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We study the dynamics of the oscillating gauged scalar field in a thermal bath. A Langevin-type equation
of motion of the scalar field, which contains both dissipation and fluctuation terms, is derived by using the
real-time finite-temperature effective action approach. The existence of the quantum fluctuation-dissipation
relation between the nonlocal dissipation term and the Gaussian stochastic noise terms is verified. We find
that the noise variables are anticorrelated at equal time. The dissipation rate for each mode is also studied,
which turns out to depend on the wave number.
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I. INTRODUCTION

Recent advancements in observational technology en-
able us to trace back the history of the Universe. In
particular, observations of the cosmic microwave back-
ground, including the latest results of the Planck mission
[1], provide us with the picture of the Universe at the
recombination, the subsequent evolution, and a piece of
information on the early Universe. The Universe in a much
earlier period, however, is still veiled and many models
which are built to explain the physics beyond the energy
scale realized in laboratories remain unverified. To select
the theory describing our world, we need not only obser-
vational developments but also more precise theoretical
predictions using fundamental theories of physics.
One of the most interesting phenomena in the early

Universe is the phase transition. It has providedmechanisms
of inflation [2–7], called “old inflation” [3,4] and “new
inflation” [5,6]. Inbothof themodels inflation isdrivenbythe
vacuum energy before the end of the phase transition. The
thermal inflation [8], also caused by the potential energy of
the flaton field, is a relatively short accelerating period after
the primordial inflation. Since it changes the expansion
historyof theUniverse,notonlyare themoduli andgravitinos
diluted but the primordial gravitational waves are damped as
well [9]. On the other hand, collisions of bubbles generated
during a phase transition can produce gravitational waves
[10]. Furthermore, depending on the kinds of broken sym-
metry, various topological defects are expected to be

produced.Among them, line-like topological defects known
as osmic strings can produce gravitational waves [11] which
may be detectable by future experiments [12]. These exam-
ples indicate that thephasetransitionisakeytounderstanding
high energy physics and the early Universe.
A precise description of the dynamics of phase transitions

isnecessary to comparepredictionsof each theoreticalmodel
with observations. In many models of the early Universe,
phasetransitionsarecontrolledbytheexpectationvalueof the
scalar fields.While the effective potential is a useful quantity
to derive properties of the phase transitions that happen
quasistatically, it often comes up short because of the
dynamical nature of the scalar fields. In such cases, we need
to directly solve the evolution equations of the scalar fields
derived from the effective action. It has been shown that the
behaviorof a scalar field ina thermalbathcanbedescribedby
the Langevin equation [13], which includes stochastic noise
terms coming from interactions with other fields in the
thermal bath. These noise terms may change the types of
phase transitions. For example, a previous study [14] indi-
cates that the fermionic noise may lead to the phase mixing,
which invalidates the description of a phase transition using
the effective potential. In addition, the relevance of thermal
fluctuations during inflation in discriminating inflation
models has also been pointed out [15].
So far, the effective action and the resultant equation of

motion of a scalar field have been studied in models where
it has self-interaction and interactions with other fermions
and scalar bosons [14,16]. Now, it is an interesting project
to extend the previous studies to include interactions with
gauge fields. We extend previous analyses to include
interactions with gauge fields using the simplest Abelian
gauge theory known as scalar quantum electrodynamics.
Though the hot scalar QED theory has been studied in
Refs. [17,18] to study the dynamics of gauge fields, we
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focus on the scalar field as a system of interest and treat
gauge fields as a hot environment.
The organization of this paper is as follows. We briefly

review the effective action method and apply it to scalar
quantum electrodynamics in Sec. II. Actually, this effective
action contains the imaginary part. In Sec. III, we interpret
it as stochastic noises and derive a generalized Langevin
equation. We consider the meaning of the equation, and
explain the validity of this interpretation. We also show the
stochastic property of the noise, and compare it with the
fermionic and scalar bosonic noises which have been
studied in previous studies. The dissipation rate of each
mode is also studied. We summarize our study and discuss
its applicability in Sec. IV.

II. EFFECTIVE ACTION

As we have mentioned in the Introduction, one of our
goals is the precise description of phase transitions in gauge
theory which requires the knowledge of the effective action
for the scalar field. In this paper, we focus on the derivation
of the effective action and investigate the basic properties of
the obtained equation of motion for the massive charged
scalar field due to interactions with gauge fields. In order to
realize the phase transition, we need to add the self-
interaction of the scalar field to have a Higgs mechanism.
We defer the inclusion of the self-interaction to another
study. The simplest approach to describe phase transitions
in the hot early Universe is to analyze a finite-temperature
effective potential. By using the effective potential, we can
explain the symmetry restoration at high temperature or in
the early Universe and the subsequent spontaneous sym-
metry breaking. However, since it is derived under the
assumption of a static, homogeneous field configuration, it
cannot describe the dynamics of phase transitions accu-
rately. In this section, in order to obtain the equation of
motion governing the dynamical phenomenon, we calcu-
late the effective action. Studies so far show that the
effective action generally contains an imaginary part, which
can be interpreted as the origin of dissipative properties.

A. Settings

To clarify the role of gauge fields, we consider scalar
quantum electrodynamics, which is the simplest gauge
theory. Its Lagrangian density is given by

L ¼ DμΦ†DμΦ −m2Φ†Φ −
1

4
FμνFμν

¼ ∂μΦ†∂μΦ −m2Φ†Φ −
1

4
FμνFμν

þ ieAμðΦ†∂μΦ − Φ∂μΦ†Þ þ e2AμAμΦ†Φ: (1)

After imposing the Coulomb gauge condition ~∇ · ~A ¼ 0,
one can see that the Lagrangian density becomes

L ¼ ∂μΦ†∂μΦ −m2Φ†Φþ 1

2
∂μ

~AT · ∂μ ~AT

− ie~ATðΦ ~∇Φ† − Φ† ~∇ΦÞ − e2 ~AT · ~ATΦ†Φ

þ 1

2
ð ~∇A0Þ2 − ieA0ðΦ _Φ† − Φ† _ΦÞ þ e2A2

0Φ
†Φ: (2)

