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We explore chiral symmetry breaking in a magnetic field within a Nambu-Jona-Lasinio model of
interacting massless quarks including tensor channels. We show that the new interaction channels open up
via Fierz identities due to the explicit breaking of the rotational symmetry by the magnetic field. We
demonstrate that the magnetic catalysis of chiral symmetry breaking leads to the generation of two
independent condensates, the conventional chiral condensate and a spin-one condensate. While the chiral
condensate generates a dynamical fermion mass, the new condensate gives rise to a dynamical anomalous
magnetic moment for the fermions. As a consequence, the spectrum of the excitations in all Landau levels,
except the lowest one, exhibits Zeeman splitting. Since the pair, formed by a quark and an antiquark with
opposite spins, possesses a resultant magnetic moment, an external magnetic field can align it giving rise to
a net magnetic moment for the ground state. This is the physical interpretation of the spin-one condensate.
Our results show that the magnetically catalyzed ground state in QCD is actually richer than previously
thought. The two condensates contribute to the effective mass of the LLL quasiparticles in such a way that
the critical temperature for chiral symmetry restoration becomes enhanced.
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I. INTRODUCTION

Understanding the phases of matter under strong
magnetic fields constitutes an active topic of interest and
debate in light of contradictory theoretical results about the
influence of a magnetic field in the chiral and deconfine-
ment transitions of quantum chromodynamics (QCD)
[1–3]; as well as due to the existence of large magnetic
fields in compact stars and their production in heavy-ion
collisions.
Extremely high magnetic fields eB ≈ 2m2

π (∼1018 G)
[4,5] can be generated in noncentral Au-Au collisions for
top collision energies

ffiffiffiffiffiffiffiffi
SNN

p ¼ 200 GeV at the Relativistic
Heavy Ion Collider (RHIC) at Brookhaven National Lab
(BNL). Even though these magnetic fields decay quickly,
they only decay to a tenth of the original value for a time
scale of order of the inverse of the saturation scale at RHIC
[6,7], hence they may influence the properties of the
particles generated during the collision. Even larger fields,
of order eB ≈ 15m2

π (∼1019 G), can be generated for the
energies reachable at the Large Hadron Collider (LHC) at
CERN,

ffiffiffiffiffiffiffiffi
SNN

p ¼ 4.5 TeV, for the Pb-Pb collisions [5].
Later in this decade, the Facility for Antiproton and Ion
Research (FAIR) at GSI will open the possibility to explore
the intermediate region of temperatures and densities,
thereby expanding our understanding of the quark matter
phases in the (T-μB)-plane. Strong magnetic fields will
likely be also generated at the planned experiments at
FAIR, making it possible to explore the region of higher
densities under a magnetic field.
The other physical environment where the influence of a

magnetic field in the state of quark matter is relevant is the
core of neutron stars, which typically are very magnetized

objects. From the measured periods and spin down of
soft-gamma repeaters (SGR) and anomalous X-ray pulsars
(AXP), as well as the observed X-ray luminosities of AXP,
certain neutron stars known as magnetars have been found
to exhibit surface magnetic fields as large as 1014–1016 G
[8]. Moreover, since the stellar medium has a very
high electric conductivity, the magnetic flux should be
conserved. Hence, it is natural to expect a stronger field
strength with increasing matter density at the core. The
interior magnetic fields are, however, not directly acces-
sible to observation, thus one can only estimate their values
with heuristic methods. Estimates based on macroscopic
and microscopic analysis, considering both gravitationally
bound and self-bound stars, have led to maximum fields
within the range 1018–1020 G, depending if the inner
medium is formed by neutrons [9], or quarks [10].
A magnetic field is known to induce nontrivial effects in

quark matter. In heavy-ion collisions, the high temperature
generated during the collisions can induce sphaleron-type
transitions to gluon configurations with nonzero winding
number. Under these conditions, a strong magnetic field
could serve to probe topological nontrivial gluon configu-
rations through the observation of charge separation via the
chiral magnetic effect mechanism [11]. In the other extreme
of the QCD phase map, in the region of low temperatures
and high densities, a magnetic field can modify the color
superconducting phase producing the so-called magnetic
color-flavor-locked phase [12]. Furthermore, when the field
strength becomes comparable to various characteristic
scales—superconducting gap, gluon Meissner mass, and
chemical potential—different effects and magnetic phases
emerge [13]. These effects on dense matter are of interest
for astrophysics, as a strong field may affect the matter
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phase realized in the core and lead to observable signatures
through the modification of the equation of state (EoS),
transport properties, and others [14].
A magnetic field is known to produce the catalysis

of chiral symmetry breaking (MCχSB) [15] in any system
of fermions with arbitrarily weak attractive interaction.
The mechanism responsible for such effect is related to
the dimensional reduction of the infrared dynamics of the
particles in the lowest Landau level (LLL) [15]. Such a
reduction favors the formation of a chiral condensate
because there is no energy gap between the infrared
fermions in the LLL and the antiparticles in the Dirac
sea. The MCχSB modifies the vacuum properties and
induces dynamical parameters that depend on the applied
field. This effect has been actively investigated for the last
two decades [16–22]. In the original studies of the MCχSB
[15–19], the catalyzed chiral condensate was assumed to
generate only a fermion dynamical mass. Recently, how-
ever, it has been shown that in QED [20] the MCχSB leads
to a dynamical fermion mass and inevitably also to a
dynamical anomalous magnetic moment (AMM). This is
connected to the fact that the AMM does not break any
symmetry that has not already been broken by the other
condensate. The dynamical AMM in massless QED leads,
in turn, to a nonperturbative Lande g-factor and Bohr
magneton proportional to the inverse of the dynamical
mass. The induction of the AMM also yields a non-
perturbative Zeeman effect [20]. An important aspect
of the MCχSB is its universal character and hence one
expects that the dynamical generation of the AMM should
permeate all the models of interacting massless fermions in
a magnetic field. Notice that the MCχSB has been proposed
as the mechanism explaining various effects in quasiplanar
condensed matter systems [21], so the additional conden-
sate can be physically relevant for those systems.
Of particular interest for the present paper is the

