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I. INTRODUCTION

The simplest way to construct N ¼ 2 locally super-
symmetric systems in three spacetime dimensions (3D) is
perhaps through dimensional reduction from 4D N ¼ 1
theories (see [1–3] for reviews). However, not all 3D
theories with four supercharges can be obtained in this
way. For instance, N ¼ 2 conformal supergravity [4] and
(2,0) anti-de Sitter (AdS) supergravity1 [5] cannot be so
constructed. A more systematic approach to generate 3D
N ¼ 2 supergravity-matter systems is clearly desirable.
Matter couplings in three-dimensional N ¼ 2 super-

gravity were thoroughly studied in the 1990s using on-
shell component approaches [6–8] (see also [9]). More
recently, off-shell formulations for general N ¼ 2 super-
gravity-matter systems have systematically been developed
[10,11] purely within the superspace framework, extending
earlier off-shell constructions [12–14]. One of the main
goals of this paper is to work out techniques to reduce any
manifestlyN ¼ 2 locally supersymmetric theory presented
in [10,11] to components. Upon elimination of the auxiliary
fields, one naturally reproduces the partial component
results obtained earlier in [6–8].
The prepotential formulation for 3D N ¼ 2 conformal

supergravity was constructed in [15]. In principle, this
prepotential solution could be obtained by off-shell

dimensional reduction from 4D N ¼ 1 conformal super-
gravity following the procedure sketched in Sec. 7.2
of Superspace [2]. In practice, however, it is more ad-
vantageous to follow a manifestly covariant approach and
derive the solution from scratch. In this sense the 3D story
is similar to that of N ¼ ð2; 2Þ supergravity in two
dimensions [16,17].
Similarly to N ¼ 1 supergravity in four dimensions

(see [2,3,18,19] for more details), different off-shell for-
mulations for 3D N ¼ 2 Poincaré and AdS supergravity
theories in superspace can be obtained by coupling con-
formal supergravity to different conformal compensators
[10,11]. There are three inequivalent types of conformal
compensator: (i) a chiral scalar; (ii) a real linear scalar; and
(iii) a (deformed) complex linear scalar.
Choosing the chiral compensator leads to the type I

minimal supergravity [11] which is the 3D analogue of
the old minimal formulation for 4D N ¼ 1 supergravity
[20]. As in four dimensions, this formulation can be used
to realize both Poincaré and AdS supergravity theories;
the latter actually describes the so-called (1,1) AdS
supergravity, following the terminology of [5].
Choosing the real linear compensator leads to the type II

minimal supergravity [11] which is a natural extension of
the new minimal formulation for 4D N ¼ 1 supergravity
[21]. Unlike the four-dimensional case, the type II formu-
lation is suitable to realize both Poincaré and AdS super-
gravity theories (the new minimal formulation cannot be
used to describe 4DN ¼ 1AdS supergravity). The point is
that in three dimensions the real linear superfield is the field
strength of an Abelian vector multiplet, and the corre-
sponding Chern-Simons terms may be interpreted as a

1In three dimensions, N -extended AdS supergravity exists in
½N =2� þ 1 different versions [5], with ½N =2� the integer part of
N =2. These were called the ðp; qÞ AdS supergravity theories
where the non-negative integers p ≥ q are such that N ¼ pþ q.
These theories are naturally associated with the 3D AdS super-
groups OSpðpj2;RÞ × OSpðqj2;RÞ.
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cosmological term [14]. Adding such a Chern-Simons term
to the supergravity action results in the action for (2,0) AdS
supergravity.
Finally, choosing the complex linear compensator leads

to the nonminimal supergravity presented in [11]. It is
analogous to the nonminimal formulation for 4D N ¼ 1
supergravity [22,23], the oldest off-shell locally super-
symmetric theory. Both in three and four dimensions, this
formulation exists in several versions labeled by a real
parameter n ≠ −1=3, 0 in the 4D case [23] or, more
conveniently, by w ¼ ð1 − nÞ=ð3nþ 1Þ in the 3D case
[11]. The reason for such a freedom is that the super-Weyl
transformation of the complex linear compensator is not
fixed uniquely [10]. With the standard constraint

ðD̄2 − 4RÞΣ ¼ 0 (1.1)

obeyed by the complex linear compensator Σ, the 4D N ¼
1 nonminimal formulation is only suitable, for any value of
n, to describe Poincaré supergravity [2]. The situation in the
3D case is completely similar [11]. However, it was shown
in [24] that n ¼ −1 nonminimal supergravity can be used
to describe 4D N ¼ 1 AdS supergravity provided the
constraint (1.1) is replaced with a deformed one,2

ðD̄2 − 4RÞΓ ¼ −4μ ≠ 0; μ ¼ const: (1.2)

Applying the same ideas in the 3D case gives us the
nonminimal formulation for (1,1) AdS supergravity [11].
All supergravity-matter actions introduced in [10,11] are

realized as integrals over the full superspace or over its
chiral subspace. The most economical way to reduce such
an action to components consists in recasting it as an
integral of a closed super three-form over spacetime (that is,
the bosonic body of the full superspace), in the spirit of the
superform approach3 to the construction of supersymmetric
invariants [25–28]. The required superform construction is
given in Sec. III.
In this paper, we work out the component supergravity-

matter actions in the cases of type I and type II minimal
supergravity formulations.4 The case of nonminimal super-
gravity can be treated in a similar way. As an application,
we describe off-shell models for topologically massive
N ¼ 2 supergravity5 which correspond to all the known
off-shell formulations for three-dimensional N ¼ 2 super-
gravity. However, the component actions for topologically

massive supergravity are given only for the type I and type
II minimal formulations.
Recently, supersymmetric backgrounds in the type II

supergravity have been studied within the component
approach, both in the Euclidean [34] and Lorentzian
[35] signatures, building on the earlier results in four
and five dimensions; see [36–49] and references therein.
Since the authors of [34,35] did not have access to the
complete off-shell component actions for type II super-
gravity and its matter couplings, their analysis was based
either on the considerations of linearized supergravity [34]
or on the dimensional reduction 4D → 3D of the new
minimal supergravity [35]. Here we present a universal
setting to construct supersymmetric backgrounds associ-
ated with all the known off-shell formulations for 3D
N ¼ 2 supergravity, that is the type I and type II minimal
and the nonminimal supergravity theories.6 Our approach
will be an extension of the 4D N ¼ 1 formalism to
determine (conformal) isometries of curved superspaces
which was originally developed almost 20 years ago in [3]
and further elaborated in [51].7

This paper is organized as follows. In Sec. II we review
the superspace formulation for the Weyl multiplet of
N ¼ 2 conformal supergravity, following [10,11,14].8 In
Sec. III we present the locally supersymmetric and super-
Weyl invariant action principle which is based on a closed
super three-form. The formalism for component reduction,
including the important Weyl multiplet gauge, is worked
out in Sec. IV. The component actions for type I and type II
supergravity-matter systems are derived in Secs. V and VI
respectively. In Sec. VII we study the off-shell formulations
for topologically massiveN ¼ 2 supergravity. Section VIII
is devoted to the construction of supersymmetric back-
grounds in all the known off-shell formulations for N ¼ 2
supergravity.
The main body of the paper is accompanied by four

appendixes. In Appendix A we give a summary of the
notation and conventions used as well as include some
technical relations. In Appendix B we give an alternative
form for the component action of the most general off-shell
nonlinear σ-model in type I supergravity. Appendix C
contains the component Lagrangian for the model of an
Abelian vector multiplet in conformal supergravity.
Appendix D is devoted to the superspace action for
N ¼ 2 conformal supergravity; at the component level,

2The constraint (1.2) is super-Weyl invariant if and only if
n ¼ −1.