Here, ~AT means the transverse components, which satisfy
~∇ · ~AT ¼ 0. Though we use the Coulomb gauge in this
study, other choices of gauge, such as axial gauge or Lorenz
gauge, should also be possible in principle.1 Although the
field equation may be gauge dependent, physical quantities
extracted from it should be gauge invariant. We discuss this
issue by showing the gauge independence of the dissipation
rate in Appendix A.
In the so-called real-time thermal field theory, we can

calculate the thermal average using a path integral.2 We can
choose the time path so that it consists of three paths: ðiÞ A
path from tið< 0Þ to −ti on the real axis of t (plus contour),
ðiiÞ a path from −ti to ti on the real axis of t (minus
contour), and ðiiiÞ a path from ti to ti − iβ, where β ¼ 1=T
is the inverse of the temperature. We can neglect the
contribution from the third contour when taking T → ∞
[20]. We denote field variables on the contour (i) and (ii) by
superscripts þ and −, respectively. Following Boyanovsky
et al. [18], thermal propagators for the scalar field Φ and
gauge field ~AT are given as follows.
Propagators for the scalar field:

hΦðaÞ†ð~x; tÞΦðbÞð ~x0; t0Þi ¼ −i
Z

d3k
ð2πÞ3 G

ab
k ðt; t0Þe−i~k·ð~x− ~x0Þ;

(3)

Gþþ
k ðt; t0Þ ¼ G>

k ðt; t0ÞΘðt − t0Þ þG<
k ðt; t0ÞΘðt0 − tÞ; (4)

G−−
k ðt; t0Þ ¼ G>

k ðt; t0ÞΘðt0 − tÞ þ G<
k ðt; t0ÞΘðt − t0Þ; (5)

Gþ−
k ðt; t0Þ ¼ −G<

k ðt; t0Þ; (6)

G−þ
k ðt; t0Þ ¼ −G>

k ðt; t0Þ; (7)

G>
k ðt; t0Þ ¼

i
2ωk

½ð1þ nkÞe−iωkðt−t0Þ þ nkeþiωkðt−t0Þ�; (8)

G<
k ðt; t0Þ ¼

i
2ωk

½nke−iωkðt−t0Þ þ ð1þ nkÞeþiωkðt−t0Þ�; (9)

1In addition to these conditions, we come up with the so-called
covariant gauge. While it is often convenient to use it, we should
note that it has a different meaning from other gauge conditions.
That is to say, we do not specify the gauge-fixing condition in the
covariant gauge. In our study the use of this gauge is inappro-
priate since it is useful only in the problems where physical
quantities such as the S-matrix elements can be directly calcu-
lated.

2One of the introductory textbooks is Ref. [19].
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ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~kj2 þm2

q
; nk ¼

1

eβωk − 1
: (10)

Propagators for the gauge field:

hAðaÞ
Ti ð~x; tÞAðbÞ

Tj ð ~x0; t0Þi ¼ −i
Z

d3k
ð2πÞ3 G

ab
kijðt; t0Þe−i~k·ð~x− ~x0Þ;

(11)

Gþþ
kij ðt; t0Þ ¼ Pijð~kÞ½g>k ðt; t0ÞΘðt − t0Þ þ g<k ðt; t0ÞΘðt0 − tÞ�;

(12)

G−−
kij ðt; t0Þ ¼ Pijð~kÞ½g>k ðt; t0ÞΘðt0 − tÞ þ g<k ðt; t0ÞΘðt − t0Þ�;

(13)

Gþ−
kij ðt; t0Þ ¼ −Pijð~kÞg<k ðt; t0Þ; (14)

G−þ
kij ðt; t0Þ ¼ −Pijð~kÞg>k ðt; t0Þ; (15)

g>k ðt; t0Þ ¼
i
2k

½ð1þ NkÞe−ikðt−t0Þ þ Nkeþikðt−t0Þ�; (16)

g<k ðt; t0Þ ¼
i
2k

½Nke−ikðt−t
0Þ þ ð1þ NkÞeþikðt−t0Þ�; (17)

k ¼
ffiffiffiffiffiffiffi
j~kj2

q
; Nk ¼

1

eβk − 1
; Pijð~kÞ ¼ δij −

kikj
k2

:

(18)

The generating functional of the Green’s function
Z½JðþÞ; Jð−Þ� is

Z½JðþÞ; Jð−Þ�

¼
Z

D~ATDΦDΦ† exp

�
iðSðþÞ − Sð−ÞÞ

þ i
Z

d4xfJðþÞðxÞΦðþÞðxÞ − Jð−ÞðxÞΦð−ÞðxÞg
�
;

(19)

where

Sð�Þ ¼
Z

d4xL½~Að�Þ
T ;Φð�Þ;Φ†ð�Þ�: (20)

B. Perturbative expansion

Calculating the effective action corresponds to the
summation of one-particle-irreducible (1PI) diagrams.
Practically, the effective action can be obtained only by
means of a perturbative expansion in terms of the
gauge coupling constant e, which we adopt in our
study. The lowest nontrivial contributions to the effec-
tive action appear at the second order of the coupling
constant e. At this order, there are two relevant
diagrams, which are shown in Fig. 1. In addition to
these 1PI diagrams, we have to rewrite A0 using its
Euler-Lagrange equation as

A0ðxÞ ¼ −
1

Δ
ρðxÞ þOðe2Þ; (21)

ρ≡ ieðΦ _Φ† − Φ† _ΦÞ; (22)

and take the following interaction into account:

1

2
ð ~∇A0Þ2 ¼td −

1

2
A0ΔA0 ¼

1

2
ρ
1

Δ
ρ ¼ e2

8π

Z
d3y

×
ðΦ _Φ† − Φ† _ΦÞð~x; tÞðΦ _Φ† − Φ† _ΦÞð~y; tÞ

j~x − ~yj :

(23)

Here ¼td means an equality up to a total derivative term.
This is nothing but the Coulomb potential. Although
the meaning of this interaction is clearly seen in real
space, calculations are performed more easily in
Fourier space. The action corresponding to this term
is written as

e e e2

FIG. 1. Oðe2Þ 1PI diagrams. The solid/wavy line represents the scalar/photon propagator, respectively. The left diagram produces
nonlocal terms in the effective action. The right diagram gives a thermal correction to the mass term, which is proportional to T2.

