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It is known that by introducing the Yukawa coupling between the fermion and the background
scalar field, a bulk spin-half fermion can be localized on general Randall-Sundrum braneworlds generated
by a kinklike background scalar. However, this localization mechanism does not work anymore for
Randall-Sundrum braneworlds generated by a scalar whose configuration is an even function of the extra
dimension. In this paper, we present a new localization mechanism for spin-half fermions for such a class of
braneworld models, in which extra dimension has the topology S1=Z2. By two examples, it is shown that
the new localization mechanism produces interesting results. In the first model with the brane generated by
two scalars, the zero mode of the left-handed fermion is localized on the brane and there is a mass gap
between the fermion zero mode and excited KK modes. In the second model with the brane generated by a
dilaton scalar, the zero mode of the left- or right-chiral fermion can be localized on the brane and there is no
mass gap.
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I. INTRODUCTION

Braneworld scenarios [1–5], which were motivated from
string/M theory, have been attracting constant interest in
recent years, because they not only show a new viewpoint
of spacetime but also provide new approaches to address a
large number of outstanding issues such as the hierarchy
problem, the cosmological problem, the nature of dark
matter and dark energy, black hole production at future
colliders as a window on quantum gravity, production of
electroweak symmetry breaking without a Higgs boson,
and so on. In these scenarios, our ð3þ 1Þ-dimensional
spacetime is a submanifold (the brane) embedded in a
fundamental higher-dimensional spacetime (the bulk).
An important issue in braneworld theories is the mecha-

nism by which extra dimensions are hidden and ordinary
matters are confined on the brane, so that the spacetime is
effectively four dimensional, at least at low energy. This
can be ensured for those brane models with compact extra
dimensions [1–4]. But in other models, extra dimensions
can be infinite [5,6]. For these brane models, it is interesting
and important to give the mechanism of confinement of
ordinary matters on the brane.
With simple field-theoretic models, in which branes are

generated naturally by background scalar fields with some
potential, one can investigate the localization of ordinary
matters on branes. In this paper, we focus on fermions. In
braneworld models, the extra dimension is usually sup-
posed to possess Z2 symmetry; hence, the background

scalar fields would have odd or even parity. If the scalar ϕ is
an odd function of the extra dimension, the well-known
localization mechanism for a fermion is to introduce the
Yukawa coupling between the fermion and the background
scalar field, i.e. −ηΨ̄ϕΨ. There are a lot of works on this
localization mechanism (see Refs. [7–16] and references
therein). However, if the scalar is an even function of the
extra dimension, this mechanism does not work anymore,
and we need to introduce a new localization mechanism.
This is the goal of this paper.

II. LOCALIZATION MECHANISM

In order to investigate the localization of spin-half
fermions on the branes generated by even and/or odd
background scalar fields, we introduce a new kink of
coupling between the fermions and the background scalars.
The five-dimensional action for a massless Dirac fermion
coupled to the background real scalar fields reads

S1=2 ¼
Z

d5x
ffiffiffiffiffiffi
−g

p ½Ψ̄ΓMð∂M þ ωMÞΨ

þ ηΨ̄ΓM∂MFðϕ; χ; � � �Þγ5Ψ�; (1)

where Fðϕ; χ; � � �Þ is a function of the real scalar fields
ϕ, χ, � � �, η is the coupling constant, and ωM ¼ 1

4
ωM̄ N̄
M ΓM̄ΓN̄

is the spin connection. In five dimensions, Dirac fermions
are four-component spinors and their gamma structure is
determined by the gamma matrices in curved spacetime:
fΓM;ΓNg ¼ 2gMN , where ΓM ¼ EM

