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We continue the study of a class of string-motivated effective supergravity theories in light of current
data from the CERN Large Hadron Collider (LHC). In this installment we consider type IIB string theory
compactified on a Calabi-Yau orientifold in the presence of fluxes, in the manner originally formulated by
Kachru et al.We allow for a variety of potential uplift mechanisms and embeddings of the Standard Model
field content into D3-and D7-brane configurations. We find that an uplift sector independent of the Kähler
moduli, as is the case with anti-D3-branes, is inconsistent with data unless the matter and Higgs sectors are
localized on D7 branes exclusively, or are confined to twisted sectors between D3-and D7-branes. We
identify regions of parameter space for all possible D-brane configurations that remain consistent with
Planck observations on the dark matter relic density and measurements of the CP-even Higgs mass at the
LHC. Constraints arising from LHC searches at

ffiffiffi
s

p ¼ 8 TeV and the LUX dark matter detection
experiment are discussed. The discovery prospects for the remaining parameter space at dark matter
direct-detection experiments are described, and signatures for detection of superpartners at the LHC withffiffiffi
s

p ¼ 14 TeV are analyzed.
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I. INTRODUCTION

The recent pause in data taking at the Large Hadron
Collider (LHC) has allowed the two general-purpose
detector collaborations to update their various supersym-
metry search results to the full

ffiffiffi
s

p ¼ 8 TeV data set of
roughly 20 fb−1. Thus far, these searches have failed to
provide any evidence of a signal beyond Standard Model
backgrounds. As a result, limits can be placed on the
parameter space of models of supersymmetry breaking
within the context of the field content of the minimal
supersymmetric Standard Model (MSSM). Absent any
theoretical guidance, this parameter space is vast, though
the number of parameters relevant for LHC observables has
been estimated to be roughly Oð20Þ [1–6]. While this
represents some improvement, it remains difficult to
interpret the LHC data without recourse to certain sim-
plified models, such as minimal supergravity [7], in which
the parameter space is greatly reduced.
Many indirect arguments suggest that supersymmetry

will eventually be discovered at an energy scale within
reach of the LHC. Most of these arguments stem from low-
energy considerations. But for those inclined to accept that
string theory is likely to provide a unified description of
particle physics and gravitation, an additional motivation is
the generic presence of N ¼ 1 supersymmetry in realistic
models of particle physics from the compactification of
superstring theory to four dimensions. Thus, string theory
provides a top-down motivation for studying supersym-
metry at the LHC. Conversely, it can be argued that
constraints on supersymmetry from null results at the
LHC have consequences for which compactifications can
be deemed “realistic” in the landscape of string vacua.

This paper represents a continuation of a sequence of
studies which take this viewpoint.
We have chosen to focus on models which exhibit some

form of the so-called “mirage” pattern of superpartner
masses [8]. Roughly speaking, such models of supersym-
metry breaking involve a hierarchy between the size of the
gravitino mass (the order parameter of supersymmetry
breaking in supergravity) and the size of supersymmetry
breaking in the observable sector, parametrized by the
vacuum expectation value (VEV) of the auxiliary field of
some chiral supermultiplet. Usually, this chiral superfield
represents one of the geometrical moduli of the compacti-
fied manifold whose stabilization via nonperturbative
effects ultimately breaks supersymmetry in the vacuum.
We began our inquiry in Ref. [9], with the case of

heterotic string theory, in which the dilaton is stabilized via
gaugino condensation in a hidden sector. The mirage pattern
emerges in this case when one uses nonperturbative cor-
rections to the dilaton action to modify the Kähler metric and
thereby tune the resulting vacuum energy to vanish at the
minimum of the effective potential [10]. This construction
was the first manifestation of the mirage pattern [11,12], and
its relatively simple parameter space made it a natural first
point of investigation. Indeed, the model can be viewed as a
concrete realization of the “generalized dilaton domination”
scenario [13] from the early days of string model building.
Some years later, the issue of geometrical moduli

stabilization was studied in certain constructions of type
IIB string theory compactified on Calabi-Yau orientifolds
by Kachru, Kallosh, Linde, and Trivedi (KKLT) [14]. In
this class of theories, Neveu-Schwarz (NS) and Ramond-
Ramond (RR) three-form fluxes are introduced to stabilize
many of the moduli directly upon compactification. The
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presence of this flux warps the bulk geometry of the Calabi-
Yau, resulting in a “throat” of the Klebanov-Strassler type
[15]. In the simplest implementation of the model, a
hidden-sector gaugino condensate is presumed to exist
on a set of D7-branes at the infrared end of this throat, and
is thus “sequestered” from the observable sector, in the
language of Randall and Sundrum [16]. At this point, all
geometrical moduli are stabilized, but the minimum is, in
fact, supersymmetric with a negative vacuum energy.
Supersymmetry is broken explicitly by postulating the
presence of anti-D3-branes at the tip of the Klebanov-
Strassler throat, which can produce the desired minimum
while only slightly perturbing the engineered moduli
stabilization.
Not long after the theoretical basis for the KKLT

framework was established, the phenomenology of the
supersymmetry breaking was studied by Choi et al.
[17,18], and the name “mirage mediation” was given to
the pattern of soft supersymmetry breaking [19].1 For our
purposes, we continue to use the phrase “mirage model” to
designate any theory in which the ratios of the soft
supersymmetry-breaking gaugino masses at the electro-
weak scale are governed by the approximate formula

M1∶M2∶M3 ¼ ð1.0þ 0.66αÞ∶ð1.93þ 0.19αÞ
∶ð5.87 − 1.76αÞ; (1)

where the parameter α is determined by the model-
dependent dynamics which stabilize the relevant moduli
in the theory. In the heterotic case studied in Ref. [9], the
remaining modulus requiring stabilization in the four-
dimensional effective field theory was the dilaton, which
is absent from the noncanonical kinetic terms of the
observable sector matter fields at leading order. In the type
IIB context, this remaining modulus is instead one of the
Kähler moduli, which, depending on how the MSSM is
embedded in the compactified space, generally do appear in
the observable-sector Kähler metric. As a result, though the
gaugino sector will show remarkable similarities between
the two constructions, the phenomenology of the scalar
sector will generally be very different. In some sense, the
KKLT scenario might be described as the “generalized
(Kähler) modulus-dominated” scenario, in that the phe-
nomenology will be heavily influenced by the effective
modular weights of the chiral supermultiplets.
It should be emphasized that in the decade since the

original idea first appeared, many variants on the KKLT-
based flux compactification model now exist, which
remedy various theoretical or phenomenological short-
comings of the original paradigm. For example, inclusion

of perturbative α0 corrections to the Kähler potential leads
to stabilization in a wholly different region of parameter
space [20]. Such Large (or LARGE) Volume Scenarios [21]
have many compelling features, but are not (strictly speak-
ing) “mirage models,” and thus we will not consider them
further here [22]. Alternatively, one can retain the tree-level
Kähler potential but include an O’Raifertaigh sector [23] or
Polonyi sector [24] to address supersymmetry breaking and
the vacuum energy density. The latter case has been used to
engineer the mirage pattern in the heterotic context without
recourse to Kähler stabilization [25,26]. Finally, one can
imagine including a messenger sector which provides
gauge mediation, and thus a “deflected” mirage mediation
[27,28]. Many of these cases offer a rich model space with
better phenomenological prospects than the original para-
digm considered here. But we nevertheless choose to study
the original KKLT model, in large part because of the
central role played by the effective modular weights of the
matter fields—a role that can be obscured when additional
structure is added to the construction.
This paper continues with a review of the physics of

moduli stabilization in type IIB models in which compacti-
fication occurs on a Calabi-Yau orientifold with nonvanish-
ing background flux. For those who work often in this field,
the content of Sec. II will be very familiar, though the section
does help to introduce notation and set the conventions
which we will use throughout the remainder of the work.
The actual soft supersymmetry-breaking terms which will
define the model we consider appear in Sec. II C. These
terms suggest a space of free parameters, some of which are
governed by the manner in which the Standard Model field
content is embedded into a system of D-branes in the
compact space. We will not advocate for any particular
construction, but instead perform a scan over all possibilities
in Sec. III, requiring (among other things) that the lightest
supersymmetric particle (LSP) be a neutralino, that the
thermal abundance of this lightest neutralino be no larger
than the upper bound set by recent data from the Planck
satellite, and that the lightest CP-even Higgs mass be within
the range 124.1 GeV ≤ mh ≤ 127.2 GeV. The last condi-
tion will prove to greatly restrict the parameter space,
particularly the value of the parameter α in Eq. (1). Little
of the surviving parameter space would have been otherwise
accessible at the LHC with a center-of-mass energy offfiffiffi
s

p ¼ 8 TeV. We therefore devote the remainder of the
study to the prospects for direct detection of the relic
neutralino dark matter in future large-scale liquid xenon
detectors in Sec. IV, and of superpartners generally at the
LHC with

ffiffiffi
s

p ¼ 14 TeV in Sec. V.

II. THE KKLT MODEL

A. Kähler modulus stabilization

The original model of Kachru et al. is an example of type
IIB string theory compactified on a Calabi-Yau (CY)

1In the earliest work on the phenomenology of the KKLT
scenario, the pattern of supersymmetry breaking was given the
more cumbersome, if more precise, name “mixed-modulus–
anomaly-mediated supersymmetry breaking” by Choi et al.
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manifold in the presence of background fluxes. It is
presumed that these fluxes fix the value of the dilaton
and the complex structure moduli, leaving only the Kähler
moduli in the low-energy four-dimensional effective theory
[29]. In what follows, we will take the simple case
considered in Ref. [14], in which there is a single, overall
Kähler modulus T parametrizing the overall size of the
compact space. The existence of such a limit in the moduli
space of any given Calabi-Yau is sufficiently generic to
warrant the simplifying assumption, and (as we will
see shortly) is roughly consistent with gauge coupling
unification at or near the string scale.
The Standard Model can be realized on stacks of D3-

branes, stacks of D7-branes, or strings stretched between
some combination thereof. For gauge fields living on
D3-branes, the gauge coupling is determined by the
vacuum expectation of the dilaton S, while for gauge
theories living on D7-branes, the gauge coupling is
determined by the Kähler modulus T. We will consider
only the latter case for the gauge degrees of freedom in this
paper. The Kähler potential for the modulus T is taken to be
KðT; T̄Þ ¼ −3 lnðT þ T̄Þ. For gauge theories with group
Ga, living on D7-branes which wrap four-cycles in the CY
manifold, the gauge coupling is determined by the Kähler
modulus T via the (universal) gauge kinetic function
fa ¼ T. Note that, with these assumptions,

hReti ¼ 1=g2str; (2)

where t ¼ Tjθ¼0 is the lowest component of the superfield
T, and gstr is the universal gauge coupling at the
string scale.
In N ¼ 1 supergravity theories, the scalar potential is

determined by the auxiliary fields FN , associated with the
chiral supermultiplet ZN and the auxiliary field M of the
supergravity multiplet. It is easy to solve the equations of
motion for these auxiliary fields, thereby relating these
quantities to the Kähler potential and superpotential via

FM ¼ −eK=2KMN̄ðW̄N̄ þKN̄W̄Þ; M̄ ¼ −3eK=2W̄; (3)

with WN̄ ¼ ∂W=∂Z̄N̄ , KN̄ ¼ ∂K=∂Z̄N̄ , and with KMN̄

being the inverse of the Kähler metric KMN̄ ¼
∂2K=∂ZM∂Z̄N̄ . The scalar potential is given by

V ¼ KMN̄F
MF̄N̄ − 1

3
MM̄; (4)

where repeated indices are summed. Note that the final
term in Eq. (4) involves the gravitino mass explicitly, via
the vacuum relation

hMi ¼ −3heK=2Wi ¼ −3m3=2: (5)

In the effective supergravity theory just below the string
compactification scale, the presence of the three-form

fluxes is represented by a constant W0 in the effective
superpotential. Combined with the effect of gaugino con-
densation in the hidden sector, the total effective super-
potential is then

W ¼ W0 þ
X
i

Aie−aiT ; (6)

where the label i runs over the various condensing gauge
groups. When the nonperturbative corrections arise from
gaugino condensation, we expect the ai to be related to the
beta-function coefficient of the hidden-sector gauge group,
with a normalization such that a ¼ 8π2=N for the group
SUðNÞ. For simplicity, let us assume a single condensate
from the gauge group Gþ with coefficients Aþ ¼ 1 and
a ¼ aþ.

2 Minimizing the resulting scalar potential Vðt; t̄Þ
generates a nonvanishing value for htþ t̄i at which the
auxiliary field FT vanishes [17]. Restoring the Planck units
to the second term in Eq. (4), we see that the vacuum
must therefore have an energy density given by
hVi ¼ −3m2

3=2M
2
PL. The size of the VEV for Ret, as well

as the size of the gravitino massm3=2, are determined by the
size of the constant term W0 in Eq. (6). In particular, we
have [17]

haþReti≃ lnðAþ=W0Þ;
m3=2 ≃MPL

W0

ð2hRetiÞ3=2 : (7)

An acceptable phenomenology requires that the constant
W0 be finely tuned to a value W0 ∼Oð10−13Þ in Planck
units. That such a fine-tuning is possible at all is a particular
feature of type IIB compactifications with three-form
fluxes, as was noted by the original KKLT collaboration.
Combining the two relations in Eq. (7), we see that the
model will assume an appropriate value of W0 such that

haþReti≃ lnðMPL=m3=2Þ: (8)

B. The uplift sector and parameter α

The remaining component to the model is the inclusion
of some additional “uplift” sector which generates super-
symmetry breaking in the observable sector while produc-
ing a Minkowski (or slightly de Sitter) vacuum. Here a
number of theoretical tools are at hand, but it is illustrative
to begin with the canonical method employed in the
original KKLT paper: the inclusion of anti-D3-branes
which break supersymmetry explicitly. By sourcing the
supersymmetry breaking at the end of the warped throat, it
is reasonable to expect that the vacuum stabilization for the
Kähler modulus t ¼ Tjθ¼0 is thus largely unaffected. Being

2To make contact with the notation from the heterotic model of
Ref. [9], one need only make the identification aþ → 3

2bþ
.
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an explicit breaking of supersymmetry, it is not possible to
perfectly capture the effects of the anti-D3-branes in the
form of corrections to the supergravity effective Lagrangian
in superspace. However, it can be approximated [18,19] by
assuming a correction to the pure supergravity part of the
action:

L∋ − 2

Z
d4θE → −2

Z
d4θ½Eþ PðT; T̄Þ�; (9)

which gives rise to a new contribution to the scalar potential
for the modulus T.
When the modulus dependence of PðT; T̄Þ is trivial,

and PðT; T̄Þ ¼ C, then the resulting scalar potential con-
tribution is simply

V lift ¼
C

ðtþ t̄Þ2 : (10)

Such is the case with the anti-D3-brane scenario, since the
positions of the anti-D3-branes are fixed at a tip of the
Klebanov-Strassler throat which is insensitive to the overall
size modulus T. The coefficient C can be calculated in this
case, and it is related to the warping factor which defines
the throat. The dependence on ReT in Eq. (10) then arises
exclusively from the consistency of N ¼ 1 supergravity
under Kähler Uð1Þ transformations [19,30].
One can generalize away from explicit supersymmetry

breaking via anti-D3-branes to traditional D-term [31–33]
or F-term [34,35] soft supersymmetry-breaking mecha-
nisms, for which the superspace form in Eq. (9) is
applicable. In general, we expect these mechanisms to
involve explicit dependence on the Kähler modulus T,
which we may parametrize via

PðT; T̄Þ ¼ CðT þ T̄Þn: (11)

Under these circumstances, the addition to the scalar
potential is generalized from Eq. (10) to

V lift ¼
C

ðtþ t̄Þð2−nÞ : (12)

The auxiliary field for the Kähler modulus no longer
vanishes in the “lifted” vaccum, but instead satisfies the
approximate solution

M0 ≡
�

FT

tþ t̄

�
≃m3=2

2 − n
aþhtþ t̄i : (13)

Note that we will assume that the original solution for the
value of the lowest component t ¼ Tjθ¼0 is changed by
only a negligible amount by the addition of the uplift sector.
The quantityM0 in Eq. (13) serves as an order parameter

of supersymmetry breaking in the observable sector. Soft
supersymmetry-breaking masses will generally be of this

size, as we will describe in the next section. We note that
provided the VEVs in Eq. (7) can be arranged, we can
identify a hierarchy defined by the ratio

r ¼ m3=2

M0

≃ aþhtþ t̄i≃ lnðMPL=m3=2Þ ≫ 1: (14)

It is this hierarchy that will ultimately generate the mirage
pattern of gaugino masses. The outcome is not unlike the
case of Kähler-stabilized heterotic string theory considered
in [9].3 Following Choi et al. [19], we define the parameter
α via

α≡ m3=2

M0 ln ðMPL=m3=2Þ
; (16)

and the implied value of α for an uplift sector [Eq. (12)]
follows from the definition in Eq. (16):

α ¼ 1

1 − n=2
þOð1= lnðMPL=m3=2ÞÞ: (17)

In the canonical case of anti-D3-branes with n ¼ 0, we
therefore have the prediction that α≃ 1 for this class of
theories. While our discussion throughout the current
subsection has anticipated that the parameter n in
Eq. (11) is an integer (and, hence, that α is a rational
number to leading order), we should note that significant
departures from Eq. (17) can be obtained in cases where,
for example, multiple condensates conspire to stabilize the
Kähler modulus, with the coefficients ai in Eq. (6) tuned
accordingly [19]. We will return to this issue when we
discuss the parameter space of the model in Sec. III.