influence of a magnetic field on the QCD chiral transition.
Given that QCD-lattice calculations in the presence of a
magnetic field at finite temperature but zero density are
feasible, they provide an alternative reliable method to
investigate the influence of a magnetic field in the chiral
transition in nonperturbative QCD. In this context, a recent
result [3] has shown that while the chiral condensate
increases with the applied magnetic field, the critical
temperature for chiral symmetry restoration, TCχ ,
decreases. This result is in contradiction with the fact that
the explicit magnetic-field dependence of the dynamical
mass obtained through MCχSB is such that it increases
with an increasing field. Therefore, the critical temperature
TCχ , which is proportional to the induced dynamical mass
at zero temperature, should apparently increase. One
possible explanation is that since the MCχSB is essentially
a LLL effect, the fluctuations produced by a finite temper-
ature will tend to take the quarks out of the LLL and hence
cancel the magnetic catalysis effect, unless the field is much

larger than T. However, strictly speaking, once the system is
in the region of supercritical coupling, the effect of the
magnetic field is not exactly described by the MCχSB
phenomenon, since now a nonzero constituent mass is
generated even at zero magnetic field. The magnetic field
notwithstanding increases the value of this dynamical mass
at zero T, and one would expect that this would lead to a
higher critical temperature, in contradiction with the lattice
results. Although certain attempts to explain those contra-
dictory findings already exist in the literature [23], it is still
an open question under scrutiny.
In the present paper we investigate the dynamical

generation of a net magnetic moment in the ground state
of a one-flavor Nambu-Jona-Lasinio (NJL) model in a
magnetic field and discuss its implications for the chiral
phase transition at finite temperature. Notice that the
chiral condensate is formed from the pairing of quarks
and antiquarks with opposite spins. The dynamical mass
induced by the chiral condensate embeds each quark and
antiquark with an AMM. The AMMs of the quarks/
antiquarks in the pair point in the same direction, so the
pair has a nonzero magnetic moment (MM). Then, the
presence of a magnetic field breaks the Lorentz symmetry
and, as in the case of massive particles [24], it allows the
generation of a nonzero vacuum expectation value for
h0jq̄σμνqj0i, where q is the quark field. Such a vev accounts
for the net magnetic moment of the ground state. The two
condensates contribute to the effective dynamical mass
resulting in a significant increase in the critical temperature
for the chiral restoration, as compared to the case where
only the magnetically catalyzed chiral condensate is
considered.
The paper is organized as follows. In Sec. II, we

introduce the one-flavor NJL model, which includes
four-fermion interactions consistent with the Fierz iden-
tities in the presence of a uniform magnetic field. The
corresponding mean-field effective potential in the pres-
ence of the magnetic field is then calculated in Sec. III
and used in Sec. IV to obtain the condensate solutions in
the presence of a magnetic field. In Sec. V, the critical
temperature for chiral symmetry restoration is calculated.
In Sec. VI we summarize the paper results, its implications,
and comment on future works. In the Appendix, we detail
the Fierz transformations for particle/antiparticle channels
in a system with broken rotational symmetry.

II. NJL MODEL IN A MAGNETIC FIELD

Our main goal here is to investigate the effect of a
constant and homogeneous magnetic field in the sponta-
neous breaking of chiral symmetry in QCD. With this goal,
we are going to use a simple NJL model that can be
interpreted as the result of integrating out the gluon fields
and quark fluctuations with momenta larger than some
scale Λ, with Λ≳ ΛQCD. Our NJL model has four-fermion
point interactions that capture several ingredients of QCD
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chiral symmetry in a magnetic field, but fails to describe the
phenomenon of confinement. The use of NJL models to
explore chiral symmetry breaking in QCD with nonzero
magnetic field has been a successful strategy followed by
many previous works [1]. The new element in the present
investigation will be the introduction of a yet unexplored
four-fermion channel that becomes relevant only in the
presence of a magnetic field and can lead to nontrivial
physical consequences.
With the above goal in mind, let us consider the

following NJL model of massless quarks in the presence
of a constant and uniform magnetic field

L ¼ ψ̄iγμDμψ þ Lð1Þ
int þ Lð2Þ

int (1)

The single-flavor Dirac spinor ψ belongs to the funda-
mental representation of the SUðNcÞ color group. The
electromagnetic four-potential in the covariant derivative
Dμ ¼ ∂μ þ iqAext

μ can be chosen, without loss of generality,

in the gauge AðextÞ
μ ¼ ð0; 0; Bx1; 0Þ, so to have a constant

and homogenous magnetic field of magnitude B pointing in
the x3-direction. We use, from now on, the Lorentz metric

ημν ¼ ð1;−~1Þ and the Dirac matrices in the chiral
representation. The interaction

Lð1Þ
int ¼

G
2
½ðψ̄ψÞ2 þ ðψ̄iγ5ψÞ2�; (2)

has the conventional four-fermion scalar and pseudoscalar
channels used in many previous studies based on NJL
models [1]. In addition, we introduce a new channel

Lð2Þ
int ¼

G0

2
½ðψ̄Σ3ψÞ2 þ ðψ̄iγ5Σ3ψÞ2�; (3)

that preserves chiral symmetry and rotations about the
magnetic field direction. Here Σ3 ¼ i

2
½γ1; γ2� ¼ σμν⊥ is the

spin operator in the direction of the applied field. In (1)–(3),
summation over color index has been assumed.

