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In this work we consider (1,1)-dimensional resonant Dirac fermionic states on tubelike topological
defects. The defects are formed by rings in (2,1) dimensions, constructed with two scalar fields ϕ and χ, and
embedded in the (3,1)-dimensional Minkowski spacetime. The tubelike defects are attained from a
Lagrangian density explicitly dependent with the radial distance r relative to the ring axis and the radius
and thickness of its cross section are related to the energy density. For our purposes we analyze a general
Yukawa-like coupling between the topological defect and the fermionic field ηFðϕ; χÞψ̄ψ . With a
convenient decomposition of the fermionic fields in left and right components, we establish a coupled set of
first-order differential equations for the amplitudes of the left and right components of the Dirac field. After
decoupling and decomposing the amplitudes in polar coordinates, the radial modes satisfy Schrödinger-like
equations whose eigenvalues are the masses of the fermionic states. With Fðϕ; χÞ ¼ ϕχ the Schrödinger-
like equations are numerically solved with appropriated boundary conditions. Several resonance peaks
for both components are obtained, and the results are confronted with the qualitative analysis of the
Schrödinger-like potentials.
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I. INTRODUCTION

Braneworld scenarioshave their origins in attempts to solve
important problems of theoretical physics such as the cos-
mological constant and the gauge hierarchy [1–5]. In the
original formulation of thin branes, the matter fields are by
construction localized on a brane with energy density
described by a delta function [6], while gravity propagates
in all dimensions. The usual Newton’s law can then be
reproduced on the brane depending on the metric warp factor
attained after solving Einstein’s equations. Several extensions
soonappeared,withsmooth thickbranesconstructedbyscalar
fields [7–16]. A comprehensive review on this subject can be
found in Ref. [17]. This opened up the idea of matter fields to
visit extra-dimension space, with a possible signal of devia-
tions of the standard model due to extra dimensions.
In general, thick branes are possibly able to trap gravitons

and scalar fields. For fermions, however, the introduction of
the fermion-scalar coupling is a necessary condition to
ensure the normalizable zero modes. This is a known
property already demonstrated by Jackiw and Rebbi [18]
for domain walls. For some models, the massive fermionic
states leak from the branes but stay for a sufficiently longer
time to be characterized as resonances [19–27]. In particular,
Ref. [28] analyzed the localization of matter fields in branes
constructed from a scalar field coupled to a dilaton. In
Ref. [29], the localization andmass spectra of variousmatter
fields in a thick anti–de Sitter brane were investigated. For
fermionic Kaluza-Klein modes, bound states for both

chiralities were found. In Ref. [23], some of the authors
of thepresentworkhave investigated thepresenceofmassive
modes for right-hand and left-hand fermions with branes
with internal structure constructed by two scalar fields
coupled togravityby introducinga simpleYukawacoupling.
In this work we are interested in topological defects

embedded in a flat spacetime that can be constructed
following a similar procedure used for modeling branes,
namely, the embedding of a topological defect in one or
more extra dimensions. Thus, inspired by the physics of
extra dimensions, in Sec. II we consider (2,1)-dimensional
ringlike topological defects [30,31] which are embedded
in a (3,1)-dimensional flat spacetime forming a tubelike
topological defect. In Sec. III, we study some aspects of
localization of fermionic fields in this system. We have
particular interest for resonance effects, which are studied
in Sec. IV. Our conclusions are presented in Sec. V.