C. Observable-sector soft terms

We can now directly write down the soft supersymmetry-
breaking mass terms which we will consider in this paper,
parametrized in terms of the two scales M0 and m3=2, or
(equivalently) in terms of a single overall scale and the
parameter α. For the sake of explicitness, we will follow
Ref. [19] and use the former convention. Given the
assumption stated above, that all gauge fields will arise
from D7-branes, we can use the leading-order gauge
kinetic function fa ¼ T to obtain the gaugino masses at
the boundary condition scale. For simplicity, we will
identify this with both the string scale and the scale of
grand unification:

3Indeed, the connection between the ratio r in Eq. (14) and the
parameter anp of Ref. [9] can be made explicit in the case where
n ¼ 0:

r ¼ aþhReti ¼ aþ
1

g2str
→

3

2bþg2str
¼

ffiffiffi
3

p

2anp
: (15)

Further details can be found in the appendix to Ref. [36].
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Ma ¼ M0 þ bag2STRMg; (18)

where we have defined [37]

Mg ≡ m3=2

16π2
; (19)

and ba represents the beta-function coefficient for the
Standard Model gauge group Ga with the normalization
b ¼ f33=5; 1;−3g. In Eq. (18), we include the so-called
“anomaly-mediated” contribution [38,39], as the hierarchy
in Eq. (14) will compensate for the loop factor, making the
two terms competitive in size. This is the origin of the
mirage pattern, and subsequent renormalization-group
(RG) evolution to the electroweak scale will produce the
ratios in Eq. (1).
The soft terms associated with the scalar sector of the

theory will show a similar combination of tree-level and
loop-level supergravity terms, with the latter arising
through the superconformal anomaly. To compute these,
we will assume a leading-order Kähler metric for the matter
field Qi given by

Kij̄ ¼
δij̄

ðT þ T̄Þni ; (20)

where ni is the modular weight of the field under SLð2; ZÞ
modular transformations. These weights can be inferred
from the computation of string scattering amplitudes
involving matter fields and geometrical moduli. These
calculations have been performed in type IIB models,
and in dual type IIA models with intersecting D6-branes
[40–42]. In brief, matter localized on stacks of D3-branes
will have modular weights ni ¼ 1. Untwisted sectors
localized on single stacks of D7-branes will have
ni ¼ 0, while twisted sectors stretched between D3-and
D7-branes, or between different stacks of D7-branes, will
exhibit a dependence on the overall Kähler modulus in the
low-energy supergravity theory, which can be represented
in the form of Eq. (20) with ni ¼ 1=2. Details of the
calculation of supersymmetry-breaking soft terms in a
general supergravity theory at one loop can be found in
Ref. [43]. Here we simply present the result in this
particular effective theory [19]:

Aijk ¼ −ð3 − ni − nj − nkÞM0 þ ðγi þ γj þ γkÞMg; (21)

m2
i ¼ ð1 − niÞM2

0 − θiM0Mg − _γiM2
g; (22)

where we have assumed thatm3=2 andM0 are real. This can
always be arranged in cases with a single condensate
appearing in the superpotential [Eq. (6)] [18]. The various
constants γi, _γi and θi are collected in the Appendix.

III. KKLT PARAMETER SCAN

The KKLT-model framework discussed in Sec. II
involves two independent mass scales, given by the
(normalized) gravitino massMg in Eq. (19) and the modulus
contribution M0 in Eq. (13). Alternatively, one can work
with either of the mass scales and the derived parameter α in
Eq. (16). In exploring the parameter space of this model, we
will choose the latter, and use M0 as the independent mass
scale. The value of m3=2 will then be computed by fitting to
the expression in Eq. (16), and the calculated value will then
be input into the high-scale soft-term expressions in
Eqs. (18), (21) and (22). By scanning on M0, we will be
better able to restrict our attention to the region that is of
most interest to the LHC, and most motivated by fine-tuning
considerations. We note that the soft terms in Eqs. (18), (21)
and (22) can be rendered in terms of the single overall mass
scale defined by the gravitino mass, provided one redefines
the parameter α → α0 in the manner first proposed by
Falkowski et al. [37]:

α0 ¼ 16π2

ln ðMPL=m3=2Þ
1

α
: (23)

As this mapping involves the gravitino mass itself, we have
elected to use the value defined by Eq. (16), at the expense
of less transparent soft-term expressions.
In addition, one must specify the modular weights for the

chiral supermultiplets that make up the MSSM field
content. In this work we will allow only a limited amount
of nonuniversality in assigning these weights. In particular,
we will always assume that all matter multiplets arise from
the same sector of the theory, so that they carry a universal
modular weight nM, while the two Higgs doublets may
carry an independent modular weight, which we will
denote nH. This assumption is consistent with the observed
rates of flavor-changing neutral-current processes, and with
possible theoretical prejudices such as SOð10Þ grand
unification.
Under these assumptions, there are then nine possible

combinations of modular weights to consider, which we
can represent by the pair of weights ðnM; nHÞ. Previous
investigations into the phenomenology of the KKLT model
have treated these discrete choices somewhat democrati-
cally [44,45], and we will do the same initially. However,
we note that semirealistic embeddings of the MSSM into
type IIB orientifold compactifications tend to involve
systems of open strings stretched between D3-and D7-
branes, or among D7-branes at intersections [42,46–48].
Thus, we will pay special attention in what follows to the
four combinations of modular weights that do not involve
ni ¼ 1 for either sector.
Finally, we will not address the origin of the super-

symmetric Higgs mass parameter μ, nor its accompanying
soft-breaking parameter Bμ. Instead, we will perform the
usual substitution of the known value of MZ and the
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continuous parameter tan β for these two quantities when
addressing electroweak symmetry breaking (EWSB). This
implies that our final parameter space involves a discrete
choice of modular weights and three continuous parame-
ters: M0, α and tan β. As mentioned in Sec. II B, the value
of α can be determined in explicit models of an uplift sector,
but we will here prefer to allow the parameter to vary
continuously. Nevertheless, we will be most interested in
the original KKLT prediction α ¼ 1 and other special cases
implied by the relation in Eq. (17).

A. Global scan

We therefore begin our survey of the LHC phenomenol-
ogy of type IIB flux compactifications with nine
scans on the three-dimensional parameter space defined
by 1000 GeV ≤ M0 ≤ 5000 GeV, 0 ≤ α ≤ 2 and 2 ≤
tan β ≤ 56. The range of values in tan β reflects the range
in which all three third-generation Yukawa couplings
remain perturbative up to the boundary condition scale,
for which we will follow standard practice and assume it to
be the grand unified scale mGUT ¼ 2 × 1016 GeV. The
lower bound on M0 will ultimately reflect the need to
achieve a mass for the lightest CP-even Higgs state of
mh ≳ 125 GeV. The upper bound on M0 is arbitrary but
covers most of the region relevant for current and future
searches for superpartners at the LHC. The lower bound on
the parameter α is the case of minimal supergravity, while
the upper bound is near the value at which all three soft
supersymmetry-breaking gaugino masses in Eq. (1) are
equal at the electroweak scale. Much larger values of α are
in principle possible, but they are phenomenologically
challenged—not least by the possibility that the lightest
supersymmetric particle may become the gluino. Note that
we will not consider negative values of α. Arguments that
give rise to the expression in Eq. (17) would tend to
disfavor uplift mechanisms that could generate negative
values for this parameter. Nevertheless, if one takes a more
phenomenological point of view, somewhat divorcing the
soft terms in Eqs. (18), (21) and (22) from the original
string theory context, then such negative values may prove
interesting. For a treatment of this extended parameter
space, see Refs. [37,49].
The need to perform nine distinct scans necessitates a

two-stage approach: in this subsection we perform a global
scan with a coarse subdivision of the parameter ranges
studied. We will then determine phenomenologically rel-
evant areas for a detailed, targeted scan, to be described in
Sec. III B. For the preliminary scan, we therefore allow α to
vary between 0 and 2 in steps of size 0.1; tan β will range
from 2 to 56 in unit steps, andM0 is allowed to range from
1 to 5 TeV in 100 GeV steps. This results in 55 planes of
constant tan β, with 861 points per constant tan β plane, and
approximately 425,000 points overall.
For each choice of the modular weights ðnM; nHÞ, and

each value of the parameters ðM0; α; tan βÞ, the soft terms

are computed from Eqs. (18), (21) and (22). We note that
when nM ¼ 1, it is not impossible for the squared scalar
masses of the matter fields to be negative at the boundary
condition scale. This is because the leading term in
Eq. (22) then vanishes identically, and subleading terms
generally give negative contributions to the scalar masses.
In absolute value, the scalar masses will be comparable to,
or slightly smaller than, the gaugino masses. Subsequent
renormalization-group evolution for the squared scalar
masses of the matter fields generally drives all such terms
to positive values by the electroweak scale. As a conse-
quence, we will not consider this a fatal flaw for such a
point in the parameter space, provided the squared soft
masses at the low-energy scale are positive for the matter
fields of the MSSM.
The renormalization-group equations are solved from

the boundary condition scale to the electroweak scale using
the package SOFTSUSY 3.3.9 [50]. We will immediately
exclude a combination of input parameters if the soft
supersymmetry-breaking scalar mass-squared parameter
is negative for one or more of the matter fields at the
electroweak scale. At this stage, the radiatively corrected
Higgs potential is minimized and physical masses are
calculated. We again eliminate a combination of input
parameters if no solution to the conditions for electroweak
symmetry-breaking can be found, or if the solution fails to
converge adequately. Finally, we then ask that each model
point have a neutralino LSP and sufficiently heavy super-
partners to escape detection at LEP (namely, a chargino
heaver than 103.5 GeV).
Having passed these minimal requirements, the electro-

weak scale spectrum is then passed to MicrOmegas 2.4.5
[51,52], where the thermal relic abundance Ωχh2 is com-
puted for the stable neutralino. In addition, the rates for
several rare decays are also computed, which can be directly
compared to experimental results. For this model, and for the
parameter range we investigate, the most important of these
is the rate for the decay B0

s → μþμ−. The first results from
the LHCb Collaboration, using 1.0 fb−1 of data at

ffiffiffi
s

p ¼
7 TeV and 1.1 fb−1 of data at

ffiffiffi
s

p ¼ 8 TeV, report a
branching ratio of BRðB0

s → μþμ−Þ ¼ ð3.2þ1.5−1.2Þ × 10−9
[53]. We take a generous 3σ bound on this range, to avoid
prematurely excluding any parameter space that may prove
viable as more precise measurements are taken. This
measurement tends to eliminate parameter space with high
values of tan β.
In addressing the issue of cold dark matter, we take a

conservative approach and allow for the possibility of
multicomponent dark matter, of which the stable neutralino
is but one component, and impose only an upper bound on
the neutralino relic density. The final data release from the
WMAP Collaboration [54] gave a best fit for the density of
cold dark matter of ΩCDMh2 ¼ 0.1153� 0.0019, when
including data from “extended” CMB measurements,
baryon acoustic oscillations, and direct measurements of
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the Hubble constant. Since that time, the Planck satellite
has produced a slightly higher measurement [55] of
ΩCDMh2 ¼ 0.1199� 0.0027. We will utilize this more
recent measurement and choose to enforce a 3σ
upper bound on the calculation from MicrOmegas
of Ωχh2 ≤ 0.128.
Finally, the initial discovery of the Higgs boson [56,57]

has since been followed by more refined measurements of
the mass of the Higgs field, using the complete data sets
from both

ffiffiffi
s

p ¼ 7 TeV and 8 TeV center-of-mass energies.
ATLAS reports a combined result of mh ¼ 125.5�
0.2þ0.5−0.6 GeV [58], while CMS reports mh ¼ 125.3� 0.4�
0.5 GeV [59]. Adding the ATLAS uncertainties in
quadrature as a back-of-the-envelope combination of
errors, we find mh ¼ 125.5� 0.54 GeV, while a similar
exercise for CMS gives mh ¼ 125.7� 0.424 GeV.
Combining these two to arrive at an acceptable Higgs
mass range, we allowmh ¼ 125.6þ0.8−0.7 GeV, leaving us with
the range 124.1 GeV ≤ mh ≤ 127.2 GeV.
A combination of input parameters must meet all of the

above requirements to be considered phenomenologically
viable. Ultimately, the most restrictive conditions on the
parameter space prove to be the upper bound on the thermal
relic abundance of neutralinos and the measured value of
the lightest CP-even Higgs mass. The latter will mostly
require an overall increase in the supersymmetry-breaking
mass scale parametrized by M0, but the relic abundance
constraint will have implications that vary from one set of
modular weights to another, and will often single out
particular values of the parameter α. We therefore find it
convenient to summarize our results in the form of Table I,
where we have grouped the allowed parameter-space
regions first in terms of the identity of the lightest
neutralino, and secondarily in terms of the modular weights
nM and nH.
The left panel in Table I represents the parameter

combinations in which the lightest neutralino is

overwhelmingly bino-like throughout the parameter space.
In these cases, the correct thermal relic abundance for the
neutralino is obtained primarily through coannihilation
between the LSP and the lightest stau. The right panel
represents the parameter combinations in which the lightest
neutralino is overwhelmingly Higgsino-like. Here the
correct thermal relic abundance is obtained primarily
through coannihilation between the LSP and the lightest
chargino and/or second-lightest neutralino. Each cell in the
table represents a particular combination of modular
weights ðnM; nHÞ, and we give the rough range in the
continuous parameters fα;M0; tan βg consistent with the
conditions outlined above. Note that the total allowed
parameter space for a given pair ðnM; nHÞ is the union
of the regions in both panels of Table I. For the particular
combination ðnM; nHÞ ¼ ð1

2
; 0Þ, the parameter space is

listed in both panels of the table. Here the wave function
of the neutralino varies across the parameter space, from
overwhelmingly bino-like to completely Higgsino-like,
with some regions of mixed-wavefunction LSPs. In this
case, there is no significant coannihilation at all, but the
thermal relic density is nevertheless consistent with the
WMAP bound. Even with the relatively coarse step size at
this stage in the analysis, it is clear that the allowed
parameter space is given by disjoint sets of points. This
will be of great utility when we investigate these spaces in
greater resolution in the next section.
Before we do so, however, it is convenient to identify

some broad properties of the sorts of parameter combina-
tions that remain viable in the fluxed type IIB model of
KKLT. First, we note how tightly constrained are the cases
in which either nM or nH ¼ 1. Such cases represent
constructions in which either the matter sector or the
Higgs sector is confined exclusively to D3-branes. In
general, these cases tend to cluster around a single
acceptable value of α. For all modular weight combina-
tions, the relatively large mass scales are necessitated by the

TABLE I. Allowed combinations of α, M0 (in TeV) and tan β, for each combination of modular weights nM and nH , separated into
regions in which the LSP is bino-like versus regions in which it is predominantly Higgsino-like. For the case of modular weight
combination ðnM; nHÞ ¼ ð1=2; 0Þ, the parameter space interpolates between these two cases, allowing for a mixed-wave-function LSP.
For this reason, we have listed the allowed parameter space in both panels. An empty cell implies that the indicated type of neutralino
wave function does not occur for any combination of parameters with that set of modular weight assumptions.

Bino-like LSP Higgsino-like LSP
nH ¼ 0 nH ¼ 1=2 nH ¼ 1 nH ¼ 0 nH ¼ 1=2 nH ¼ 1

nM ¼ 0 α ¼ 1.0–1.1 α ¼ 1.0–1.3 α ¼ 0–0.2 nM ¼ 0 α ¼ 2.0 α ¼ 1.9–2.0 � � �
M0 ¼ 1.2–2.5 M0 ¼ 1.4–2.0 M0 ¼ 1.7–2.8 M0 ¼ 2.5–3.4 M0 ¼ 2.0–2.7
tan β ¼ 24–32 tan β ¼ 10–30 tan β ¼ 51–52 tan β ¼ 48–51 tan β ¼ 42–48

nM ¼ 1=2 α ¼ 1.0–1.8 α ¼ 0.5–0.8 α ¼ 0 nM ¼ 1=2 α ¼ 1.0–1.8 α ¼ 1.5–1.8 α ¼ 2.0
M0 ¼ 1.6–4.0 M0 ¼ 1.8–2.5 M0 ¼ 2.3–3.0 M0 ¼ 1.6–4.0 M0 ¼ 2.4–5.0 M0 ¼ 4.6–5.0
tan β ¼ 6–50 tan β ¼ 12–35 tan β ¼ 53–54 tan β ¼ 6–50 tan β ¼ 7–52 tan β ¼ 34–45

nM ¼ 1 � � � � � � � � � nM ¼ 1 α ¼ 0.7 α ¼ 0.8 α ¼ 1.1
M0 ¼ 2.2–4.6 M0 ¼ 3.3–5.0 M0 ¼ 4.8–5.0
tan β ¼ 6–29 tan β ¼ 8–46 tan β ¼ 18–29
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requirement that the ultimate value of the Higgs mass be
bounded bymh ≥ 124.1 GeV. To understand this behavior,
we recall from Eq. (22) that cases with nM, nH ¼ 1 will
have scalar masses that are highly suppressed relative to
gaugino masses, making it difficult to achieve large
radiative corrections to the Higgs mass at the electroweak
scale. The problem is exacerbated by the fact that when
nM ¼ 1, we expect the trilinear A-terms to be no larger than
the gaugino mass at the boundary-condition scale, making
it difficult to achieve the “maximial mixing scenario” to
boost the mass of the lightest CP-even Higgs [60].
The basic texture of the panels in Table I is also readily

understood from the nature of the soft terms in Eqs. (18)
and (22). In general, for coannihilation to be effective at
reducing the abundance of a relic species, the coannihilator
should be within a few percent of the mass of the of the relic
particle. For the case of stau/neutralino coannihilation, this
requires a careful conspiracy between the values of the
gaugino masses (governed by α and M0) and the stau mass
(governed by M0, nM and tan β). The two masses will be
roughly equivalent when tan β is moderately large and
nM ¼ 0, though nM ¼ 1=2 is also possible if the values of α
and tan β compensate appropriately. For all such stau
coannihilation regions in the left panel of Table I, the
LSP is overwhelmingly bino-like in composition.
Meanwhile, processes involving coannihilation among a

system of degenerate gauginos are largely independent of
the sizees of the scalar masses relative to the gauginos.
Thus, we find chargino coannihilation processes in nearly
all the allowed combinations of modular weights. For cases
with nM ¼ 1, we find that all the allowed parameter space
involves neutralino/chargino coannihilation. The mass
degeneracy in the gaugino sector increases as α → 2,

and in all of these cases the LSP is predominantly
Higgsino-like in nature, with a high degree of mass
degeneracy with other neutralinos and charginos. The
low value of the μ parameter in these cases is being driven
by large radiative corrections to the electroweak minimi-
zation conditions [61], themselves the result of the very
large scalar masses in this sector of the modular
weight space.
The large mass scales imposed by the Higgs mass

constraint have a direct impact on the size of the gluino
mass for these type IIB flux compactification models. This
is illustrated in Fig. 1, where we show the range of resulting
gluino masses, aggregated across all modular weight
combinations in our global scan. The main body of the
plot (blue bars) shows the distribution of gluino masses
when only the most minimal phenomenological require-
ments are imposed: proper electroweak symmetry breaking
and the demand that the LSP be the lightest neutralino.
Even without requiring mh ≥ 124.1 GeV, the distribution
is highly skewed toward gluino mass values which are
inaccessible at the LHC. After imposing the Higgs mass
requirement and the upper bound on the thermal relic
neutralino density, we arrive at the inset distribution
(yellow bars). In this case, the lowest gluino masses have
been eliminated, but the distribution peaks more sharply at
values that, while challenging, are within reach for the LHC
at

ffiffiffi
s

p ¼ 14 TeV. Clearly, we do not expect any of the
allowed parameter space to be eliminated with current data
at

ffiffiffi
s

p ¼ 8 TeV. We will return to both of these statements
in Sec. V.
Before looking more closely at each of the regions

designated in Table I, we make a final observation regard-
ing the distribution of LSP masses across all the modular

FIG. 1 (color online). Histogram of gluino masses for all modular weight combinations. Distribution of gluino masses, in GeV,
aggregated across all modular weights in the global scan. Blue bars represent the distribution when only proper EWSB and neutralino
LSP are imposed. The inset with the yellow bars shows the distribution after imposing the Higgs mass constraint and an upper bound on
thermal neutralino relic density.
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weight combinations in our global scan. In Fig. 2, the large
distribution (blue bars) represents the mass of the lightest
neutralino, aggregated over all modular weight combina-
tions, in which we only require proper EWSB and that the
LSP is, in fact, a neutralino. Like the case of the gluino
mass in Fig. 1, the overall distribution is forced to excep-
tionally high values even before any further phenomeno-
logical considerations are made. The smaller distribution in
the main plot (yellow bars) is the result of requiring
124.1 GeV ≤ mh ≤ 127.2 GeV and placing an upper
bound on the thermal relic density of this LSP,
Ωχh2 ≤ 0.128. Relatively large values of the LSP mass
are favored, though we expect to find many cases in which
mχ ∼ 100 GeV. However, if we instead require that this
LSP represent all of the dark matter, such that the thermal
relic density is within a 3σ range about the Planck
measurement of ΩCDMh2 ¼ 0.1199� 0.0027, we find that
the LSP mass is forced to be at or above 1 TeV. This is
illustrated by the inset distribution (red bars), labeled
“Planck Preferred” in Fig. 2. We will comment on the
implication of these facts in Sec. IV.