The new interaction channel Lð2Þ
int with second-rank

tensor structure naturally emerges using the Fierz identities
in the one-gluon-exchange channels of QCD when the
rotational symmetry is broken. To understand this, one
recalls that a uniform magnetic field always selects a
preferable direction and explicitly breaks the rotational
symmetry, reducing it to the subgroup Oð2Þ of spatial
rotations about the field direction. This in turn implies that
the tensor structures of the Dirac ring split in components
parallel and transverse to the field direction with the help of
the normalized tensor F̂μν ¼ Fμν=jBj,

γ∥ ¼ ημν∥ γν; γ⊥ ¼ ημν⊥ γν (4)

with

ημν∥ ¼ ημν − F̂μρF̂ν
ρ; ημν⊥ ¼ F̂μρF̂ν

ρ: (5)

being the longitudinal and transverse Minkowskian metric
tensors, respectively. In the rest frame, for a magnetic field
in the x3 direction, ημν∥ has only μ; ν ¼ 0; 3 components,
and ημν⊥ has μ; ν ¼ 1; 2.
As a consequence, the four-fermion interaction

Lagrangian density separates in two terms,

Lint ¼
g2∥
2Λ2

ðψ̄γμ∥ψÞðψ̄γ∥μψÞ þ
g2⊥
2Λ2

ðψ̄γμ⊥ψÞðψ̄γ⊥μ ψÞ: (6)

Notice that despite the fact that there is no direct
coupling between the gluons and the magnetic field,
the vertex with the fermions is modified because of the
distinction between longitudinal and transverse fermion
modes in this case. The extreme case occurs for magnetic
fields of the order of the energy scale of the fermions,
where all the fermions are in the LLL and hence the only
modes entering in the bare coupling are the longitudinal
ones. This is the origin of the anisotropy in the strong-
coupling vertex in the presence of a magnetic field.
Therefore, this anisotropy should be reflected in the NJL
model in a magnetic field.
On the other hand, as detailed in the Appendix, the

Oð3Þ → Oð2Þ symmetry breaking that takes place in the
presence of a magnetic field leads to the anisotropic Fierz
identities

ðγμ∥Þilðγ∥μÞkj ¼
1

2

�
ð1Þilð1Þkj þ ðiγ5Þilðiγ5Þkj

þ 1

2
ðσμν⊥ Þilðσ⊥μνÞkj − ðσ03Þilðσ03Þkj þ � � �

�
;

(7)

and

ðγμ⊥Þilðγ⊥μ Þkj ¼
1

2

�
ð1Þilð1Þkj þ ðiγ5Þilðiγ5Þkj

−
1

2
ðσμν⊥ Þilðσ⊥μνÞkj þ ðσ03Þilðσ03Þkj þ � � �

�
;

(8)

where ∥ and ⊥ denotes parallel μ ¼ ð0; 3Þ and transverse
μ ¼ ð1; 2Þ Lorentz indexes with respect to the magnetic
field direction. Einstein summation convention for repeated
indices is assumed.
From (2), (3), (6)–(8), one can readily identify the

channels considered in Lð1Þ
int and Lð2Þ

int . Then, the couplings
G and G0 can be related to g∥ and g⊥ through
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G ¼ ðg2∥ þ g2⊥Þ=2Λ2; G0 ¼ ðg2∥ − g2⊥Þ=2Λ2 (9)

with Λ the energy scale of the effective theory. At zero
magnetic field g ¼ g∥ ¼ g⊥ and one can use measured
physical quantities to find consistent values for G and Λ.
However, at nonzero magnetic field there are no measured
parameters that can be used for this purpose. In lieu of
arbitrarily assigning values to G, G0 and Λ, we can take G
and Λ at their zero-field values, chosen to fit the pion decay
constant to fπ ¼ 93 MeV and the condensate density per
quark to hūui ¼ −ð250 MeVÞ3, and then assign values to
G0 with the constraint G0 ≤ G. Notice that G0 ≥ 0 because
when the field increases, so does the occupation of the
LLL, hence reinforcing the longitudinal contributions over
the transverse ones.
The Lagrangian density (1) can be also interpreted as an

ad-hoc single-flavor effective theory consistent with the
symmetries of QCD in a magnetic field. Apart from the
subgroup of rotations already mentioned, it is also invariant
under baryon symmetry,Uð1ÞB, and because of the absence
in (1) of a fermion mass, chiral symmetry Uð1Þχ is
preserved. For other contexts where unconventional four-
point interactions in NJL-like models have been considered
see [25–28].