LANGEVIN DESCRIPTION OF GAUGED SCALAR FIELDS … PHYSICAL REVIEW D 89, 085037 (2014)

085037-3



S ⊃
e2

2

Z
dt

Z
d3k
ð2πÞ3

Z
d3p
ð2πÞ3

Z
d3q
ð2πÞ3

1

~k2
ð ~Φðt; ~pÞ _~Φ†ðt; ~p − ~kÞ − _~Φðt; ~pÞ ~Φ†ðt; ~p − ~kÞÞ

× ð ~Φðt; ~qÞ _~Φ†ðt; ~kþ ~qÞ − _~Φðt; ~qÞ ~Φ†ðt; ~kþ ~qÞÞ; (24)

where ~Φðt; ~pÞ is the spatial Fourier transformation of Φðt; ~xÞ, defined as

~Φðt; ~pÞ≡
Z

d3xei~p·~xΦðt; ~xÞ: (25)

The contribution of the left diagram in Fig. 1 to the effective action Γ is

Γ ⊃ þ 4ie2
Z

d4x1d4x2hAðþÞ
Ti ðx1ÞAðþÞ

Tj ðx2Þih∂iΦ†ðþÞðx1Þ∂jΦðþÞðx2ÞiΦ†ðþÞðx2ÞΦðþÞðx1Þ

þ 4ie2
Z

d4x1d4x2hAð−Þ
Ti ðx1ÞAð−Þ

Tj ðx2Þih∂iΦ†ð−Þðx1Þ∂jΦð−Þðx2ÞiΦ†ð−Þðx2ÞΦð−Þðx1Þ

− 4ie2
Z

d4x1d4x2hAð−Þ
Ti ðx1ÞAðþÞ

Tj ðx2Þih∂iΦ†ð−Þðx1Þ∂jΦðþÞðx2ÞiΦ†ðþÞðx2ÞΦð−Þðx1Þ

− 4ie2
Z

d4x1d4x2hAðþÞ
Ti ðx1ÞAð−Þ

Tj ðx2Þih∂iΦ†ðþÞðx1Þ∂jΦð−Þðx2ÞiΦ†ð−Þðx2ÞΦðþÞðx1Þ; (26)

and the right diagram contributes

Γ ⊃ −e2
Z

d4x½hAðþÞ
Ti ðxÞAðþÞ

Ti ðxÞiΦ†ðþÞðxÞΦðþÞðxÞ

− hAð−Þ
Ti ðxÞAð−Þ

Ti ðxÞiΦ†ðþÞðxÞΦð−ÞðxÞ�: (27)

This local term gives a thermal correction to the mass
term,3

hAðþÞ
Ti ðxÞAðþÞ

Ti ðxÞi ¼ hAð−Þ
Ti ðxÞAð−Þ

Ti ðxÞi ¼
T2

6
: (28)

For the Coulomb potential term (24), although we
do not have diagrammatic correspondence, the calcu-
lation procedure is the same as the previous interaction
terms. After taking contractions except for two field

variables which are going to be external lines, we
have

Γ ⊃ −ie2
Z

dt
Z

d3k
ð2πÞ3

d3p
ð2πÞ3

1

j~k − ~pj2

× ½−Gþþ
p ðt; tÞð _~ΦðþÞ _~Φ

†ðþÞ
− _~Φ

†ð−Þ _~Φ
†ð−ÞÞðt; ~kÞ

þ G̈þþ
p ðt; tÞð ~ΦðþÞ ~Φ†ðþÞ − ~Φ†ð−Þ ~Φ†ð−ÞÞðt; ~kÞ�: (29)

It is convenient to replace Φð�Þ with new variables,

Φð�Þ ¼ ϕc �
1

2
ϕΔ: (30)

Finally the effective action Γ incorporating these two
diagrams and A0 terms up to the second order in e becomes

Γ ¼
Z

d4x
�
ϕ†
ΔðxÞ

�
−∂μ∂μ −m2 − e2

T2

6

�
ϕcðxÞ þ ϕΔðxÞ

�
−∂μ∂μ −m2 − e2

T2

6

�
ϕcðxÞ†

�
− 4ie2

Z
d4x1d4x2

×
Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3 e
−ið ~p1þ ~p2Þ·ð ~x1− ~x2ÞPijð ~p1Þp2ip2jΘðt2 − t1Þ½g<p1

ðt1; t2ÞG<
p2
ðt1; t2Þ − g>p1

ðt1; t2ÞG>
p2
ðt1; t2Þ�ðϕ†

cðx1ÞϕΔðx2Þ

þ ϕcðx1Þϕ†
Δðx2ÞÞ − 2ie2

Z
d4x1d4x2

Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3 e
−ið ~p1þ ~p2Þ·ð ~x1− ~x2ÞPijð ~p1Þp2ip2j½g<p1

ðt1; t2ÞG<
p2
ðt1; t2Þ

þ g>p1
ðt1; t2ÞG>

p2
ðt1; t2Þ�ϕ†

Δðx1ÞϕΔðx2Þ þ ΓA0
; (31)

3Here we omit the divergent part, which is to be cancelled by a mass counterterm since it exists even at zero temperature.
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ΓA0
¼− e2

Z
d4k
ð2πÞ4

d3p
ð2πÞ3

1

j~k− ~qj2
·

�
1

2
þ np

�
·

�
ω2

ωp
þωp

�

× ð ~ϕcðkÞ ~ϕΔ
†ðkÞ þ ~ϕΔðkÞ ~ϕc

†ðkÞÞ

≡
Z

d4k
ð2πÞ4 ð

~ϕcðkÞ ~ϕΔ
†ðkÞ þ ~ϕΔðkÞ ~ϕc

†ðkÞÞ ~fA0
ðkÞ: (32)

ΓA0
, which comes from the Coulomb potential term,

gives corrections to the dispersion relation as well as the
thermal mass term.
Let us show that the imaginary part of the nonlocal terms

which come from diagrams in Fig. 1 is nonzero. First, both
of the integrands are invariant under replacements ~p1 →
−~p1 and ~p2 → −~p2, respectively. This property allows us
to replace e−ið~p1þ~p2Þ·ð~x1−~x2Þ with cos ½ð~p1 þ ~p2Þ · ð~x1 − ~x2Þ�,
which is real. Second, from Eqs. (8), (9), (16), and (17), we
note that g<G< − g>G> is purely imaginary and g<G< þ
g>G> is real. Thus, the first nonlocal term is real and the
second one is purely imaginary. We will explain how to
interpret the imaginary part of the effective action in the
next section.