II. A TUBE IN (3,1) DIMENSIONS

A tube in (3,1) dimensions can be described by the action

Stube ¼
Z

dtd3x

�
1

2
∂Aϕ∂Aϕþ 1

2
∂Bχ∂Bχ − Vðϕ; χÞ

�
;

(1)

with

Vðϕ; χÞ ¼ 1

2r2
ðW2

ϕ þW2
χÞ: (2)

We use capital letters A, B; ::. for all (3,1) dimensions. The
explicit dependence of r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
follows closely and
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generalizes for two fields the construction of Refs. [30,31]
for evading the Derrick-Hobart theorem [32–34].
We notice that this construction breaks translational

invariance, which is also present in QCD scenarios. For
instance, in investigations which deal with color super-
conductivity, pairing with quarks with different chemical
potentials results in crystalline quark matter condensates
which spontaneously break translational and rotational
invariance, and include spin-zero Cooper pairs [35,36].
In Refs. [37,38] the effective Lagrangian density describing
the color-flavor locked symmetry phase of QCD at high
density has fields depending on the velocity of the massless
Dirac fermions. With the glueball effective Lagrangian
model the breaking of Lorentz invariance induced by the
quark chemical potential affects the critical temperature for
the onset of the superconductive state [39]. The breaking of
translational invariance also occurs in problems dealing
with brane intersections [40,41], noncommutative field
theory with nonconstant noncommutativity [42,43] and
condensed matter physics [44,45].
The equations of motion for static solutions are

1

r
d
dr

�
r
dϕ
dr

�
¼ 1

r2
ðWϕWϕϕ þWχWχϕÞ; (3)

1

r
d
dr

�
r
dχ
dr

�
¼ 1

r2
ðWϕWϕχ þWχWχχÞ: (4)

In this work we restrict ourselves to configurations with
radial symmetry, i.e., the fields ϕ ¼ ϕðrÞ and χ ¼ χðrÞ
depend only on r. One can show that the solutions of the
first-order equations [30]

dϕ
dr

¼ 1

r
Wϕ;

dχ
dr

¼ 1

r
Wχ (5)

are also solutions of the second-order equations (3) and (4).
The change of variables dξ ¼ ð1=rÞdr effectively turns the
two-dimensional model into a one-dimensional one, since
Eqs. (5) can be rewritten as

dϕ
dξ

¼ Wϕ;
dχ
dξ

¼ Wχ : (6)

In this work, for generating the tube solution we
consider [46]

Wðϕ; χÞ ¼ λ

�
ϕ −

1

3
ϕ3 − sϕχ2

�
: (7)

This choice of Wðϕ; χÞ with the potential ~Vðϕ; χÞ ¼
ð1=2ÞðW2

ϕ þW2
χÞ was studied in Ref. [46]. The potential

~Vðϕ; χÞ has minima at ð�1; 0Þ and ð0;� ffiffiffiffiffiffiffi
1=s

p Þ with
s > 0 and the equations of motion have static solutions

connecting the minima ð�1; 0Þ as defects with internal
structure known as Bloch walls. The limit s → 0.5 turns the
two-field problem into a one-field model with a solution
known as the Ising wall. See also Refs. [47,48] for other
solutions. The extension of this construction to (4,1)
dimensions leading to a Bloch brane was presented in
Ref. [15]. The richer structure of degenerate and critical
Bloch branes was proposed in Ref. [49]. In Ref. [15] it was
shown that the presence of the field χ is crucial to giving
internal structure to the brane. In the present work the
presence of the field χ also contributes to generate an
internal structure to the tube formed. We will see that this is
crucial for localizing fermions with a simple Yukawa
coupling.
The choice given by Eq. (7) generates the known

one-dimensional solutions for Eqs. (6)

ϕðξÞ ¼ tanhð2λsξÞ;

χðξÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
1

s
− 2

r
sechð2λsξÞ; (8)

where 0 < s < 1=2. Changing back to the r variable we get

ϕðrÞ ¼ tanhð2λs lnðr=r0ÞÞ;

χðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
1

s
− 2

r
sechð2λs lnðr=r0ÞÞ; (9)

which has a ring profile and r0 can be identified with the
ring radius of the tube’s cross section.
The energy density of the two-dimensional defect is

T00 ¼
ð2λsÞ2
r2

sech4
�
2λs ln

�
r
r0

��

×

�
1þ

�
1

s
− 2

�
sinh2

�
2λs ln

�
r
r0

���
: (10)