III. EFFECTIVE POTENTIAL IN THE
MEAN-FIELD APPROXIMATION

Let us explore now the possibility of the following
homogeneous condensates

hψ̄ψi ¼ −
σ

G
; hψ̄iγ5ψi ¼ −

Π
G
;

hψ̄iγ1γ2ψi ¼ −
ξ

G0 ; hψ̄ iγ0γ3ψi ¼ −
ξ0

G0 ; (10)

where σ, Π, ξ and ξ0 are constant parameters.
Using them to perform the Hubbard-Stratanovich trans-

formation in the Lagrangian density (1), we obtain the
partition function in the mean-field approximation

Z ¼
Z

D½ψ̄ �D½ψ � exp ðiSðσ;Π; ξ; ξ0ÞÞ; (11)

with action

Sðσ;Π; ξ; ξ0Þ

¼
Z

d4xψ̄ðxÞðiγμDμ − σ − iγ5Π− iγ1γ2ξ− iγ0γ3ξ0ÞψðxÞ

−
V
2G

ðσ2 þΠ2Þ− V
2G0 ðξ2 þ ξ02Þ: (12)

The corresponding mean-field effective potential is

Ωðσ;Π; ξ; ξ0Þ ¼ σ2 þ Π2

2G
þ ξ2 þ ξ02

2G0

þ i
V

Tr lnðiD · γ − σ − iγ5Π

− iγ1γ2ξ − iγ0γ3ξ0Þ; (13)

where the trace (Tr) acts in color, Dirac, and coordinate
spaces.
At this point, it is convenient to transform to momentum

space with the help of the Ritus transformation [29]. This
method is based on a Fourier-like transformation that uses
eigenfunction matrices EpðxÞ. The EpðxÞ are the wave
functions of the asymptotic states of charged fermions in a
uniform magnetic field. The method yields a fermion Green
function that is diagonal in momentum space and explicitly
dependent on the Landau levels. Although valid at any field
strength, this formalism is particularly convenient to study
the strong-field region, where the main contribution comes
from the LLL [12,19,20].
Using Ritus’s approach, the inverse propagator in

momentum space [20] takes the form

G−1
l ðp; p0Þ ¼

Z
d4xd4x0Ēl

pðxÞ½iD · γ − σ − iγ5Π

− iγ1γ2ξ − iγ0γ3ξ0Þ�δð4Þðx − x0ÞEl0
p0 ðx0Þ

¼ ð2πÞ4δ̂ð4Þðp − p0ÞΘðlÞ ~G−1
l ðp̄Þ (14)

with

~G−1
l ðp̄Þ ¼ ½p̄ · γ − σ − iγ5Π − iγ1γ2ξ − iγ0γ3ξ0�; (15)

and

p̄μ ¼ ðp0; 0;−sgnðqBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBjl

p
; p3Þ: (16)

The El
pðxÞ are matrix functions given as a linear

combination of spin up (þ) and down (−) projectors
Δð�Þ. For q > 0, they can be written as

El
pðxÞ ¼ Eþ

p ðxÞΔðþÞ þ E−
pðxÞΔð−Þ; (17)

with

Δð�Þ ¼ I � iγ1γ2

2
for q > 0; (18)

and

Eþ
p ðxÞ ¼ Nle−iðp0x0þp2x2þp3x3ÞDlðρÞ;

E−
pðxÞ ¼ Nl−1e−iðp0x0þp2x2þp3x3ÞDl−1ðρÞ: (19)
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Index l ¼ 0; 1; 2;… is the Landau level number that
characterizes the discretization of the transverse momen-
tum in a magnetic field. Here Nl ¼ ð4πqBÞ1=4= ffiffiffiffi

l!
p

is a
normalization constant and DlðρÞ denotes the parabolic
cylinder function of argument ρ ¼ ffiffiffiffiffiffiffiffiffi

2qB
p ðx1 − p2=qBÞ and

index l.
The coefficient

ΘðlÞ ¼ ΔðþÞδl0 þ Ið1 − δl0Þ (20)

in (14) takes into account the lack of spin degeneracy of
the LLL.
To obtain (14) we used the orthogonality of the El

p
functions [19]Z

d4xĒl
pðxÞEl0

p0 ðxÞ ¼ ð2πÞ4δ̂ð4Þðp − p0ÞΘðlÞ; (21)

with Ēl
p ≡ γ0ðEl

pÞ†γ0 and δ̂ð4Þðp − p0Þ ¼ δll
0
δðp0 − p0

0Þ×
δðp2 − p0

2Þδðp3 − p0
3Þ.

After going to Euclidean variables, we can use the
completeness relation

XZ d4pE

ð2πÞ4 E
l
pðxÞĒl

pðxÞ ¼ ð2πÞ4δð4Þðx − x0Þ (22)

to invert (14) and find

G−1ðx; x0Þ ¼
XZ d4pE

ð2πÞ4
XZ d4p0E

ð2πÞ4
× El

pðxÞG−1ðp; p0ÞĒl0
p0 ðx0Þ: (23)

with
PR d4pE

ð2πÞ4 ≡
P∞

l¼0

R dp4dp2dp3

ð2πÞ4 .

With the help of (23), the effective potential can be
written as

Ωðσ;Π; ξ; ξ0Þ ¼ σ2 þ Π2

2G
þ ξ2 þ ξ02

2G0

− NcqB tr
X∞
l¼0

Z
∞

−∞

dp4dp3

ð2πÞ3 lnΘðlÞ ~G−1
l ðp̄Þ;
(24)

where the integration in p2 was done usingZ
∞

−∞

dp2

2π
¼
Z

∞

−∞

dp2

2π
e−i

p2p1
qB jp1¼0

¼ 1

l2B
δðp1Þjp1¼0

¼ 1

l2B

Z
∞

−∞
dx1; (25)

and the trace (tr) now only acts on the spinorial matrices.
Here lB ¼ 1=

ffiffiffiffiffiffi
qB

p
denotes the magnetic length.