III. LANGEVIN EQUATION AND
NOISE PROPERTIES

In the previous section, we have seen that the effective
action for the scalar field contains an imaginary part as with
the case of pure scalar theory in a thermal environment. It
can be written as

iΓ ⊃ −
Z

d4x1d4x2N ðx1 − x2ÞðϕΔRðx1ÞϕΔRðx2Þ

þ ϕΔIðx1ÞϕΔIðx2ÞÞ; (33)

where

N ðx1 − x2Þ

¼ −2e2
Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3 e
−ið ~p1þ ~p2Þ·ð ~x1− ~x2ÞPijð ~p1Þp2ip2j

× ½g<p1
ðt1; t2ÞG<

p2
ðt1; t2Þ þ g>p1

ðt1; t2ÞG>
p2
ðt1; t2Þ�: (34)

ϕΔR=I are the real/imaginary parts of ϕΔ, respectively. Now
we are going to rewrite and interpret it as stochastic
noise terms.

A. Mathematical transformation

As in previous studies [13,14,16], we rewrite the
imaginary part by using the Gaussian integral formula,

exp

�
−
Z

d4xd4yφðxÞMðx; yÞφðyÞ
�

∝
Z

Dξ exp

�
−
1

4

Z
d4xd4yξðxÞM−1ðx; yÞξðyÞ

þ i
Z

d4xξðxÞφðxÞ
�
; (35)

and interpret the integration over ξ as an ensemble average,
where ξ is regarded as a stochastic Gaussian variable.
This formula is not applicable to arbitrary Mðx; yÞ. Just

as the one-dimensional Gaussian integral
R
dx exp½−ax2�

requires a > 0, all of the eigenvalues of M should be
positive. After rewriting with Fourier transformations,

Z
d4xd4yξðxÞM−1ðx; yÞξðyÞ ¼

Z
d4k
ð2πÞ4

~M−1ðkÞj~ξðkÞj2;
(36)

we notice that ~MðkÞ should be positive. The Fourier
transformation of N with respect to t − t0 and ~x − ~x0 is

~N ðω;~kÞ

¼2e2
Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3Pijð ~p1Þp2ip2jð2πÞ3δð~k− ~p1− ~p2Þ

×
2π

2p12ωp2

½fð1þNp1
Þð1þnp2

ÞþNp1
np2

gδðω−p1−ωp2
Þ

þfð1þNp1
Þnp2

þNp1
ð1þnp2

Þgδðω−p1þωp2
Þ

þfNp1
ð1þnp2

Þþð1þNp1
Þnp2

gδðωþp1−ωp2
Þ

þfNp1
np2

þð1þNp1
Þð1þnp2

Þgδðωþp1þωp2
Þ�:

(37)

Clearly, this is positive for any ðω; ~kÞ, and thus this
expression ensures us that we can use the formula (35)
and rewrite the effective action with stochastic noise terms.
Finally we obtain

eiΓ ¼
Z

DξaDξbP½ξa�P½ξb� exp
�
iΓreal

þ i
Z

d4xðξaðxÞϕΔRðxÞ þ ξbðxÞϕΔIðxÞÞ
�

¼
Z

DξaDξbP½ξa�P½ξb� exp
�
iΓreal

þ i
Z

d4xðξ†ðxÞϕΔðxÞ þ ξðxÞϕ†
ΔðxÞÞ

�

≡
Z

DξaDξbP½ξa�P½ξb� exp½iSeff �; (38)

where
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P½ξa� ¼ exp

�
−
1

4

Z
d4xd4yξaðxÞN −1ðx − yÞξaðyÞ

�
;

P½ξb� ¼ exp

�
−
1

4

Z
d4xd4yξbðxÞN −1ðx − yÞξbðyÞ

�
;

ξ ¼ 1

2
ξa þ i

1

2
ξb ¼ ξR þ iξI: (39)

Now we have a real action Seff containing stochastic noise
terms. The two-point correlation function of ξ is given by

hξRðx1ÞξRðx2Þi ¼ hξIðx1ÞξIðx2Þi ¼
1

2
N ðx1 − x2Þ; (40)

hξRðx1ÞξIðx2Þi ¼ 0; (41)

hξðx1Þξ†ðx2Þi ¼ N ðx1 − x2Þ: (42)

B. Validity of the interpretation and the
fluctuation-dissipation relation

As we saw in the previous section, we obtain a real
effective action Seff by introducing noise terms. To derive
an equation of motion for the physical variable ϕc in the
closed time-path formalism we take a variation with respect
to ϕΔ and set it to zero. The equation of motion of ϕcðxÞ is

δΓ
δϕΔðxÞ

����
ϕΔ¼0

¼ 0; (43)

which is now equivalent to

δSeff
δϕΔðxÞ

����
ϕΔ¼0

¼ 0; (44)

supplemented by Eq. (39). The variation of this real action
leads to the following Langevin-type equation of motion:

�
□þm2 þ e2

T2

6

�
ϕcðxÞ −

Z
d4x0fA0

ðx − x0Þϕcðx0Þ

þ 4ie2
Z

t

−∞
dt0

Z
d3x0

Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3

× e−ið ~p1þ ~p2Þ·ð ~x0−~xÞPijð ~p1Þp2ip2j½g<p1
ðt0; tÞG<

p2
ðt0; tÞ

− g>p1
ðt0; tÞG>

p2
ðt0; tÞ�ϕcðt0; ~x0Þ ¼ ξðxÞ: (45)

Now let us consider its validity. The right-hand side, ξ,
kicks or perturbs the mean field and supplies energy to it
from the thermal bath. On the other hand, the last term on
the left-hand side represents the friction, which dissipates
energy of the mean field ϕc into the bath. This nonlocal
memory term can be formally written asZ

t

−∞
dt0

Z
d3xCðx − x0Þϕðx0Þ: (46)

The equation of motion in Fourier space is

ð−ω2 þ k2 þm2Þ ~ϕðω; ~kÞ

þ
�
e2

T2

6
− ~fA0

ðω; ~kÞ þ
Z

dω0

2π

P
ω−ω0 i ~Cðω0; ~kÞ

�
~ϕðω; ~kÞ

þ 1

2
~Cðω; ~kÞ ~ϕðω; ~kÞ ¼ ~ξðω; ~kÞ: (47)