B. Individual targeted scans

Table I makes it clear that there are distinct regions where
either ~τ or ~χ� coannihilation depletes the dark matter
content sufficiently so that both the dark matter relic
density and Higgs mass are consistent with experimental
observations. In the majority of cases, these regions are
nonintersecting, which allows us to narrow our search and
examine smaller regions with a finer resolution. The
spectrum of neutralino and chargino masses tends to be,

at leading order, independent of the value of tan β, and thus
we find the value of tan β to be largely uncorrelated with
those of α and M0 for the Higgsino LSP cases of Table I.
For these combinations of modular weights, therefore, we
can choose a fixed value of tan β, then perform a scan over
M0 and α with ranges that correspond to the phenomeno-
logically viable regions discovered in Section III A. For the
bino LSP cases, the value of tan β must be correlated with
those of both M0 and α so as to obtain a sufficient mass
degeneracy between the lightest neutralino and the lightest
stau. For these cases, then, we will continue to perform a
three-dimensional scan, but we will restrict the ranges to
the phenomenologically viable regions discovered in
Sec. III A. Whereas in the global scanM0 was scanned with
100 GeV intervals, these scans will proceed with 10 GeV
intervals. Similarly, α is now scanned in steps of 0.01.
In what follows, we will discuss each of the nine sets of

modular weights ðnM; nHÞ, occasionally grouping cases
where the basic features are similar. Throughout, we will
wish to bear in mind those combinations of parameters that
find the greatest motivation from underlying theories of
moduli stabilization in type IIB string theory and attempts
to realize the Standard Model field content in such models.
As such, we will be particularly focused on systems in
which both matter and Higgs representations involve
systems of D7-branes, so that both nM and nH take values
of 0 or 1

2
. In addition, we recall that simple models of uplift

sectors indicate a prediction for α given by Eq. (17), which
suggests that certain rational numbers (2, 1, 2=3, 1=2, 2=5
etc.) should be considered more reasonable values for
α than other general values, modulo the higher-order

FIG. 2 (color online). Histogram of LSP masses for all modular weight combinations. Distribution of the mass of the lightest
neutralino, in GeV, aggregated across all modular weights in the global scan. Blue bars represent the distribution when only proper
EWSB and neutralino LSP are imposed. The yellow bars show the distribution after imposing the Higgs mass constraint and an upper
bound on the thermal neutralino relic density. The inset with the red bars is the result of requiring the relic density to be within 3σ of the
Planck measurement ΩCDMh2 ¼ 0.1199� 0.0027.
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corrections that amount to a few percent for most of
parameter space.

1. The case ðnM;nHÞ ¼ ð0;0Þ
We begin, therefore with the case in which all matter

arises from sectors confined to a single system of D7-
branes, such that both modular weights vanish. Table I
indicates that this scenario involves a tightly confined
region with a Higgsino-like LSP and degenerate gauginos,
and a second region near α ¼ 1 with more moderate mass
scales, in which stau coannihilation is the dominant
mechanism for achieving the correct relic density of
neutralinos. It is instructive to consider the gaugino
coannihilation region first and in detail, since many of
the properties that constrain this region will be repeated in
the other cases we address.
When all ni ¼ 0, the overall scale of gaugino masses is

roughly comparable to that of the scalar masses at the
boundary condition scale. Thus, depending on the values of
tan β and α, it is possible for a squark or a slepton to emerge
at the electroweak scale lighter than the lightest neutralino
eigenstate. The gaps between the parameter space repre-
sented by the two panels in Table I arise from precisely this
phenomenon. For example, for 35≲ tan β ≲ 45, the stau is
always the LSP, regardless of the value of α. In addition, for
α≳ 1.2, the stop becomes lighter than the lightest neu-
tralino for tan β ≳ 5. The origin of this behavior is evident
from the final term in Eq. (22). The quantity Mg carries an
implicit factor of α relative to M0, as can be seen from
Eq. (16), so the final term in Eq. (22) becomes increasingly
dominant at large α. For first-and second-generation
particles, this tends to reduce the boundary-scale mass,
since _γ ∼ g4, but for third-generation particles, we have
_γ∼g4þg2λ2−λ4, which increases the boundary-condition
mass for fields with large third-generation Yukawa cou-
plings. Thus, for the stop field, which naturally has a mass
very near that of the LSP in this region of parameter space,
the extra contribution from the λ4t term when tan β is small
can make the stop just slightly more massive than the
neutralino. These surviving points at very low tan β and
α≳ 1.2 ultimately fail to deliver a Higgs mass that exceeds
even the previous LEP bound of mh ≥ 114.4 GeV, and are
thus eliminated from further study.
The gaugino coannihilation region that opens up for very

large values ofM0, α and tan β emerges for a very different
reason. Here we are firmly in the region where radiative
corrections to the EWSB potential are growing rapidly,
with the radiatively corrected μ parameter diminishing
rapidly as both tan β and M0 increase. Thus, while the
stop mass is dropping, the mass of the lightest neutralino—
dominated as it is by the value of μ in this area of parameter
space—is falling even faster. Eventually the highly degen-
erate Higgsino-like neutralinos and charginos emerge as
lighter in mass than the stop, and the system becomes
viable. In our targeted scan, we fix tan β ¼ 48 and find that

the allowed region in the parameter α is highly constrained
with 1.96 ≤ α ≤ 2. The lower bound corresponds to the
requirement M0 ≥ 2700 GeV, while at α ¼ 2 we must
require M0 ≥ 2570 GeV. The lower bounds on M0 arise
from the constraint on the process Bs → μþμ−, and the
lower bound depends on the Higgs mass mh. In fact, over
this entire allowed region, the Higgs mass satisfies
mh ≤ 125.2 GeV, despite the very large value of tan β.
The LSP neutralino is quite massive (1201 GeV ≤
mχ0

1
≤ 1585 GeV), though the very large value of α results

in a gluino mass on the light side of the inset distribution of
Fig. 1 (1737 GeV ≤ m~g ≤ 3506 GeV).
This leaves only the region in the left panel in Table I,

where the combination of α and tan β conspires to make the
stau ever so slightly larger in mass than the neutralino LSP,
thereby producing an acceptable relic abundance of cold
dark matter. For our targeted scan we restrict the range in
tan β to 24 ≤ tan β ≤ 32. For most of the allowed combi-
nations of fα;M0g, however, a very small range of tan β is
allowed. For example, for 0.93 ≤ α ≤ 1.07 we find that we
must require tan β ¼ 31� 1 in order for the stau mass to be
sufficiently close to the bino-like LSP mass to allow for an
acceptable value of the thermal relic density for the
neutralino.
It is thus possible to show the allowed parameter space as

a two-dimensional projection onto the fα;M0g plane, as in
Fig. 3. In general, the lower bound on α for a fixed value of
M0 arises from the relic density requirement, which is only
satisfied when the stau mass is sufficiently close to that of
the lightest neutralino. The small disconnected region in
Fig. 3, below α≃ 1, exists only for tan β ¼ 32 and
represents those points for which the lightest stau is slightly
more massive than the lightest neutralino and the relic
density is just slightly below our imposed upper bound. The
upper limit on α, for a fixed value ofM0, occurs when there

FIG. 3 (color online). Allowed parameter space for
ðnM; nHÞ ¼ ð0; 0Þ for a bino-like LSP. Parameter combinations
of fα;M0g consistent with proper EWSB, Higgs mass measure-
ments, and the upper bound on thermal relic abundance. The
gluino mass, in units of TeV, is given by the color as indicated by
the scale to the right.
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is no value of tan β for which the scalar top is not the
lightest superpartner.
Meanwhile, the lower bound on the Higgs mass,

mh ≥ 124.1 GeV, produces the edge at lower M0 values,
while the upper bound, mh ≤ 127.2 GeV, provides an
upper bound on M0 for a fixed value of α. The gluino
mass that arises for each parameter combination is largely
insensitive to the chosen value of tan β, so it is possible to
display this quantity in the projected parameter space. This
is indicated by the color in Fig. 3. Gluino masses for this
part of the ðnM; nHÞ ¼ ð0; 0Þ parameter space range from a
low of 1737 GeV to a high of 3506 GeV, while the
predominantly bino-like LSP takes a mass in the
range 788 GeV ≤ mχ0

1
≤ 1952 GeV.

2. The case ðnM;nHÞ ¼ ð0; 12Þ
Incrementing the modular weight for the Higgs sector to

the case ðnM; nHÞ ¼ ð0; 1=2Þ, we consider next the case
where the matter fields of the MSSM remain confined
exclusively to single stacks of D7-branes, but the Higgs
sector is realized on stretched strings connectingD7-branes
with either D3-branes or another set of D7-branes. The
overall structure of the parameter space is similar to the
previous case, so we allow ourselves the opportunity to be
more succinct in the description.
As with the ðnM; nHÞ ¼ ð0; 0Þ case, we can identify two

distinct regions in the allowed parameter space, described
in the two panels of Table I. The first region, near α≃ 1,
consists of a bino-like LSP and covers a wide range of
moderate values in the parameter tan β. The relic density
condition is satisfied in this region through stau-neutralino
coannihilation. The second region exists at α≳ 1.85 and
larger tan β. Here, the LSP is predominantly Higgsino-like
with a degenerate sector of coannihilating charginos and
neutralinos in the early Universe. These two regions are

shown in the fα;M0g plane in Fig. 4. In both plots the
resulting gluino mass is shown, in units of GeV, by the
color scale to the right of the plot.
The left panel represents the bino-like LSP region. Here,

the allowed parameter space is tightly bound in all
directions by the requirement that the relic density be
consistent with Planck observations, while avoiding the
case in which the ~τ is light enough to become the LSP. This
requires a correlation between the value of α and that of
tan β, and thus the left panel in Fig. 4 represents the
projection onto fα;M0g for all values 10 ≤ tan β ≤ 30.
Generally speaking, the larger tan β values correspond to
the smaller values of α in the figure. The rightmost edge of
the plot corresponds to the constraint Ωχh2 ≤ 0.128. The
precise value of M0 where this inequality is saturated
depends somewhat on tan β—hence the apparently uneven
boundary for largeM0 values in the left panel of Fig. 4. The
left edge (low M0 values for a fixed value of α) is the
result of the impositionmh ≥ 124.1 GeV. Not surprisingly,
this constraint forces a larger lower bound on M0 for
lower values of tan β and larger values of α. The cutoff for
α≃ 1.3 is the location in which the stau becomes the LSP.
Throughout the entire region, the LSP is bino-like with a
mass near 1 TeV, and the mass difference Δm ¼ m~τ −mχ0

1

nowhere exceeds 25 GeV.
The right panel represents the Higgsino-like region,

where we have performed a two-dimensional scan fixing
tan β ¼ 48. Here the parameter space is slightly larger than
in the ðnM; nHÞ ¼ ð0; 0Þ case, though still restricted to very
large values of the parameter α. The high value of tan β and
relatively low value ofM0 in this case imply that the rate for
Bs → μþμ− is generally large in this region of parameter
space. In fact, throughout the region depicted in the right
panel of Fig. 4, the branching fraction for this process is
always above the central value reported by LHCb by at
least 1 standard deviation. The lower limit onM0 for a fixed

FIG. 4 (color online). Allowed parameter space for ðnM; nHÞ ¼ ð0; 1
2
Þ. The left panel is the bino-like LSP case with stau coannihilation,

summed over all values 10 ≤ tan β ≤ 30. The right panel is the Higgsino-like LSP case with chargino/neutralino coannihilation and
tan β ¼ 48. The color gives the gluino mass in units of TeV, as indicated by the scale to the right.
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α value is set by the 3σ upper bound on this process. The
limit α ≥ 1.85, as well as the upper limit on M0 for a fixed
value of α, is set by the upper limit on the thermal relic
density of the neutralino.
In summary, the overall phenomenology of the two

cases, ðnM; nHÞ ¼ ð0; 0Þ and ðnM; nHÞ ¼ ð0; 1
2
Þ, is strik-

ingly similar. In Fig. 5 we have superimposed the bino-like
and Higgsino-like spaces for each modular weight
combination into a single plane. The general location of
the allowed parameter spaces in the fα;M0g plane is
nearly identical. As a consequence, the predicted masses
for the LSP neutralino are the same: 1200 GeV≲mχ0

1
≲

1600 GeV for the Higgsino-like region at large α, and
mχ0

1
≃ 1000 GeV for the bino-like region near the KKLT

prediction of α ¼ 1.

3. The case ðnM;nHÞ ¼ ð12 ;0Þ
The reciprocal case ðnM; nHÞ ¼ ð1

2
; 0Þ is distinctly differ-

ent from the previous two, in that the wave function of the
LSP varies across the allowed parameter space, from bino-
like to Higgsino-like. It was for this reason that the allowed
parameter space for this combination of modular weights
was listed in both panels in Table I. For our targeted scan,
we have chosen to fix tan β ¼ 16 and scan over the region
0.9 ≤ α ≤ 1.8 and 1500 GeV ≤ M0 ≤ 4000 GeV. The
allowed parameter space, after imposing the Higgs mass
and dark matter constraints, is given in the left panel of
Fig. 6. The gap at α≃ 1.1 is a region where the stau is the
LSP. In this region of α, the eigenvectors of the neutralino
mass matrix undergo a level crossing: at α ¼ 1.0 we have
M2 > μ > M1 at the electroweak scale, while at α ¼ 1.2
we have M2 > M1 > μ. During the transition, the stau
briefly becomes the LSP before once again becoming the
next-to-lightest neutralino. On the edges of this region, stau

coannihilation is important, but elsewhere the mass gap
between the stau and the lightest neutralino increases
rapidly. As with Fig. 3, the leftmost and rightmost edges
are the Higgs mass contours of mh ¼ 124.1 GeV and
mh ¼ 127.2 GeV, respectively. The curved exclusion
region from 1.2≲ α≲ 1.6 is eliminated by an overabun-
dance of dark matter, as are values of α≲ 0.9. The upper
bound on α represents the point at which electroweak
symmetry breaking fails to occur. As with previous figures,
the gluino mass is indicated by the color key to the right of
the plot.
This particular combination of modular weights is

unique, in that the wave function of the LSP interpolates
between fully bino-like and fully Higgsino-like throughout
the allowed parameter space. Below the gap at α≃ 1.1, the
LSP is 93% to 98% bino-like, with the remainder of the
wave function being Higgsino-like. After the level crossing
occurs, however, the wave function for α≃ 1.15 becomes
“well tempered” [62,63], with a composition roughly 94%
Higgsino, 4% bino and 2% wino. The Higgsino content
then steadily increases as α increases, until at α≃ 1.4 it
becomes more than 99% Higgsino-like. This progression is
illustrated in the right panel of Fig. 6, in which we show the
distribution (in units of GeV) for the two key mass
differences for coannihilation. The mass difference
between the lightest stau and lightest neutralino is plotted
on the horizontal axis, while that between the lightest
chargino and the lightest neutralino is plotted on the vertical
axis. The imposition of the relic density constraint Ωχh2 ≤
0.128 forces a tight correlation between the spectrum and
the wave function of the LSP, as indicated by the bino
fraction given by the color in the figure. Clearly, one or both
of the coannihilation mechanisms (stau and neutralino/
chargino) is operative throughout the parameter space.