Taking into account that the l ¼ 0 term only gets
contributions from the subspace of spinors with a single
spin projection; spin up (down) for q > 0 (q < 0); it can be
separated from the rest to write

Ωðσ;Π; ξ; ξ0Þ ¼ σ2 þ Π2

2G
þ ξ2 þ ξ02

2G0

− NcqB

�Z
∞

−∞

dp4dp3

ð2πÞ3 ln det ~G−1
0 ðp̄Þ

þ
X∞
l¼1

Z
∞

−∞

dp4dp3

ð2πÞ3 ln det ~G−1
l ðp̄Þ

�
:

(26)

Integrating in p4 we find

Ωðσ;Π; ξ; ξ0Þ ¼ σ2 þ Π2

2G
þ ξ2 þ ξ02

2G0 −
NcqB
4π2

Z
∞

−∞
jε0jdp3

−
NcqB
4π2

X
η¼�1

X∞
l¼1

Z
∞

−∞
jεl;ηjdp3; (27)

with energy spectrum

ε20 ¼ p2
3þðσþ ξÞ2 þðΠþ ξ0Þ2; l¼ 0;

ε2l;η ¼ p2
3þΠ2 þ ξ02þ σ2ð1−XÞþ 2lqBð1−X0Þ

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2Xþ 2lqB
q

þ ηξ
�2
; l ≥ 1; η¼�1 (28)

where

X ¼
�
1þ Π

σ

ξ0

ξ

	
2

; X0 ¼
�
1þ ξ02

ξ2

	
: (29)

The factor qB=4π2 accounts for the density of states of
the Landau levels. The spectrum of the quasiparticles with
Landau levels l ≥ 1 exhibits a Zeeman splitting (η ¼ �1)
indicating that the new dynamical parameter ξ enters as an
AMM energy term. This is even more evident if we take
Π ¼ ξ0 ¼ 0 in the spectrum, since it becomes equal to the
one found in QED with dynamical mass and AMM [20].
No splitting is present in the l ¼ 0mode, in agreement with
the fact that the fermions in the LLL only has one spin
projection.

IV. CONDENSATE SOLUTIONS

A. Gap equations

We are interested in the situation where the magnetic
field is large enough to have all the quarks lying in the LLL,
thus the ground state is dominated by the infrared dynamics
and only the first integral in the right-hand side of (27)
contributes to the equations. This requires magnetic fields
qB ∼ Λ2 ≳ Λ2

QCD. Such large fields are actually generated
in off-central heavy-ion collisions at RHIC.
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To determine the dynamical solutions for the four
condensates σ, Π, ξ and ξ0, we need to solve the gap
equations

∂Ωðσ;Π; ξ; ξ0Þ
∂σ ¼ σ

G
− ðσ þ ξÞI0 ¼ 0;

∂Ωðσ;Π; ξ; ξ0Þ
∂ξ ¼ ξ

G0 − ðσ þ ξÞI0 ¼ 0;

∂Ωðσ;Π; ξ; ξ0Þ
∂Π ¼ Π

G
− ðΠþ ξ0ÞI0 ¼ 0;

∂Ωðσ;Π; ξ; ξ0Þ
∂ξ0 ¼ ξ0

G0 − ðΠþ ξ0ÞI0 ¼ 0; (30)

where

I0 ¼
NcqB
2π2

Z
Λ

0

dp3

ε0
: (31)

Here we introduced the momentum cutoff Λ below which
the NJL theory is valid. One can check that the solution of
(30) satisfies

ξ̄ ¼ G0

G
σ̄; ξ̄0 ¼ G0

G
Π̄: (32)

Then, the condensates can be found from

Z
Λ

0

dp3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ ð1þ G0

GÞ2ðσ̄2 þ Π̄2Þ
q ¼ 2π2

ðGþG0ÞNcqB
: (33)

Notice that the gap equation (33) depends only on the
ULð1Þ ×URð1Þ-invariant σ̄2 þ Π̄2, a typical feature of the
MCχSB phenomenon [1,15]. Hence, we can, as usual,
specialize the condensate configuration with Π ¼ 0 and σ
constant. As expected for a magnetically catalyzed con-
densate, no critical coupling is needed for a nontrivial
solution to exist.
From (32), we see that no solution exists with σ̄ ≠ 0 and

ξ̄ ¼ 0, and vice versa. The energetically favored solution
has expectation values of both σ̄ and ξ̄ different from zero.
In the same way that the chiral condensate hψ̄ψi gives a
dynamical mass to the quasiparticles, the new condensate
hψ̄iγ1γ2ψi gives them a dynamical AMM. Once the quarks
acquire a dynamical mass, they should also acquire a
dynamical AMM. This effect has been found to occur in
QED [20] and the appearance of the condensate ξ in our
NJL model is a clear indication that it also occurs in QCD.
One can understand the inevitability of a dynamical AMM
in the magnetically catalyzed system on the basis of
symmetry arguments. Once the chiral symmetry is dynami-
cally broken, there is no symmetry protection for the
AMM, because it breaks the exact same symmetry. The
AMM of the quarks leads to a nonzero dynamical MM
for the pair. That the pairs should have a dynamical MM is

easy to understand, since they are formed by quarks and
antiquarks with opposite spins, so the fermions’ AMMs
point in the same direction. The magnetic field aligns the
pairs’ MM leading to a net MM of the ground state.

