln j1 − xj þ lnðð1 − xÞ2 þ ϵ2Þ: (42)

Therefore, as λ → 0 for fixed ϵ, we have

FðλÞ ∼ −2 lnð−λÞ þ 2 lnð1 − λÞ: (43)

III. RECOVERY OF THE REGGE LIMIT

The high energy behavior at fixed angle given in Eq. (41)
uses a Gaussian approximation around the dominant saddle
point given by xc ¼ ð1 − λÞ−1. We will now calculate this
limit using a different method which does not require the
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Gaussian approximation, but instead we will compute the
integral over the x variable in an exact closed form.
However, we still need to approximate the exponent for
small q, but this is not too serious since this is the only
place in the q integration where there is a dominant critical
point [5]. One could regard the calculation we perform in
this section as a computation of the Gaussian approxima-
tion, including all the possible fluctuations around the
saddle. This allows us to bypass the issue of computing the
contributions coming from any other region in the θk
integrations, since we will be computing this triple integral
in exact form. Starting from (1), for small q we obtainY
i<j

ψðθjiÞ2α0ki·kj ¼ e−α
0sVλ ≈ e−α

0s½ln x−λ lnð1−xÞþ2q2ðS1−λT1Þ�

≈ x−α
0sð1 − xÞ−α0te−2α0sq2ðS1−λT1Þ: (44)

Notice that this time we are not expanding the function
ln x − λ lnð1 − xÞ about the saddle point xc. The small q
contribution to the total amplitude can be written as

APþAN ∼α02su
Z Y

k

dθkx−α
0sð1−xÞ−α0t

×
Z

ϵ

0

dq
q
½e−2α0sq2ðS1−λT1Þ−e2α

0sq2ðS1−λT1Þ�; (45)

where we have included the overall α02su coefficient
coming from the coefficient of ϵ1 · ϵ4ϵ2 · ϵ3. We have
already encountered the expression for the q integral
above, with the very satisfying result that it does not

depend on the coefficient of q2 in the exponent; therefore, it
does not bring an angular dependence from the combina-
tion S1 − λT1 which will allow us to perform an exact
evaluation of the integration over the θk variables. The
integral

I ≡
Z

π

0

dθ4

Z
θ4

0

dθ3

Z
θ3

0

dθ2x−α
0sð1 − xÞ−α0t (46)

was evaluated long ago by Green and Schwarz in [9], where
they proved that dilaton tadpole divergences could be
absorbed in a renormalization of the Regge slope α0.
This was realized before it was recognized that this
divergence is absent for the SOð32Þ gauge group. We
simply quote the answer here:

I ¼
Z Y

k

dθkx−α
0sð1 − xÞ−α0t

¼ γ
1

α0
∂
∂α0

�
α0
Γð−α0sÞΓð−α0tÞ
Γð1 − α0s − α0tÞ

�
; (47)

where γ is a numerical constant. Using this and the result
for the integral over q given in Eq. (37), we have

AP þ AN ∼ iα02su
1

α0
∂
∂α0

�
α02

Γð−α0sÞΓð−α0tÞ
Γð1 − α0s − α0tÞ

�
; (48)

where we have omitted the numerical coefficient γ for
simplicity. We can now take the limit s; t → −∞, holding
t=s fixed directly inside the brackets, to obtain

AP þ AN ∼ iα02su
1

α0
∂
∂α0 ½α

02ð−α0sÞ−1þα0tð−α0tÞ−1=2−α0tð1þ t=sÞ−1=2þα0sþα0t�
∼ ið−α0sÞ1=2ð−λÞ−1=2−α0tð1 − λÞ1=2þα0sþα0t½1þ 2α0sðλ lnð−λÞ þ ð1 − λÞ lnð1 − λÞÞ�: (49)

Taking again −α0s ≫ 1, we end up with

AP þ AN ∼ ið−α0sÞ3=2ð−λÞ−1=2ð1 − λÞ1=2eα0s½λ lnð−λÞþð1−λÞ lnð1−λÞ�½λ lnð−λÞ þ ð1 − λÞ lnð1 − λÞ�:

To recover the Regge behavior, we take s ≫ t above. The exponential becomes

eα
0s½λ lnð−λÞþð1−λÞ lnð1−λÞ� ¼ ð−λÞ−α0tð1 − λÞα0sþα0t ∼ ð−α0sÞα0tð−α0tÞ−α0teα0t; (50)

and the last factor becomes

½λ lnð−λÞ þ ð1 − λÞ lnð1 − λÞ� ∼ λ lnð−λÞ ¼ −t=s½lnð−α0tÞ − lnð−α0sÞ� ∼ ð−α0tÞð−α0sÞ−1 lnð−α0sÞ: (51)

Therefore, the Regge limit at high t is

APþAN ∼ ið−α0sÞ3=2ð−λÞ−1=2ð−α0sÞα0tð−α0tÞ−α0teα0tð−α0tÞð−α0sÞ−1 lnð−α0sÞ∼ ið−α0sÞ1þα0tð−α0tÞ1=2−α0teα0t lnð−α0sÞ; (52)

which is exactly the result we found in (27).
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As anticipated at the end of Sec. II B, we finish this
section by showing that the result (52) can also be obtained
from the approximate expression in (41) by using the small
λ behavior of FðλÞ defined in (39). We believe it is
instructive to do this because we are also interested in
the small λ behavior of the hard-scattering limit of the type
0 model in the context of [10,14,15], where we cannot
afford the luxury of having an exact expression for the
coefficient of the exponential falloff. From (43) we have

FðλÞ∼−2lnð−λÞþ2 lnð1−λÞ∼2 lnð−α0sÞ for s≫ t; (53)

which provides the logarithm that appears in the Regge
limit of the amplitude in (27). Thus, putting this into (41)
one immediately recovers (52).

IV. CONCLUSIONS

By studying the hard-scattering limit of the sum of the
one-loop planar and nonorientable diagrams of type I
superstrings in flat spacetime, we found the exact depend-
ence in the scattering angle that multiplies the known
exponential suppression at high energies. This avoids the
issue of having to estimate the contributions from flat
directions in the angular integrals and the fluctuations
around the saddle point, since we have at our disposal an
exact result for the triple integral over the angular variables
in a closed form (i.e., the integral over the moduli
representing the positions of the vertex operators). This
allowed us to compare both the hard-scattering and Regge
regimes of the amplitude, since they should coincide in the
limit of high-momentum transfer (high t) of the latter
regime. We indeed confirmed that this matching occurs by
making use of the closed form of the angular integrals given
in (47). As a check, we were also able to obtain this result
from the approximate expression (41) by analyzing the
behavior of the integral FðλÞ in (39) as λ → 0.

It would be interesting to see if such a smooth connection
between the hard-scattering and Regge regimes still holds
for the one-loop nonplanar diagram. In that case, the
amplitude in the hard limit is dominated by a saddle in
the interior of the moduli space, i.e., away from the
boundaries at q ¼ 0 and q ¼ 1, given in terms of the
Jacobi theta functions as θ4ð0; qÞ=θ4ðπ; qÞ ¼ ð1 − λÞ1=4.
However, as λ → 0, the only solution for the saddle
equation above is q ¼ 0, thus moving the saddle to the
boundary. On the other hand, the high energy (α0jtj ≫ 1)
limit of the Regge regime is again dominated by the q ∼ 0
region. Therefore, a smooth transition between the hard and
Regge behaviors is also expected for the one-loop non-
planar diagram, although it would be nice to obtain this
explicitly.
Another immediate extension of this work would be to

allow the open strings to be attached to smaller dimensional
coincident Dp-branes (here we considered the case of a
space-filling D-brane) where the small q behavior can be
analyzed separately for the planar and nonorientable dia-
grams, since the amplitudes are finite as long as p < 8. It
would also be interesting to check if our methods can be
applied to the situation studied in [6], where the authors
analyzed the case where of open strings living on different
D-branes separated by a fixed distance.
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