FIG. 5 (color online). Total allowed parameter space for ðnM; nHÞ ¼ ð0; 0Þ (left) and ð0; 1
2
Þ (right). In both cases, the parameter space is

aggregated over all values of tan β in the targeted scans. The allowed region near α ¼ 1 in both cases has a bino-like LSP, while the
region near α ¼ 2 in both cases has a Higgsino-like LSP. The color indicates the gluino mass, in units of TeV, as given by the color scale
to the right.
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4. The case ðnM;nHÞ ¼ ð12 ; 12Þ
We next consider the case where nM ¼ nH ¼ 1=2. We

expect some similarities with the case where nM ¼ nH ¼ 0,
given the universal treatment of scalar masses. Indeed, we
find precisely two well-defined and distinct regions sepa-
rated clearly in the parameter α, as indicated in Table I. As
before, the two regions are separated by points in parameter
space where either the stau or the stop is the lightest
supersymmetric particle, and is thus eliminated. As with
the previous modular weight combinations, the bino-like
LSP region exists over a range of tan β values which are
correlated with the allowed values of the parameter α. We
thus perform a targeted scan over the range 11 ≤ tan β ≤ 35,
0.4 ≤ α ≤ 0.9, and 1700 GeV ≤ M0 ≤ 2500 GeV. The
allowed parameter space, after imposing the Higgs mass

and dark matter constraints, is given as a projection onto the
fα;M0g plane in the two panels of Fig. 7.
As with the ðnM; nHÞ ¼ ð0; 1

2
Þ case, we have an inverse

relationship between the value of α and the value of tan β
necessary to achieve sufficient mass degeneracy between
the lightest neutralino and the lightest stau. This mass gap is
indicated by the color scale to the right of the plot in the left
panel of Fig. 7. Though the LSP is over 99% bino-like
throughout this region, the area of significant stau coanni-
hilation is confined to α ≤ 0.6. This lower disconnected
region exists only for 33 ≤ tan β ≤ 35, while the upper
region spans 12 ≤ tan β ≤ 28. For the points in the gap,
there is no value of tan β for which the stau is not the LSP.
The remainder of the features are similar to those of Fig. 6.
The leftmost edge is the contour where mh ¼ 124.1 GeV.

FIG. 7 (color online). Allowed parameter space for ðnM; nHÞ ¼ ð1
2
; 1
2
Þ for the bino-like LSP case. The left panel gives the mass

degeneracy between the lightest stau and the lightest neutralino in units of GeV, as indicated by the color scale to the right of the plot.
The right panel gives the gluino mass in units of TeV, as indicated by the color scale to the right of the plot.

FIG. 6 (color online). Allowed parameter space (left) and LSP phenomenology (right) for ðnM; nHÞ ¼ ð1
2
; 0Þ and tan β ¼ 16. The left

panel gives allowed parameter combinations of fα;M0g consistent with proper EWSB, Higgs mass measurements, and the upper bound
on thermal relic abundance. The gluino mass, in units of TeV, is given by the color as indicated by the scale to the right. The right panel
plots the mass difference between the lightest chargino and lightest neutralino versus the mass difference between the lightest stau and
the lightest neutralino. The color in this panel indicates the fraction of the LSP wave function that is bino-like.
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In fact, the Higgs mass never exceeds 125.7 GeV through-
out the allowed parameter space. The rightmost edge is the
boundary where Ωχh2 ¼ 0.128. As this quantity depends
on tan β indirectly via the stau mass, the right edge varies
considerably when we project all values of tan β onto the
fα;M0g plane. An overabundance of thermal relic neu-
tralinos also eliminates all tan β and M0 values for
α ≤ 0.42. The right panel of Fig. 7 gives the gluino mass
value in units of GeV, according to the color scale to the
right of the plot.
For the gaugino coannihilation region we adopt tan β ¼

30 and perform a targeted scan with 1.2 ≤ α ≤ 1.9 and
1000 GeV ≤ M0 ≤ 6000 GeV. The allowed parameter
space, after imposing the Higgs mass and dark matter
constraints, is given in the left panel of Fig. 8. The gluino
mass is indicated by the color, in units of TeV. For α values
less than about α ¼ 1.4, the stau is generally the LSP for
tan β ¼ 30, while for α ≳ 1.8 there fails to be an adequate
solution to the EWSB conditions. For these large values of
α, the value of μ rapidly approaches zero, and the LSP mass
tracks this value. The dark matter constraint favors larger α
values and smaller values of M0, which then tends to
conflict with the lower bound on the Higgs mass. The left
edge of the parameter space represents the locus of points
where mh ¼ 124.1 GeV, while the cutoff at M0 ∼
5000 GeV arises from the upper bound we impose on
the Higgs mass ofmh ≤ 127.2 GeV. The curved edge is the
upper bound on the neutralino relic density. Overall, the
characteristics of the parameter space are similar to those of
the ðnM; nHÞ ¼ ð1

2
; 0Þ in Fig. 6. The right panel of Fig. 8

combines the bino-like and Higgsino-like regions into a
single plot, to give a sense of proportion to the allowed
parameter space.

5. The cases ðnM;nHÞ ¼ ð0;1Þ and ðnM;nHÞ ¼ ð12 ;1Þ
The remaining two subsets we consider arise when one

or both of the MSSM states—the matter fields or the
Higgs fields—are confined to stacks of D3-branes where
the effective modular weight is unity. We begin with the
case ðnM; nHÞ ¼ ð0; 1Þ, where Table I indicates the exist-
ence of a small region of allowed parameter space with
α≃ 0 and very large values of tan β. In this region, the
lightest stau and lightest neutralino are highly degenerate,
and the LSP is purely bino-like. Because this region is so
tightly confined, we have chosen to perform two small
targeted scans, one each at tan β ¼ 51 and tan β ¼ 52,
over the range 0 ≤ α ≤ 0.2 and 1700 GeV ≤ M0 ≤
2800 GeV. The result of the scan is shown in the left
panel of Fig. 9.
The smaller region at lowerM0 and α ≥ 0.1 corresponds

to tan β ¼ 51. Here the Higgs mass satisfies 124.1 GeV ≤
M0 ≤ 124.8 GeV. For the other region, with tan β ¼ 52,
the Higgs mass is between 124.1 and 126.1 GeV. As with
previous plots, the rightmost boundaries on M0 for both
tan β values arise from the relic density constraint
Ωχh2 ≤ 0.128. The leftmost constraint for tan β ¼ 51
represents the contour where mh ¼ 124.1 GeV, while for
tan β ¼ 52 it is the contour where the stau becomes the
LSP. The upper bound on α arises where the contour of
Ωχh2 ¼ 0.128 intercepts the Higgs mass constraint
(tan β ¼ 51) or the stau LSP contour (tan β ¼ 52).
The modular weight combination ðnM; nHÞ ¼ ð1

2
; 1Þ is

even more tightly constrained. Though nominally there are
two allowed regions in the fα;M0g plane, they are both
concentrated at extreme values of the parameter α, as
anticipated in Table I. The bino-like and Higgsino-like
regions are shown simultaneously in the right panel of

FIG. 8 (color online). Allowed parameter space for ðnM; nHÞ ¼ ð1
2
; 1
2
Þ for the Higgsino-like LSP case (left) and combined cases (right).

Both panels give the allowed parameter combinations of fα;M0g consistent with proper EWSB, Higgs mass measurements, and the
upper bound on thermal relic abundance. The gluino mass, in units of TeV, is given by the color as indicated by the scale to the right of
each panel. The left panel is solely the part of the parameter space with a Higgsino-like LSP, while the right panel combines this space
with the region shown in Fig. 7.

BRYAN L. KAUFMAN AND BRENT D. NELSON PHYSICAL REVIEW D 89, 085029 (2014)

085029-14



Fig. 9. Just as in the case ðnM; nHÞ ¼ ð0; 1Þ, the bino-like
case with stau coannihilation is concentrated at 0 ≤ α ≤
0.01 for tan β ¼ 54 and at 0.02 ≤ α ≤ 0.06 for tan β ¼ 53.
This is therefore essentially the case of minimal super-
gravity, with a large hierarchy between gauginos and
scalars, and a mass scale 2500 GeV≲M0 ≲ 3000 GeV.
The Higgs mass in this region is confined to 124.1 GeV ≤
mh ≤ 125.1 GeV. The Higgsino-like region exists only
for α ≥ 1.95 and 4600 GeV ≤ M0 ≤ 6200 GeV for our
choice of tan β ¼ 41. The Higgs mass ranges over the same
values as the bino-like case, and the gluino mass is roughly
4–5 TeV in both regions of the parameter space.

6. The cases ðnM;nHÞ ¼ ð1;0Þ, ð1; 12Þ and ðnM;nHÞ ¼ ð1;1Þ
The last three cases with unit modular weight for the

matter sector share many of the same overall features,
allowing us to group their treatment into a single, brief
discussion. All three cases give rise to a single region of
parameter space with a Higgsino-like LSP and degenerate
neutralinos and charginos. Awide range of tan β values are
available, but the parameter α is tightly constrained in all
three modular weight combinations. For our targeted scan
we have chosen tan β ¼ 15 for ðnM; nHÞ ¼ ð1; 0Þ and
ðnM; nHÞ ¼ ð1; 1

2
Þ, and tan β ¼ 24 for the ðnM; nHÞ ¼

ð1; 1Þ case. The results of the targeted scans are given in
a single plot in Fig. 10, with the gluino mass again given in
TeV by the color scale to the right. The allowed regions are
defined by 0.62 ≤ α ≤ 0.78, 0.77 ≤ α ≤ 0.88 and 1.09 ≤
α ≤ 1.15 for nH ¼ 0; 1

2
and 1, respectively.

In all three cases, the boundary for low M0 values
continues to be the Higgs mass constraint mh ≥
124.1 GeV. The maximum value for M0 in the low-α case
of ðnM; nHÞ ¼ ð1; 0Þ is given by the upper bound on the
Higgs mass we have chosen, mh ≤ 127.2 GeV. For the

other two cases, it is given by the value for M0 at which
μ2 → 0 and EWSB fails to occur. Failure to achieve proper
EWSB is also the origin of the upper bound on the
parameter α for fixed M0 values in all three cases.
Finally, the lower bound on α for a fixed value of M0 is
always dictated by the constraint Ωχh2 ≤ 0.128.
Considering these three cases together, the shifting of the

parameter space to higher values ofM0 is relatively easy to
understand. The maximum value for the squark masses, at
the boundary condition scale, occurs when nM ¼ 0, while
the masses are greatly suppressed in the other extreme

FIG. 9 (color online). Allowed parameter space for ðnM; nHÞ ¼ ð0; 1Þ (left) and for ðnM; nHÞ ¼ ð1
2
; 1Þ (right). In the left panel, the two

regions correspond to two different choices of the parameter tan β. The region in the upper left has tan β ¼ 51, while the lower
disconnected region has tan β ¼ 52. In the right panel, the region at α≃ 0 is the bino-like case, while the region at α≃ 2 is the Higgsino-
like case. As before, the gluino mass, in units of TeV, is indicated by the color scale to the right of each plot.

FIG. 10 (color online). Allowed parameter space for the cases
ðnM; nHÞ ¼ ð1; 0Þ, ð1; 1

2
Þ and (1,1). All three of these cases

involve a Higgsino-like LSP. The lowest region corresponds to
ðnM; nHÞ ¼ ð1; 0Þ, while the region at the highest values of α
corresponds to ðnM; nHÞ ¼ ð1; 1Þ. As with the other figures, the
gluino mass, in units of TeV, is indicated by the color scale to the
right of each plot.
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when nM ¼ 1. As a consequence, the overall mass scaleM0

must be increased significantly as nM increases to achieve
sufficiently large radiative corrections to the lightest CP-
even Higgs mass to satisfy the LHC measurements. As a
result, the gluino mass gets progressively larger in each
parameter space, as indicated by the color scheme in
Fig. 10. Though the minimum gluino mass is increasing
from 3500 GeV for ðnM; nHÞ ¼ ð1; 0Þ to 6300 GeV for
ðnM; nHÞ ¼ ð1; 1Þ, the range of allowed values in α implies
that the LSP neutralino masses should fall into similar mass

ranges: roughly 100 GeV ≤ mχ0
1
≤ 1100 GeV in all three

cases. That such small LSP masses are possible is interest-
ing, and it ultimately reflects the fact that the μ parameter is
smaller in these cases than equivalent parameter points
when nH ≠ 1.

C. Summary of targeted scan results

Having completed our survey of the nine individual
combinations of modular weights, it is useful to consider

FIG. 11 (color online). Allowed parameter space for all modular weight combinations in the flux-compactified type IIB model.
The left panel aggregates all the cases with a bino-like LSP. The right panel aggregates all cases where the LSP is Higgsino-like.
All points shown are reproduced from plots earlier in this section. The gluino mass, in units of TeV, is indicated for each point by the
color scheme to the right of the plot.

TABLE II. Summary of all modular weight combinations in the flux-compactified type IIB model. For each combination of modular
weights, we give the allowed range in the model parameter α consistent with all phenomenological constraints. In combinations where
two such ranges exist, we separate them into bino-like LSP and Higgsino-like LSP cases. For each range in the parameter α, we provide
the resulting range in gluino mass values and LSP mass values, in units of GeV.

nH ¼ 0 nH ¼ 1
2

nH ¼ 1

0.93 ≤ α ≤ 1.19 0.97 ≤ α ≤ 1.32 0 ≤ α ≤ 0.2
Bino 1737 ≤ m~g ≤ 3506 2057 ≤ m~g ≤ 2725 3448 ≤ m~g ≤ 5706

788 ≤ mχ0
1
≤ 1952 976 ≤ mχ0

1
≤ 1684 756 ≤ mχ0

1
≤ 1323

nM ¼ 0
1.96 ≤ α ≤ 2 1.85 ≤ α ≤ 2

Higgsino 2256 ≤ m~g ≤ 3017 1857 ≤ m~g ≤ 2400
1201 ≤ mχ0

1
≤ 1585 1203 ≤ mχ0

1
≤ 1605

0.48 ≤ α ≤ 0.82 0 ≤ α ≤ 0.06
Bino 3045 ≤ m~g ≤ 4535 4747 ≤ m~g ≤ 6193

0.96 ≤ α ≤ 1.74 965 ≤ mχ0
1
≤ 1629 1006 ≤ mχ0

1
≤ 1327

nM ¼ 1
2

2038 ≤ m~g ≤ 4612
965 ≤ mχ0

1
≤ 1629 1.45 ≤ α ≤ 1.79 1.95 ≤ α ≤ 2

Higgsino 2528 ≤ m~g ≤ 5413 3873 ≤ m~g ≤ 5199
107 ≤ mχ0

1
≤ 1505 826 ≤ mχ0

1
≤ 1089

Bino
nM ¼ 1

0.62 ≤ α ≤ 0.78 0.77 ≤ α ≤ 0.88 1.09 ≤ α ≤ 1.15
Higgsino 3529 ≤ m~g ≤ 7527 4938 ≤ m~g ≤ 9107 6353 ≤ m~g ≤ 7998

106 ≤ mχ0
1
≤ 1070 105 ≤ mχ0

1
≤ 1109 122 ≤ mχ0

1
≤ 1012
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some of the broad features that emerge in the overall
parameter space. We have identified 13 distinct regions in
the space of parameters fα;M0; tan βg over the 9 combi-
nations. We then conducted targeted fine-resolution scans
for each of these 13 regions, the projection of which onto
the fα;M0g plane is shown in Fig. 11. The left panel is the
sum of all cases in which the LSP neutralino is predomi-
nantly bino-like. In these cases, each region represents a
range of tan β values, roughly given by the ranges in
Table I. The right panel is the sum of all cases in which the
LSP neutralino is predominantly Higgsino-like. Here we
have chosen specific values of tan β in each scan. Thus, we
can expect the figure to represent a reasonable approxi-
mation to the total parameter space, but only an approxi-
mation. We expect that some points on the boundaries of
these regions would be viable for different choices of tan β
within the ranges set in Table I.
A summary of our targeted scan results is given in

Table II. The upper-left quartet of nM, nH ¼ 0, 1
2
, in which

all fields of the MSSM are realized through strings ending
onD7-branes, gives the richest phenomenology and largest
allowed parameter space. Bino-like and Higgsino-like dark
matter candidates are possible, as is the case of a well-
tempered neutralino in the specific ðnM; nHÞ ¼ ð1

2
; 0Þ case.

The bino-like cases, with stau coannihilation in the early
Universe, are also the ones most consistent with the original
KKLT hypothesis of anti-D3-brane uplift mechanisms, for
which we expect α ¼ 1. We find that the Kähler modulus
dependence of the uplift mechanism, in the form of the
exponent n in Eq. (11), can also take values of n ¼ �1 and
n ¼ −2 and remain consistent for certain values of the
modular weights.
With the lightest gluino in Table II being over 1700 GeV,

it is unlikely that any of these points have superpartners,
which should have generated detectable excess over back-
grounds at the LHC in data collected thus far. We will
confirm this statement in Sec. V below. We note, however,
that models with an Oð100 GeVÞ Higgsino-like LSP,
whose relic density is comparable to the Planck observation
onΩCDMh2, would likely have produced a detectable signal
at current-generation liquid-xenon dark matter detectors.
We therefore begin our analysis of future discovery
channels with this class of experiment.

IV. PROSPECTS FOR DARK MATTER
DIRECT-DETECTION EXPERIMENTS

Even with the discovery of the Higgs, and increasingly
stringent measurements of the dark matter relic density,
model points with bino-like and/or Higgsino-like LSPs
remain from every combination of modular weights we
considered. One may now ask if any of these points, though
not yet excluded by direct searches for superpartners,
could nevertheless be detected in the near future. To answer
this question, we focus on two types of experiments:
LHC collider searches and dark matter direct-detection

experiments. We will consider each combination of modu-
lar weights independently, or group by LSP type when
appropriate.
To date, discovery prospects for heavy neutralino dark

matter (100 GeV≲mχ ≲ 1000 GeV) have been dominated
by the liquid-xenon direct-detection experiments: the
Xenon100 Dark Matter Project in Gran Sasso, Italy [64],
and the South Dakota–based LUX experiment [65]. The
former recently released data for 224.6 live days of
exposure on a 34 kg target [66]. On October 30, the
LUX experiment released a preliminary result from 85.3
live days of exposure on a 118 kg target [67]. LUX expects
to analyze 300 days of exposure within the next year, while
the extension of Xenon100 to the 1-ton level will follow
soon thereafter. We can therefore discuss the discovery
prospects for dark matter in two stages. First we determine
what, if any, parameter space is already in conflict with
existing results from Xenon100 and LUX. Then we ask
how future enlargements of the data taking on liquid-xenon
detectors will affect the remaining parameter space of the
flux-compactified type IIB model.