Here we consider T00 finite in r ¼ 0, which restricts the
parameters to satisfy λs ≥ 1

2
when λ > 1. Figures 1(a)

and 1(b) depict the energy density T00ðrÞ for fixed r0 ¼
1 and several values of λ and coupling constant s. We note
that for fixed λ > 1 and 1

2λ ≤ s < 1
2
, the behavior of the

energy density changes from a lump centered in r ¼ 0
ðs ¼ 1

2λÞ to a peak centered around r0 ðs ¼ 1
2
Þ. For fixed s,

the maximum amplitude of T00 increases with λ, so large
values of λ produce more interesting results. For large
values of λ, there exists a value s0 so that for 1

2λ < s < s0,
the effects of the field χ are strong and the defect appears
as a thick tube structure whose center is localized between
the origin and r0. On the other hand, for s0 ≲ s < 1

2
it is

clear the predominance of the field ϕ and the defect
looks like a thin tube centered around r0.
This means that for larger values of λwe can characterize

the defect as a ring in the two-dimensional yz plane, or as a
cylindrical tube in the three-dimensional space oriented

R. CASANA et al. PHYSICAL REVIEW D 89, 085036 (2014)

085036-2



along the symmetry x axis. The influence of larger values of
s shows that the χ field is responsible for the process of
generating a thicker tube. The total energy in the yz plane is
given by E ¼ 8πλ=3, which can be identified with the mass
of the ring, Mring.

III. FERMION LOCALIZATION

We are interested in the localization of (1,1)-dimensional
fermions in an infinite tube whose transversal section is the
two-dimensional ring. Here, the tube in consideration is the
one analyzed in the previous section. In considering
fermionic states on a tubelike defect, we must remark that
the analysis about the existence or not of fermionic zero
modes was also considered in the other contexts. One can
cite fermions in the field of Abelian and non-Abelian
[50–52] vortex solutions and more specifically neutrino
zero modes on electroweak strings [53–55].
In the following we consider the fermionic field coor-

dinates as ðx0; x1Þ ¼ ðt; xÞ and the ring coordinates as
ðx2; x3Þ ¼ ðy; zÞ. Then, after neglecting the backreaction on
the tube, we consider the following fermionic action

Sferm ¼
Z

dtdxdydz½Ψ̄ΓA∂AΨ − ηFðϕ; χÞΨ̄Ψ�; (11)

where the Γ0;Γ1matrices are defined as

Γ0 ¼ iγ0 ¼ iσ1; Γ1 ¼ iγ1 ¼ σ2; (12)

and Γ2;Γ3 are conveniently chosen to provide
Schrödinger’s equations in the yz plane whose potentials
are supersymmetric partners. Here FðϕðrÞ; χðrÞÞ ¼ FðrÞ is
a function of the scalar fields ϕðrÞ and χðrÞ giving the ring
solution in Eqs. (9) and η is the coupling constant.
An important point to note is that in (3,1) dimensions,

usually the Dirac spinors and gamma matrices are

four-component objects. However, owing to the cylindrical
symmetry of the tube, there occurs an effective dimensional
reduction to a (2,1) theory, and the Dirac spinors and
matrices can be taken with only two components. This is a
well-known procedure in dealing with vortex problems
since the seminal work of Jackiw and Rossi [52]. A similar
procedure was made by Witten in the context of super-
conducting strings [56].
After transforming the yz plane to polar coordinates, the

equation of motion for Ψ is found as

iγμ∂μΨþ
 ∂r þ i

r ∂θ 0

0 −
�
∂r − i

r ∂θ

	 !Ψ − ηFΨ ¼ 0;

(13)

where greek letters μ; ν… are for the ðt; xÞ coordinates and
we have chosen

Γr ¼ σ3 ¼
�
1 0

0 −1
�
; Γθ ¼ i1 ¼

�
i 0

0 i

�
: (14)

