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We consider SU(N) gauge theories on a two-dimensional torus with finite area, A. Let TμðAÞ denote the
Polyakov loop operator in the μ direction. Starting from the lattice gauge theory on the torus, we derive a
formula for the continuum limit of hg1ðT1ðAÞÞg2ðT2ðAÞÞi as a function of the area of the torus where g1 and
g2 are class functions. We show that there exists a class function ξ0 for SU(2) such that
hξ0ðT1ðAÞÞξ0ðT2ðAÞÞi > 1 for all finite area of the torus with the limit being unity as the area of
the torus goes to infinity. Only the trivial representation contributes to ξ0 as A → ∞ whereas all
representations become equally important as A → 0.
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I. INTRODUCTION WITH AN OVERVIEW OF
THE MAIN RESULT

Two-dimensional non-Abelian gauge theories are par-
ticularly simple to study but reveal a wealth of physics
insights. Migdal [1] studied this theory in the context of
recursion equations since these equations become exact in
two dimensions. Gross and Taylor [2] showed that the
partition function of two-dimensional QCD is a string
theory. Gross and Witten [3] started from the lattice theory
with the standard Wilson action on an infinite lattice and
showed factorization to independent plaquettes prompting
a possible connection between infinite volume gauge
theories and matrix models in a certain limit [4].
In this paper, we start with an SU(N) lattice gauge theory

on a torus and rewrite the theory in terms of plaquette
degrees of freedom and two additional toron degrees of
freedom. There is a constraint imposed by the theory being
defined on a two-dimensional torus and the resulting
partition function is

Zðβ;L1L2Þ

¼
X
r

dr
YL1−1

n1¼0

YL2−1

n2¼0

R ½dUpðn1; n2Þ�fp½Upðn1; n2Þ; β�

×
Z

dT1dT2χr½WðL1L2ÞT2T1T
†
2T

†
1�; (1)

where:

(i) β is the dimensionless lattice coupling related to the
continuum coupling, g, by β ¼ 1

g2a2 where a is the

lattice spacing.
(ii) The single plaquette action, fp, is a coupling

dependent class function of the plaquette varia-
ble, Upðn1; n2Þ.

(iii) χr is the character in the representation labeled by r
and dr is the dimension of that representation. The
fundamental representation is labelled by f and the
trivial representation by 0.

(iv) The L1 × L2 periodic lattice has L1L2 plaquettes
with Upðn1; n2Þ; 0 ≤ n1 < L1 and 0 ≤ n2 < L2

being the corresponding plaquette variables.
(v) T1 and T2 are toron variables that arise from the

presence of noncontractable loops on the torus.
(vi) The largest Wilson loop on the torus is the ordered

product

WðL1L2Þ ¼
YL2−1

n2¼0

� Y0
n1¼L1−1

Upðn1; n2Þ
�
: (2)

The above results on the lattice can be used to study
observables in the continuum limit on a torus of area A.
Ignoring a possible overall factor that does not affect
computation of observables, the continuum partition func-
tion upon integration of all variables is of the form

ZðAÞ ¼
X
r

e−
1
NC

ð2Þ
r A; (3)

where A is the dimensionless area of the torus and Cð2Þ
r is

the quadratic Casimir in the r representation. This is the
starting point in [2] for the case of a torus.
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Starting from (1), we show that the continuum limit of
the expectation value of a Wilson loop of area 0 ≤ X ≤ A in
representation, r, is given by

1

dr
hχrðWðX; AÞÞi ¼ 1

ZðAÞ
X
r0;r00

nðr; r0; r00Þdr00
drdr0

× e−
1
NC

ð2Þ
r0 ðA−XÞ−

1
NC

ð2Þ
r00 X; (4)

where nðr; r0; r00Þ is the number of times the representation
r00 appears in the tensor product, r ⊗ r0. This coincides with
the formula derived in [5] where the techniques used for the
calculation are close to the one used in this paper.
Polyakov loop expectation values have been considered

in the past [6–8] but the focus has been mainly on Polyakov
loop correlators in order to see the confinement behavior. In
this paper, we consider correlators of two Polyakov loops
oriented in the two different directions. The result only
depends on the area of the torus and the representations of
the Polyakov loops and we find