A. Bino-like LSPs

A nearly bino-like LSP is found in six of the nine
modular weight combinations, summarized in Table II. For
the purposes of discussing dark matter phenomenology, it is
convenient to aggregate these modular weight combina-
tions and consider the bulk properties of all bino-like
neutralino cases as one phenomenologically similar region.
For this combined region, the LSP is heavy, ranging from
750–1950 GeV. The left panel in Fig. 12 shows the familiar
neutralino-nucleon cross section versus LSP mass for all of
the targeted scan regions with bino-like LSPs. The top
magenta line represents the results from the preliminary
LUX data for LSPs in the appropriate mass range,
corresponding to a fiducial volume of 118 kg and an
exposure of 85 days. Because the fiducial volume was over
triple the size of that used by Xenon100, LUX was able to
surpass 224 days of Xenon100 exposure within three
months.
While there are a handful of points with very large cross

sections, the bulk of the bino-like parameter space in the
KKLT type IIB flux compactification scenario is currently
outside the reach of these experiments. Xenon1 T and LUX
expect to improve the limiting cross section on neutralino-
nucleon scattering by an order of magnitude or more; for
bino-like LSPs in the KKLT paradigm, that improvement
will be insufficient. The right panel of Fig. 12 shows the
number of expected events for an exposure of 300 days for
1000 kg of liquid xenon within the recoil energy range of
5–25 keV. Even in the most favorable scenario, this much
integrated exposure would yield only 0.3 events, which
would still be below the estimated backgrounds for these
experiments. In fact, the projected number of events in 1
ton-year of accumulated data on liquid xenon would be
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given by the right panel of Fig. 12, suggesting that the
majority of the parameter space will not yield a detectable
signal over background even after several ton-years of
exposure.

B. Higgsino-like LSPs

In the alternative case, for which the neutralino is almost
purely Higgsino-like, we can again aggregate all eight
combinations of modular weights that admit a Higgsino-
like LSP into a single region. For this combination, the LSP
can be as heavy as 2.3 TeV, which is slightly heavier than

the maximum value in the bino-like case. However, LSPs as
light as 100 GeV are also present. The neutralino-nucleon
scattering cross section is similarly spread over a wide
range of values. The smallest cross section achieved is
6 × 10−48 cm2, though the majority of the parameter space
has a cross section of between 10−46 and 10−43cm2.
The left panel of Fig. 13 shows the neutralino-nucleon

cross section versus the LSP mass for the Higgsino-like
LSP cases, where we again overlay the LUX bound for
118 kg × 85.3 days of exposure (the solid magenta line in
the figure). In contrast to the bino-like LSP case, LUX has
already begun to rule out some areas of the parameter

FIG. 12 (color online). Dark matter detection prospects for bino-like LSP points. The left panel shows the distribution in neutralino-
nucleon scattering cross sections versus neutralino mass for the bino-like segment of the type IIB flux compactification scenario. The
solid magenta line represents the limit set by the recent results from LUX. The right panel gives the rate of nuclear recoils, integrated
over the recoil energy range of 5–25 keV, after 1 ton-year of exposure. Both panels aggregate all the cases with a bino-like LSP for all
modular weight combinations.

FIG. 13 (color online). Dark matter detection prospects for Higgsino-like LSP points. The left panel shows the distribution in
neutralino-nucleon scattering cross sections versus neutralino mass for the Higgsino-like segment of the type IIB flux compactification
scenario. The solid magenta line represents the limit set by the recent results from LUX. The right panel gives the rate of nuclear recoils,
integrated over the recoil energy range of 5–25 keV, after 1 ton-year of exposure. Both panels aggregate all the cases with a Higgsino-
like LSP for all modular weight combinations.
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space. The majority of the points lying above the magenta
line correspond to the ðnM; nHÞ ¼ ð1

2
; 0Þ case; in addition,

six additional points corresponding to ðnM; nHÞ ¼ ð0; 0Þ
and ð0; 1

2
Þ are also ruled out by this experiment. These

points represent cases with 1000 GeV≲mχ0
1
≲ 1100 GeV

and relatively light gluinos, though the points with the
absolute lowest gluino masses in the data sample continue
to exist just below the current LUX limit. We thus expect
that any improvement upon this bound will reduce the
viable parameter space considerably, particularly for the
low-mass neutralinos in the 100 GeV range.
To gain a sense of how quickly each of the combinations

of modular weights will be within experimental limits, we
can consider the number of events that would be observed
for a given fiducial volume and exposure time. The right
panel of Fig. 13 again shows the expected number of events
within the recoil energy range of 5–25 keV for a baseline of
300 days of exposure and 1000 kg of volume, which we
will consider 1 “ton-year.” LUX claims a future back-
ground expectation of approximately 1 event per ton-year
at these recoil energies [65]. We can therefore expect a very
large fraction of the Higgsino-like outcomes in the type IIB
flux compactification scenario to be within reach in the near
future.
In Table III, we disaggregate the points in Fig. 13 and

give the largest and smallest event rates in 1 ton-year for the
eight modular weight combinations with a Higgsino-like
LSP from Table II. For comparison purposes, we also give
the largest and smallest event rates for the aggregated bino-
like cases from the previous subsection. All entries in
Table III are integrated over the recoil energy range of
5–25 keV for liquid-xenon targets. The most interesting
cases, from a theoretical point of view, are the first four
modular weight combinations, for which it is reasonable to

expect a signal to emerge on the time scale of 1 ton-year of
exposure. The one outlier in the Higgsino-like region is the
case of ðnM; nHÞ ¼ ð1

2
; 1Þ, which is nearly ruled out in any

case simply by electroweak symmetry-breaking con-
straints. Thus we expect future results from LUX and
Xenon1 T to probe deep into this very interesting region of
the parameter space of flux-compactified type IIB string
theory. In addition, some of this parameter space also
predicts a gluino mass which should be well within reach at
the post-shutdown LHC.We turn to a consideration of LHC
searches in the next section.

V. LHC IMPLICATIONS

As was discussed earlier, the spectrum of flux-stabilized
type IIB models of the KKLT type generally involves a
large hierarchy between the electroweak gauginos and the
much heavier squarks and sleptons. For that reason, we
have emphasized thus far only the masses of the LSP
neutralino and the gluino, as (for example) in Table II. The
scale of superpartner masses is generally pushed to large
values by the requirement that the Higgs mass satisfy the
recent LHCmeasurements. We anticipate, therefore, that no
point in the parameter space of this class of theories faces
elimination from the data taken at

ffiffiffi
s

p ¼ 8 TeV, once the
Higgs mass constraint is satisfied. We will confirm this
point below. Nevertheless, much of the parameter space
will be accessible at the postupgrade center-of-mass energy
of

ffiffiffi
s

p ¼ 14 TeV. This is particularly welcome for the
regions with a bino-like LSP, which have limited prospects
for discovery in dark matter detection experiments.

A. Benchmark phenomenology

To examine the extent to which this region has been
probed by the

ffiffiffi
s

p ¼ 8 TeV data and to determine what will
be of interest at

ffiffiffi
s

p ¼ 14 TeV for every point in the flux-
compactified type IIB parameter space would be computa-
tionally expensive. It would also be largely unnecessary, as
much of the space has a similar phenomenology that can be
described succinctly by a handful of examples. For these
reasons we will choose a small sample of benchmark
points, representative of each of the two phenomenologi-
cally distinct regions we have established, and analyze this
set of points with regard to LHC searches for superpartners.
This will also afford us the opportunity to take a closer look
at the allowed physical mass spectra of the various modular
weight combinations, in light of the Planck dark matter fits
and LHC Higgs mass measurements.
We collect our representative benchmarks in Table IV. Of

the regions with a Higgsino-like LSP, seven points were
chosen; of the regions with a bino-like LSP, six points were
chosen. These sample a variety of Higgs masses, gluino
masses, and dark matter relic densities, as well as different
combinations of modular weights. Note that we have
chosen two examples from the bino-like region of the

TABLE III. Minimum and maximum event rate for 1 ton-year
exposure on liquid xenon. The Higgsino-like cases from Table II
are listed individually, with the minimum and maximum of
nuclear recoil events in 1 ton-year of exposure listed for the entire
parameter space. For comparison purposes, the minimum and
maximum number of nuclear recoils for all bino-like cases is also
listed. Recoil rates are integrated over the recoil energy range of
5–25 keV.

Higgsino LSP Recoil Events, 1 ton-year
nM nH Minimum Maximum

0 0 0.336 1.236
0 1

2
0.9858 4.899

1
2

0 0.2172 27.81
1
2

1
2

0.0816 12.42
1
2

1 0.0599 0.18
1 0 0.2085 26.61
1 1

2
0.0978 9.78

1 1 0.0981 3.78
Bino LSP 0.0020 0.31
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ðnM; nHÞ ¼ ð0; 0Þ case to exemplify the variety of outcomes
possible in this case. Note also that for Table IV we have
chosen not to create a specific benchmark for the
ðnM; nHÞ ¼ ð1; 1

2
Þ case due to its similarities with the

ðnM; nHÞ ¼ ð1; 0Þ and (1,1) cases. The input value of
the bulk mass parameter M0 is listed in units of TeV, while
output physical masses for certain key superpartners are
given in units of GeV. For reference, we also give the thermal
relic density for the lightest neutralino, as well as the total
SUSY production cross section at both

ffiffiffi
s

p ¼ 8 TeV andffiffiffi
s

p ¼ 14 TeV, as computed via PYTHIA 6.4 [68].
The Higgsino-like cases tend to occur at the high end of

the α range we considered, which is consistent with the
scan results presented in Sec. III. As expected, the cases
with very light [Oð100 GeVÞ] LSP neutralinos are asso-
ciated with very low relic densities. Values approaching the
Planck-preferred range are possible if the mass of the
neutralino is increased. As we take an agnostic point of
view as to the degree to which nonthermal production
mechanisms may be operative in the early Universe, we
have not chosen to enforce a lower bound on Ωχh2 on our
choice of benchmark points. Very large total production
cross sections, of more than 1 picobarn, are possible for the
cases with very light neutralinos. We therefore expect the
Higgsino-like points in the KKLT parameter space to be
producing substantial numbers of superpartners at the LHC,
even at

ffiffiffi
s

p ¼ 8 TeV. However, as we will discuss below,
these points will nevertheless evade detection.
The cases where the lightest neutralino is bino-like

generally fall at lower values of the parameter α and
allow for slightly smaller values of the mass scale M0.
We note that cases Bino-D and Bino-F have α ¼ 0, and
thus have soft supersymmetry-breaking masses for the
gauginos which obey the relations familiar from minimal

supergravity. The lightest neutralino in these cases is
always much heavier than 100 GeV and is often highly
degenerate with the stau and/or lightest stop. Note that, with
the exception of case Bino-E, all points obey the relation
mA ≃ 2mχ0

1
. Thus, the thermal relic abundance for these

cases can be quite consistent with the Planck observations
using coannihilation and resonant annihilation channels.
The heavy electroweak gauginos result in a much lower
production cross section at the LHC, particularly atffiffiffi
s

p ¼ 8 TeV, though Bino-B with m~g ≃ 1800 GeV has a
reasonable cross section of just under 1 fb at this center-of-
mass energy.
The mass spectra represented by the benchmark points in

Table IV are representative of the entire type IIB flux
compactification parameter space, once the constraints
arising from the Higgs mass measurement are imposed.
In particular, it is always the case that the gluino is
comparable in mass, but heavier than, the lightest stop.
The mass difference ranges from 500 GeV to 1 TeV. This is
easy to understand from the perspective of the boundary
conditions in Eqs. (18) and (22). When nM ¼ 1, clearly the
gauginos will begin heavier than the matter fields. But even
for nM ¼ 0, we expect a negative contribution toM3 which
is small relative toM0. Using the definition in Eq. (19), we
find thatMg=M0 ¼ 0.12 forM0 ¼ 1800 GeV and α ¼ 0.6,
rising to Mg=M0 ¼ 0.39 for the same M0 and α ¼ 2. The
renormalization-group evolution only increases the gluino
mass and decreases the lightest stop mass.
We therefore expect squark pair production to dominate

over gluino pair production at the LHC, with the exception
of cases with relatively light gluinos, for which gluino
production in association with a squark can be sizeable. In
general, however, much of the supersymmetric production
cross section will come in the form of pair production of

TABLE IV. Spectra and key properties for benchmark cases from allowed parameter space of the type IIB flux compactification
scenario. The input value of the bulk mass parameter M0 is listed in units of TeV, while output physical masses for certain key
superpartners are given in units of GeV. Here ~qL ( ~qR) represents the mass of left-handed (right-handed) squarks of the first two
generations. For reference, we also give the thermal relic density for the lightest neutralino, as well as the total SUSY production cross
section at both

ffiffiffi
s

p ¼ 8 TeV and
ffiffiffi
s

p ¼ 14 TeV.

Benchmark Inputs Key Physical Masses (GeV) Key Properties
Name nM nH M0 α tan β mh m~χ0

1
m~χ�

1
m~t1 m ~b1

m ~qL m ~qR m~g Ωχh2 σ8 TeV
SUSY (fb) σ14 TeV

SUSY (fb)

Higgsino-A 0 0 2.57 2.00 48 124.1 1201 1204 1340 1524 2233 2303 2287 0.072 0.04 4.7
Higgsino-B 0 1

2
2.07 2.00 48 124.3 1203 1206 1385 1505 1799 1860 1857 0.076 0.31 23.8

Higgsino-C 1
2

0 2.49 1.73 16 124.2 145.6 147.8 1369 1740 1966 1940 2535 0.003 1525 3542
Higgsino-D 1

2
1
2

4.35 1.76 30 125.2 353.5 354.9 2801 2991 3192 3205 4280 0.014 44.3 142.4
Higgsino-E 1

2
1 4.60 2.00 41 126.4 826.1 827.3 2530 2557 2222 2516 3873 0.076 0.42 4.8

Higgsino-F 1 0 4.07 0.69 15 124.2 105.7 107.1 3704 4772 5418 5099 6490 0.002 5.1 × 103 11.0 × 103

Higgsino-G 1 1 5.97 1.13 24 124.9 353.6 354.7 4816 5283 5714 5369 7822 0.014 44.3 142.8
Bino-A 0 0 1.94 1.03 31 126.4 1432 1758 1607 2252 2928 2832 2900 0.127 0.95 × 10−3 0.41
Bino-B 0 0 1.24 1.17 24 124.2 957 1125 979 1432 1799 1744 1787 0.044 0.71 36.6
Bino-C 0 1

2
1.93 1.26 14 125.2 1549 1775 1782 2284 2630 2555 2619 0.128 0.79 × 10−3 0.95

Bino-D 0 1 1.75 0 52 124.2 760 1451 2619 3010 3781 3645 3773 0.078 0.19 × 10−3 0.86 × 10−2
Bino-E 1

2
1
2

2.49 0.44 35 125.7 1415 2138 2999 3597 4257 4074 4518 0.115 0.18 × 10−3 0.57 × 10−2
Bino-F 1

2
1 2.37 0 54 124.2 1032 1960 3575 3929 4753 4554 4978 0.090 0.19 × 10−3 0.81 × 10−3
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electroweak gauginos, particularly for the Higgsino-like
cases in Table IV. In Table V we show the distribution of
generated events at

ffiffiffi
s

p ¼ 14 TeV, for each benchmark
case, across various production channels normalized to
300 fb−1 of integrated luminosity. Columns 2 and 3 involve
the aggregate across all light-flavor squarks and the scalar
bottom quark, while the fourth column explicitly picks out
stop pair production. The fifth column sums over all light-
flavor squarks and all charginos and neutralinos, while
column 6 sums over all charginos and neutralino combi-
nations. The last column generally involves occasional
associated production of a gluino with an electroweak
gaugino, and slepton pair production where kinematically
favorable. Table V will inform the choices we make when
we select certain LHC search results for comparison to the
parameter space of type IIB flux compactifications in the
next subsection.

B. Summary of relevant ATLAS
supersymmetry searches

The two general-purpose detectors at the LHC have each
published multiple search results looking for superpartners
in a variety of event topologies. To date, no signal above
background has been detected, and the two experiments
generally place very similar bounds on the effective super-
symmetric production cross section into various final states.

For simplicity, therefore, we will consider only the ATLAS
search results, as the published searches for this collabo-
ration tend to involve simple geometric cuts and signal
region definitions which are better suited to reproduction
with a simplified detector simulator such as PGS4 [69].
Since the LHC began collecting data at

ffiffiffi
s

p ¼ 8 TeV,
over three dozen different searches have been performed by
ATLAS to attempt to discover evidence of supersymmetry.
We can reduce this list by using the properties of the
signals, as represented by the benchmarks in Tables IV and
V, to find those searches whose signal regions match well
with the phenomenology of the type IIB flux compactifi-
cation model.
We can begin by eliminating searches which rely heavily

on high-pT leptons in the final state. Here we are consid-
ering strictly electrons and muons with at least 10 GeV of
transverse momenta. Benchmarks with bino-like LSPs, and
a sizeable mass gap between the LSP and the next-to-
lightest superpartner, can yield as many as two high-pT
leptons in 5%–10% of produced events, but other bench-
marks yield negligible numbers of leptons in the final state.
We computed the expected signal at

ffiffiffi
s

p ¼ 8 TeV for the
ATLAS single lepton search [70] and same-sign dilepton
search [71] and found that none of the benchmark models
in Table IV would have produced a single event in the
described signal regions when scaled to the appropriate
integrated luminosity. Even at

ffiffiffi
s

p ¼ 14 TeV, we expect
only a handful of events in the single lepton and dilepton
channels. Though a large fraction of the total cross section
for benchmarks Bino-D, −E and −F involve stau produc-
tion, the overall cross section for these points is vanishingly
small. Comparing with the ATLAS search for pairs of
hadronically decaying taus [72], we again find that no pairs
of opposite-sign taus would pass the trigger requirements atffiffiffi
s

p ¼ 8 TeV when scaled to 20 fb−1. We therefore focus
our attention on searches which invoke a lepton veto for the
remainder of this section.
A striking feature of many of the benchmarks with

Higgsino-like LSPs is the overwhelming tendency to
produce pairs of electroweak gauginos. This is true of
the benchmarks with the highest overall cross sections.
These gauginos tend to be from the degenerate system of
low-lying neutralinos and charginos, so the decay products
are soft and do not generally reconstruct as jets. Lepton
multiplicities for these benchmarks are also exceedingly
low. Such events are best sought after via monojet
topologies, though discovery in these cases will likely
be quite difficult [73–75]. We expect this channel to be
especially important for benchmarks Higgsino-C through
Higgsino-F, whose jet multiplicities peak at a single
high-pT jet and drop rapidly thereafter.
For the remainder of the cases, we find that typical jet

multiplicities tend to be low. Benchmarks Higgsino-A and
Higgsino-B and all of the bino-like benchmarks have
significant production of SUð3Þ-charged superpartners.