M̄Γ
M̄ with EM

M̄ the viel-

bein and γM̄ the gamma matrices in flat spacetime. The
indices of five-dimensional spacetime coordinates and the
local Lorentz indices are labeled with capital latin letters
M;N; � � � and M̄; N̄; � � �, respectively.
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The metric describing a Minkowski brane embedded in a
five-dimensional spacetime is assumed as [4,5]

ds25 ¼ e2AðyÞημνdxμdxν þ dy2; (2)

which can also be transformed to the conformally flat one,

ds25 ¼ e2AðzÞðημνdxμdxν þ dz2Þ; (3)

by the coordinate transformation dz ¼ e−AðyÞdy, where e2A
is the warp factor, y or z denotes the extra dimension
coordinate, and ημν is the induced metric on the brane. The
background scalars are only functions of the extra
dimension.
With the conformally flat metric (3), the spin connec-

tion ωM reads as ωμ ¼ 1
2
ð∂zAðzÞÞγμγ5 and ω5 ¼ 0, and the

equation ofmotion for the five-dimensional Dirac fermion is

½γμ∂μ þ γ5ð∂z þ 2∂zAðzÞÞ þ η∂zF�Ψ ¼ 0: (4)

Note that for the usual Yukawa coupling−ηFðϕ; χ; � � �ÞΨ̄Ψ,
the corresponding Dirac equation is given by [7,8,10–
14,17–19],

½γμ∂μ þ γ5ð∂z þ 2∂zAðzÞÞ þ ηeAðzÞF�Ψ ¼ 0: (5)

In order to investigate the above Dirac equation (4),
we make the general chiral decomposition in terms of
four-dimensional effective Dirac fields,

Ψðx; zÞ ¼
X
n

ψLnðxÞfLnðzÞe−2AðzÞ

þ
X
n

ψRnðxÞfRnðzÞe−2AðzÞ; (6)

where ψLnðxÞ ¼ −γ5ψLnðxÞ and ψRnðxÞ ¼ γ5ψRnðxÞ
are the left- and right-chiral components of the four-
dimensional effective Dirac fermion field, respectively,
and they satisfy the four-dimensional massive Dirac equa-
tions γμ∂μψLnðxÞ¼μnψRnðxÞ and γμ∂μψRnðxÞ ¼ μnψLnðxÞ.
Note that the summation indices are not necessarily the
same for the left- and right-chiral KK modes. In the
following, we mainly focus on the left- and right-chiral
KK modes fLnðzÞ and fRnðzÞ of the five-dimensional Dirac
field, which satisfy the following coupled equations,

½∂z − η∂zF�fLnðzÞ ¼ þμnfRnðzÞ; (7a)

½∂z þ η∂zF�fRnðzÞ ¼ −μnfLnðzÞ; (7b)

which can be recast into

U†UfLnðzÞ ¼ μ2nfLnðzÞ; (8a)

UU†fRnðzÞ ¼ μ2nfRnðzÞ; (8b)

with the operator U defined as U ¼ ∂z − η∂zFðϕÞ. The
above equations can also be rewritten as the Schrödinger-
like equations

½−∂2
z þ VLðzÞ�fLðzÞ ¼ μ2nfLðzÞ; (9a)

½−∂2
z þ VRðzÞ�fRðzÞ ¼ μ2nfRðzÞ; (9b)

where the effective potentials for the KK modes fL;R are

VL;RðzÞ ¼ ðη∂zFÞ2 � ∂zðη∂zFÞ: (10)

The form of Eq. (8) and the supersymmetric partner
potentials (10) show that there are no tachyon fermion
KK modes with negative mass square, and they also
indicate that we may obtain a chiral massless fermion on
the brane for the new coupling. For the usual Yukawa
coupling −ηFðϕ; χ; � � �ÞΨ̄Ψ, the corresponding effective
potentials read [7,8,10–14,17–19]

VL;RðzÞ ¼ ðηeAFÞ2 � ∂zðηeAFÞ: (11)

On the other hand, in order to derive the effective action
on the brane for the four-dimensional massless and massive
Dirac fermions, we need the following orthonormality
conditions for the KK modes fLnðzÞ and fRnðzÞ,
Z

fLmfLndz¼
Z

fRmfRndz¼δmn;
Z

fLmfRndz¼0; (12)

which are the same as the case of the usual Yukawa
coupling.
The zero modes of the left- and right-chiral fermions turn

out to be

fL0;R0ðzÞ ∝ exp
�
�
Z

z

0

dz̄η∂ z̄F
�
¼ e�ηF: (13)

The normalization condition is

Z
jfL0;R0ðzÞj2dz ∝

Z
e�2ηFdz < ∞: (14)