3It is also known as the rheonomic approach [25] or the
ectoplasm formalism [26,27].

4Various aspects of the component reduction in 4D N ¼ 1
supergravity theories were studied in the late 1970s [23,29–31].
More complete presentations were given in the textbooks [1–3].

5Topologically massiveN ¼ 1 supergravity was introduced in
[32,33]. Its N ¼ 2 extended version was discussed in [4].

6After our work was completed, there appeared a new paper in
the hep-th archive [50] which also studied supersymmetric
backgrounds in type I supergravity.

7This approach has been used to construct rigid supersym-
metric field theories in 5D N ¼ 1 [52], 4D N ¼ 2 [53,54], and
3D ðp; qÞ anti-de Sitter [11,55,56] superspaces.

8There exists a more general off-shell formulation for N ¼ 2
conformal supergravity [57]. It will be briefly reviewed in
Appendix D.
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this action reduces to that constructed many years ago by
Roček and van Nieuwenhuizen [4].

II. THE WEYL MULTIPLET IN U(1) SUPERSPACE

In this section we recall the superspace description of
N ¼ 2 conformal supergravity. The results given here are
essential for the rest of the paper.

A. U(1) superspace geometry

We consider a curved superspace in three spacetime
dimensions, M3j4, parametrized by local bosonic (xm) and
fermionic ðθμ; θ̄μÞ coordinates zM ¼ ðxm; θμ; θ̄μÞ, where
m ¼ 0, 1, 2 and μ ¼ 1; 2. The Grassmann variables θμ

and θ̄μ are related to each other by complex conjugation:
θμ ¼ θ̄μ. The superspace structure group is chosen to be
SLð2;RÞ × Uð1ÞR, and the covariant derivatives DA ¼
ðDa;Dα; D̄αÞ have the form

DA ¼ EA þΩA þ iΦAJ : (2.1)

Here EA ¼ ðEa; Eα; ĒαÞ ¼ EA
MðzÞ∂=∂zM is the inverse

superspace vielbein,

ΩA ¼ 1

2
ΩA

bcMbc ¼
1

2
ΩA

βγMβγ ¼ −ΩA
cMc (2.2)

is the Lorentz connection, and ΦA is the Uð1ÞR connection.
The Lorentz generators with two vector indices
(Mab ¼ −Mba), one vector index (Ma), and two spinor
indices (Mαβ ¼ Mβα) are related to each other as follows:

Ma ¼
1

2
εabcMbc; Mab ¼ −εabcMc;

Mαβ ¼ ðγaÞαβMa; Ma ¼ −
1

2
ðγaÞαβMαβ:

The Levi-Civita tensor εabc and the gamma matrices ðγaÞαβ
are defined in Appendix A. The generators of SLð2;RÞ ×
Uð1ÞR act on the covariant derivatives as follows:

½J ;Dα� ¼ Dα; ½J ; D̄α� ¼ −D̄α; ½J ;Da� ¼ 0;

½Mαβ;Dγ� ¼ εγðαDβÞ; ½Mαβ; D̄γ� ¼ εγðαD̄βÞ;

½Mab;Dc� ¼ 2ηc½aDb�: (2.3)

The supergravity gauge group includes local K trans-
formations of the form

δKDA ¼ ½K;DA�; K ¼ ξCDC þ 1

2
KcdMcd þ iτJ ;

(2.4)

where the gauge parameters obey natural reality conditions,
but are otherwise arbitrary. Given a tensor superfield UðzÞ,
with its indices suppressed, it transforms as follows:

δKU ¼ KU: (2.5)

The covariant derivatives obey (anti-)commutation rela-
tions of the form

½DA;DBg ¼ TAB
CDC þ 1

2
RAB

cdMcd þ iRABJ ; (2.6)

where TAB
C is the torsion, and RAB

cd and RAB constitute the
curvature tensors.
Unlike the 4D case, the spinor covariant derivatives Dα

and D̄α transform in the same representation of the Lorentz
group, and this may lead to misunderstandings. If there is a
risk for confusion, we will underline the spinor indices
associated with the covariant derivatives D̄. For instance,
when the index C of the torsion TAB

C takes spinor values,
we will write the corresponding components as TAB

γ

and TABγ
¯

.
In order to describe N ¼ 2 conformal supergravity, the

torsion has to obey the covariant constraints given in [14].
The resulting algebra of covariant derivatives is [10,11]

fDα;Dβg ¼ −4R̄Mαβ; fD̄α; D̄βg ¼ 4RMαβ; (2.7a)

fDα; D̄βg ¼ −2iðγcÞαβDc − 2CαβJ − 4iεαβSJ þ 4iSMαβ − 2εαβCγδMγδ; (2.7b)

½Da;Dβ� ¼ iεabcðγbÞβγCcDγ þ ðγaÞβγSDγ − iðγaÞβγR̄D̄γ − ðγaÞβγCγδρMδρ −
1

3
ð2DβS þ iD̄βR̄ÞMa

−
2

3
εabcðγbÞβαð2DαS þ iD̄αR̄ÞMc −

1

2

�
ðγaÞαγCαβγ þ

1

3
ðγaÞβγð8DγS þ iD̄γR̄Þ

�
J ; (2.7c)

½Da; D̄β� ¼ −iεabcðγbÞβγCcD̄γ þ ðγaÞβγSD̄γ − iðγaÞβγRDγ − ðγaÞβγC̄γδρMδρ −
1

3
ð2D̄βS − iDβRÞMa

−
2

3
εabcðγbÞβαð2D̄αS − iDαRÞMc þ 1

2

�
ðγaÞαγC̄αβγ þ

1

3
ðγaÞβγð8D̄γS − iDγRÞ

�
J ; (2.7d)
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½Da;Db�¼
1

2
εabcðγcÞαβεγδ

�
−iC̄αβδþ

4i
3
εδðαD̄βÞSþ2

3
εδðαDβÞR

�
Dγþ

1

2
εabcðγcÞαβεγδ

�
−iCαβδþ

4i
3
εδðαDβÞS−

2

3
εδðαD̄βÞR̄

�
D̄γ

−εabc

�
1

4
ðγcÞαβðγdÞτδðiDðτC̄δαβÞ þ iD̄ðτCδαβÞÞþ

1

6
ðD2RþD̄2R̄Þþ2

3
iDαD̄αS−4CcCd−4S2−4R̄R

�
Md

þ iεabc

�
1

2
ðγcÞαβ½Dα;D̄β�S−εcefDeCf−4SCc

�
J ; (2.7e)

with Cαβγ defined by Cαβγ ¼ −iDðαCβγÞ. The algebra
involves three dimension-1 torsion superfields: a real scalar
S, a complex scalar R and its conjugate R̄, and a real vector
Ca; the Uð1ÞR charge of R is −2. The torsion superfields
obey differential constraints implied by the Bianchi iden-
tities. The constraints are