TABLE V. Superpartner production at
ffiffiffi
s

p ¼ 14 TeV for
benchmark cases from allowed parameter space of the KKLT
flux compactification scenario. The distribution of generated
events at

ffiffiffi
s

p ¼ 14 TeV is given for various different production
channels, normalized to 300 fb−1 of integrated luminosity.
Columns 2 and 3 involve the aggregate across all light-flavor
squarks and the scalar bottom quark, while the fourth column
explicitly picks out stop pair production. The fifth column sums
over all light-flavor squarks and all charginos and neutralinos,
while column 6 sums over all charginos and neutralino combi-
nations. The last column generally involves occasional associated
production of a gluino with an electroweak gaugino, and slepton
pair production where kinematically favorable.

Production Channel(s)
~g ~g ~q ~q ~q ~g ~t ~t ~q ~χ ~χ ~χ Other

Higgsino-A 16 785 304 176 5 122 2
Higgsino-B 176 4124 2514 145 44 127 11
Higgsino-C 0 1934 361 85 0 1.1 × 106 0
Higgsino-D 0 12 0 0 0 42708 0
Higgsino-E 0 387 5 0 0 1047 1
Higgsino-F 0 0 0 0 0 3.3 × 106 0
Higgsino-G 0 0 0 0 0 42829 11
Bino-A 1 62 17 34 4 3 2
Bino-B 278 5134 3364 1738 264 88 114
Bino-C 2 191 65 13 8 3 3
Bino-D 0 1 0 0 1 1 1
Bino-E 0 0 0 0 0 1 0
Bino-F 0 0 0 0 0 0 0

MIRAGE MODELS CONFRONT THE … PHYSICAL REVIEW D 89, 085029 (2014)

085029-21



Here, jet multiplicities peak in the range 3 ≤ Njet ≤ 5. We
will therefore consider the low-multiplicity multijet search
with missing transverse energy and a leptonic veto. In
addition, stop pair production can be significant for many
of these points. Indeed, often the “light-” flavored squark in
Table V is, in fact, a scalar bottom quark. Thus, we will also
consider the two principal searches that utilize b-tagged jets
with a leptonic veto.
For each of the searches, the search strategy is divided

between object reconstruction, which sets criteria used to
define each object within an event, and signal region
definitions that make selections based on the properties
of these objects. For the ATLAS searches, jets are recon-
structed using the anti-kT algorithm with a radius parameter
of 0.4. Jets must be isolated from leptons using the
following prescription: jets within ΔR≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δϕ2 þ Δη2
p

¼
2 of an electron are discarded. If any lepton is within ΔR ¼
0.4 of a jet, the lepton is discarded. The missing energy,
denoted ET , is the vector sum of the pT of any recon-
structed objects and any other calorimeter clusters with
jηj < 4.9 not belonging to other reconstructed objects. For
jet and lepton candidates, a requirement is placed on both
pT and jηj that varies between each of the searches.
Isolation requirements are placed on electrons and muons
that are equivalent to, or looser than, those required by the
PGS4 reconstruction. In addition, further requirements may
be placed on shower shape and track-selection criteria.
Because we will be performing our simulation using PGS4,
we will use the default PGS4 reconstruction, supplemented
by these requirements. The missing energy and effective
mass is then recalculated using these new definitions. Once
these objects are reconstructed, we can now define the
signal regions used by the relevant searches. The signal
regions used by each of these searches, as well as the
observed results, are listed below.
Low-multiplicity multijets [76]: This search was conducted
with 20.3 fb−1 of integrated luminosity. Electrons were

required to have pT > 10 GeV and jηj < 2.47. Muon can-
didatesmusthavepT > 10 GeVand jηj < 2.4. Jet candidates
are required to have pT > 20 GeV and jηj < 4.5. With this
reconstruction, signal region jets are required to have pT >
40 GeV and jηj < 2.5. For the two-jet and three-jet signal
regions, Δϕ between any jet and the direction of ET must be
greater than 0.4 for the first two jets, and the third jet should
havepT > 40 GeV.For the four-jet, five-jet, andsix-jet signal
regions, Δϕ > 0.4 for the first three jets, and Δϕ > 0.2 for
any additional jets with pT > 40 GeV.
Signal regions are then defined in terms of the number of jets,
all of which must meet the minimum requirements listed
above.When selecting events with at leastN jets, the quantity
Meff is defined to be the scalar sumof the transversemomenta
of the leadingN jets andET . Signal regionsare thendefinedby
a minimum value of missing transverse energy (ET), trans-
verse momentum of the leading jet (pj1

T ), and transverse
momenta of all additional required jet(s) (pjn

T ), in addition to a
minimum for the ratio ET=Meff . Signal regions of a given jet
multiplicity are further subdivided into “loose,” “medium,”
and “tight” subcategories based on the minimum value
required for the inclusive effective mass (Mincl

eff ), defined as
the sum of the missing transverse momentum and all
reconstructed jets with pj

T > 40 GeV. These minimum
requirements are collected in Table VI, which also gives
the number of observed events in each channel and the
corresponding upper value on the number of events arising
from non–Standard Model processes in this channel, at the
95% confidence level.

Multijets with two b-tagged jets [77]: This search was
conducted with 20.5 fb−1 integrated luminosity. Electrons
were subject to “loose” shower shape requirements and
were required to have pT > 10 GeV and jηj < 2.47. Muon
candidates must have pT > 10 GeV and jηj < 2.4. Jet
candidates are required to have pT > 20 GeV and
jηj < 4.5. With this reconstruction, signal-region jets are

TABLE VI. Signal-region definitions for the multijet search of Ref. [76]. Requirements on the amount of missing
transverse energy (ET), transverse momentum of the leading jet (pj1

T ), and transverse momenta of all additional
required jet(s) (pjn

T ) are given in units of GeV. These requirements are universal across all signal regions. Also given
is the minimum required inclusive effective mass (Mincl

eff ), defined as the sum of the missing transverse momentum
and all reconstructed jets with pj

T > 40 GeV, and the ratio ET=Meff , where the Meff in the denominator sums only
over the leading N jets. Also listed is the number of observed events in each channel, and the corresponding value of
N95.

Channel
Requirement 2JL 2JM 3JM 3JT 4JM 4JT 5 J 6JL 6JM 6JT

ET ≥ 160 GeV
pj1
T

≥ 130 GeV

pjn
T

≥ 60 GeV
ET=Meff 0.2 � � � 0.3 0.4 0.25 0.25 0.2 0.15 0.2 0.25
Mincl

eff (GeV) 1000 1600 1800 2200 1200 2200 1600 1000 1200 1500
Observed 5333 135 29 4 228 0 18 166 41 5
N95 1341.2 51.3 14.9 6.7 81.2 2.4 15.5 92.4 28.6 8.3
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required to have pT > 35 GeV and jηj < 2.5. B-tagged jets
increase this requirement to pT > 40 GeV and jηj < 2.5.
Three signal regions are defined. For each of these, there is
a requirement that there be zero leptons, at least two
b-tagged jets, and an invariant jet mass for the first three
jets of between 80 and 270 GeV. The two hardest jets must
satisfy pT ≥ 80 GeV, while additional jets are required to
have pT ≥ 35 GeV. The jets must be separated from the
direction of the ET by Δϕ > π=5. The transverse mass mT
constructed from the hardest b jet and ET must be at least
175 GeV. The three signal regions are defined by requiring
ET to be 200, 300, and 350 GeV, respectively. Labeling
these signal regions SR1, SR2 and SR3, the ATLAS
Collaboration reports observing 15, 2 and 1 events,
respectively, in these channels. From this data it was
possible to establish an upper bound to the number of
events for contributions beyond that of the Standard Model
at the 95% confidence level, denoted N95. For the three
signal regions of this search, that number was 10, 3.6 and
3.9 events, respectively.
Monojets [78]: This search was conducted with 20.3 fb−1
integrated luminosity. A preselection is defined by requir-
ing ET > 120 GeV, zero reconstructed leptons, and at least
one jet with pT > 120 GeV and jηj < 2.8. A monojet-like
signal region is defined by requiring at most three jets with
pT > 30 GeV and jηj < 2.8, and Δϕ > 0.4 between each
jet and the missing transverse energy. The leading jet must
have pT > 280 GeV, and the missing transverse energy
must satisfy ET > 220 GeV. In this signal region, a total of
30,793 events were observed, corresponding to N95 ¼
2770 events. A second signal region involving charm-
tagged jets will be ignored, as PGS4 does not implement a
charm-tagging algorithm.
Stop pair production [79]: This search was conducted with
20.1 fb−1 of integrated luminosity. Jet candidates are

required to havepT > 20 GeV and jηj < 4.5. Signal-region
jets are required to have jηj < 2.5. Electrons are required to
have pT > 7 GeV and jηj < 2.47, while muon candidates
must have pT > 6 GeV and jηj < 2.4. Events were rejected
if any such electrons or muons were present in the final
state. Nevertheless, for this search ET is constructed from
all electrons and muons satisfying pT > 10 GeV and all
jets with pT > 20 GeV.
This search targets two independent types of events, and thus
two signal regions are defined. The first, SRA, requires only
two jets, both of which must be b tagged. This particular
signal region vetoes events with a third jet satisfying
pj3
T > 50 GeV. The second, SRB, allows three jets, with

the second- and third-hardest jets b tagged. Requirements on
the minimum value of ET and the hardestN jets are collected
in Table VII. Both signal regions introduce the kinematic
variable Δϕmin, defined as the minimum azimuthal distance
between any of the three hardest jets and the direction of ET ,
and require Δϕmin > 0.4. Both also place a minimum value
on the ratioET=Meff , whereMeff is defined as the scalar sum
of ET and the two (three) hardest jets for the signal region
SRA (SRB).
Additional kinematic requirements are signal-region spe-
cific. Signal region SRB requires HT;3 ≤ 50 GeV, where
HT;3 is the scalar sum of ET and the pT of all but the
three hardest jets. It also requires Δϕ between the leading
(non-b-tagged) jet and the direction of ET to be greater than
2.5. For signal region SRA, the invariant mass of the tagged
b jets must satisfy mbb

inv ≥ 200 GeV. The signal region is
subdivided according to the value of the contransverse mass,
defined as

mCTðv1;v2Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ETðv1ÞþETðv2Þ�2− ½pTðv1Þ−pTðv2Þ�2

q
;

(24)

TABLE VII. Signal-region definitions for the stop search of Ref. [79]. Requirements on the amount of missing
transverse energy (ET ) and the transverse momenta of the leading three jets (where applicable) are given in GeV.
Also given are the values of separation requirements between various jet objects and the missing transverse energy,
as well as the ratio of ET to the appropriate effective mass variable. Signal-region-specific cuts are described in the
text. Also listed is the number of observed events in each channel, and the corresponding value of N95.

Requirement SRA SRB

ET ≥ 150 GeV ≥ 250 GeV
pj1
T

≥ 130 GeV ≥ 150 GeV

pj2
T

≥ 50 GeV ≥ 30 GeV

pj3
T

� � � ≥ 30 GeV
ΔϕðET; j1Þ � � � > 2.5
Δϕmin > 0.4 > 0.4
ET=Meff > 0.35 > 0.25
HT;3 � � � ≤ 50GeV
mbb

inv ≥ 200 GeV � � �
mCT ≥ 150 GeV ≥ 200 GeV ≥ 250 GeV ≥ 300 GeV ≥ 350 GeV � � �
Observed 102 48 14 7 3 65
N95 38 26 9 7.5 5.2 27
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where v1 and v2 represent the two b-tagged jets. The
requirements on these quantities for the various signal
regions are collected in Table VII, as are the corre-
sponding upper value on the number of events arising
from non–Standard Model processes in this channel, at
the 95% confidence level.

C. Discoverability prospects at
ffiffi
s

p ¼ 8 TeV
and

ffiffi
s

p ¼ 14 TeV

To compare the type IIB flux compactification scenario
with LHC data, we use our benchmark cases in Table IVas
proxies for the various pockets of parameter space that meet
all phenomenological criteria, determined by the targeted
scan in Sec. III. All supersymmetric signals are generated
by first calculating proper decay widths and branching
ratios using SUSY-HIT. The output is passed to PYTHIA 6.4
for event generation and PGS4 to simulate the detector
response. In the analysis that follows, b tagging will prove
to be important. For that reason, we use a modified version
of PGS4 with an improved b-tagging algorithm [80]
designed to more accurately mimic the b-tagging efficiency
as a function of pseudorapidity jηj and jet-pT reported in the
ATLAS and CMS Technical Design Reports. Signals are
computed for a fixed 50,000 events, generated with level-0
triggers, at both

ffiffiffi
s

p ¼ 8 TeV and
ffiffiffi
s

p ¼ 14 TeV center-of-
mass energies, and the results are scaled to the appropriate
integrated luminosity to compare with LHC measurements.
Our analysis suggests that none of the models in

Table IV would present a signal in the data taken thus
far. The strongest signals come from the monojet searches
in the Higgsino-like cases with large cross sections. These
would be Higgsino-C (23 signal events in 20 fb−1) and
Higgsino-F (63 signal events in 20 fb−1). This is to be
compared with an N95 value of 2770 in 20.3 fb−1. The low-
multiplicity multijet searches produce fewer than 10 events
in the two-and three-jet categories for those benchmarks
that produce any signal at all in 20 fb−1. These are all well
below the N95 values reported by the ATLAS experiment.
Finally, despite very low background estimates (and thus,
very lowN95 values) for the various stop searches involving
lepton vetoes and b-tagged jets, the scaled signal expect-
ation for our benchmark cases is always less than 1 event in
20 fb−1 of integrated luminosity.
One could ask if any of the allowed parameter space,

identified in Sec. III, could have detectable superpartners in
the data collected thus far at

ffiffiffi
s

p ¼ 8 TeV. To check this,
we also generated 50,000 signal events for the model point
from each region described in Table II with the lightest
gluino. The values of fα;M0g corresponding to the lightest
gluino can be estimated from the figures found in Sec. III B.
In all but one case—the bino-like region with vanishing
modular weights—this was also the point with the lightest
stop mass. None of these lightest-gluino cases would give a
signal above background in any of the ATLAS searches
described above. The best prospects would be for the

Higgsino-like LSP point with ðnM; nHÞ ¼ ð1
2
; 0Þ and

m~g ¼ 2038 GeV. This point would yield 6 events in the
three-jet “medium” bin of Table VI, versus N95 ¼ 14.9
events. We also estimate that this point would produce 20
events in SRA with mCT ≥ 150 GeV of Table VII, versus
N95 ¼ 38 events.
We therefore turn our attention to

ffiffiffi
s

p ¼ 14 TeV, where
the LHC will begin taking data in 2015. For future
supersymmetry searches, we cannot rely on published
numbers such as the N95 value but must attempt to estimate
the signal significance by calculating the contribution from
Standard Model backgrounds to the signal regions
described in Sec. V B. For the purpose of this paper, we
will content ourselves with a rather crude estimate of these
backgrounds, generated at the level of PYTHIA with level-1
triggers within PGS4. An appropriately weighted sample
representing 5 fb−1 each of b=b̄ pair production, high-pT
QCD dijet production, singleW�-and Z-boson production,
pair production of electroweak gauge bosons (WþW−,
W�Z and ZZ), and Drell-Yan processes, was generated
at

ffiffiffi
s

p ¼ 14 TeV, as well as 20 fb−1 of t=t̄ pair production.
Both the signal and the background were then scaled to the
desired integrated luminosity, where the ratio of the signal
events to the square root of the background events (S=

ffiffiffiffi
B

p
)

could be computed.
We note that the cut on the contransverse mass mCT ,

employed in SRA of the dedicated stop search of Ref. [79],
is extremely effective at reducing the backgrounds from the
pair production of heavy-flavored quarks. This is reflected
in the very low numbers of observed events and in the N95

values in Table VII. In fact, the ATLAS Collaboration
estimates that their dominant background in these channels
is the production of a Z boson in association with a single
heavy-flavor jet, with the Z boson then decaying to two
neutrinos. This is particularly true as the value of the
minimum contransverse mass is increased. This particular
background is poorly reproduced with PYTHIA, and thus we
will not consider this search at

ffiffiffi
s

p ¼ 14 TeV.
We begin by simply applying the signal-region defini-

tions described above to the signal and background samples
at

ffiffiffi
s

p ¼ 14 TeV. For convenience, we will refer to the set
of cuts and object requirements in Refs. [76–78] collec-
tively as “LHC8 searches.” Our estimation of the event
counts in the 14 signal regions, with reliable background
estimates, is given in Table VIII for our benchmark points,
and for the sum total of all background samples generated.
The data in Table VIII are normalized to 20 fb−1 of
integrated luminosity. We consider this to be a conservative
estimate for the first year of data collection after the LHC
resumes operation in 2015.
Benchmarks Higgsino-C and Bino-B produce a signal of

comparable size to our estimate of the backgrounds in both
the three-jet and four-jet bins for the multijet analysis. In
both cases, the signal significance is greatly boosted by the
application of a large lower bound on the inclusive effective
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mass in the event, set to 2.2 TeV for the “tight” sub-
channels. Case Bino-B will provide a q3σ excess in events
over background in all the three-jet and four-jet channels
within the first 10 fb−1, and a 5σ discovery in three of the
four channels within the first 16 fb−1. Higgsino-C will
require slightly more than 20 fb−1 to achieve a 5σ discov-
ery in any given channel, though it is likely that a discovery
could be made here too by combining channels in the

multijetþ ET analysis. It is important to note that despite
being a good candidate for a monojet search strategy, the
signal in this channel produces less than a standard
deviation of excess events over a quite substantial back-
ground in 20 fb−1.
The outcomes for these particular benchmarks are

generally representative of the allowed parameter space
identified in Table II. In Table IX, we repeat the exercise for

TABLE VIII. Estimated signal counts produced by benchmark points of Table IV in 20 fb−1 at
ffiffiffi
s

p ¼ 14 TeV for relevant LHC8
searches. Signal counts are computed using the kinematic cuts defined by Refs. [76–78] for the

ffiffiffi
s

p ¼ 8 TeV data set. We do not
consider the dedicated stop search of Ref. [79] at

ffiffiffi
s

p ¼ 14 TeV. Also given is our estimate of the background contribution to each
channel, broken out into various Standard Model production processes.