Mr1r2ðAÞ ¼ hχr1ðT1ðAÞÞχr2ðT2ðAÞÞi
¼ hχr2ðT1ðAÞÞχr1ðT2ðAÞÞi

¼ 1

ZðAÞ
X
r

aðr1r2; rÞe−1
NC

ð2Þ
r A; (5)

where

aðr1; r2; rÞ ¼ dr

Z
dT1dT2χr½T2T1T

†
2T

†
1�χr1ðT1Þχr2ðT2Þ:

(6)

By diagonalizing the infinite-dimensional matrix,MðAÞ, at
each A, we can find a new set of A dependent orthonormal
basis of class functions,

ξiðTðAÞÞ ¼
X
r

bri ðAÞχrðTðAÞÞ;
Z

dTðAÞξ�i ðTðAÞÞξjðTðAÞÞ ¼ δij; i ¼ 0; 1; � � � (7)

such that

hξiðT1ðAÞÞξjðT2ðAÞÞi ¼ λiðAÞδij; λiðAÞ > λiþ1ðAÞ∀i:
(8)

An explicit computation for the case of SUð2Þ results in
only one eigenvalue, λ0ðAÞ, satisfying the condition
λ0ðAÞ > 1 for all finite A with λ0ð∞Þ → 1 A → ∞ and
λ0ðAÞ → ∞ as A → 0.

II. GAUGE ACTION IN TERMS OF
PLAQUETTE VARIABLES

Consider a L1 × L2 periodic lattice. We wish to study a
gauge invariant non-Abelian gauge theory on this lattice.
The ð2L1L2Þ SU(N) link variables are denoted by
Ug

μðn1; n2Þ for 0 ≤ n1 < L1; 0 ≤ n2 < L2 and μ ¼ 1, 2.
They obey periodic boundary conditions:

Ug
1ðn1; L2Þ ¼ Ug

1ðn1; 0Þ; Ug
2ðL1; n2Þ ¼ Ug

2ð0; n2Þ;
0 ≤ n1 < L1; 0 ≤ n2 < L2:

(9)

Given a representative gauge field configuration,
Uμðn1; n2Þ, all configurations on this gauge orbit are
given by

Ug
1ðn1; n2Þ ¼ gðn1; n2ÞU1ðn1; n2Þgðn1 þ 1; n2Þ;

Ug
2ðn1; n2Þ ¼ g†ðn1; n2ÞU1ðn1; n2Þgðn1; n2 þ 1Þ; (10)

where gðn1; n2Þ is a periodic function defined on the
lattice sites.
We start with the following representative gauge field

configuration (see Fig. 1):
(i) U1ðn1;n2Þ¼ 1 for 0≤ n1<L1−1 and 0 ≤ n2 < L2.
(ii) U2ð0; n2Þ ¼ 1 for 0 ≤ n2 < L2 − 1.
(iii) U1ðL1 − 1; 0Þ ¼ T1.
(iv) U2ð0; L2 − 1Þ ¼ T2.
(v) U2ðn1 þ 1; n2Þ ¼ Upðn1; n2ÞU2ðn1; n2Þ for 0 ≤

n1 < L1 − 1; and 0 ≤ n2 < L2.
(vi) U1ðL1−1;n2þ1Þ¼U†

2ðL1−1;n2ÞU†
pðL1−1;n2Þ×

U1ðL1−1;n2Þ for 0 ≤ n2 < L2 − 1.
This configuration still has a global gauge symmetry

given by gðn1; n2Þ ¼ g. The integration over all 2ðL1L2Þ
Ug

μðn1; n2Þ variables can be split into
(i) ððL1L2Þ−1Þ Upðn1; n2Þ variables for all 0≤n1<L1;

0 ≤ n2 < L2 except ðn1; n2Þ ¼ ðL1 − 1; L2 − 1Þ;
(ii) ððL1L2Þ−1Þ gðn1; n2Þ variables for all 0 ≤ n1 < L1;

0 ≤ n2 < L2 except ðn1; n2Þ ¼ ð0; 0Þ;
(iii) T1 and T2.