Note that ~C is purely imaginary and ~fA0
is real, so all the

coefficients of ~ϕ in the second line are real. We interpret
them as corrections to the free part, i.e., the first line. The
terms in the third line can be interpreted as dissipation and
fluctuation.
The imaginary part of the Fourier transformation of the

memory kernel Cðt; ~xÞ is

Im ~Cðω; ~kÞ

¼−4e2
Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3Pijð ~p1Þp2ip2jð2πÞ3δð3Þð~k− ~p1− ~p2Þ

×
2π

2p12ωp2

½fð1þNp1
Þð1þnp2

Þ−Np1
np2

gδðω−p1−ωp2
Þ

þfð1þNp1
Þnp2

−Np1
ð1þnp2

Þgδðω−p1þωp2
Þ

þfNp1
ð1þnp2

Þ−ð1þNp1
Þnp2

gδðωþp1−ωp2
Þ

þfNp1
np2

−ð1þNp1
Þð1þnp2

Þgδðωþp1þωp2
Þ�:

(48)

Now we have collected all the ingredients necessary for
showing the fluctuation-dissipation relation. Expecting that
the scalar field and the gauge field reach some equilibrium
state, we start our analysis by using finite-temperature
propagators. In order for a system to achieve and keep
thermal equilibrium, there is a necessary condition between
noise terms and the memory term, which is the fluctuation-
dissipation relation. Mathematically, it is written as

~N ðω; ~kÞ
−1
ω Im ~Cðω; ~kÞ

¼ ω

2

eβω þ 1

eβω − 1
¼ ω

�
1

2
þ nω

�
: (49)

It is straightforward to check that this relation indeed holds
in our case.4 This is the quantum fluctuation-dissipation
relation [16,21–24]. In light of this fact, we conclude that
the introduction of noise terms is not just a mathematical
trick but a meaningful transformation to bring out physics.

C. Properties of the stochastic noise

We now show the properties of the noise. From Eq. (34),
we see that the spatial noise correlation is expressed as

4Owing to delta functions, we can factor out the
ratio ðeβωþ1Þ

ðeβω−1Þ without performing complicated integrals in Eqs. (37)
and (48).
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hξð ~x1; tÞξ†ð ~x2; tÞi

¼ e2

2

Z
d3p1

ð2πÞ3
Z

d3p2

ð2πÞ3 e
−ið ~p1þ ~p2Þ·ð ~x1− ~x2ÞPijð ~p1Þp2ip2j

×
1

p1ωp2

ð1þ 2Np1
Þð1þ 2np2

Þ: (50)

We divide it as

hξð ~x1; tÞξ†ð ~x2; tÞi ¼
e2

2
ðαij − βijÞγij

¼ e2

2

�
−αðrÞ

�
γ00ðrÞ þ 2

r
γ0ðrÞ

�

−
2

r2
β0ðrÞγ0ðrÞ − β00ðrÞγ00ðrÞ

�
; (51)

where

αij ¼
Z

d3p1

ð2πÞ3 e
−i ~p1·~r

1

p1

�
1þ 2

eβp1 − 1

�
δij ≡ αðrÞδij;

(52)

βij ¼
Z

d3p1

ð2πÞ3 e
−i ~p1·~r

p1ip1j

p3
1

�
1þ 2

eβp1 − 1

�

≡ −
∂
∂ri

∂
∂rj βðrÞ; (53)

γij ¼
Z

d3p2

ð2πÞ3 e
−i ~p2·~r

p2ip2j

ωp2

�
1þ 2

eβωp2 − 1

�

≡ −
∂
∂ri

∂
∂rj γðrÞ; (54)

and we use r ¼ j~rj ¼ j ~x1 − ~x2j.
After some calculations, we obtain the following

expressions:

αðrÞ ¼ 1

2πrβ
coth

�
r
β
π

�
; (55)

β0ðrÞ ¼ −
1

2π2r
þ
X∞
n¼1

−rþ nβArccotðnβr Þ
π2r2

; (56)

β00ðrÞ ¼ 1

π2r2
−

1

2πrβ
coth

�
r
β
π

�

þ
X∞
n¼1

2

π2r3

�
r − nβArccot

�
nβ
r

��
; (57)

γ0ðrÞ ¼ −
m2

2π2r
K2ðmrÞ −m2r

π2
X∞
n¼1

1

r2 þ n2β2

× K2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2β2

q �
; (58)

γ00ðrÞ ¼ −
m2

2π2

�
1

r2
K2ðmrÞ −m

r
K3ðmrÞ

�

−
m2

π2
X∞
n¼1

�
1

r2 þ n2β2
K2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2β2

q �

−
mr2

ðr2 þ n2β2Þ3=2K3

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2β2

q ��
: (59)

Here KνðzÞ is the modified Bessel function of the νth order.
Although the expression of the noise correlation function

is quite cumbersome for the general case, and numerical
computation is the only feasible way to evaluate it, it
reduces to a fairly concise form in some limiting cases.
First, in the short-distance limit, we find

hξð ~x1; tÞξ†ð ~x2; tÞi≃ −
3e2

2π4r6
ΘðrÞ þ e2

4π4r5
δðrÞ: (60)

For the derivation of this expression, see Appendix B. Here
we define the step function as

ΘðxÞ ¼
	
0 x ≤ 0;

1 x > 0.
(61)

On the other hand, we obtain the following behavior in
the long-distance limit r ≫ β; 1m:

hξð ~x1; tÞξ†ð ~x2; tÞi≃ −
e2m2

8π2β2r2
e−mr: (62)

If the scalar field is massless, we obtain

hξð ~x1; tÞξ†ð ~x2; tÞi≃ −
e2

8π2β2r4
: (63)

For the derivation of these expressions, see Appendix C.
We show the spatial correlation for various masses in

Fig. 2. As the approximate expression (62) shows, the
noise correlation is exponentially suppressed at r≳ 1

m and
monotonically approaches zero. Asymptotically, the noise
correlation obtained by numerical evaluation is consistent
with the above simple expressions that were obtained
analytically. We see that the noise in this model shows
anticorrelation, which is different from the previous
study [14].