B. Effect on the quasiparticle’s effective mass

The solutions of the gap equations (32), (33) are

σ̄ ¼
�

2GΛ
Gþ G0

	
exp−

�
2π2

ðGþ G0ÞNcqB

�
(34)

and

ξ̄ ¼
�

2G0Λ
GþG0

	
exp−

�
2π2

ðGþ G0ÞNcqB

�
: (35)

It is worthwhile to underline that the induced AMM term
(35) depends nonperturbatively on the coupling constant
and the magnetic field. This behavior reflects two important
facts: (i) in a massless theory, chiral symmetry can be only
broken dynamically, that is, nonperturbatively; and (ii) the
MCχSB phenomenon is essentially a LLL effect. The LLL
plays a special role due to the absence of a gap between it
and the Dirac sea. The rest of the LLs are separated from
the Dirac sea by energy gaps that are multiples of

ffiffiffiffiffiffiffiffiffi
2qB

p
,

and hence do not significantly participate in the pairing
mechanism at the subcritical couplings where the magnetic
catalysis phenomenon is relevant. Since the dynamical
generation of the AMM is produced mainly by the LLL
pairing dynamics, one should not expect to obtain a linear-
in-B AMM term, even at weak fields, in sharp contrast with
the AMM appearing in theories of massive fermions. In the
latter case, not only the AMM is obtained perturbatively
through radiative corrections, but considering the weak-
field approximation means first summing in all the LL’s,
which contribute on the same footing, and then taking the
leading term in an expansion in powers of B [24,30]. Notice
that such a linear dependence does not hold, even in the
massive case, if the field is strong enough to put all the
fermions in the LLL [31].
The effect of the new condensate hψ̄iγ1γ2ψi is to

increase the effective dynamical mass of the quasiparticles
in the LLL,

Mξ ¼ σ̄ þ ξ̄ ¼ 2Λ exp−
�

2π2

ðGþG0ÞNcqB

�
: (36)

In QCD, for fields, qB ∼ Λ2, the dimensional reduction
of the LLL fermions would constraint the LLL quarks to
couple with the gluons only through the longitudinal
components. Thus, to consistently work in this regime
within the NJL model, we should consider, taking into
account (9), that G0 ¼ G, so that Gþ G0 ¼ 2G.
Because the effective coupling enters in the exponential,

the modification of the dynamical mass by the magnetic
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moment condensate can be significant. As a consequence,
the quasiparticles should be much heavier in our model
than in previous studies that ignored the magnetic moment
interaction [1]. How much heavier can be estimated from
the logarithm of the ratio between the effective mass (36)
and the mass found with G’ equal to zero (i.e.
Mξ¼0 ¼ 2Λ exp−½2π2=GNcqB�)

ln

�
Mξ

Mξ¼0

	
¼ 2π2

GNcqB

�
η

1þ η

	
: (37)

Here we used G0 ¼ ηG, but we know that for qB=Λ2 ∼ 1,
η≃ 1. Using the values GΛ2 ¼ 1.835, Λ ¼ 602.3 MeV
[32], Nc ¼ 3 and q ¼ jej=3≃ 0.1, we estimate the right-
hand side of (37) as ðπ2=GNcqBÞ≃ 1.8. Due to the
condensate ξ the dynamical mass of the quasiparticles
increases sixfold. This result shows that at strong fields the
new channel of interaction must not be ignored, as it may
lead to important physical consequences. One of them is
the increase of the critical temperature for the chiral
restoration, as we show in the next section.

V. CRITICAL TEMPERATURE

A. Condensate solutions at finite temperature

Our goal now is to calculate the critical temperature for
chiral symmetry restoration in the magnetized system. With
that aim, we take the LLL approximation in (26) and
replace the integration in p4 by the Matsubara’s sum

Z
Λ

−Λ

dp4

2π
→

1

β

X
p4

; β ¼ 1

T
;

p4 ¼
ð2nþ 1Þπ

β
; n ¼ 0;�1;�2;… (38)

to obtain

ΩT
0 ðσ; ξÞ ¼

σ2 þ Π2

2G
þ ξ2 þ ξ02

2G0

−
NcqB
β

Z
∞

−∞

dp3

4π2
X
p4

ln ½p2
4 þ ε20�: (39)

Performing the sum in p4 [33] and introducing the
momentum cutoff Λ, we obtain

ΩT
0 ðσ; ξÞ ¼ −NcqB

Z
Λ

0

dp3

2π2

�
ε0 þ

2

β
ln ð1þ e−βε0Þ

�

þ σ2 þ Π2

2G
þ ξ2 þ ξ02

2G0 : (40)

The gap equations at finite temperature are then given by

∂ΩT
0 ðσ;Π; ξ; ξ0Þ

∂σ ¼ σ

G
− ðσ þ ξÞ½I0 þ Iβ� ¼ 0;

∂ΩT
0 ðσ;Π; ξ; ξ0Þ

∂ξ ¼ ξ

G0 − ðσ þ ξÞ½I0 þ Iβ� ¼ 0;

∂ΩT
0 ðσ;Π; ξ; ξ0Þ

∂Π ¼ Π
G
− ðΠþ ξ0Þ½I0 þ Iβ� ¼ 0;