We decouple the coordinates ðt; xÞ from ðr; θÞ by making
the decomposition

Ψðt; x; y; zÞ ¼
X
n

�
Rnðr; θÞΨRnðt; xÞ
Lnðr; θÞΨLnðt; xÞ

�
; (15)

and by imposing that ΨRn and ΨLn are the components of a
massive fermion satisfying the (1þ 1)-dimensional Dirac
equation

ðiγμ∂μ −MnÞψn ¼ 0; ψn ¼
�
ΨRn

ΨLn

�
; (16)

we can rewrite Eq. (13) in the following set of equations for
the amplitudes Lnðr; θÞ and Rnðr; θÞ:�

∂r −
i
r
∂θ

�
Ln þ ηFLn ¼ MnRn; (17)

−
�
∂r þ

i
r
∂θ

�
Rn þ ηFRn ¼ MnLn: (18)

Now we make the useful decomposition

Lnðr; θÞ ¼
X
l

ΛnlðrÞeilθ; (19)

Rnðr; θÞ ¼
X
l

ϱnlðrÞeilθ; (20)

where l ∈ Z and the functions Λnl; ϱnl are finite in r ¼ 0.
Other decompositions are used in other contexts, see for
instance, Refs. [57–59].

0

FIG. 1 (color online). Energy density T00ðrÞ for r0 ¼ 1: (a)
(left) λ ¼ 10, s ¼ 0.05 (black thick line), s ¼ 0.09 (blue dashed
thin line), s ¼ 0.15 (brown dash-dotted thin line), s ¼ 0.25
(green thin line), s ¼ 0.45 (red long-dashed thick line). (b)
(right) λ ¼ 30, s ¼ 1=60 (black thick line), s ¼ 0.03 (blue dashed
thin line), s ¼ 0.1 (brown dash-dotted thin line), s ¼ 0.2 (green
thin line), s ¼ 0.27 (red long-dashed thick line).
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By combining Eqs. (17) and (18) we attain the
Schrödinger-like equations for the scalar modes ΛnlðrÞ
and ϱnðrÞ

−
d2Λnl

dr2
þ VL

schðrÞΛnl ¼ ĤL
schΛnl ¼ M2

nΛnl; (21)

−
d2ϱnl
dr2

þ VR
schðrÞϱnl ¼ ĤR

schϱnl ¼ M2
nϱnl; (22)

where the potentials are given by

VL
schðrÞ ¼

lðlþ 1Þ
r2

þ 2ηl
F
r
− ηð∂rFÞ þ η2F2; (23)

VR
schðrÞ ¼

lðl − 1Þ
r2

þ 2ηl
F
r
þ ηð∂rFÞ þ η2F2: (24)

Then, we have transformed the equation for fermions in
a set of independent Schrödinger-like equations for the
amplitudes Λnl and ϱnl allowing us to get our goal of
finding massive modes and analyzing their localization
properties. Equations (21) and (22) allow us to adopt a
probabilistic interpretation for finding massive modes of
both components in the tube. Here we are mainly interested
in resonant states.
The Hamiltonians defining the Schrödinger-like equa-

tions (21) and (22) can be rewritten in terms of the
conjugate operators Â and Â†

Â ¼ d
dr

þ l
r
þ ηF; Â† ¼ −

d
dr

þ l
r
þ ηF; (25)

as being ĤL
sch ¼ Â†Â and ĤR

sch ¼ ÂÂ† guaranteeing the
eigenvalues m2

n to be non-negative. In this way it is
forbidden the existence of tachyonic modes.
Since Eqs. (21) and (22) form a couple of Sturm-

Liouville systems, the eigenfunctions Λnl and ϱnl, respec-
tively, establish a complete set of orthonormal functions
satisfying Z

∞

0

drΛmlΛnl ¼ δmn; (26)