D̄αR ¼ 0; (2.8a)

ðD̄2 − 4RÞS ¼ 0; (2.8b)

DαCβγ ¼ iCαβγ −
1

3
εαðβðD̄γÞR̄þ 4iDγÞSÞ: (2.8c)

Equation (2.8b) means that S is a covariantly linear
superfield. When doing explicit calculations, it is useful
to deal with equivalent forms of the relations (2.7c) and
(2.7d) in which the vector index of Da is replaced by a pair
of spinor indices. Such identities are given in Appendix A.
As an immediate application of the (anti-)commutation

relations (2.7), we compute a covariantly chiral
d’Alembertian. Let χ be a covariantly chiral scalar,
D̄αχ ¼ 0, of Uð1ÞR charge −w, that is J χ ¼ −wχ.9 The
covariantly chiral d’Alembertian □c is defined by

□cχ ≔
1

16
ðD̄2 − 4RÞD2χ: (2.9)

By construction, the scalar□cχ is covariantly chiral and has
Uð1ÞR charge −w. It is an instructive exercise to evaluate
the explicit form of □cχ using the chirality of χ and the
relations (2.7). The result is

□cχ ¼
�
DaDa þ

1

2
RD2 − 2ið1 − wÞCaDa þ

1

2
ðDαRÞDα

þ 2ið1 − wÞðD̄αSÞDα þ wð2 − wÞðCaCa þ 4S2Þ

− wiDαD̄αS þ w
8
ðD̄2R̄ −D2RÞ

�
χ: (2.10)

This relation turns out to be useful for the component
reduction of locally supersymmetric sigma models to be
discussed later on.

B. Super-Weyl invariance

The algebra of covariant derivatives (2.7) does not
change under a super-Weyl transformation10 of the covar-
iant derivatives [10,11]

D0
α ¼ e

1
2
σðDα þ ðDγσÞMγα − ðDασÞJ Þ; (2.11a)

D̄0
α ¼ e

1
2
σðD̄α þ ðD̄γσÞMγα þ ðD̄ασÞJ Þ; (2.11b)

D0
a ¼ eσ

�
Da −

i
2
ðγaÞγδðDðγσÞD̄δÞ −

i
2
ðγaÞγδðD̄ðγσÞDδÞ

þ εabcðDbσÞMc þ i
2
ðDγσÞðD̄γσÞMa

−
i
8
ðγaÞγδð½Dγ; D̄δ�σÞJ −

3i
4
ðγaÞγδðDγσÞðD̄δσÞJ

�
(2.11c)

accompanied by the following transformation of the torsion
tensors:

S0 ¼ eσ
�
S −

i
4
DγD̄γσ

�
; (2.11d)

C0a ¼ eσ
�
Ca þ

1

8
ðγaÞγδ½Dγ; D̄δ�σ þ 1

4
ðγaÞγδðDγσÞD̄δσ

�
;

(2.11e)

R0 ¼ eσ
�
Rþ 1

4
D̄2σ −

1

4
ðD̄γσÞD̄γσ

�
: (2.11f)

The gauge group of conformal supergravity is defined to be
generated by theK transformation (2.4) and the super-Weyl
transformations. The super-Weyl invariance is the reason
why the U(1) superspace geometry describes the Weyl
multiplet.
Using the above super-Weyl transformation laws, it is an

instructive exercise to demonstrate that the real symmetric
spinor superfield [15]

9The rationale for choosing the Uð1ÞR charge of χ to be
negative is Eq. (2.15).

10The super-Weyl transformation (2.11) is uniquely fixed if
one (i) postulates that the components of the inverse vielbein EA
transform as E0

α ¼ e
1
2
σEα and E0

a ¼ eσEa þ spinor terms; and
(ii) requires that the transformed covariant derivatives preserve
the constraints [14] leading to the algebra (2.7).
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Wαβ ≔
i
2
½Dγ; D̄γ�Cαβ − ½Dðα; D̄βÞ�S − 4SCαβ (2.12)

transforms homogeneously,

W 0
αβ ¼ e2σWαβ: (2.13)

This superfield is the N ¼ 2 supersymmetric generaliza-
tion of the Cotton tensor. Using the Bianchi identities, one
can obtain an equivalent expression for this super Cotton
tensor:

Wa ¼ −
1

2
ðγaÞαβWαβ

¼ −
1

2
ðγaÞαβ½Dðα; D̄βÞ�S þ 2εabcDbCc þ 4SCa: (2.14)

An application of this relation will be given in Appendix D.
A curved superspace is conformally flat if and only if
Wαβ ¼ 0; see [57] for the proof.
For our subsequent consideration, it is important to recall

one of the results obtained in [10]. Let χ be a covariantly
chiral scalar, D̄αχ ¼ 0, which is primary under the super-
Weyl group, δσχ ¼ wσχ. Then its super-Weyl weight w and
its Uð1ÞR charge are equal and opposite [10],

D̄αχ ¼ 0; J χ ¼ −wχ; χ0 ¼ ewσχ: (2.15)

Unlike χ itself, its chiral d’Alembertian □cχ, Eq. (2.10), is
not a primary superfield under the super-Weyl group.
In what follows, we often consider the infinitesimal

super-Weyl transformation and denote the corresponding
variation by δσ.

III. SUPERSYMMETRIC AND SUPER-WEYL
INVARIANT ACTION

There are two (closely related) locally supersymmetric
and super-Weyl invariant actions in N ¼ 2 supergravity
[10]. Given a real scalar Lagrangian L ¼ L̄ with the super-
Weyl transformation law

δσL ¼ σL; (3.1)

the action

S ¼
Z

d3xd2θd2θ̄EL; E−1 ¼ BerðEA
MÞ; (3.2)

is invariant under the supergravity gauge group. It is also
super-Weyl invariant due to the transformation law

δσE ¼ −σE: (3.3)

Given a covariantly chiral scalar Lagrangian Lc of super-
Weyl weight two,

D̄αLc ¼ 0; JLc ¼ −2Lc; δσLc ¼ 2σLc; (3.4)

the following chiral action

Sc ¼
Z

d3xd2θd2θ̄E
Lc

R
¼
Z

d3xd2θELc (3.5)

is locally supersymmetric and super-Weyl invariant. The
first representation in (3.5), which is only valid when
R ≠ 0, is analogous to that derived by Zumino [29] in 4D
N ¼ 1 supergravity. The second representation in (3.5)
involves integration over the chiral subspace of the full
superspace, with E the chiral density possessing the
properties