Benchmark Multijets Two B-Tagged Jets
Name nM nH 2JL 2JM 3JM 3JT 4JM 4JT 5 J 6JL 6JM 6JT Monojet SR1 SR2 SR3

Higgsino-A 0 0 33 31 17 8 8 3 4 2 2 1 2 0 0 0
Higgsino-B 0 1

2
186 107 42 7 20 4 15 8 7 5 11 3 3 3

Higgsino-C 1
2

0 193 123 47 23 20 10 9 3 3 3 75 1 1 1
Higgsino-D 1

2
1
2

9 2 1 0 0 0 0 0 0 0 12 0 0 0
Higgsino-E 1

2
1 13 14 7 4 2 1 1 0 0 0 2 0 0 0

Higgsino-F 1 0 92 13 4 0 4 0 0 0 0 0 163 0 0 0
Higgsino-G 1 1 8 1 1 0 0 0 0 0 0 0 12 0 0 0
Bino-A 0 0 2 2 1 1 1 0 0 0 0 0 0 0 0 0
Bino-B 0 0 274 216 98 28 47 13 30 12 10 8 9 4 3 3
Bino-C 0 1

2
8 8 4 2 2 1 1 0 0 0 0 0 0 0

Bino-D 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bino-E 1

2
1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bino-F 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SM Background 63231 31157 307 24 69 8 155 585 227 39 20008 113 19 15
Drell-Yan 108 22 0 0 0 0 0 0 0 0 306 0 0 0
Di-boson 220 44 4 0 0 0 0 0 0 0 376 0 0 0
Z þ jets 356 88 4 0 4 0 0 0 0 0 396 0 0 0
W þ jets 4720 524 88 12 32 4 24 36 16 12 18192 4 0 0
b, b̄ 2264 596 4 0 0 0 0 4 0 0 16 0 0 0
t, t̄ 8623 3566 99 8 25 4 103 413 187 19 206 109 19 5
QCD dijets 46940 26316 108 4 8 0 28 132 24 8 516 0 0 0

TABLE IX. Estimated signal counts produced by the lightest-gluino points in 20 fb−1 at
ffiffiffi
s

p ¼ 14 TeV for relevant LHC8 searches.
Simulated signals for the points in parameter space with the lightest gluino for each distinct region identified in Table II. The signal
regions are the same as those for Table VIII. Note that the points with the lightest gluino for the Higgsino-like LSP cases with
ðnM; nHÞ ¼ ð0; 1

2
Þ and ð1

2
; 1Þ are our benchmarks Higgsino-B and Higgsino-E, respectively, which are already listed in Table VIII.

Benchmark Multijets Two B-Tagged Jets
Name nM nH 2JL 2JM 3JM 3JT 4JM 4JT 5 J 6JL 6JM 6JT Monojet SR1 SR2 SR3

0 0 37 34 18 8 8 4 5 2 2 1 2 1 1 1
1
2

0 445 425 202 100 76 40 36 13 12 11 69 2 2 2
Higgsino 1

2
1
2

123 109 58 31 22 12 10 4 4 4 43 0 0 0
1 0 27 4 1 0 0 0 0 0 0 0 45 0 0 0
1 1

2
26 4 2 1 1 0 0 0 0 0 32 0 0 0

1 1 19 4 2 1 1 0 0 0 0 0 33 0 0 0
0 0 403 302 109 28 52 14 33 13 12 9 12 3 3 3
0 1

2
79 71 35 12 18 6 13 6 6 5 3 1 1 1

Bino 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2

1
2

3 3 2 1 1 0 0 0 0 0 0 0 0 0
1
2

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SM Background 63231 31157 307 24 69 8 155 585 227 39 20008 113 19 15
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the points in each region of Table II with the lightest
gluino. Here again, we see that the representative with
vanishing modular weights and bino-like LSP yields a
signal comparable to the background in the three- and
four-jet channels, proving a 3σ excess in 5 fb−1 atffiffiffi
s

p ¼ 14 TeV, and a 5σ discovery in three of the four
subchannels within 15 fb−1 of data taking. The point with
the lightest gluino in the ðnM; nHÞ ¼ ð1

2
; 1
2
Þ region is

similarly detectable. Most striking is the point with
Higgsino-like LSP and ðnM; nHÞ ¼ ð1

2
; 0Þ. This is the point

that was closest to the discovery threshold in the
ffiffiffi
s

p ¼
8 TeV data. We estimate a 3σ excess in all three- and four-
jet multijet channels almost immediately after data taking
resumes, with a 5σ discovery in all four channels within the
first 6 fb−1 of integrated luminosity.
Clearly, some LHC8 channels, and some benchmark

points, do not look promising, even if the signal and
background are extrapolated to very large integrated
luminosities. Table X gives the signal significance for all
benchmarks for which S=

ffiffiffiffi
B

p
≥ 3 in at least one LHC8

channel with 300 fb−1 of data. Only those channels that
give such a signal are included in the table. Taking 300 fb−1
to be a reasonable guess as to the total data set accumulated
before the next shutdown, we expect only very favorable
cases with a bino-like LSP to be accessible in the near
future at the LHC.
It is promising, however, that all cases with a Higgsino-

like LSP that involve embedding the Standard Model
field content exclusively into a system of D7-branes will
yield some testable parameter space in the next run atffiffiffi
s

p ¼ 14 TeV. Only cases in which one or both of the
modular weights are unity would fail to yield an excess in
300 fb−1, and in some exceptional cases, such as Higgsino-
F, the LHC8 monojet search would eventually yield a
discovery at this level of integrated luminosity.

VI. CONCLUSIONS

Type IIB string theory compactified on Calabi-Yau
orientifolds, in the manner first described by Kachru
et al., has remained one of the best studied string-motivated
effective supergravity models for almost a decade. Such
models naturally give rise to a mirage pattern of gaugino
masses, and ultimately provided the very name for this
paradigm of supersymmetry breaking. From a low-energy
effective field theory point of view, the model class studied
here can be considered a generalized modulus-dominated
scenario, and therefore forms a natural complement to the
generalized dilaton-domination scenario considered by the
authors in Ref. [9].
As a model in which a Kähler modulus transmits the

supersymmetry breaking to the observable sector, the
weights of the various matter representations under
SLð2; ZÞ modular transformations are relevant for the scale
and pattern of supersymmetry-breaking scalar masses. This
motivates breaking the total parameter space of the theory
into disjoint cases, which map onto different ways in which
the Standard Model field content can be realized locally in
terms of systems ofD3-and/orD7-branes. This, in turn, has
the very attractive feature that properties of the theory
testable at the LHC, or at various dark matter detection
experiments, can be directly related to the nature of the
compact space at the string scale.
A scan over the available free parameters of the type IIB

flux compactification model reveals that the observation of
a Standard Model–like Higgs boson withmh ≃ 125 GeV is
already severely constraining on the model space, particu-
larly if one is to insist on no more thermal neutralino relic
abundance than that indicated by the PLANCK andWMAP
satellite data. These measurements alone already suggest
gluino masses at or above 2 TeV, with no expected signal
above background in supersymmetry searches performed

TABLE X. Estimated signal significance for selected benchmark points of Tables VIII and IX in 20 fb−1 and 300 fb−1. Signal
significance, defined as the number of signal events divided by the square root of the number of background events (S=

ffiffiffiffi
B

p
), is given for

all benchmarks for which S=
ffiffiffiffi
B

p
≥ 3 for at least one LHC8 channel with 300 fb−1 of data. Only those channels that give such a signal

are included in the table. Empty cells imply zero signal events for that channel.

Benchmark 20 fb−1 300 fb−1

Name nM nH Monojet 2JM 3JM 3JT 4JM 4JT 5J 6JT Monojet 2JM 3JM 3JT 4JM 4JT 5J 6JT

Higgsino-A 0 0 0.01 0.18 0.95 1.53 0.91 1.14 0.34 0.23 0.06 0.69 3.67 5.93 3.51 4.42 1.32 0.89
Higgsino-B 0 1

2
0.08 0.61 2.39 1.50 2.44 1.32 1.23 0.83 0.30 2.36 9.25 5.82 9.45 5.12 4.77 3.22

Higgsino-C 1
2

0 0.53 0.70 2.67 4.59 2.38 3.46 0.68 0.45 2.06 2.70 10.3 17.8 9.23 13.4 2.64 1.76
Higgsino-E 1

2
1 0.01 0.08 0.42 0.85 0.29 0.47 0.07 0.02 0.05 0.31 1.63 3.28 1.13 1.80 0.26 0.08

Higgsino-F 1 0 1.15 0.07 0.25 � � � 0.53 � � � � � � � � � 4.45 0.29 0.97 0.02 2.05 0.02 � � � � � �
Bino-B 0 0 0.06 1.22 5.57 5.67 5.63 4.53 2.41 1.36 0.24 4.74 21.6 21.9 21.8 17.5 9.24 5.27
Higgsino 0 0 0.02 0.19 1.02 1.64 0.97 1.24 0.37 0.23 0.07 0.76 3.95 6.34 3.76 4.81 1.42 0.91
Higgsino 1

2
0 0.49 2.41 11.5 20.3 9.11 14.0 2.93 1.79 1.89 9.32 44.7 78.7 35.3 54.3 11.3 6.92

Higgsino 1
2

1
2

0.31 0.61 3.30 6.32 2.63 4.22 0.81 0.63 1.19 2.38 12.8 24.5 10.2 16.4 3.16 2.42
Bino 0 0 0.08 1.71 6.23 5.73 6.25 4.87 2.63 1.49 0.32 6.64 24.1 22.2 24.2 18.9 10.2 5.77
Bino 0 1

2
0.02 0.40 1.98 2.49 2.16 2.14 1.02 0.76 0.08 1.56 7.67 9.65 8.37 8.29 3.96 2.93
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thus far at the LHC. The original prediction of Kachru
et al., that α ¼ 1 when vacuum uplift is achieved through
anti-D3-branes, is allowed in only a handful of modular
weight combinations—intriguingly, those combinations
associated with semirealistic type IIB model building:
ðnM; nHÞ ¼ ð0; 0Þ, ð0; 1

2
Þ and ð1

2
; 0Þ. If this is the correct

theory of nature, then the LSP will be overwhelmingly
bino-like with a mass on the order of 1 TeV. Such a dark
matter candidate will likely remain inaccessible to direct
search experiments for the foreseeable future. The strongly
interacting superpartners will likely be detectable at the
LHC, however. For example, the heaviest gluino for the
ðnM; nHÞ ¼ ð0; 1

2
Þ case with 0.95 ≤ α ≤ 1.05 has a mass of

just over 2300 GeV. This point will produce a 1σ excess
over the background in events with three or four jets plus
missing transverse energy with 20 fb−1 at

ffiffiffi
s

p ¼ 14 TeV.
This should be a 3σ excess with 100 fb−1 and a 5σ
discovery with 300 fb−1 in at least one channel from
Table VI.
When one takes a more agnostic point of view with

regard to the eventual uplift mechanism, more flexibility in
the parameter α is allowed. In these cases, we find that the
bulk of the parameter space prefers a Higgsino-like LSP
with a relatively good chance of being detected in 1–3 ton-
years of exposure in liquid-xenon-based dark matter
detectors. Such model points continue to have a heavy
gluino and heavy squarks, making observation at the LHC
at

ffiffiffi
s

p ¼ 14 TeV challenging, but not hopeless. The first
300 fb−1 will be enough data to begin to probe these most
promising regions of the flux-compactified type IIB model.
Even using the signal-region definitions employed atffiffiffi
s

p ¼ 8 TeV, we anticipate a significant reach for
Higgsino-like LSP outcomes. The cuts can be adjusted
to take advantage of improved signal-to-background ratios
available at the higher center-of-mass energy, and multiple
channels can be combined to extend the reach still further.
The results of Ref. [81] suggest that a discovery reach of
m ~q ≃m~g ∼ 3 TeV is a reasonable expectation with
300 fb−1 of integrated luminosity with

ffiffiffi
s

p ¼ 14 TeV.
Yet complete coverage of the class of models described
in this work will likely require a next-generation proton
collider with

ffiffiffi
s

p ≃ 100 TeV [82].
If nature is indeed described by type IIB string theory,

compactified on an orientifold in the presence of fluxes,
and if the parameters are such that a discovery of super-
partners is possible with 300 fb−1 of integrated luminosity
at

ffiffiffi
s

p ¼ 14 TeV, then the next goal must be to establish the
stringy origin of the pattern of soft supersymmetry breaking
being observed. In the context studied here, this will mean
establishing that the parameter α ≠ 0 and identifying the
various modular weights for the supermultiplets. The
former is relatively easy, particularly for the case where
α ¼ 1, given sufficient observed events across an array of
channels. Actually measuring the (nonzero) value of α to an

accuracy of Δα ¼ �0.3 will require Oð104Þ observed
events. An accuracy of Δα ¼ �0.1 will require roughly
10 times more data [36].
Extracting the modular weights, however, will require

relatively precise measurements of slepton and squark
masses and their production cross sections, allowing for
a fit on the soft supersymmetry-breaking scalar masses of
the underlying Lagrangian. This is best achieved through
the combination of LHC observations with measurements
made at a future ILC [83–85]. Carefully extracting the soft
terms to high scales using RG evolution [86] should reveal
a mirage unification scale in the scalar sector consistent
with that determined from the value of α measured at the
LHC. The hierarchy between scalar masses of the first two
generations and the soft supersymmetry-breaking gaugino
masses should indicate the modular weights, as emphasized
in Ref. [45]. An indication that α, nM and nH are all
nonvanishing would be strong evidence that a form of
generalized moduli dominance, of the class studied here, is
underlying the soft supersymmetry-breaking sector.
Unfortunately, such an optimistic outcome is only

possible for a very small slice of the parameter space
available to the flux-compactified, type IIB orientifold
models considered here. In this regard, the influence of
the recent measurement of mh ≃ 126 GeV cannot be
overstated. Obtaining a sufficiently large Higgs mass,
within the context of the MSSM field content, requires
large scalar masses, particularly for those cases in which the
modular weights are nonvanishing. This suggests that
production rates at a future linear collider may not be
sufficient to extract these parameters in any meaning-
ful way.
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APPENDIX

Our conventions for the coefficients in Eqs. (21) and (22)
follow those of the Appendix to Ref. [87]. In particular, we
work in the approximation that generational mixing can be
neglected, so that only third-generation Yukawa couplings
are relevant. At one loop, the anomalous dimensions are
given by

γi ¼ 2
X
a

g2acaðΦiÞ − 1

2

X
lm

jyilmj2; (A1)

in which ca is the quadratic Casimir and yilm are the
normalized Yukawa couplings. For the MSSM fields Q,
Uc, Dc, L, Ec, Hu and Hd, the anomalous dimensions are
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γQ;i ¼
8

3
g23 þ

3

2
g22 þ

1

30
g21 − ðy2t þ y2bÞδi3;

γU;i ¼
8

3
g23 þ

8

15
g21 − 2y2t δi3; γD;i ¼

8

3
g23 þ

2

15
g21 − 2y2bδi3;

γL;i ¼
3

2
g22 þ

3

10
g21 − y2τ δi3; γE;i ¼

6

5
g21 − 2y2τδi3;

γHu
¼ 3

2
g22 þ

3

10
g21 − 3y2t ; γHd

¼ 3

2
g22 þ

3

10
g21 − 3y2b − y2τ : (A2)

The _γi’s are given by the expression

_γi ¼ 2
X
a

g4abacaðΦiÞ −
X
lm

jyilmj2byilm ; (A3)

in which byilm is the beta function for the Yukawa coupling yilm. The _γi’s are given by

_γQ;i ¼
8

3
b3g43 þ

3

2
b2g42 þ

1

30
b1g41 − ðy2t bt þ y2bbbÞδi3;

_γU;i ¼
8

3
b3g43 þ

8

15
b1g41 − 2y2t btδi3; _γD;i ¼

8

3
b3g43 þ

2

15
b1g41 − 2y2bbbδi3;

_γL;i ¼
3

2
b2g42 þ

3

10
b1g41 − y2τbτδi3; _γE;i ¼

6

5
b1g41 − 2y2τbτδi3;

_γHu
¼ 3

2
b2g42 þ

3

10
b1g41 − 3y2t bt; _γHd

¼ 3

2
b2g42 þ

3

10
b1g41 − 3y2bbb − y2τbτ; (A4)

where bt ¼ 6y2t þ y2b − 16
3
g23 − 3g22 − 13

15
g21, bb ¼ y2t þ 6y2b þ y2τ − 16

3
g23 − 3g22 − 7

15
g21, and bτ ¼ 3y2b þ 4y2τ − 3g22 − 9

5
g21.

Finally, θi, which appears in the mixed modulus-anomaly term in the soft scalar mass-squared parameters, is given by

θi ¼ 4
X
a

g2acaðQiÞ −
X
i;j;k

jyijkj2ð3 − ni − nj − nkÞ: (A5)

For the MSSM fields, they take the form

θQ;i ¼
16

3
g23 þ 3g22 þ

1

15
g21 − 2ðy2t ð3 − nHu

− nQ − nUÞ þ y2bð3 − nHd
− nQ − nDÞÞδi3;

θU;i ¼
16

3
g23 þ

16

15
g21 − 4y2t ð3 − nHu

− nQ − nUÞδi3;

θD;i ¼
16

3
g23 þ

4

15
g21 − 4y2bð3 − nHd

− nQ − nDÞδi3;

θL;i ¼ 3g22 þ
3

5
g21 − 2y2τð3 − nHd

− nL − nEÞδi3;

θE;i ¼
12

5
g21 − 4y2τð3 − nHd

− nL − nEÞδi3;

θHu
¼ 3g22 þ

3

5
g21 − 6y2t ð3 − nHu

− nQ − nUÞ;

θHd
¼ 3g22 þ

3

5
g21 − 6y2bð3 − nHd

− nQ − nDÞ − 2y2τð3 − nHd
− nL − nEÞ: (A6)

BRYAN L. KAUFMAN AND BRENT D. NELSON PHYSICAL REVIEW D 89, 085029 (2014)

085029-28



[1] A. Djouadi et al. (MSSM Working Group), arXiv:hep-ph/
9901246.

[2] M. Brhlik and G. L. Kane, Phys. Lett. B 437, 331 (1998).
[3] P. Binetruy, G. L. Kane, B. D. Nelson, L.-T. Wang, and

T. T. Wang, Phys. Rev. D 70, 095006 (2004).
[4] N. Arkani-Hamed, G. L. Kane, J. Thaler, and L.-T. Wang,

J. High Energy Phys. 08 (2006) 070.
[5] C. F. Berger, J. S. Gainer, J. L. Hewett, and T. G. Rizzo,

J. High Energy Phys. 02 (2009) 023.
[6] S. S. AbdusSalam, B. C. Allanach, F. Quevedo, F. Feroz,

and M. Hobson, Phys. Rev. D 81, 095012 (2010).
[7] A. H. Chamseddine, R. Arnowitt, and P. Nath, Phys. Rev.