∂ΩT
0 ðσ;Π; ξ; ξ0Þ

∂ξ0 ¼ ξ0

G0 − ðΠþ ξ0Þ½I0 þ Iβ� ¼ 0; (41)

where I0 is defined in (31), and

Iβ ¼
NcqB
2π2

Z
Λ

0

dp3

ε0

2e−βε0=2

eβε0=2 þ e−βε0=2
: (42)

Once again we can check that the solutions of (41) satisfy
relations similar to those in Eq. (32). Then, the condensates
can be found fromZ

Λ

0

dp3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ ð1þ G

G0Þ2ðξ̄2 þ ξ̄02Þ
q

× tanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ ð1þ G

G0Þ2ðξ̄2 þ ξ̄02Þ
q

2T

!
¼ 2π2

ðGþG0ÞNcqB
:

(43)

Just as in vacuum, the gap equation (43) depends only on
the ULð1Þ ×URð1Þ-invariant ξ̄2 þ ξ̄02. Hence, we can, as
usual, specialize the condensate configuration along the ξ
internal direction and take ξ0 ¼ 0. In Fig. 1 we represent the
numerical solution of (43). Notice that the condensate ξ
decreases continuously with the temperature, vanishing at
T ∼ 0.6Mξ, with Mξ the zero-T dynamical mass. This
behavior is consistent with that of the order parameter of

0.00 0.20 0.40 0.60 0.80 1.00

0.02

0.06

0.10

0.14

0.18

FIG. 1. Condensate ξ, normalized by Λ, as a function of the
temperature,T, divided by the zero-temperature dynamicalmassMξ.
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a second-order phase transition. Equally important, the
chiral condensate σ̄ evaporates together with ξ̄, because of
the relations (32), which, as already pointed out, remain
valid at finite temperature.

B. Critical-temperature analytical expression

The critical temperature TCχ
can be analytically found

from the condition

∂2Ω
TCχ

0

∂σ̄2





σ̄¼ξ̄¼0

¼ σ2 þ Π2

2G
þ ξ2 þ ξ02

2G0

−
NcqB
2π2

�
Gþ G0

G

Z
Λ

0

dp3

p3

tanh

�
βCχ

p3

2

	

þ 2π2

GNcqB

�
¼ 0: (44)

We would have arrived at the same condition by taking
instead the derivative with respect to ξ̄. This is a conse-
quence of the proportionality between σ̄ and ξ̄, given in
Eq. (32), which implies that the two condensates evaporate
at the same critical temperature.
Doing the change p3 → p3=TCχ

, we have

Z
Λ=TCχ

0

dp3

p3

tanh
�
p3

2

	
¼ 2π2

ðGþG0ÞNcqB
; (45)

so the resulting critical temperature is

TCχ
¼ 1.16Λ exp−

�
2π2

ðGþ G0ÞNcqB

�
¼ 0.58Mξ (46)

in agreement with the result found numerically in Fig. 1.
The fact that the critical temperature is proportional to the
dynamical mass at zero temperature, is consistent with the
findings in other models [34]. In the present case, since
the dynamical mass is increased by the AMM, the critical
temperature is proportionally increased.
That the chiral transition is second order can be seen

directly from Fig. 1, as well as analytically, from the
positiveness of the second derivative of Ω near the phase
transition,

∂2Ω
∂ðσ̄2Þ2






β≈βC

¼ NcqBβC
32π2

�
GþG0

G

�
4

×
Z

βCΛ=2

0

dz
tanh z
z3

�
1 −

z
sinh z cosh z

�
> 0:

(47)

We underline that the existence of a unique critical
temperature for the evaporation of the two condensates
reflects the fact that the condensate ξ does not break any
new symmetry thatwas not alreadybrokenby the condensate

σ and the magnetic field, as discussed above. The simulta-
neous evaporation of the chiral and magnetic moment
condensates has been also reported in the context of lattice
QCD [35]. There are, however, important differences in the
way the magnetic field influences the system in lattice QCD
and in the situation considered in the present work. In
Ref. [35] the coupling is supercritical, so the quark have
constituent masses even at zero field and the tensor term can
be considered to be linear in B. In our case, however, the
quarks acquire their mass and AMM through the MCχSB
mechanism, so the field-dependence of the condensates is not
expandable in powers of B, and hence can never be linear.

VI. CONCLUDING REMARKS

In this paper we reconsidered the effect of an applied
magnetic field on the chiral phase transition of a QCD-
inspired theory described by a one-flavor NJL model with
interactions channels consistent with the QCD symmetries in
a magnetic field. With this purpose we worked out the Fierz
identities that can be derived from one-gluon exchange
interactions in a systemwhere part of the rotational symmetry
has been broken explicitly by the external magnetic field.
Using the NJL model with extra tensor channels, we