JE ¼ 2E; δσE ¼ −2σE: (3.6)

The explicit expression for E in terms of the supergravity
prepotentials is given in [15]. Complex conjugating
(3.5) gives the action S̄c generated by the antichiral
Lagrangian L̄c.
The two actions, (3.2) and (3.5), are related to each other

as follows:

Z
d3xd2θd2θ̄EL ¼

Z
d3xd2θELc;

Lc ≔ −
1

4
ðD̄2 − 4RÞL: (3.7)

This relation shows that the chiral action, or its conjugate
antichiral action, is more fundamental than (3.2).
The chiral action can be reduced to component

fields by making use of the prepotential formulation
for N ¼ 2 conformal supergravity [15] and following
the component reduction procedure developed in [3] for
N ¼ 1 supergravity in four dimensions. Being concep-
tually straightforward, however, this procedure is tech-
nically rather tedious and time consuming. A simpler
way to reduce Sc to components consists in making use
of the superform approach to the construction of super-
symmetric invariants [25–28]. In conjunction with the
requirement of super-Weyl invariance, the latter
approach turns out to be extremely powerful. As a
matter of taste, here we prefer to deal with S̄c, because it
turns out that the corresponding closed three-form
involves no one-forms Ēα.
The super-Weyl transformation laws of the components

of the superspace vielbein

EA ≔ dzMEM
A ¼ ðEa; Eα; ĒαÞ; (3.8)

are

δσEa ¼ −σEa; (3.9a)
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δσEα ¼ −
1

2
σEα þ i

2
EbðγbÞαγD̄γσ;

δσĒα ¼ −
1

2
σĒα þ

i
2
EbðγbÞαγDγσ: (3.9b)

We are looking for a dimensionless three-form,
ΞðL̄cÞ ¼ 1

6
EC∧EB∧EAΞABC, such that (i) its components

ΞABC are linear functions of L̄c and covariant derivatives
thereof; and (ii) ΞðL̄cÞ is super-Weyl invariant,
δσΞðL̄cÞ ¼ 0. Modulo an overall numerical factor, such
a form is uniquely determined to be

ΞðL̄cÞ ¼
1

2
Eγ∧Eβ∧EaΞaβγ þ

1

2
Eγ∧Eb∧EaΞabγ

þ 1

6
Ec∧Eb∧EaΞabc; (3.10)

where

Ξaβγ ¼ 4ðγaÞβγL̄c; (3.11a)

Ξabγ ¼ −iεabdðγdÞγδD̄δL̄c; (3.11b)

Ξabc ¼
1

4
εabcðD̄2 − 16RÞL̄c: (3.11c)

It is easy to check that this three-form is closed,

dΞðL̄cÞ ¼ 0; (3.12)

and therefore ΞðL̄cÞ generates a locally supersymmetric
action.
The locally supersymmetric and super-Weyl invariant

action associated with ΞðL̄cÞ is

S̄c ¼ −
Z

d3xe
�
1

4
D̄2 − 4R −

i
2
ðγaÞγρψa

γD̄ρ

þ 1

2
εabcðγaÞβγψb

βψc
γ

�
L̄cj; (3.13)

with e ≔ detðemaÞ. Here we have used definitions intro-
duced in the next section.

IV. COMPONENT REDUCTION

In this section we develop a simple universal setup to
carry out the component reduction of the general N ¼ 2
supergravity-matter systems presented in [10,11]. Our
consideration below is very similar to that given in standard
textbooks on four-dimensional N ¼ 1 supergravity [2,3].
Given a superfieldUðzÞwe define its bar projectionUj to

be the θ, θ̄-independent term in the expansion of Uðx; θ; θ̄Þ
in powers of θ’s and θ̄’s,

Uj ≔ Uðx; θ; θ̄Þjθ¼θ̄¼0: (4.1)

Thus Uj is a field on the spacetime M3 which is the
bosonic body of the curved superspace M3j4.
In a similar way we define the bar projection of the

covariant derivatives:

DAj ≔ EA
Mj∂M þ 1

2
ΩA

bcjMbc þ iΦAjJ : (4.2)

More generally, given a differential operator
Ô ≔ DA1

…DAn
, we define its bar projection, Ôj, by the

rule ðÔjUÞj ≔ ðDA1
…DAn

UÞj, for any tensor superfield U.
Of special importance is the bar projection of a vector

covariant derivative,11

Daj ¼ Da −
1

2
ψa

γDγj −
1

2
ψ̄aγD̄γj; (4.3)

where

Da ¼ ea þ
1

2
ωa

bcMbc þ ibaJ ; ea ≔ eam∂m (4.4)

is a spacetime covariant derivative with Lorentz and Uð1ÞR
connections. For some calculations, it will be useful to
work with a spacetime covariant derivative without Uð1ÞR
connection, Da, defined by

Da ¼ Da − ibaJ : (4.5)

A. The Wess-Zumino and normal gauges

The freedom to perform general coordinate and local
Lorentz transformations can be used to choose a Wess-
Zumino (WZ) gauge of the form

Dαj ¼ δα
μ ∂
∂θμ ; D̄αj ¼ δαμ

∂
∂θ̄μ : (4.6)

In this gauge, it is easy to see that

Ea
mj ¼ eam; Ea

μj ¼ −
1

2
ψa

γδγ
μ; Ēaμj ¼ −

1

2
ψ̄aγδ

γ
μ;

(4.7a)

Ωa
bcj ¼ ωa

bc; Φaj ¼ ba: (4.7b)

The gauge condition (4.6) will be used in what follows.
In the WZ gauge, we still have a tail of component fields

which originates at higher orders in the θ, θ̄ expansion of
EA

M, ΩA
bc and ΦA and which are pure gauge (that is, they

may be completely gauged away). Away to get rid of such

11The definition of the gravitino agrees with that used in the 4D
case in [1].
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a tail of redundant fields is to impose a normal gauge
around the bosonic body M3 of the curved superspace
M3j4; see [58] for more details. This gauge is defined by
the conditions

ΘMEM
Aðx;ΘÞ ¼ ΘMδM

A; (4.8a)

ΘMΩM
cdðx;ΘÞ ¼ 0; (4.8b)

ΘMΦMðx;ΘÞ ¼ 0; (4.8c)

where we have introduced

ΘM ≡ ðΘm;Θμ; Θ̄μÞ ≔ ð0; θμ; θ̄μÞ: (4.9)

In (4.8) the connections with world indices are defined in
the standard way: ΩM

cd ¼ EM
AΩA

cd and ΦM ¼ EM
AΦA. It

can be proved [58] that the normal gauge conditions (4.8)
allow one to reconstruct the vielbein EM

Aðx;ΘÞ and the
connections ΩM

cdðx;ΘÞ and ΦMðx;ΘÞ as Taylor series in
Θ, in which all the coefficients [except the leading
Θ-independent terms given by the relations (4.6) and
(4.7)] are tensor functions of the torsion, the curvature
and their covariant derivatives evaluated at Θ ¼ 0.
In principle, there is no need to introduce the normal

gauge which eliminates the tail of superfluous fields. Such
fields (once properly defined) are pure gauge and do not
show up in the gauge-invariant action. This is similar to the
concept of double-bar projection; see e.g. [59].