Note that Upðn1; n2Þ is nothing but the plaquette variable
associated with the plaquette with ðn1; n2Þ as the bottom-
left corner site and taken in the counterclockwise direction
(see Fig. 1). The plaquette variable, UpðL1 − 1; L2 − 1Þ, is
constrained by

T1T2T
†
1T

†
2 ¼ WðL1L2Þ; (11)

where

WðL1L2Þ ¼
YL2−1

n2¼0

� Y0
n1¼L1−1

Upðn1; n2Þ
�

(12)
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is the largest Wilson loop on the torus and the product is
path ordered.
The next step in the definition of the model is the

partition function. We assume a single plaquette action of
the form

eSg ¼
YL1−1

n1¼0

YL2−1

n2¼0

fp½Upðn1; n2Þ; β�; (13)

where β is the dimensionless coupling constant on the
lattice and fp is a coupling dependent class function which
can be expanded in terms of characters in the form

fp½U; β� ¼
X
r

~βrðβÞχrðUÞ; (14)

with ~βrðβÞ ¼ ~βr̄ðβÞ and real. The continuum limit at a fixed
physical coupling, g2, is obtained by setting β ¼ 1

g2a2 and

taking the lattice spacing, a → 0. We will keep the size of
the torus fixed as we take the continuum limit by setting the
dimensionless area

A ¼ L1L2

β
¼ ðaL1ÞðaL2Þg2 (15)

fixed as we take a → 0 and ðL1L2Þ → ∞.

FIG. 1 (color online). A pictorial representation of the representative gauge field configuration on a 6 × 6 lattice. The dashed links are
set to unity. The horizontal links are in the 1 direction and are oriented from left to right. The vertical links are in the 2 direction and are
oriented from bottom to top.
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We will use all ðL1L2Þ plaquette variables in our
definition of the partition function and use (11) to restrict
the integral over T1 and T2. The finite volume partition
function is defined as

Zðβ;L1L2Þ ¼
YL1−1

n1¼0

YL2−1

n2¼0

Z
½dUpðn1; n2Þ�fp½Upðn1; n2; β�

×
Z

dT1dT2δ½WðL1L2Þ; T1T2T
†
1T

†
2�; (16)

where [9]

δðU;VÞ ¼
X
r

drχrðUV†Þ (17)

is the delta function defined on the group with U;V ∈
SUðNÞ and the sum running over all representations, r,
with χr being the character and dr being the dimension of
that representation. Insertion of (17) in (16) yields the form
of the partition function, (1), stated in Sec. I.
Given that Dr

α;βðUÞ is the representation of U labeled r,
we have the following orthogonality relation [9]:

Z
DUDr

αβðUÞDs
γδðU†Þ ¼ δrs

δαδδβγ
dr

: (18)

Using (17) and (18), we can perform the integrals over T1

and T2 in (16) to arrive at

Zðβ;L1L2Þ ¼
YL1−1

n1¼0

YL2−1

n2¼0

Z
½dUpðn1; n2Þ�fp½Upðn1; n2Þ; β�

×

�X
r

1

dr
χrðWðL1L2ÞÞ

�
: (19)

Using the identity that follows from (18),

Z
DUχsðUÞχrðVU†WÞ ¼ δsr

χrðVWÞ
dr

; (20)

we can integrate out all Upðn1; n2Þ, one after the other, to
obtain

Zðβ;L1L2Þ ¼
X
r

�
~βrðβÞ
dr

�L1L2

¼ ½ ~β0ðβÞ�L1L2

X
r

�
~βrðβÞ

dr ~β0ðβÞ

�L1L2

: (21)

III. WILSON LOOPS

Consider a K1K2 rectangular loop with corners at (0,0),
ðK1 − 1; 0Þ, ð0; K2 − 1Þ, and ðK1 − 1; K2 − 1Þ and with
0 < K1 ≤ L1 − 1 and 0 < K2 ≤ L2 − 1. As in the case of

the physical size of the torus defined in (15), we will keep
the size of the loop fixed as we take the continuum limit by
setting the dimensionless area of the loop

X ¼ K1K2

β
¼ ðaK1ÞðaK2Þg2 (22)

fixed as we take a → 0 and ðL1L2Þ → ∞.
The operator is given by (see Fig. 1)