D. Dissipation rate

The Langevin equation provides not only fluctuations to
the scalar field but also its dissipation.
According to Refs. [16,24], for the scalar field described

by the equation

LANGEVIN DESCRIPTION OF GAUGED SCALAR FIELDS … PHYSICAL REVIEW D 89, 085037 (2014)

085037-7



ð−ω2 þM2
k;ωÞ ~ϕðω; ~kÞ þ

1

2
~Cðω; ~kÞ ~ϕðω; ~kÞ ¼ ~ξðω; ~kÞ;

(64)

the dissipation rate of the k-mode oscillation is given by

ΓDð~kÞ ¼ −Im ~Cð~k;Mk;ωÞ=2Mk;ω: (65)

This expression is valid if the ω and nontrivial k depend-
ence of Mk;ω is negligibly small, that is

M2
k;ω ¼ k2 þM2

0; (66)

where M0 is a constant. In this study, Mk;ω is given by

M2
k;ω ¼ k2 þm2 þ e2

T2

6
− ~fA0

ðω; ~kÞ

þ
Z

dω0

2π
P

1

ω − ω0 i ~C~kðω0Þ: (67)

Both ~fA0
and the principal value integral are divergent. In

Appendix D, we show that this divergence can be removed
by renormalizing the scalar field strength. In other words,
we can cancel out this divergence with the counterterm
which is proportional to the kinetic term of the scalar field.
Although the k and ω dependencies of Mk;ω are nontrivial,
such corrections are proportional to e2. If we assume Mk;ω
is given by Eq. (66), we find

ΓDð~kÞ ¼
e2

4π

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ k2
p

×
Z

pf

pi

dp

�
1þ 1

eβp − 1
−

1

eβð
ffiffiffiffiffiffiffiffiffiffiffi
M2

0
þk2

p
−pÞ − 1

�

×

�
−
M2

0

k2
þ ðM2

0 −m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ k2
p

k2p
−
ðM2

0 −m2Þ2
4k2p2

�
;

pi ¼
M2

0 −m2

2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ k2
p

þ kÞ ; pf ¼
M2

0 −m2

2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ k2
p

− kÞ :

(68)

Though we have assumed M0 > m in deriving the above
expression, it is finite even in takingM0 → m. In this limit,
we can obtain

ΓDð~kÞ ¼
( e2

3πβ
k2

m2 k ≪ m;

e2
2πβ k ≫ m:

(69)

We show the dissipation rate as a function of k in Fig. 3 for
various values of βm.5

Since both the dissipation and fluctuation come from the
left diagram in Fig. 1, we can see the physical processes
related to dissipation and fluctuation by cutting the diagram
into two pieces [25]. Considering the fact that a scalar
boson cannot decay into a scalar boson of the same species
and a massless gauge boson due to energy and momentum
conservation, it may be doubtful that Eq. (68) is the
physical dissipation rate. Though the dissipation rate shown

k2

m 10 2 m 1 m 102

0.001 0.1 10 1000
0.001

0.005

0.010

0.050

0.100

0.500

1.000

k

D
e2

FIG. 3 (color online). The k dependence of the dissipation rate
(68). The dashed black line represents βΓD ¼ e2=2π. The solid
lines represent the dissipation rate for βm ¼ 10−2; 1; 102, respec-
tively. For k > m, the dissipation rate is almost independent of k.
However, for k < m, it is proportional to k2.

m 0

m 10 2

m 1m 102

6

r6

4

r4

4 m2

r2
e mr

m 102, 1, 10 2

0.001 0.01 0.1 1 10 100 1000
10 18

10 12

10 6

1

106

1012

1018

r

6
e2

m 0, 10 2, 1, 102

FIG. 2 (color online). Noise spatial correlations for various
mass values. The solid black line represents the exact expression
(51) with Eqs. (55)–(59). The dashed and dotted lines correspond
to the analytical approximations (60), (62), and (63), respectively.
For r < 1

m, correlations obey a power-law decay. They start to
decay exponentially when r exceeds 1

m.

5Note that we should not take the high-temperature limit
(βm → 0) for the result in Fig. 3, since in such a case the
difference between M0 and m is not negligible.
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in Fig. 3 is expressed as an integral over the loop momentum,

only the ~p ¼ ~0, or a soft-photon loop, contributes to the
resultant finite value.6 From a mathematical point of view, it
results from a cancellation between the divergent contribu-
tion from the bosonic distribution function and the vanish-
ment of the phase space, like

R
0 p

2dp × 1
p2 δðpÞ. If we

include higher-order corrections, for example, by using
dressed propagators instead of free ones, gauge fields acquire
a plasmon mass. Therefore the bosonic distribution function
at zero momentum becomes finite, so that the dissipation rate
from this diagram vanishes. In this case Eq. (37) would also
vanish, as it should.
The necessity of higher-order corrections to obtain a

physical dissipation rate is also shown by a different
consideration. Since the contribution of the zero mode seems
important, we have considered the same problem in a finite
box having a spatial volume V with a periodic boundary
condition where momentum is discretized and the zero-
mode contribution is isolated. It is found that the zero-mode
contribution contains the thermal average of the field value
squared which evidently diverges since no particular field
value is energetically favored. As a result, the contribution to
Eq. (68) scales as Φ2

Λ=V, where ΦΛ is a cutoff of the zero-
mode field amplitude. Thus, the zero-mode contribution has
an ambiguity arising from its dependence on the order of
taking the limit ΦΛ → ∞ and V → ∞. Hence we may not
trust the finite value obtained in Eq. (68) which is based on
the particular continuum calculation. Indeed Eq. (68) itself
would vanish, if we incorporate a plasmon mass into the
gauge field using a dressed propagator or simply a mass term
generated by a finite value of ϕ. In this case Eq. (37) would
also vanish, as it should.
Thus the dissipation arises from diagrams of higher order

in e (as shown in Fig. 4) related to the interaction
e2AμAμΦ†Φ. In this case, the noise becomes the multipli-
cative noise, which appears in the equation of motion of ϕ

in a form like ξϕ. The nonlocal memory term in the
effective action is

Γ ⊃ −4ie4
Z

d4x1d4x2½ϕcRðx1ÞϕΔRðx1Þ þϕcIðx1ÞϕΔIðx1Þ�

×

�
jϕcðx2Þj2 þ

1

4
jϕΔðx2Þj2

�

×
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3 e

−ið ~k1þ ~k2Þ·ð ~x1− ~x2ÞPijð ~k1ÞPijð ~k2Þ

× ½g>k1ðt1; t2Þg>k2ðt1; t2Þ− g<k1ðt1; t2Þg<k2ðt1; t2Þ�Θðt1 − t2Þ:
(70)

The dissipation rate corresponding to multiplicative noise
cases was also studied in Ref. [16]. Using the quantity

Cmðx−x0Þ≡4ie4
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3e

−ið ~k1þ ~k2Þ·ð~x− ~x0ÞPijð ~k1ÞPijð ~k2Þ

× ½g>k1ðt;t0Þg>k2ðt;t0Þ−g<k1ðt;t0Þg<k2ðt;t0Þ�; (71)

we can evaluate the dissipation rate for the homogeneous
field7 as

ΓD ¼
~Cmð~k ¼ ~0; 2MÞ

2iM
jϕðtÞj2 ¼ e4jϕðtÞj2

4πM
ð1þ 2NMÞ:

(72)

HereM is the angular frequency of the coherent oscillation
and jϕðtÞj2 is a mean square amplitude around the time t.
So even the coherent oscillation has nonzero dissipation at
this order.