B. The component field strengths

The spacetime covariant derivatives Da defined by (4.3)
obey commutation relations of the form

½Da;Db� ¼ T ab
cDc þ

1

2
Rab

cdMcd þ iF abJ ; (4.10)

where T ab
c is the torsion,Rab

cd the Lorentz curvature, and
F ab the Uð1ÞR field strength. These tensors can be related

to the superspace geometric objects by bar projecting the
(anti-)commutation relations (2.6). A short calculation
gives the torsion

T ab
c ¼ −

i
2
ðψ̄aγ

cψb − ψ̄bγ
cψaÞ: (4.11)

The Lorentz connection is

ωabc ¼ ωabcðeÞ þ
1

2
½T abc − T bca þ T cab�; (4.12)

where ωabcðeÞ denotes the torsion-free connection,

ωabcðeÞ ¼ −
1

2
½Cabc − Cbca þ Ccab�;

Cabc ≔ ðeaebm − ebeamÞemc: (4.13)

For the gravitino field strength defined by

ψab
γ ≔ Daψb

γ − Dbψa
γ − T ab

cψc
γ (4.14)

we read off

ψab
γ ¼

�
iεabcðγcÞαβC̄αβ

γ −
4i
3
εabcðγcÞγδD̄δS

−
2

3
εabcðγcÞγδDδRþ 2iεcd½aðγcÞγδψb�δC

d

þ 2ðγ½aÞγδψb�δS þ 2iðγ½aÞγδψ̄b�δR
�����: (4.15)

This tells us how the gravitino field strength is embedded in
the superspace curvature and torsion. A longer calculation
is to derive an explicit expression for the Lorentz curvature

Rab
cd ¼ 2e½aωb�cd þ 2ω½acfωb�f

d − Cabfωf
cd: (4.16)

The result is

Rab
cd ¼

�
−

i
4
εabeðγeÞαβεcdfðγfÞτδðDðτC̄δαβÞ þ D̄ðτCδαβÞÞ þ δc½aδ

d
b�

�
1

3
ðD2Rþ D̄2R̄Þ þ 4i

3
DαD̄αS − 8R̄R − 8S2

�

þ 4εabeε
cdfCeCf þ ψ ½aβ

�
ðγb�ÞβγCγδρε

cdeðγeÞδρ þ
1

3
εb�cdð2DβS þ iD̄βR̄Þ −

4

3
δ½cb�ðγd�Þβγð2DγS þ iD̄γR̄Þ

�

þ ψ̄ ½aβ

�
ðγb�ÞβγC̄γδρε

cdeðγeÞδρ þ
1

3
εb�cdð2D̄βS − iDβRÞ − 4

3
δ½cb�ðγd�Þβγð2D̄γS − iDγRÞ

�

þ εcdeðγeÞγδψ ½aγψb�δR̄ − εcdeðγeÞγδψ̄ ½aγψ̄b�δRþ 2iεcdeðγeÞγδψ ½aγψ̄b�δS þ 2ψ ½aγψ̄b�γε
cdeCe

�����: (4.17)
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Finally, for the Uð1ÞR field strength

F ab ¼ Dabb −Dbba − T ab
cbc (4.18)

we obtain

F ab ¼ εabc

�
1

2
ðγcÞαβ½Dα; D̄β�S − εcefDeCf − 4SCc

þ iεcefðγeÞγρψfγDρS þ iεcefðγeÞβγψ̄fβD̄γS
�����

þ iðγcÞγδψ ½aγψ̄b�δC
cj − 2ψ ½aγψ̄b�γSj: (4.19)

It turns out that the expressions for ψab
γ,Rab

cd, and F ab
drastically simplify if we also partially gauge fix the super-
Weyl invariance to choose the so-called Weyl multiplet
gauge that will be introduced in Sec. IV D.

C. Residual gauge transformations

In the WZ gauge, there remains a subset of gauge
transformations which preserve the conditions (4.6). To
work out the structure of this residual gauge freedom, we
start from the transformation laws of the inverse vielbein
EA

M and of the connections ΩA
cd and ΦA under the gauge

group of conformal supergravity.
Under the K transformation (2.4), the gauge fields vary

as follows:

δKEA
M ¼ ξCTCA

BEB
M − ðDAξ

BÞEB
M

þ 1

2
KcdðMcdÞABEB

M þ iτðJ ÞABEB
M; (4.20a)

δKΩA
cd ¼ ξCTCA

BΩB
cdþ ξBRBA

cd− ðDAξ
BÞΩB

cd

þKcdðMcdÞABΩB
cd− ðDAKcdÞþ iτðJ ÞABΩB

cd;

(4.20b)

δKΦA ¼ ξCTCA
BΦB þ ξBRBA − ðDAξ

BÞΦB

þ 1

2
KcdðMcdÞABΦB þ iτðJ ÞABΦB −DAτ:

(4.20c)

Here we have introduced the Lorentz and Uð1ÞR generators
ðMcdÞAB and ðJ ÞAB, respectively, defined by

½Mcd;DA� ¼ ðMcdÞABDB; ½J ;DA� ¼ ðJ ÞABDB:

The super-Weyl transformation (2.11) acts on the gauge
fields as follows:

δσEa
M¼σEa

M−
i
2
ðγaÞγδðDðγσÞĒδÞM−

i
2
ðγaÞγδðD̄ðγσÞEδÞM;

(4.21a)

δσEα
M ¼ 1

2
σEα

M; (4.21b)

δσΩa
bc¼σΩa

bc−
i
2
ðγaÞγδðDðγσÞΩ̄δÞbc−

i
2
ðγaÞγδðD̄ðγσÞΩδÞbc

þ2ðD½bσÞδc�a ; (4.21c)

δσΩα
bc ¼ 1

2
σΩα

bc þ ðDγσÞðγaÞγαεabc; (4.21d)

δσΦa ¼ σΦa −
i
2
ðγaÞγδðDðγσÞΦ̄δÞ −

i
2
ðγaÞγδðD̄ðγσÞΦδÞ

−
1

8
ðγaÞγδ½Dγ; D̄δ�σ; (4.21e)

δσΦα ¼
1

2
σΦα þ iDασ: (4.21f)

Requiring the WZ gauge to be preserved, ðδK þ δσÞDαj ¼
0, gives

Dαξ
bj ¼ ξCTCα

bj; (4.22a)

Dαξ
βj ¼

�
ξCTCα

β þ 1

2
Kα

β þ iτδβα þ 1

2
σδβα

�����; (4.22b)

Dαξ̄βj ¼ ξCTCαβj; (4.22c)

DαKcdj ¼ ðξBRBα
cd þ ðγaÞαγεacdDγσÞj; (4.22d)

Dατj ¼ ðξBRBα þ iDασÞj: (4.22e)