WðK1K2Þ ¼
YK2−1

i2¼0

� Y0
i1¼K1−1

Upði1; i2Þ
�
: (23)

Starting from (19), we have

Zðβ; L1L2Þ
1

dr
hχrðWðK1K2ÞÞi

¼
YL1−1

n1¼0

YL2−1

n2¼0

Z
½dUpðn1; n2Þ�fp½Upðn1; n2Þ; β�

×

�X
r0

1

dr0
χr0 ðWðL1L2ÞÞ

�
1

dr
χrðWðK1K2ÞÞ: (24)

As in the case of the partition function, we can use (14) and
(20) and integrate out all Upðn1; n2Þ that does not appear in
WðK1K2Þ to obtain

Zðβ; L1L2Þ
1

dr
hχrðWðK1K2ÞÞi

¼
X
r0

�
~βr0 ðβÞ
dr0

�L1L2−K1K2 YK1−1

n1¼0

YK2−1

n2¼0

Z
½dUpðn1; n2Þ�

× fp½Upðn1; n2Þ; β�
1

dr0
χr0 ðWðK1K2ÞÞ

1

dr
χrðWðK1K2ÞÞ:

(25)

Using the Clebsch-Gordon series [10], namely,

χrðUÞχr0 ðUÞ ¼
X
r00

nðr; r0; r00Þχr″ðUÞ; (26)

where nðr; r0;00 Þ is the number of times the representation,
r00, appears in the tensor product r ⊗ r0, we can perform the
rest of the integrals to obtain

Zðβ; L1L2Þ
1

dr
hχrðWðK1K2ÞÞi

¼
X
r0

�
~βr0 ðβ
dr0

�L1L2−K1K2X
r00

nðr; r0; r00Þdr00
drdr0

�
~βr″ðβÞ
dr00

�K1K2

:

(27)

Using (21), we can write the result in the form
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1

dr
hχrðWðK1K2ÞÞi

¼
P

r0

h
~βr0 ðβÞ

dr0 ~β0ðβÞ

i
L1L2−K1K2P

r00
nðr;r0;r00Þdr00

drdr0

h
~βr00 ðβÞ

dr00 ~β0ðβÞ

i
K1K2

P
r0

h
~βr0 ðβÞ

dr0 ~β0ðβÞ

i
L1L2

:

(28)

One can proceed further and compute the correlations of
multiple Wilson loops where no two loops have a single
plaquette in common and show that the correlations do not
depend on the separation. This is a consequence of the form
of the partition function in (1) where all plaquettes are
independent except for a global constraint that only
depends on the area.

IV. POLYAKOV LOOPS

In order to consider the correlation between Polyakov
loops oriented in different directions, we start from (16) and
(17) and consider expectation values of the form

Zðβ; L1L2Þhχr1ðT1Þχr2ðT2Þi

¼
YL1−1

n1¼0

YL2−1

n2¼0

Z
½dUpðn1; n2Þ�fp½Upðn1; n2Þ; β�

×
Z

dT1dT2

�X
r

drχr½WðL1L2ÞT2T1T
†
2T

†
1�
�

× χr1ðT1Þχr2ðT2Þ: (29)

We can use (14) and (20) and integrate out allUpðn1; n2Þ to
obtain

Zðβ; L1L2Þhχr1ðT1Þχr2ðT2Þi ¼
X
r

aðr1; r2; rÞ
�
~βrðβÞ
dr

�L1L2

;

(30)

where

aðr1; r2; rÞ ¼ dr

Z
dT1dT2χr½T2T1T

†
2T

†
1�χr1ðT1Þχr2ðT2Þ

(31)

are real coefficients. Using (21), we can write the expect-
ation value of the Polyakov loops in the form

Mr1r2ðAÞ¼hχr1ðT1Þχr2ðT2Þi¼
P

raðr1;r2;rÞ
h

~βrðβÞ
dr ~β0ðβÞ

i
L1L2

P
r

h
~βrðβ

dr ~β0ðβÞ

i
L1L2

:

(32)

Since

aðr2; r1; rÞ ¼ aðr1; r2; r̄Þ; (33)

it follows that MðAÞ is a real symmetric matrix.