Z
∞

0

drϱmlϱnl ¼ δmn: (27)

Further note that the action Sferm given by Eq. (11) can be
integrated in the ðy; zÞ dimensions in order to obtain an
action for the left and right components of the Dirac
fermions

Sferm ¼
Z

dtdx
X
m;n

CmnΨ�
Lm½ið∂0 − ∂1ÞΨLn −MnΨRn�

þ
Z

dtdx
X
m;n

DmnΨ�
Rm½ið∂0 þ ∂1ÞΨRn −MnΨLn�;

(28)

where we have defined the symmetric matrices

Cmn ¼ 2π
X
l

Z
∞

0

drrΛmlΛnl; (29)

Dmn ¼
X
l

2π

Z
∞

0

drrϱmlϱnl: (30)

In this way, the action given by Eq. (28) gives the equations
of motion for the left and right components of ψn

ið∂0 − ∂1ÞΨLn −MnΨRn ¼ 0; (31)

ið∂0 þ ∂1ÞΨRn −MnΨLn ¼ 0; (32)

as required in Eq. (16).
On the other hand, by requiring Hermiticity of the action

(28) we attain to Cmn ¼ Dmn leading to

Sferm ¼
Z

dtdx
X
m;n

Cmn½ψ̄miγμ∂μψn −Mnψ̄mψn�; (33)

which after fermionic field redefinition represents an action
describing a tower of Dirac’s massive fermions.
Now we consider the issue of the existence of the

zero-mode χ0 which is obtained from

Âχ0 ¼ 0: (34)

For fixed l the Hamiltonian HR
sch is a quantum-mechanical

supersymmetric partner of the Hamiltonian HL
sch with

superpotential

W ¼ l
r
þ ηF; (35)

hence the solution for the zero mode is

χ0 ∝ r−l exp

�
−η
Z

r

0

dr0Fðr0Þ
�
: (36)

In our analysis we are considering the Yukawa coupling,
Fðϕ; χÞ ¼ ϕðrÞχðrÞ. Hence, because the integral R r0 dr0Fðr0Þ
is finite for all r the zero mode is non-normalizable for all l.
Since thezeromodeofHL

sch is non-normalizable,we conclude
that the spectra of HL

sch and HR
sch are identical due to the

spontaneous breaking of supersymmetry in this quantum-
mechanical system [60,61].

IV. NUMERICAL RESULTS

For our purposes we consider a simple Yukawa coupling,
FðϕÞ ¼ ϕχ. Interesting considerations for this and other
couplings in models of two scalar fields can be found
in Ref. [62].
The solutions compatible with hÂfjgi ¼ hfjÂ†gi must

be null in r ¼ 0.
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In order to investigate numerically the massive states,
first we consider the region near the origin (r ≪ r0) where

FðrÞ ∼ −2
ffiffiffiffiffiffiffiffiffiffiffi
1

s
− 2

r �
r
r0

�
2λs

: (37)

Then for λs ≥ 1=2, the functions F=r, ∂rF and F2 are finite
and the potentials VL

schðrÞ and VL
schðrÞ are dominated by the

contributions of the angular momentum proportional to
1=r2. In this way, for the left component the potential is
reduced to

~VL
schðrÞ ≈

lðlþ 1Þ
r2

: (38)

This gives that in the neighborhood of the origin we must
have

ΛnlðrÞ ¼
ffiffiffi
r

p
Jlþ1

2
ðmnrÞ; l ≥ 0; (39)

ΛnlðrÞ ¼
ffiffiffi
r

p
Ylþ1

2
ðmnrÞ; l ≤ −1: (40)

For the right component we have

~VR
schðrÞ ≈

l2 − l
r2

; (41)

and from the same argument the solutions null in r ¼ 0 are

ϱnlðrÞ ¼
ffiffiffi
r

p
Jl−1

2
ðmnrÞ; l ≥ 1; (42)