We see that the residual gauge transformations are con-
strained. More specifically, only the parameters

va≔ξaj; ϵα≔ ξαj; wab≔Kabj; τ≔ τj (4.23a)

are completely unrestricted in the WZ gauge. Here the
bosonic parameters correspond to general coordinate (va),
local Lorentz ðwabÞ and local R-symmetry (τ) transforma-
tions; the fermionic parameter ϵα generates a local Q-
supersymmetry transformation. However, the parameters
Dαξ

Aj, DαKcdj and Dατj are fully determined in terms of
those listed in (4.23a) and the following ones:

σ ≔ σj; ηα ≔ Dασj: (4.23b)
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Here the parameter σ and ηα generate the Weyl and local
S-supersymmetry transformations respectively. It should be
pointed out that there is no parameter generating a local
special conformal transformation. As compared with the
3D N ¼ 2 superconformal tensor calculus in superspace
[57], our formulation corresponds to a gauge in which
the dilatation gauge field is switched off by making use of
the local special conformal transformations.
The relations (4.22) comprise all the conditions on the

residual gauge transformations, which are implied by
the WZ gauge. If in addition we also choose the normal
gauge (4.8), then all higher-order terms in the Θ expansion
of the gauge parameters will be determined in terms of
those listed in (4.23).
In what follows, we will be interested in local Q-

supersymmetry transformations of the gauge fields ema,
ψm

γ ¼ emaψa
γ and bm ¼ emaba. Yet we introduce a more

general transformation

δ ≔ δQ þ δS þ δW þ δR (4.24)

which includes the local Q-supersymmetry (ϵα) and
S-supersymmetry (ηα) transformations, as well as the
Weyl (σ) and local R-symmetry (τ) transformations.
There is a simple reason for considering this combination
of four transformations. As will be shown in the next two
sections, in any off-shell formulation for Poincaré or AdS
supergravity, the Q-supersymmetry transformation has to
be accompanied by a special S-supersymmetry trans-
formation with parameter ηαðϵÞ and, in some case, by a
special Uð1ÞR transformation with parameter τðϵÞ.
Typically, it will hold that σðϵÞ ¼ 0. However, since δη
is part of the super-Weyl transformation, it makes sense
to include δW into (4.24).
Making use of the relations (4.20), (4.21), (4.22), and

(4.23), we read off the transformation laws of the gauge
fields under (4.24):

δema ¼ iðϵγaψ̄m þ ϵ̄γaψmÞ − σema; (4.25a)

δψm
α ¼ 2Dmϵ

α þ 2emaðϵβTaβ
αj þ ϵ̄βTa

βαjÞ

þ iðγmÞαβη̄β − iτψm
α þ 1

2
σψm

α; (4.25b)

δbm¼
�
−
1

2
emaϵβ

�
iðγaÞγδCβγδjþ

1

3
ðγaÞβγð8iDγSj−D̄γR̄jÞ

�

þϵβψ̄mδðiCβδjþ2δδβSjÞþ
i
2
ψm

δηδþc:c:

�

−Dmτ−
1

8
ðγmÞγδ½Dγ;D̄δ�σj: (4.25c)

The superspace torsion and curvature transform as tensors
under the K-gauge group, Eqs. (2.4) and (2.5). Their super-
Weyl transformations follow from the transformation rules
of the dimension-1 torsion superfields given in the previous
section, Eqs. (2.11d)–(2.11f). This allows one to compute
the variations of the component field strengths under the
supersymmetry transformation (4.24).

D. The Weyl multiplet gauge

The super-Weyl invariance given by Eq. (2.11) preserves
the WZ gauge, so we can eliminate a number of component
fields. We choose the gauge conditions

Sj ¼ 0; Cαβj ¼ 0; Rj ¼ R̄j ¼ 0; D2Rj þ D̄2R̄j ¼ 0;

(4.26)

which constitute the Weyl multiplet gauge. In Table 1, we
identify those components of the super-Weyl parameter σ
which have to be used in order to impose the Weyl
multiplet gauge.
In the gauge (4.26), the super-Weyl gauge freedom is

not fixed completely. We stay with unbroken Weyl and
local S-supersymmetry transformations corresponding
to the parameters σ and ηα, η̄α respectively. The only
independent component fields are the vielbein ema,
the two gravitini ψm

α and ψ̄m
α, and the Uð1ÞR gauge

field bm. These fields and the associated local sym-
metries correspond to those describing the N ¼ 2 Weyl
multiplet [4].
In the Weyl multiplet gauge, the explicit expressions

for the gravitino field strength and the curvature tensors
simplify drastically. The gravitino field strength
becomes

ψab
γ ¼ iεabcðγcÞαβC̄αβ

γ

���� − 4i
3
εabcðγcÞγδD̄δS

����: (4.27)

The Lorentz curvature takes the form:

TABLE I. WZ-gauge choices and the parameters used to
achieve them.

Gauge choice σ component

Sj ¼ 0 ½Dα; D̄α�σj
Cαβj ¼ 0 ½Dðα; D̄βÞ�σj
Rj ¼ R̄j ¼ 0 D̄2σj;D2σj
DαRj ¼ D̄αR̄j ¼ 0 DαD̄2σj; D̄αD2σj
D2Rj þ D̄2R̄j ¼ 0 fD2; D̄2gσj

THREE-DIMENSIONAL N ¼ 2 SUPERGRAVITY … PHYSICAL REVIEW D 89, 085028 (2014)

085028-9



Rab
cd ¼

�
−
i
4
εabeðγeÞαβεcdfðγfÞτδðDðτC̄δαβÞ þ D̄ðτCδαβÞÞ þ

4i
3
δc½aδ

d
b�D

αD̄αS

þ ψ ½aβ
�
ðγb�ÞβγCγδρε

cdeðγeÞδρ þ
2

3
εb�cdDβS −

8

3
δ½cb�ðγd�ÞβγDγS

�

þ ψ̄ ½aβ

�
ðγb�ÞβγC̄γδρε

cdeðγeÞδρ þ
2

3
εb�cdD̄βS −

8

3
δ½cb�ðγd�ÞβγD̄γS

������: (4.28)

From here we read off the scalar curvature

Rðe;ψÞ ¼ 4iDαD̄αSj þ
�
ψa

β

�
ðγaÞγδCβγδ

����þ 8

3
ðγaÞβγDγS

����
�
þ c:c:

�
: (4.29)

An equivalent form for this result is

iDαD̄αSj ¼
1

4
ðRðe;ψÞ þ iψ̄aγbψab þ iψaγbψ̄abÞ: (4.30)

The Uð1ÞR field strength becomes

F ab ¼ εabc

�
1

2
ðγcÞαβ½Dα; D̄β�S þ iεcdeðγdÞβγ½ψeβDγS þ ψ̄eβD̄γS�

�����: (4.31)

An equivalent form for this result is

½Dðα; D̄βÞ�Sj ¼ ðγaÞαβ
�
F a þ

1

4
ψbψ̄ab −

1

4
ψ̄bψab þ

1

4
εabcðψbγ

dψ̄cd − ψ̄bγ
dψcdÞ

�
; (4.32)

where F a ≔ 1
2
εabcF bc.