IV. SUMMARY

In this paper, we studied the role of gauge fields in the
effective action for the scalar field by considering the scalar
QED theory. As can be expected from previous studies, the
effective action we obtained contains an imaginary part. We
rewrote it by applying the Gaussian functional integral
formula, and interpreted the integral over the variable ξ as
ensemble averaging. The validity of this arrangement is
confirmed by the fluctuation-dissipation relation between the
memory term and the introduced noise term. Then we
analyzed the spatial correlation of the noise, and found that
the noise shows anticorrelation, which is different from the
case of scalar and fermionic interactions. The origin of this
anticorrelation is due to the existence of derivative inter-
actions between the scalar and gauge fields. We also
considered the dissipation rate of the scalar field. Though
we obtained a finite dissipation rate, it comes from a soft

e2 e2

FIG. 4. 1PI diagram relevant to the multiplicative noise. This
Oðe4Þ diagram leads to the nonzero dissipation rate for the
coherently oscillating scalar field.

6We can see this more explicitly by going back to Eq. (48),
which is related to the dissipation rate by Eq. (65). After
performing the p2 integral, one can see that only the first and
the third delta function can contribute to the p1 integral at ~p1 ¼ 0
for an on-shell scalar field.

7Here we focus on the dissipation rate in the configuration
which is essentially equivalent to the single-field dynamics (both
the real and imaginary parts are oscillating with the same phase).
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photon in the loop. It would vanish if we incorporated a finite
mass which may be generated from higher-order loops.
Furthermore since the dissipation we have obtained comes
from derivative interactions, the dissipation rate for the
coherent oscillation vanishes. On the other hand, higher-
order diagrams, consisting of a nonderivative interaction as
depicted in Fig. 4, gives a nonzero dissipation rate.
Considering that gauge coupling constants are generally

larger than Yukawa coupling constants, the absolute value
of the noise correlation function for the massless case
[Eqs. (60) and (63)] can be larger than that of the fermionic
noise studied in Ref. [14]. It would be interesting to study
the phase transitions numerically with our results included.
Another possible extension is to apply our results to non-
Abelian gauge theories in order to treat the realistic
phenomena in the early Universe.
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APPENDIX A: GAUGE INVARIANCE OF THE
DISSIPATION RATE

The generating functional Wf½J� is defined by

eiWf ½J� ¼
Z

DAμDϕ�DϕeiS½A;ϕ�þi
R

d4xðJμAAμþϕJþϕ�J�Þ

× B½fðA; xÞ� detðF x;yÞ; (A1)

where fðA; xÞ is the gauge-fixing condition and Aλ is the
transformed gauge field by the gauge transformation
specified by λ. The matrix F x;y is defined by

F x;y ¼
δfðAλ; xÞ
δλðyÞ

����
λ¼0

: (A2)

In the main text, we have been working in the Coulomb
gauge for which we have

B½fðA; xÞ� ¼
Y
x

δðfðA; xÞÞ; fðA; xÞ ¼ div~AðxÞ: (A3)

The purpose of this appendix is to comment on the gauge
dependence of the dissipation rate of ϕ on the gauge-fixing
condition. Although all the results in this paper use the in-
out formalism for notational simplicity, the same results
hold for the case of the in-in formalism.

Under the slight change of the gauge-fixing condition
from f to f þ Δf, Wf varies as [26]

WfþΔf½J� −Wf½J�

¼
Z
x;y
h½∂μJAμðxÞ þ ieðϕ�J� − ϕJÞðxÞ�F−1

x;yΔfðA; yÞi;

(A4)

where hOi is defined by

hOi ¼ e−iWf ½J�
Z

DAμDϕ�DϕeiS½A;ϕ�þ
R
x
ðJμAAμþϕJþϕ�J�Þ

×O detðF x;yÞ: (A5)

Equation (A4) provides the transformation rule of Wf½J�
under the change of the gauge-fixing condition.
From the definition of the generating functional, the

expectation value of ϕf in the gauge f is given by

ϕfðxÞ ¼
δWf½J�
δJðxÞ : (A6)

If we set J ¼ 0 on the right-hand side of the above
equation, ϕf constitutes a solution of δΓf

δϕ ¼ 0. From
Eq. (A4), we obtain the transformation rule of ϕf under
the change of the gauge-fixing condition as

ϕfþΔfðxÞ−ϕfðxÞ

¼ δ

δJðxÞ
Z
y;z
h½∂μJAμðyÞþ ieðϕ�J�−ϕJÞðyÞ�F−1

y;zΔfðA;zÞi:

(A7)

In particular, for ϕf satisfying δΓf

δϕ ¼ 0, we find

ϕfþΔfðxÞ − ϕfðxÞ ¼ −
Z
y
hieϕðxÞF−1

x;yΔfðA; yÞi

¼ −iehϕðxÞΛðxÞi; (A8)

whereΛ is the gauge transformation connecting two gauges
f and f þ Δf and is related to Δf by

ΛðxÞ ¼
Z
y
F−1

x;yΔfðyÞ: (A9)

In a similar way, we find

Aμ
fþΔfðxÞ − Aμ

fðxÞ ¼ −∂μhΛðxÞi: (A10)

From Eqs. (A8) and (A10), we find that the gauge trans-
formation of the expectation value of any field is given by
the expectation value of the gauge transformation for that
field. We also find that jϕfj is not gauge invariant in
general. On the other hand, Fμν

f ¼ ∂μAν
f − ∂νAμ

f is always
gauge invariant.
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If the path integral to compute the right-hand side of
Eq. (A8) is dominated by the field configurations in the
close vicinity of ϕf, which is the case investigated in the
main text, Eq. (A8) approximately becomes

ϕfþΔfðxÞ ≈ ð1 − iehΛðxÞiÞϕfðxÞ; (A11)

which means jϕfðxÞj2 is gauge invariant and hence the
dissipation rate is too.