ϱnlðrÞ ¼
ffiffiffi
r

p
Yl−1

2
ðmnrÞ; l ≤ 0: (43)

Hence, for each value of l, Eqs. (39) and (40) or (42) and
(43) are used as an input for the Runge-Kutta-Fehlberg
method which produces a fifth-order accurate solution.
We now define the probability for finding fermions

inside the tube of radius r0 as in Ref. [24]

Ptube ¼
R
r0
rmin

drjφnlðrÞj2R
rmax
rmin

drjφnlðrÞj2
; (44)

where φnl ¼ Λnl; ϱnl. Here rmin ≪ r0 is used as the initial
condition and rmax is the characteristic box length used for
the normalization procedure being a value where the
Schrödinger potentials are close to zero and where the
massive modes oscillate as plane waves.
From the energy density considerations after Figs. 1(a)

and 1(b), larger values of λ favor the existence of a
Schrödinger potential with structure similar to a tube barrier
in r ¼ r0. Figure 2 depicts the Schrödinger-like potential
VL
schðrÞ and VR

schðrÞ for l ¼ 2, λ ¼ 30, 50, and fixed η ¼ 30
and r0 ¼ 1. The potentials in general diverge in r → 0,
assume a form of a barrier around r ¼ r0 and asymptote to

zero as r → ∞, indicating the possible presence of
resonances. The increasing of η turns the barrier of the
potential higher, whereas the increasing of λ turns it thinner.
We noted that l influences the behavior of the potential for
r < r0 but has no sensible influence on the barrier, and we
also observe that the increasing of r0 turns the potential
barrier wider.
Figures 3(a)–3(f) show some results of Ptube as a function

ofm for the left and right fermions. The behavior of Ptube is
characterized by the presence of some peaks. The thinner
the peak, the larger the lifetime of the corresponding
resonance. The masses of the resonances for the left and
right components are roughly the same (for the parameter
used, better than one part in 108), as can be seen in the
figure. The plots are for l ¼ 2, r0 ¼ 1, η ¼ 30 and λ ¼ 30
and for various values of s. We used rmin ¼ 10−8, rmax ¼ 2
and step in r equal to Δr ¼ 10−3. For the mass interval
considered we verified that the peak positions do not
depend on the choice of rmax ≳ 2. The plots show several
thin peaks of resonances followed by a plateau (value
around Ptube ∼ r0=rmax) for larger masses m > m� where
m� is the mass value characterizing the beginning of the
plateau. We note that the value of m� decreases with the
increasing of s, reducing the available interval of masses for
the possible appearance of resonances. Thus it seems that
larger values of s favor the appearing of resonances with
lighter masses.
We note that for s ¼ 0.03 [Fig. 3(a)] we found no

resonance peak. For s ¼ 0.08 [Fig. 3(b)] there are more and

FIG. 2 (color online). Schrödinger-like potentials VL
sch (left) and

VR
sch (right) for l ¼ 2. We fix r0 ¼ 1, and η ¼ 30. We have (a)

λ ¼ 30 (upper figures) and (b) λ ¼ 50 (lower figures). In all
figures s ¼ 0.1 (blue thinner line), s ¼ 0.15 (black line), s ¼ 0.3
(red thicker line).
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roughly equally spaced longer-lived resonance peaks, in
comparison to s ¼ 0.10 [Fig. 3(c)]. The same conclusion
applies increasing s to s ¼ 0.15 [Fig. 3(d)] and up to
s ¼ 0.30 [Fig. 3(e)], where now due to their enlargement,
the structure of the first peaks is already visible in the scale
used in the plot. For s > 0.30 we have a less pronounced
regime of resonances in comparison to s ¼ 0.30, in the
sense of the complete loss of resonant character, as seen in
Fig. 3(f) for s ¼ 0.45.
Note also that for s ¼ 0.15 [Fig. 3(d)] and s ¼ 0.30