We need to determine those residual gauge transforma-
tions which leave invariant the Weyl multiplet gauge.
Imposing the conditions δCαβj ¼ δSj ¼ δRj ¼ 0, with the
transformation δ defined by (4.24), we obtain

½Dðα; D̄βÞ�σj ¼ −εcabðγcÞαβðϵψ̄ab − ϵ̄ψabÞ; (4.33a)

iDγD̄γσj ¼
i
2
εcabðϵγcψ̄ab þ ϵ̄γcψabÞ; (4.33b)

D2σj ¼ D̄2σj ¼ 0: (4.33c)

Using these results in (4.25a)–(4.25c), together with the
fact that the bar projections of all the dimension-1 curvature
superfields vanish, we derive the transformations of the
gauge fields in the Weyl multiplet gauge:

δema ¼ iðϵγaψ̄m þ ϵ̄γaψmÞ − σema; (4.34a)

δψm
α ¼ 2Dmϵ

α þ ið~γmη̄Þα − iτψm
α −

1

2
σψm

α; (4.34b)

δbm ¼ −
1

2
ema

�
ϵγbψ̄ab þ

1

2
εabcϵψ̄bc − iψaηþ c:c:

�
− Dmτ; (4.34c)

with the γ matrices with world indices defined by γm ≔
emaγa and similarly for ~γm.
The above description of the Weyl multiplet agrees with

that given in [4].

E. Alternative gauge fixings

There exist different schemes for component reduction
that correspond to alternative choices of fixing the super-
gravity gauge freedom. Here we mention two possible
options that are most useful in the context of type I or type
II supergravity formulations.
The super-Weyl and local Uð1ÞR gauge freedom can be

used to impose the gauge condition [10]

S ¼ 0; Φα ¼ 0; Φa ¼ Ca: (4.35)

Since the resulting Uð1ÞR connection is a tensor superfield,
we may equally well work with covariant derivatives ∇A
without Uð1ÞR connection, which are defined by
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∇α∶ ¼ Dα; ∇a ≔ Da − iCaJ : (4.36)

The gauge condition (4.35) does not fix completely the
super-Weyl and local Uð1ÞR gauge freedom. The residual
transformation is generated by a covariantly chiral scalar
parameter λ, ∇̄αλ ¼ 0, and has the form [11]

∇0
α ¼ e

1
2
ð3λ̄−λÞð∇α þ ð∇γλÞMγαÞ; (4.37a)

∇0
a ¼ eλþλ̄

�
∇a −

i
2
ðγaÞαβð∇αλÞ∇̄β −

i
2
ðγaÞαβð∇̄αλ̄Þ∇β

þ εabcð∇bðλþ λ̄ÞÞMc −
i
2
ð∇γλÞð∇̄γ λ̄ÞMa

�
:

(4.37b)

The dimension-1 torsion superfields transform as

C0a ¼ eλþλ̄

�
Ca −

i
2
∇aðλ − λ̄Þ þ 1

4
ðγaÞαβð∇αλÞ∇̄βλ̄

�
;

(4.38a)

R0 ¼ −
1

4
e3λð∇̄2 − 4RÞe−λ̄: (4.38b)

This formulation is very similar to the old minimal 4D
N ¼ 1 supergravity, see e.g. [3] for a review. It is best
suited when dealing with type I minimal supergravity-
matter systems.
The super-Weyl freedom can be used to impose the

gauge condition [10]

R ¼ 0; (4.39)

with the local Uð1ÞR group being unbroken. This super-
space geometry is most suitable for the type II minimal
supergravity. The gauge condition (4.39) does not
completely fix the super-Weyl group. The residual super-
Weyl transformation is generated by a real superfield σ
constrained by D2e−σ ¼ D̄2e−σ ¼ 0.
Each of the two restricted superspace geometries

considered, (4.35) and (4.39), is suitable for describing
the Weyl multiplet of conformal supergravity. In each
case, we can define a Wess-Zumino gauge and a Weyl
multiplet gauge.
Some alternative gauge conditions will be used in

Sec. VIII.

V. TYPE I MINIMAL SUPERGRAVITY

This off-shell supergravity theory and its matter cou-
plings are analogous to the old minimal formulation for 4D
N ¼ 1 supergravity; see [1–3] for reviews. Its specific
feature is that its conformal compensators are a covariantly
chiral superfield Φ of super-Weyl weight w ¼ 1=2,

D̄αΦ ¼ 0; JΦ ¼ −
1

2
Φ; δσΦ ¼ 1

2
σΦ; (5.1)

and its conjugate Φ̄.

A. Pure supergravity

As a warm-up exercise, we first analyze the action for
pure type I supergravity with a cosmological term. It is
obtained from (5.15) by switching off the matter sector, that
is by setting K ¼ 0 and W ¼ μ ¼ const,

SSG ¼ −4
Z

d3xd2θd2θ̄EΦ̄Φþ μ

Z
d3xd2θEΦ4

þ μ̄

Z
d3xd2θ̄ Ē Φ̄4: (5.2)

The second and third terms in the action generate a
supersymmetric cosmological term, with the parameter
jμj2 being proportional to the cosmological constant. The
dynamics of this theory was analyzed in superspace in [11].
Here we reduce the action (5.2) to components.
In the Weyl multiplet gauge, the super-Weyl gauge

freedom is not fixed completely. We can use the residual
Weyl and local Uð1ÞR symmetries to impose the gauge
condition

Φj ¼ 1: (5.3a)

In addition, the local S-supersymmetry invariance can be
used to make the gauge choice

DαΦj ¼ 0: (5.3b)

The only surviving component field of Φmay be defined as

M ≔ D2Φj: (5.4)

To perform the component reduction of the kinetic term
in (5.2), the first step is to associate with it, by applying the
relation (3.7), the equivalent antichiral Lagrangian
L̄c ¼ ðD2 − 4R̄ÞðΦ̄ΦÞ. After that we can use (3.13) to
reduce the action to components. The antichiral Lagrangian
corresponding to the μ̄ term in (5.2) is L̄c ¼ μ̄Φ̄4. Finally,
the component version of the μ term in (5.2) is the complex
conjugate of the μ̄ term.
Direct calculations lead to the supergravity Lagrangian

LSG¼
1

2
Rðe;ψÞþ i

4
εabcðψ̄abψcþ ψ̄aψbcÞ−

1

4
M̄Mþbaba

− μ̄

�
M̄−

1

2
εabcψaγbψc

�
−μ

�
Mþ1

2
εabcψ̄aγbψ̄c

�
;

(5.5)

where the gravitino field strength is defined as

THREE-DIMENSIONAL N ¼ 2 SUPERGRAVITY … PHYSICAL REVIEW D 89, 085028 (2014)

085028-11



ψab ≔ Daψb −Dbψa − T ab
cψc; (5.6)

which differs from (4.14). We recall that the covariant
derivative Da, Eq. (4.5), has no Uð1ÞR connection. It is
natural to useDa since the local Uð1ÞR symmetry has been
fixed. The type I supergravity multiplet consists of the
following fields: the dreibein ema, the gravitini ψm

α and
ψ̄mα, and the auxiliary fields M, M̄ and bm.
Upon elimination of the auxiliary fields, the Lagrangian

becomes

LSG ¼ 1

2
Rðe;ψÞ þ i

4
εabcðψ̄abψc þ ψ̄aψbcÞ

þ 4μ̄μþ μ̄

2
εabcψaγbψc −

μ

2
εabcψ̄aγbψ̄c: (5.7)

This Lagrangian describes (1,1) anti-de Sitter supergravity
for μ ≠ 0 [5].