showed that the phase with broken chiral symmetry is
characterized by a spin condensate and the conventional
chiral condensate. In the presence of a magnetic field no
solution exists with hψ̄ψi ≠ 0 and hψ̄Σ3ψi ¼ 0, and vice
versa. To understand the genesis of the new condensate, we
should take into account that, since the pairs are formed by
a particle and an antiparticle with opposite spins and
charges, they have their magnetic moments pointing in
the same direction. Under an applied magnetic field, the
magnetic moments of the pairs orient in the field direction
giving rise to an overall MM of the ground state that is
equivalent to a nonzero expectation value of hψ̄Σ3ψi. The
new condensate dresses the quasiparticles with a dynamical
AMM, as reflected in the way the AMM parameter ξ enters
in the spectra. The dynamical AMM produces a Zeeman
effect in all the quasiparticles with nonzero Landau levels.
For LLL quasiparticles, there is no Zeeman splitting
because only one spin contributes. However, the effect
of ξ in this case is to significantly increase the effective
dynamical mass of the LLL quarks, and consequently the
critical temperature of the chiral phase transition.
As the quasiparticles will be heavier at large fields,

compared to their mass when the spin condensate can be
ignored, and since they are charged, the electrical conduc-
tivity in this case should be much smaller at strong fields.
This will affect the transport properties of this magnetized
medium, a topic worthy of more investigation for its
potential implications for astrophysics.
Although it seems natural to expect similar results for

more general NJL models, it will be important to study the
structure of the ground state in the context of more realistic
theories including two and three flavors. Another pending
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task is to explore the density effects, which can be highly
nontrivial, judging by what is known to occur in a QCD-
like model with inhomogeneous condensates [36].
It has been recently argued [37] that at zero magnetic

field the quarks acquire an AMM due to the regular
dynamical chiral symmetry breaking mechanism of QCD
at supercritical coupling. While this is physically under-
standable, since once the quarks have a mass, they must
also possess an AMM, the magnetic moment of the pairs
should not have any net orientation in the absence of a
magnetic field. Hence the ground state will have no
magnetic order, and the only condensate in this case will
be the usual chiral condensate.
Nevertheless, in the supercritical system, as soon as a

magnetic field is present, the alignment of the pairs’magnetic
moments will occur and there will be a nonzero expectation
value of the system’s MM. If the results of the present work
give us any indication of the behavior expected in this
supercritical regime within the NJL model in a magnetic
field, one would expect that this MM will contribute to
significantly increasing the critical temperature, as it did in
the subcritical case. However, this is not what is foundwithin
lattice QCD and one needs to understand why. We expect to
explore this important question in the near future.
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APPENDIX: FIERZ IDENTITIES WITH
ROTATIONAL SYMMETRY BREAKING

As is known, the Fierz identities that are connected to
a reordering of the field operators in a given interaction

depend on the symmetry of the system [25,38]. Specifically,
in the case of the one-gluon exchange interaction, which at
zero momentum is reduced to a contact four-particle inter-
action, the Fierz identities give the prescription to make the
transformation

ðψ̄1ΓAψ2Þðψ̄3ΓBψ4Þ → ðψ̄1ΓCψ4Þðψ̄3ΓDψ2Þ: (A1)

Here, the spinor indices are suppressed. To find the relation
between the matrices ΓA, ΓB and ΓC, ΓD is precisely the goal
of the Fierz identities.
In vacuum, the Dirac structures entering in the bilinears

in (A1) are given by the elements of the Dirac ring

fΓAg ¼ f1; γ5; γμ; γ5γμ; σμνg: (A2)

The presence of a constant and uniform magnetic field
breaks the rotational Oð3Þ symmetry. This symmetry
breaking implies that the tensor structures of the Dirac
ring split in parallel and transverse component to the field
direction,

fΓ̂Ag ¼ f1; γ5; γ∥; γ⊥; γ5γ∥; γ5γ⊥; σ∥∥; σ∥⊥; σ⊥⊥g; (A3)

where for a magnetic field along the x3 direction we are
using the index notation ∥ ¼ 0; 3 and ⊥ ¼ 1; 2.
Then, the Fierz identities connecting the different

elements in (A3) are given by [25,38,39]

ðΓAÞijðΓBÞkl ¼
1

42
Tr½ΓAΓCΓBΓD�ðΓDÞilðΓCÞkj; (A4)

with all the lower case spinor indices i; j; k; l running over
0,1,2,3. Then, the expansion coefficients connecting the
Dirac elements are straightforwardly obtained as gamma
matrix traces from 1

42
Tr½ΓAΓCΓBΓD�.

For the particle-antiparticle channel the anisotropic Fierz
identities in the presence of a constant and uniform
magnetic field are

0
BBBBBBBBBBBBBBBBBB@

ð1Þijð1Þkl
ðγ∥Þijðγ∥Þkl
ðγ⊥Þijðγ⊥Þkl
ðσ30Þijðσ30Þij
ðσ⊥∥Þijðσ⊥∥Þkl

1
2
ðσ⊥⊥Þijðσ⊥⊥Þkl
ðγ∥γ5Þijðγ∥γ5Þkl
ðγ⊥γ5Þijðγ⊥γ5Þkl
ðiγ5Þijðiγ5Þkl

1
CCCCCCCCCCCCCCCCCCA

¼

0
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1
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0
BBBBBBBBBBBBBBBBBB@

ð1Þijð1Þkl
ðγ∥Þijðγ∥Þkl
ðγ⊥Þijðγ⊥Þkl
ðσ30Þijðσ30Þij
ðσ⊥∥Þijðσ⊥∥Þkl

1
2
ðσ⊥⊥Þijðσ⊥⊥Þkl
ðγ∥γ5Þijðγ∥γ5Þkl
ðγ⊥γ5Þijðγ⊥γ5Þkl
ðiγ5Þijðiγ5Þkl

1
CCCCCCCCCCCCCCCCCCA

; (A5)

where repeated indexes denote summation.
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