[Fig. 3(e)] the low mass resonances with higher relative
probability are more long-lived, which is in accord
with results from the literature [24,63–65] obtained in
the context of branes. Also, for s ¼ 0.08 and s ¼ 0.10
[Figs. 3(b) and 3(c)] we have the presence of some peaks
with lower relative probability that follows the same
pattern when compared separately. As an example
we depict in Fig. 4 some plots for s ¼ 0.08 corresponding
to zooms from some peaks of Fig. 3(b). Note from the
figure that the peaks on the right side have Ptube ∼ 1

whereas the peaks on the left side have lower relative
probability Ptube ∼ 0.5. In this way the results from
Refs. [24,63–65] must be interpreted separately for these
two sets of peaks.
This can be explained from the discussion of Sec. II.

There we saw that lower values of smean that the influence
of the χ field turns out to be more important. From Fig. 1(b)
we saw that for s≳ 0.27 we have an energy density
characteristic of a cylindrical tube. Such energy density
is continuously deformed with the reduction of s, and
an evident effect of such deformation for s ¼ 0.08 and
s ¼ 0.10 is the loss of a well-organized structure of
resonances.
Another important point is that in general the masses of

the resonances mress increase gradually for lower values of
s, but the relation Mring ≪ mress was always verified,
guaranteeing a condition for no backreaction of the
fermions in the ring. The larger lifetime of the modes
agrees with the correspondingly larger barrier of the
Schrödinger-like potential around r ¼ r0 (compare with
Fig. 2). This property of Vsch is also responsible for the
presence of resonance modes, in general, more massive for
lower values of s ðs → 1

2λÞ which are closely related to the
larger influence of the χ field in the internal structure of the
defect. However, in this limit the number of the resonances
is reduced because the mass values cannot be higher
than the tube barrier. In this way, for finding long-lived
resonances, there appears to be a physical compromise
between a thinner tube (larger values of s which unfavor
the presence of the χ field) and the Yukawa coupling ϕχ

(a) (b)

(c) (d)

(e) (f)

FIG. 3 (color online). Ptube as a function of m for the left- (red
line) and right-component (blue dots) fermions with l ¼ 2,
r0 ¼ 1, η ¼ 30, λ ¼ 30, (a) s ¼ 0.03, (b) s ¼ 0.08, (c)
s ¼ 0.10, (d) s ¼ 0.15, (e) s ¼ 0.30, (f) s ¼ 0.45.

FIG. 4 (color online). Ptube as a function of m for the left- (red
line) and right-component (blue dots) fermions with l ¼ 2,
r0 ¼ 1, η ¼ 30, λ ¼ 30 and s ¼ 0.08 corresponding to a zoom
from some peaks of Fig. 3(b).
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(smaller values of s related to a greater influence of the
field χ).

V. REMARKS AND CONCLUSIONS

We have studied the localization of (1þ 1)-dimensional
fermionic fields in a generalized tubelike topological defect
whose cross section is a ring constructed with two scalar
fields. First, we have considered a general coupling
between the defect and the fermion field carefully con-
structed to provide a supersymmetric quantum-mechanical
description of the amplitudes related to the left- and right-
fermionic components. Consequently, the Hamiltonians
describing such amplitudes are supersymmetric partners
forbidding the existence of tachyonic modes. For the
Yukawa coupling Fðϕ; χÞ ¼ ηϕχ it was shown that the
zero mode is non-normalizable and that the spectra of both

components are identical due to the spontaneous breaking
of supersymmetry. Such result is corroborated by the
numerical analysis of the Hamiltonian spectra. Also, it
was found that larger couplings η and λ are more effective
for finding resonances after a fine-tuning of the constant s
characterizing the internal structure of the defect.
As a further comment we would like to point out that the

Yukawa coupling is useful for studies of the electromag-
netic charge of the ring and some effects like charge
fractionalization. These studies are currently under
consideration.
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