V. CONTINUUM LIMIT

In order to take the continuum limit, we need to take a
specific lattice action. Since the continuum limit will not
depend on the specific choice as long as it satisfies some
essential properties, the simplest choice is the heat kernel
action given by [9]

~βrðβÞ ¼ dre
−C

ð2Þ
r
Nβ ; (34)

where Cð2Þ
r is the quadratic Casimir in the r representation.

In this case, ~β0ðβÞ ¼ 1 and

lim
a→0

� ~βrð 1
g2a2Þ

dr ~β0ð 1
g2a2Þ

� Y
g2a2

¼ e−
1
NC

ð2Þ
r Y : (35)

(1) The continuum limit of the partition function,
(21), is

ZðAÞ ¼
X
r

e−
1
NC

ð2Þ
r A; (36)

as stated in Sec. I.
(2) The continuum limit of the expectation value of the

Wilson loop, (28), is

1

dr
hχrðWðX;AÞÞi

¼
P

r0;r00
nðr;r0;r00Þdr00

drdr0
e−

1
NC

ð2Þ
r0 ðA−XÞ−

1
NC

ð2Þ
r00 X

P
re

−1
NC

ð2Þ
r A

; (37)

as stated in Sec. I.
(a) Since all Cð2Þ

r > 0 for r ≠ 0, it follows that

1

dr
hχrðWðX;∞ÞÞi ¼ e−

1
NC

ð2Þ
r X; (38)

which shows Casimir scaling of the string tension in
the infinite area limit.
(b) Since

X
r00

nðr; r0; r00Þdr00 ¼ drdr0 ; (39)

it follows that
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1

dr
hχrðWð0; AÞÞi ¼ 1: (40)

(c) For the special case of X ¼ A, we have

1

dr
hχrðWðA; AÞÞi ¼

P
r0;r00

nðr;r0;r00Þdr00
drdr0

e−
1
NC

ð2Þ
r00 A

P
r0e

−1
NC

ð2Þ
r0 A

:

(41)

In the limit of A → ∞, only r0 ¼ r̄ contributes to the
numerator and we have

1

dr
hχrðWð∞;∞ÞÞi ¼ 1

d2r
: (42)

(3) The continuum limit of the correlation of Polyakov
loops oriented in two different directions, (32), is

Mr1r2ðAÞ ¼ hχr1ðT1ðAÞÞχr2ðT2ðAÞÞi

¼
P

raðr1; r2; rÞe−1
NC

ð2Þ
r A

P
re

−1
NC

ð2Þ
r A

; (43)

as stated in Sec. I.
(d) In the limit of A → ∞, only r ¼ 0 contributes

to the sum in the numerator and denominator.
For this special case, it follows from (6) that
aðr1; r2; 0Þ ¼ δr10δr20. Therefore,

Mr1r2ð∞Þ ¼ δr10δr20: (44)

It has one eigenvalue equal to unity and all other
eigenvalues are zero.
(e) For the special case of r2 ¼ 0 (or r1 ¼ 0),

we have

Mr10ðAÞ ¼
P

rnðr; r1; rÞe−1
NC

ð2Þ
r A

P
re

−1
NC

ð2Þ
r A

: (45)

VI. EIGENVALUES OFM FOR THE CASE OF SU(2)

The representations of SU(2) are labeled by s ≥ 0 with s
being an integer or a half-integer. The matrix elements
obtained in (43) become

Ms1s2ðAÞ ¼
P

saðs1; s2; sÞe−
sðsþ1Þ

2
A

P
se

−sðsþ1Þ
2

A
: (46)

The selection rules for aðs1; s2; sÞ defined in (31) imply
that s1 and s2 have to be integers. Furthermore, for a given
s, aðs1; s2; sÞ can be nonzero only if 0 ≤ s1; s2 ≤ 2s.
Therefore, if we restrict the sum in the numerator of