Lett. 49, 970 (1982); P. Nath, R. L. Arnowitt, and A. H.
Chamseddine, Nucl. Phys. B227, 121 (1983); L. Hall, J.
Lykken, and S. Weinberg, Phys. Rev. D 27, 2359 (1983).

[8] K. Choi and H. P. Nilles, J. High Energy Phys. 04 (2007)
006.

[9] B. L. Kaufman, B. D. Nelson, and M. K. Gaillard, Phys.
Rev. D 88, 025003 (2013).

[10] M. K. Gaillard and B. D. Nelson, Int. J. Mod. Phys. A 22,
1451 (2007).

[11] P. Binetruy, M. K. Gaillard, and Y. Y.Wu, Nucl. Phys. B481,
109 (1996).

[12] P. Binetruy, M. K. Gaillard, and Y. Y.Wu, Nucl. Phys. B493,
27 (1997).

[13] J. A. Casas, Phys. Lett. B 384, 103 (1996).
[14] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, Phys.

Rev. D 68, 046005 (2003).
[15] I. R. Klebanov and M. J. Strassler, J. High Energy Phys. 08

(2000) 052.
[16] L. Randall and R. Sundrum, Nucl. Phys. B557, 79 (1999).
[17] K. Choi, A. Falkowski, H. P. Nilles, M. Olechowski, and

S. Pokorski, J. High Energy Phys. 11 (2004) 076.
[18] K. Choi, A. Falkowski, H. P. Nilles, and M. Olechowski,

Nucl. Phys. B718, 113 (2005).
[19] K. Choi, K. S. Jeong, and K.-i. Okumura, J. High Energy

Phys. 09 (2005) 039.
[20] V. Balasubramanian, P. Berglund, J. P. Conlon, and F.

Quevedo, J. High Energy Phys. 03 (2005) 007.
[21] M. Cicoli, J. P. Conlon, and F. Quevedo, J. High Energy

Phys. 10 (2008) 105.
[22] J. P. Conlon, C. H. Kom, K. Suruliz, B. C. Allanach, and

F. Quevedo, J. High Energy Phys. 08 (2007) 061.
[23] R. Kallosh and A. D. Linde, J. High Energy Phys. 02 (2007)

002.
[24] O. Lebedev, H. P. Nilles, and M. Ratz, Phys. Lett. B 636,

126 (2006).
[25] V. Lowen and H. P. Nilles, Phys. Rev. D 77, 106007 (2008).
[26] S. Krippendorf, H. P. Nilles, M. Ratz, and M.W. Winkler,

Phys. Lett. B 712, 87 (2012).
[27] L. L. Everett, I. W. Kim, P. Ouyang, and K. M. Zurek, Phys.

Rev. Lett. 101, 101803 (2008).
[28] L. L. Everett, I. W. Kim, P. Ouyang, and K. M. Zurek,

J. High Energy Phys. 08 (2008) 102.
[29] S. B. Giddings, S. Kachru, and J. Polchinski, Phys. Rev. D

66, 106006 (2002).
[30] P. Binetruy, G. Girardi, and R. Grimm, Phys. Rep. 343, 255

(2001).
[31] A. Achucarro, B. de Carlos, J. A. Casas, and L. Doplicher,

J. High Energy Phys. 06 (2006) 014.

[32] K. Choi and K. S. Jeong, J. High Energy Phys. 08 (2006)
007.

[33] E. Dudas and Y. Mambrini, J. High Energy Phys. 10 (2006)
044.

[34] E. Dudas, C. Papineau, and S. Pokorski, J. High Energy
Phys. 02 (2007) 028.

[35] H. Abe, T. Higaki, T. Kobayashi, and Y. Omura, Phys. Rev.
D 75, 025019 (2007).

[36] B. Altunkaynak, P. Grajek, M. Holmes, G. Kane, and B. D.
Nelson, J. High Energy Phys. 04 (2009) 114.

[37] A. Falkowski, O. Lebedev, and Y. Mambrini, J. High Energy
Phys. 11 (2005) 034.

[38] M. K. Gaillard, B. D. Nelson, and Y. Y. Wu, Phys. Lett. B
459, 549 (1999).

[39] J. A. Bagger, T. Moroi, and E. Poppitz, J. High Energy Phys.
04 (2000) 009.

[40] D. Lust, P. Mayr, R. Richter, and S. Stieberger, Nucl. Phys.
B696, 205 (2004).

[41] D. Lust, S. Reffert, and S. Stieberger, Nucl. Phys. B706, 3
(2005).

[42] D. Lust, S. Reffert, and S. Stieberger, Nucl. Phys. B727, 264
(2005).

[43] P. Binetruy, M. K. Gaillard, and B. D. Nelson, Nucl. Phys.
B604, 32 (2001).

[44] H. Baer, E.-K. Park, X. Tata, and T. T. Wang, J. High Energy
Phys. 08 (2006) 041.

[45] H. Baer, E.-K. Park, X. Tata, and T. T. Wang, Phys. Lett. B
641, 447 (2006).

[46] L. E. Ibanez, Phys. Rev. D 71, 055005 (2005).
[47] F. Marchesano and G. Shiu, Phys. Rev. D 71, 011701

(2005).
[48] F. Marchesano and G. Shiu, J. High Energy Phys. 11 (2004)

041.
[49] H. Baer, E.-K. Park, X. Tata, and T. T. Wang, J. High Energy

Phys. 06 (2007) 033.
[50] B. C. Allanach, Comput. Phys. Commun. 143, 305 (2002).
[51] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov,

Comput. Phys. Commun. 149, 103 (2002).
[52] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov,

Comput. Phys. Commun. 174, 577 (2006).
[53] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 110,

021801 (2013).
[54] C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G.

Hinshaw, N. Odegard, K. M. Smith, R. S. Hill et al.,
Astrophys. J. Suppl. Ser. 208, 20 (2013).

[55] P. A. R. Ade et al. (Planck Collaboration), arXiv:1303.5076.
[56] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B

716, 30 (2012); Phys. Rev. Lett. 110, 081803 (2013).
[57] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1

(2012); ATLAS Report No. ATLAS-CONF-2013-024.
[58] ATLAS Collaboration, ATLAS Report No. ATLAS-CONF-

2013-014.
[59] S. Chatrchyan et al. (CMS Collaboration), J. High Energy

Phys. 06 (2013) 081.
[60] M. S. Carena, S. Heinemeyer, C. E. M. Wagner, and G.

Weiglein, Eur. Phys. J. C 26, 601 (2003).
[61] B. C. Allanach and M. A. Parker, J. High Energy Phys. 02

(2013) 064.
[62] N. Arkani-Hamed, A. Delgado, and G. F. Giudice, Nucl.

Phys. B741, 108 (2006).

MIRAGE MODELS CONFRONT THE … PHYSICAL REVIEW D 89, 085029 (2014)

085029-29

http://arXiv.org/abs/hep-ph/9901246
http://arXiv.org/abs/hep-ph/9901246
http://dx.doi.org/10.1016/S0370-2693(98)00919-8
http://dx.doi.org/10.1103/PhysRevD.70.095006
http://dx.doi.org/10.1088/1126-6708/2006/08/070
http://dx.doi.org/10.1088/1126-6708/2009/02/023
http://dx.doi.org/10.1103/PhysRevD.81.095012
http://dx.doi.org/10.1103/PhysRevLett.49.970
http://dx.doi.org/10.1103/PhysRevLett.49.970
http://dx.doi.org/10.1016/0550-3213(83)90145-1
http://dx.doi.org/10.1103/PhysRevD.27.2359
http://dx.doi.org/10.1088/1126-6708/2007/04/006
http://dx.doi.org/10.1088/1126-6708/2007/04/006
http://dx.doi.org/10.1103/PhysRevD.88.025003
http://dx.doi.org/10.1103/PhysRevD.88.025003
http://dx.doi.org/10.1142/S0217751X07036439
http://dx.doi.org/10.1142/S0217751X07036439
http://dx.doi.org/10.1016/S0550-3213(96)90125-X
http://dx.doi.org/10.1016/S0550-3213(96)90125-X
http://dx.doi.org/10.1016/S0550-3213(97)00162-4
http://dx.doi.org/10.1016/S0550-3213(97)00162-4
http://dx.doi.org/10.1016/0370-2693(96)00821-0
http://dx.doi.org/10.1103/PhysRevD.68.046005
http://dx.doi.org/10.1103/PhysRevD.68.046005
http://dx.doi.org/10.1088/1126-6708/2000/08/052
http://dx.doi.org/10.1088/1126-6708/2000/08/052
http://dx.doi.org/10.1016/S0550-3213(99)00359-4
http://dx.doi.org/10.1088/1126-6708/2004/11/076
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.032
http://dx.doi.org/10.1088/1126-6708/2005/09/039
http://dx.doi.org/10.1088/1126-6708/2005/09/039
http://dx.doi.org/10.1088/1126-6708/2005/03/007
http://dx.doi.org/10.1088/1126-6708/2008/10/105
http://dx.doi.org/10.1088/1126-6708/2008/10/105
http://dx.doi.org/10.1088/1126-6708/2007/08/061
http://dx.doi.org/10.1088/1126-6708/2007/02/002
http://dx.doi.org/10.1088/1126-6708/2007/02/002
http://dx.doi.org/10.1016/j.physletb.2006.03.046
http://dx.doi.org/10.1016/j.physletb.2006.03.046
http://dx.doi.org/10.1103/PhysRevD.77.106007
http://dx.doi.org/10.1016/j.physletb.2012.04.043
http://dx.doi.org/10.1103/PhysRevLett.101.101803
http://dx.doi.org/10.1103/PhysRevLett.101.101803
http://dx.doi.org/10.1088/1126-6708/2008/08/102
http://dx.doi.org/10.1103/PhysRevD.66.106006
http://dx.doi.org/10.1103/PhysRevD.66.106006
http://dx.doi.org/10.1016/S0370-1573(00)00085-5
http://dx.doi.org/10.1016/S0370-1573(00)00085-5
http://dx.doi.org/10.1088/1126-6708/2006/06/014
http://dx.doi.org/10.1088/1126-6708/2006/08/007
http://dx.doi.org/10.1088/1126-6708/2006/08/007
http://dx.doi.org/10.1088/1126-6708/2006/10/044
http://dx.doi.org/10.1088/1126-6708/2006/10/044
http://dx.doi.org/10.1088/1126-6708/2007/02/028
http://dx.doi.org/10.1088/1126-6708/2007/02/028
http://dx.doi.org/10.1103/PhysRevD.75.025019
http://dx.doi.org/10.1103/PhysRevD.75.025019
http://dx.doi.org/10.1088/1126-6708/2009/04/114
http://dx.doi.org/10.1088/1126-6708/2005/11/034
http://dx.doi.org/10.1088/1126-6708/2005/11/034
http://dx.doi.org/10.1016/S0370-2693(99)00727-3
http://dx.doi.org/10.1016/S0370-2693(99)00727-3
http://dx.doi.org/10.1088/1126-6708/2000/04/009
http://dx.doi.org/10.1088/1126-6708/2000/04/009
http://dx.doi.org/10.1016/j.nuclphysb.2004.06.052
http://dx.doi.org/10.1016/j.nuclphysb.2004.06.052
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.030
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.030
http://dx.doi.org/10.1016/j.nuclphysb.2005.08.009
http://dx.doi.org/10.1016/j.nuclphysb.2005.08.009
http://dx.doi.org/10.1016/S0550-3213(00)00759-8
http://dx.doi.org/10.1016/S0550-3213(00)00759-8
http://dx.doi.org/10.1088/1126-6708/2006/08/041
http://dx.doi.org/10.1088/1126-6708/2006/08/041
http://dx.doi.org/10.1016/j.physletb.2006.08.075
http://dx.doi.org/10.1016/j.physletb.2006.08.075
http://dx.doi.org/10.1103/PhysRevD.71.055005
http://dx.doi.org/10.1103/PhysRevD.71.011701
http://dx.doi.org/10.1103/PhysRevD.71.011701
http://dx.doi.org/10.1088/1126-6708/2004/11/041
http://dx.doi.org/10.1088/1126-6708/2004/11/041
http://dx.doi.org/10.1088/1126-6708/2007/06/033
http://dx.doi.org/10.1088/1126-6708/2007/06/033
http://dx.doi.org/10.1016/S0010-4655(01)00460-X
http://dx.doi.org/10.1016/S0010-4655(02)00596-9
http://dx.doi.org/10.1016/j.cpc.2005.12.005
http://dx.doi.org/10.1103/PhysRevLett.110.021801
http://dx.doi.org/10.1103/PhysRevLett.110.021801
http://dx.doi.org/10.1088/0067-0049/208/2/20
http://arXiv.org/abs/1303.5076
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1103/PhysRevLett.110.081803
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1007/JHEP06(2013)081
http://dx.doi.org/10.1007/JHEP06(2013)081
http://dx.doi.org/10.1140/epjc/s2002-01084-3
http://dx.doi.org/10.1007/JHEP02(2013)064
http://dx.doi.org/10.1007/JHEP02(2013)064
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.010
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.010


[63] H. Baer, A. Mustafayev, E.-K. Park, and X. Tata, J. Cosmol.
Astropart. Phys. 01 (2007) 017.

[64] E. Aprile et al. (XENON100 Collaboration), Astropart.
Phys. 35, 573 (2012).

[65] D. S. Akerib et al. (LUX Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A 704, 111 (2013).

[66] E. Aprile et al. (XENON100 Collaboration), Phys. Rev.
Lett. 109, 181301 (2012).

[67] D. S. Akerib et al. (LUX Collaboration), Phys. Rev. Lett.
112, 091303 (2014).

[68] T. Sjostrand, S. Mrenna, and P. Z. Skands, J. High Energy
Phys. 05 (2006) 026.

[69] J. Conway et al., http://physics.ucdavis.edu/~conway/
research/software/pgs/pgs4‑general.htm.

[70] ATLAS Collaboration, ATLAS Report No. ATLAS-CONF-
2012-104.

[71] ATLAS Collaboration, ATLAS Report No. ATLAS-CONF-
2012-105.

[72] ATLAS Collaboration, ATLAS Report No. ATLAS-CONF-
2013-028.

[73] K. Cheung, C.-W. Chiang, and J. Song, J. High Energy
Phys. 04 (2006) 047.

[74] H. Baer, V. Barger, and P. Huang, J. High Energy Phys. 11
(2011) 031.

[75] T. Han, S. Padhi, and S. Su, Phys. Rev. D 88, 115010
(2013).

[76] ATLAS Collaboration, ATLAS Report No. ATLAS-CONF-
2013-047.

[77] ATLAS Collaboration, ATLAS Report No. ATLAS-CONF-
2013-024.

[78] ATLAS Collaboration, ATLAS Report No. ATLAS-CONF-
2013-068.

[79] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys.
10 (2013) 189.

[80] B. Altunkaynak, M. Holmes, P. Nath, B. D. Nelson, and
G. Peim, Phys. Rev. D 82, 115001 (2010).

[81] H. Baer, V. Barger, A. Lessa, and X. Tata, Phys. Rev. D 86,
117701 (2012).

[82] S. Jung and J. D. Wells, Phys. Rev. D 89, 075004
(2014).

[83] P. Bechtle, K. Desch, W. Porod, and P. Wienemann, Eur.
Phys. J. C 46, 533 (2006).

[84] G. A. Blair, A. Freitas, H.-U. Martyn, G. Polesello,
W. Porod, and P. M. Zerwas, Acta Phys. Pol. B 36, 3445
(2005).

[85] K. Desch, J. Kalinowski, G. Moortgat-Pick, K. Rolbiecki,
and W. J. Stirling, J. High Energy Phys. 12 (2006) 007.

[86] G. A. Blair, W. Porod, and P. M. Zerwas, Phys. Rev. D 63,
017703 (2000).

[87] B. Altunkaynak, B. D. Nelson, L. L. Everett, I.-W. Kim, and
Y. Rao, J. High Energy Phys. 05 (2010) 054.

BRYAN L. KAUFMAN AND BRENT D. NELSON PHYSICAL REVIEW D 89, 085029 (2014)

085029-30

http://dx.doi.org/10.1088/1475-7516/2007/01/017
http://dx.doi.org/10.1088/1475-7516/2007/01/017
http://dx.doi.org/10.1016/j.astropartphys.2012.01.003
http://dx.doi.org/10.1016/j.astropartphys.2012.01.003
http://dx.doi.org/10.1016/j.nima.2012.11.135
http://dx.doi.org/10.1016/j.nima.2012.11.135
http://dx.doi.org/10.1103/PhysRevLett.109.181301
http://dx.doi.org/10.1103/PhysRevLett.109.181301
http://dx.doi.org/10.1103/PhysRevLett.112.091303
http://dx.doi.org/10.1103/PhysRevLett.112.091303
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/http://physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm
http://dx.doi.org/http://physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm
http://dx.doi.org/http://physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm
http://dx.doi.org/http://physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm
http://dx.doi.org/http://physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm
http://dx.doi.org/10.1088/1126-6708/2006/04/047
http://dx.doi.org/10.1088/1126-6708/2006/04/047
http://dx.doi.org/10.1007/JHEP11(2011)031
http://dx.doi.org/10.1007/JHEP11(2011)031
http://dx.doi.org/10.1103/PhysRevD.88.115010
http://dx.doi.org/10.1103/PhysRevD.88.115010
http://dx.doi.org/10.1007/JHEP10(2013)189
http://dx.doi.org/10.1007/JHEP10(2013)189
http://dx.doi.org/10.1103/PhysRevD.82.115001
http://dx.doi.org/10.1103/PhysRevD.86.117701
http://dx.doi.org/10.1103/PhysRevD.86.117701
http://dx.doi.org/10.1103/PhysRevD.89.075004
http://dx.doi.org/10.1103/PhysRevD.89.075004
http://dx.doi.org/10.1140/epjc/s2006-02485-x
http://dx.doi.org/10.1140/epjc/s2006-02485-x
http://dx.doi.org/10.1088/1126-6708/2006/12/007
http://dx.doi.org/10.1103/PhysRevD.63.017703
http://dx.doi.org/10.1103/PhysRevD.63.017703
http://dx.doi.org/10.1007/JHEP05(2010)054