So, there is at most one of the left- and right-chiral fermion
zero modes that can be localized on the brane if the extra
dimension in the conformal coordinate z is infinite. Without
loss of generality, we mainly focus on η > 0 in this paper.
In brane models, it is usually assumed that the extra

dimension has Z2 symmetry, so the effective potentials for
the fermion KK modes should be symmetric with respect to
the extra dimension. In order to ensure the potentials
VL;RðzÞ are even functions of z, F should be even and
odd functions of z according to Eqs. (10) and (11),
respectively. This can be ensured for odd background
scalars. However, if the scalars are even, the usual
Yukawa coupling −ηFðϕ; χ; � � �ÞΨ̄Ψ does not work for
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the fermion localization, and we need the new one
introduced in the action (1).

III. LOCALIZATION OF FERMIONS ON BRANES

Next, we will investigate localization of fermions on
various branes by using the new localization mechanism
presented here. We will give two examples.
We first investigate the localization of fermions on a

two-field-thick brane. The system is described by the action
including two interacting scalars ϕ and π,

S¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
R
2κ25

−
1

2
ð∂ϕÞ2−1

2
ð∂πÞ2−Vðϕ;πÞ

�
; (15)

where R is the scalar curvature. We set κ25 ¼ 8πG5 ¼ 1with
G5 the five-dimensional Newton constant. The line element
is also assumed as (3) for a static Minkowski brane. The
solution for this system can be found via the superpotential

method [20] with V ¼ 1
2
e−2

ffiffiffiffiffiffi
1=3

p
π½ðdWðϕÞ

dϕ Þ2 −WðϕÞ2� and

WðϕÞ ¼ vaϕð1 − ϕ2

3v2Þ [18,21],

ϕðzÞ ¼ v tanhðazÞ; (16a)

AðzÞ ¼ −
v2

9

�
ln cosh2ðazÞ þ 1

2
tanh2ðazÞ

�
; (16b)

πðzÞ ¼
ffiffiffi
3

p
AðzÞ; (16c)

where both v and a are positive constants. It can be seen
that the solution for ϕ is a kink (odd) and π ¼ ffiffiffiffiffiffi

3b
p

A is a
dilaton field (even).
In order to localize fermions on the brane, we need to

consider the coupling between fermions and the back-
ground scalars. If we consider the usual Yukawa coupling
between fermions and the kink ϕ, i.e., −ηΨ̄ϕΨ, then we
will find that fermion zero modes cannot localized on the
brane [18].
Here, we ask an interesting question: can fermions be

localized on the brane if they couple with the even back-
ground scalar, i.e., the dilaton field π? In order to answer
this question, we apply the localization mechanism devel-
oped in this paper and consider the simplest case F ¼ π,
i.e., with the coupling of ηΨ̄ΓMð∂MπÞγ5Ψ, for which the
potentials (10) are given by

VL;RðzÞ ¼
1

54
a2v2η½2v2ηð1þ sech2ðazÞÞ2tanh2ðazÞ

� 3
ffiffiffi
3

p
ðcoshð2azÞ − 5Þsech4ðazÞ�: (17)

The values of VLðzÞ and VRðzÞ at z ¼ 0 and z → �∞ are
given by

VL;Rð0Þ ¼ ∓ 2

3
ffiffiffi
3

p a2v2η;

VL;Rð�∞Þ ¼ 1

27
a2v4η2: (18)

Here, we only consider the positive coupling constant η, for
which we have VLð0Þ < 0 and VRð0Þ > 0. Since the value
of the potential VLðzÞ is positive at the boundary along the
extra dimension, there is a mass gap, and those left-chiral
fermion KK modes (including the zero mode) with
m2

n < 1
27
a2v4η2 belong to a discrete spectrum and those

with m2
n >

1
27
a2v4η2 belong to a continuous one. For right-

chiral fermion KK modes, the zero mode cannot be
localized on the brane, and the spectrum is decided by
the value of the coupling constant η. For 0 < η < 6

ffiffiffi
3

p
=v2,

VRð0Þ > VRð�∞Þ, there are no bound right-chiral fermion
KK modes; namely, no right-chiral fermions can be
localized on the brane. If η > 6

ffiffiffi
3

p
=v2, there may exist a

finite number of bound right-chiral fermion KK modes,
whose masses also satisfy m2

n < 1
27
a2v4η2. The typical

shapes of VLðzÞ and VRðzÞ are shown in Fig. 1 for 0 <
η < 6

ffiffiffi
3

p
=v2 and η > 6

ffiffiffi
3

p
=v2.