(46) to s ≤ S, then we have a finite-dimensional matrix
of size ð2Sþ 1Þ × ð2Sþ 1Þ. The integral involved in the
evaluation of aðs1; s2; sÞ defined in (31) can be computed
using Clebsch-Gordan coefficients but we found it easier to
perform a numerical integration by explicitly writing out T1

and T2 in a fixed choice of coordinates. We can work in a
gauge where T1 is diagonal. Working in the fundamental
representation, we have

T1 ¼
�
eiη1 0

0 e−iη1

�
η1 ∈ ½0; π�;

T2 ¼
�

cos θ2eiα2 sin θ2eiβ2

− sin θ2e−iβ2 cos θ2e−iα2

�
θ2 ∈

�
0;
π

2

�
;

α2; β2 ∈ ½0; 2π�: (47)

The eigenvalues of T2 are

e�iη2 ; cos η2 ¼ cos θ2 cos α2; η2 ∈ ½0; π�:
(48)

The eigenvalues of ðT2T1T
†
2T

†
1Þ are

e�iη; cos η ¼ 1 − 2sin2θ2sin2η1; η ∈ ½0; π�:
(49)

The explicit result for (31) is

aðs1; s2; sÞ ¼
2ð2sþ 1Þ

π

Z
π

0

dη1 sin η1 sinð2s1 þ 1Þη1

×
Z π

2

0

dθ2 sin 2θ2
sinð2sþ 1Þη

sin η

×
Z

2π

0

dα2
2π

sinð2s2 þ 1Þη2
sin η2

: (50)

Numerical results show that jaðs1; s2; sÞj ≤ 1 and there-
fore it follows that every entry in the matrix,MðAÞ, is in the
range ½−1; 1�. If we restrict the sum in the numerator of (46)
to s ≤ S, then we have a finite-dimensional matrix which
we can diagonalize and compute all the eigenvalues. These
eigenvalues will converge to the correct results and the
convergence will be slower for smaller A. The converged
results in the range of A ≥ 10−3 are plotted Fig. 2. The
eigenvalues diverge as A → 0.

VII. DISCUSSION

In this paper, we have studied two-dimensional non-
Abelian gauge theories on a torus. There is a global
constraint on the plaquette variables induced by the
geometry of the torus and it only depends on the area of
the torus. We explored the area dependence on physical
observables. After showing consistency with previously
known results, we studied the correlation of two Polyakov
loops oriented in two different directions on a finite torus.
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This quantity also only depends on the dimensionless area,
A. Correlations of Polyakov loops in representations r1 and
r2, Mr1r2ðAÞ, is a real symmetric matrix. In the large area
limit, M00ð∞Þ ¼ 1 and all others are zero. This says that
insertion of Polyakov loops in any nontrivial representation
costs infinite amount of energy. The matrix, MðAÞ, for
SU(2) at finite A has every entry in the range ½−1; 1�. Upon
diagonalization at a fixed A, we have new normalized
eigenvectors of the form

ξiðTðAÞÞ ¼
X
s

bsi ðAÞχsðTðAÞÞ; i ¼ 0; 1; � � � (51)

with corresponding eigenvalues, λiðAÞ, satisfying
λiðAÞ > λiþ1ðAÞ. Each eigenvector, ξiðθ;AÞ, is an
even function of θ ∈ ½−π; π� where e�iθ are the
eigenvalues of TðAÞ in the fundamental representa-
tion. The eigenvectors are normalized according to

2

π

Z
π

0

dθsin2θξiðθ;AÞξjðθ;AÞ ¼ δij: (52)

Only integer valued s contribute to the sum and
therefore, ξjðθ;AÞ ¼ ξjðπ − θ;AÞ.

The plot of the eigenvalues λiðAÞ shown in Fig. 2 has two
main features:

(i) There is one eigenvalue, λ0ðAÞ > 1, for all finite A
and it approaches unity as A → ∞.

(ii) All other eigenvalues are less than λ0ðAÞ in magni-
tude and approach zero as A → ∞.

Since the expectation value of ξ0ðT1ðAÞÞξ0ðT2ðAÞÞ is
greater than unity, the true vacuum of the theory contains
the insertion of this operator. Viewed as a function of θ,
ξ0ðθ;AÞwill develop a peak at θ ¼ 0 as we decrease A from
infinity.
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FIG. 2. A plot of λiðAÞ as a function of A.
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