APPENDIX B: SHORT-RANGE
NOISE CORRELATION

From Eqs. (55)–(59), we obtain the following asymptotic
form as r → 0:

αðrÞ → 1

2π2r2
; β0ðrÞ → −

1

2π2r
; β00ðrÞ → 1

2π2r2
;

γ0ðrÞ → −
1

π2r3
; γ00ðrÞ → 3

π2r4
: (B1)

To derive these results, we have used the fact that modified
Bessel functions KnðxÞ satisfy

lim
x→0

xnKnðxÞ ¼ 2−1þnΓðnÞ: (B2)

Using the above expressions, the spatial noise correlation
becomes

hξð ~x1; tÞξ†ð ~x2; tÞi≃ −
3e2

2π4r6
; (B3)

as r approaches zero.
Since the value at r ¼ 0 corresponds to hjξð~x; tÞj2i, the

fact that the correlation function given by Eq. (B3) is
negative seems strange. We speculate that the origin of this
apparent contradiction lies in the evaluation of γij. To see
the essence of this, we now consider the case where the
scalar field is massless.
The divergence comes from the zero-temperature part,

γ0zero ¼
1

2π2

Z
∞

0

dp

�
p cosðprÞ

r
−
sinðprÞ

r2

�
; (B4)

γ00zero ¼
1

2π2

Z
∞

0

dp

×

�
−p2 sinðprÞ

r
− 2

p cosðprÞ
r2

þ 2
sinðprÞ

r3

�
: (B5)

These integrals are UV divergent. We regulate them by
introducing a cutoff factor e−p=Λ, getting

γ0zero ¼ −
1

2π2
2rΛ4

ð1þ r2Λ2Þ2 ; (B6)

γ00zero ¼
1

2π2
2Λ4ð3r2Λ2 − 1Þ
ð1þ r2Λ2Þ3 : (B7)

If we evaluate the noise correlation with these regulated
integrals, the asymptotic form becomes

hξð ~x1; tÞξ†ð ~x2; tÞi≃ −
e2

2π4
Λ4ð3r2Λ2 − 1Þ
r2ð1þ r2Λ2Þ3 : (B8)

When r > 0, taking Λ → ∞ gives the same result as
Eq. (B3). On the other hand, if we keep Λ finite and take
r → þ0, we see that the spatial noise correlation goes to
þ∞. At r ¼ 0, the dominant part is e2

2π4
Λ4

r2ð1þr2Λ2Þ3. If we

multiply it by r5 and integrate from 0 to ∞, we obtain a
finite value,

Z
∞

0

dr
Λ4

r2ð1þ r2Λ2Þ3 × r5 ¼ 1

4
: (B9)

From this, we can it write as follows:

e2

2π4
Λ4

r2ð1þ r2Λ2Þ3 ¼
e2

4π4r5
δðrÞ: (B10)

APPENDIX C: LONG-RANGE NOISE
CORRELATION

We briefly show the long-range (r ≫ β; 1m) behavior. In
this limit, we obtain

αðrÞ → 1

2πβr
; β0ðrÞ → −

1

4πβ
; β00ðrÞ → β

12πr3
;

γ0ðrÞ →
(
− 1

2πβr2 m ¼ 0;

− m
2πrβ e

−mr m ≠ 0;

γ00ðrÞ →
( 1

πβr3 m ¼ 0;

m2

2πrβ e
−mr m ≠ 0.

(C1)

In the evaluation of γ0 and γ00, we used the asymptotic
form for modified Bessel functions KnðxÞ,

KnðxÞ →
ffiffiffi
π

2

r
x−1=2e−x as x → ∞: (C2)

APPENDIX D: SCALAR FIELD STRENGTH
RENORMALIZATION

We show that the divergent part of

− ~fA0
ðω; ~kÞ þ

Z
dω0

2π
P

1

ω − ω0 i ~C~kðω0Þ (D1)
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can be removed by renormalizing the field strength of the
scalar field.
First, ~fA0

can be expressed as

− ~fA0
ðω; ~kÞ ¼ e2

2

Z
d3q
ð2πÞ3

ω2 þ ω2
q

ωqj~k − ~qj2
ð1þ 2nqÞ: (D2)

This is a UV-divergent integral, whose divergence comes
from the zero-temperature part. Sticking to the massless
case which does not cause a loss of generality of the
analysis in this section, we find

− ~fA0
ðω; ~kÞ → e2

16π2k

Z
∞

0

dqðω2 þ q2Þ ln ðkþ qÞ2
ðk − qÞ2 : (D3)

Now we use the dimensional regularization method.
Changing the dimension from 3 to 3þ ε in Eq. (D2)
enables us to extract the divergence as follows:

− ~fA0
ðω; ~kÞ ¼ e2

12π2
ð3ω2 þ k2Þ 1

ε
þ ðregular termsÞ: (D4)

Second, it is convenient to use another expression for the
principal integral term,

Z
dω0

2π
P

1

ω − ω0 i ~C~kðω0Þ ¼ −
e2

2

Z
d3p
ð2πÞ3 Pijkikj

1

pωkþp

×

�
ð1þ 2NpÞ

�
P

ωþ pþ ωkþp
−

P
ω − p − ωkþp

−
P

ωþ p − ωkþp
þ P
ω − pþ ωkþp

�

þ ð1þ 2nkþpÞ
�

P
ωþ pþ ωkþp

−
P

ω − p − ωkþp
−

P
ω − pþ ωkþp

þ P
ωþ p − ωkþp

��
: (D5)

This is also UV divergent and we use the dimensional regularization method once more. The above integral at large p is
simplified to

−
e2k2

3π

Z
∞
dpp−1þϵ → −

e2k2

3π2
1

ϵ
: (D6)

Finally we find that Eq. (D1) diverges like e2

4π2
ðω2 − k2Þ 1ϵ. This combination of ðω2 − k2Þ ensures that we can remove this

divergence by the renormalization of the scalar field strength.
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