The left-chiral fermion zero mode reads

fL0ðzÞ ∝ cosh−
ηv2

6
ffiffi
3

p ðazÞ exp
�
−

ηv2

6
ffiffiffi
3

p tanh2ðazÞ
�
: (19)

It is easy to show that the zero mode (19) is normalizable
for any positive η, so it is localized on the brane, while the
right-chiral fermion zero mode is divergent (for positive
coupling η) at the boundary of the extra dimension and
cannot be localized. The shapes of left- and right-chiral
fermion zero modes are plotted in Fig. 1.
The massive KK modes can be solved numerically, but

we do not discuss them here.
Next, we turn to another brane scenario—the scalar-

tensor brane.
In the RS1 model [4], there are two 3-branes located at

the boundaries of a compact extra dimension with the
topology S1=Z2. In order to solve the gauge hierarchy
problem by the exponential warp factor e−ky, our Universe

y

VL,R and fL0,R0

y

VL,R and fL0,R0

FIG. 1 (color online). The shapes of the potentials VLðzÞ (red
thin curve) and VRðzÞ (blue thin dashed curves) as well as the
corresponding fermion zero modes fL0ðzÞ (red thick curve) and
fR0ðzÞ (blue thick dashed curves) for the two-field brane. The
parameters are set to a ¼ 1, v ¼ 2, and η ¼ 1.6 (left)
and η ¼ 6.6 (right).
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should be located on the negative tension brane. However,
this would give a “wrong-signed” Friedmann-like equation,
which leads to a severe cosmological problem [22,23]. In
the RS2 model, the cosmological problem has been solved,
but the gauge hierarchy problem is left.
Recently, a simple generation of the RS1 model in

the scalar-tensor gravity was given in Ref. [24]. In this
model, our world is moved to the positive tension brane but
the hierarchy problem is also solved. The action for the
scalar-tensor gravity is given by [24]

S5 ¼
M5

2

Z
d5x

ffiffiffiffiffi
jgj

p
ekϕ½R − ð3þ 4kÞð∂ϕÞ2�; (20)

whereM5 is the five-dimensional scale of gravity, and k is a
coupling constant. The braneworld is generated by the
scalar ϕ. For the special case of k ¼ −1, the above action is
just the standard bosonic part of the effective string action
involving only the metric and the dilaton.
The line element is given by (3) for a static Minkowski

brane. The conformal coordinate z ∈ ½−zb; zb� denotes an
S1=Z2 orbifold extra dimension. This system has two sets
of brane solutions. The first one is given by [24]

eAðzÞ ¼ ð1þ βjzjÞ 1
3þ2k; (21a)

ϕðzÞ ¼ 2

3þ 2k
lnð1þ βjzjÞ; (21b)

where β > 0 and k < −3=2. The second solution reads [24]

eAðzÞ ¼ ð1þ βjzjÞ3þ4k
9þ6k; (22a)

ϕðzÞ ¼ −
2

3þ 2k
lnð1þ βjzjÞ; (22b)

where β > 0 and −3=2 < k < −3=4.
Both solutions describe the same braneworld picture:

there are a positive tension brane at the origin and a
negative one at the boundary zb, which is similar to the RS1
model. However, the massless graviton for both solutions
here is localized on the negative tension brane, which is
opposite to the case of the RS1 model. Then it can be
shown that, if we suppose that the Standard Model fields
are confined on the positive tension brane localized at
z ¼ 0, which is crucial to overcome the severe cosmologi-
cal problem of the RS1 model, the gauge hierarchy problem
can be solved in this brane model [24].
Now, we would like to investigate the localization of

fermions on the scalar-tensor brane. We first note that, since
the scalar field ϕðzÞ in this brane model is an even function
of z, we cannot use the Yukawa coupling with the form
−ηΨ̄FðϕÞΨ, which would lead to an odd effective poten-
tial. We would like to show that, if we apply the new
localization mechanism presented in this paper, fermions
can be localized on the positive tension brane even the extra

dimension is extended to −∞ < z < ∞. Here, we consider
the simple case FðϕÞ ¼ ϕq with q a positive integer and ϕ
given by the first solution (21b), for which the potentials
(10) are given by

VL;RðzÞ ¼
4qβ2ϕq−2ðzÞ

ð3þ 2kÞ2ð1þ βjzjÞ2 ½qϕ
qðzÞη2

� ðq − 1 − lnð1þ βjzjÞÞη� � 4βηδq;1δðzÞ
ð3þ 2kÞ : (23)

The values of VL;RðzÞ at z → 0 and z → �∞ are given by

VL;Rðz → 0Þ →

8>>><
>>>:

2β2½2η2∓ð3þ2kÞη�
ð3þ2kÞ2 � 4βηδðzÞ

ð3þ2kÞ ; q ¼ 1

� 8β2η
ð3þ2kÞ2 ; q ¼ 2

0; q ≥ 3

;

VL;Rðz → �∞Þ → 0: (24)

From Eqs. (23)–(24), we know that there are two
potential barriers around the positive tension brane, and
the potential barriers trend to vanish at the boundaries of
the extra dimension. For the case q ¼ 1 and η > 0, the
potentials for left- and right-chiral fermion KK modes have
a negative and positive δðzÞ potential wells, respectively.
For odd q > 1, the potential VLðzÞ around the positive
tension brane located at z ¼ 0 is negative, which leads to a
bound left-chiral fermion zero mode. For even q > 1, the
potential VRðzÞ around the positive tension brane is
negative, which results in a bound right-chiral fermion
zero mode.
The fermion zero modes are

fL0;R0ðzÞ ∝ exp

�
�η

�
2

3þ 2k
lnð1þ βjzjÞ

�
q
�
: (25)

The normalization conditions are given by

Z
∞

−∞
f2L0;R0ðzÞdz < ∞: (26)

For q ¼ 1, if η > − 3þ2k
4

ð> 0Þ, the above integral for fLðzÞ
is finite, so the zero mode of the left-chiral fermion can be
localized on the positive tension brane. For odd q > 1 and
even q > 1, with any positive coupling η, the zero modes of
the left- and right-chiral fermions are localized on the
brane, respectively.
For the solution (22b), the results are almost the same

except that the localization condition of left-chiral fermion
zero mode is η > 3þ2k

4
ð> 0Þ for the case q ¼ 1.

When zb < ∞, the localizations of the left- and right-
chiral fermion zero modes are opposite; namely, one is
localized on the positive tension brane and another is
localized on the negative tension one.
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IV. CONCLUSION

In this paper, we presented a new localization mecha-
nism for fermions in a class of braneworld models, in which
the extra dimension has the topology S1=Z2. This new
localization mechanism is necessary for those braneworlds
generated only by a dilaton scalar. In such braneworld
models, the background scalar is an even function of the
extra dimension. Therefore, the usual localization mecha-
nism, by introducing the Yukawa coupling between the
fermion and the background scalar, cannot work anymore
because the effective potentials for fermion KK modes
are not even functions of the extra dimension, while the
new localization mechanism introduced in this paper will
give good results.
We illustrated this with two examples. The first example

is about a brane generated by two scalar fields with an
interaction potential, one is the usual kink scalar and
another is the dilaton. For this model, our new localization
mechanism gave a very good and interesting result: the zero
mode of the left-handed fermion is localized on the brane,
there is a mass gap between the fermion zero mode and
excited KK modes, and there are some bound discrete

fermion KK modes and a series of continue fermion
KK modes.
In the second example, we considered a brane generated

by a dilaton scalar. This model is a simple generation of the
RS1 model in the scalar-tensor gravity. In this model, our
world is moved to the positive tension brane, and the
hierarchy problem and cosmological problem can be solved
synchronously [24]. In order to localize fermions on the
positive tension brane, we considered the new coupling
introduced in this paper with FðϕÞ ¼ ϕq and positive
coupling constant. It was found that the zero modes of
the left- and right-chiral fermions can be localized on the
brane for odd and even positive integer q, respectively.
There are a series of gapless continuous massive fermion
KK modes, which cannot be localized on the brane.
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