B. Supersymmetry transformations

The gauge conditions (5.3a) and (5.3b) completely fix
the Weyl, local Uð1ÞR and S-supersymmetry invariances.
However, performing just a single Q-supersymmetry trans-
formation, with ϵα and ϵ̄α the only nonzero parameters
in (4.34), does not preserve these gauge conditions. To
restore the gauge defined by (5.3a) and (5.3b), the
Q-supersymmetry transformation has to be accompanied
by a compensating S-supersymmetry transformation.
Indeed, applying the transformation (4.24) to Φj gives

δΦj ¼ ϵβDβΦj þ
1

2
ðσ − iτÞΦj ¼ 1

2
ðσ − iτÞ; (5.8)

where we have used Eqs. (5.3a) and (5.3b). Setting δΦj ¼ 0
gives

σ ¼ τ ¼ 0: (5.9)

On the other hand, the transformation of DαΦj is

δDαΦj ¼ ϵβDβDαΦj þ ϵ̄βD̄βDαΦj − ηα

�
JΦ

���� − 1

2
Φ

����
�

¼ −
1

2
ϵαM þ ðγaϵ̄Þαba þ ηα; (5.10)

where here we have used (5.3a) and (5.3b). Setting
δDαΦj ¼ 0 gives

ηαðϵÞ ¼
1

2
ϵαM − ðγaϵ̄Þαba: (5.11)

Using these results in (4.34), we obtain the supersymmetry
transformation laws of the gauge fields:

δϵema ¼ iðϵγaψ̄m þ ϵ̄γaψmÞ; (5.12a)

δϵψm
α ¼ 2Dmϵ

α − ibmϵα þ iemaεabcbbð~γcϵÞα þ
i
2
M̄ð~γmϵ̄Þα;
(5.12b)

δϵbm ¼ −
1

2
ema

�
ϵγbψ̄ab þ

1

2
εabcϵψ̄

bc þ iεabcbbϵψ̄c

þ iðbaϵγbψ̄b − 2bbϵγbψ̄aÞ −
i
2
Mϵψa

�
þ c:c:

(5.12c)

The supergravity multiplet also includes the auxiliary
scalar M ¼ D2Φj. Due to (5.9) and since D2σj ¼ 0,
Eq. (4.33c), the supersymmetry transformation of M is

δϵM ¼ ϵβDβD2Φj þ ϵ̄βD̄βD2Φj ¼ ϵ̄β½D̄β;D2�Φj: (5.13)

Making use of the algebra of covariant derivatives gives

δϵM ¼ −εcabϵ̄~γcψ̄ab − iMϵ̄~γaψa − 2ibaϵ̄ψ̄a: (5.14)

C. Matter-coupled supergravity

We consider a general locally supersymmetric nonlinear
σ-model

S ¼ −4
Z

d3xd2θd2θ̄EΦ̄e−K=4Φþ
Z

d3xd2θEΦ4W

þ
Z

d3xd2θ̄ Ē Φ̄4W̄: (5.15)

Here the Kähler potential,K ¼ KðφI; φ̄J̄Þ, is a real function
of the covariantly chiral superfields φI and their conjugates
φ̄Ī , D̄αφ

I ¼ 0. The superpotential, W ¼ WðφIÞ, is a hol-
omorphic function of φI alone. The matter superfields φI

and φ̄J̄ are chosen to be inert under the super-Weyl and
local Uð1ÞR transformations. This guarantees the super-
Weyl invariance of the action. In Appendix B, we describe a
different parametrization of the nonlinear σ-model (5.15) in
which the dynamical variables Φ and φI are replaced by
covariantly chiral superfields ϕi ¼ ðϕ0;ϕIÞ of super-Weyl
weight w ¼ 1=2 that parametrize a Kähler cone.
The action (5.15) is also invariant under a target-space

Kähler transformation

Kðφ; φ̄Þ → Kðφ; φ̄Þ þ ΛðφÞ þ Λ̄ðφ̄Þ; (5.16a)

WðφÞ → e−ΛðφÞWðφÞ; (5.16b)

provided the compensator changes as

Φ → eΛðφÞ=4Φ; (5.16c)

with ΛðφIÞ an arbitrary holomorphic function.

SERGEI M. KUZENKO et al. PHYSICAL REVIEW D 89, 085028 (2014)

085028-12



We first compute the component form of (5.15) in the
special case W ¼ 0,

Skinetic ¼ −4
Z

d3xd2θd2θ̄EΦ̄e−Kðφ;φ̄Þ=4Φ: (5.17)

Associated with Skinetic is the antichiral Lagrangian

L̄c ¼ ðD2 − 4R̄ÞðΦ̄e−K=4ΦÞ; (5.18)

which has to be used for computing the component action
using the general formula (3.13).
Our consideration in this and the next sections is similar

to that in 4D N ¼ 1 supergravity [60,61]. To reduce the
action to components, we impose the following Weyl and
local S-supersymmetry gauge conditions:

ðΦ̄e−K=4ΦÞj ¼ 1; (5.19a)

DαðΦ̄e−K=4ΦÞj ¼ 0: (5.19b)

Both gauge conditions are manifestly Kähler invariant. It
turns out that the condition (5.19a) leads to the correct
Einstein-Hilbert gravitational Lagrangian at the component
level. On the other hand, the condition (5.19b) guarantees
that no cross terms DαSjD̄αKj are generated at the
component level. See Appendix B for more details.
Finally we fix the local Uð1ÞR symmetry by imposing
the gauge condition

Φj ¼ Φ̄j ¼ eK=8: (5.19c)

The auxiliary scalar fields contained in Φ and Φ̄ may be
defined in a manifestly Kähler-invariant way as

M ≔ D2ðΦ̄e−1
4
KΦÞj; M̄ ≔ D̄2ðΦ̄e−1

4
KΦÞj: (5.20)

To make the gauge condition (5.19c) Kähler invariant,
the Kähler transformation generated by a parameter Λ has
to be accompanied by a special Uð1ÞR transformation with
parameter τ ¼ i

4
ðΛ̄ − ΛÞ such that the component vector

field ba, which belongs to the Weyl multiplet and is defined
by Eq. (4.4), transforms as

ba → ba þ
i
4
DaðΛ − Λ̄Þ: (5.21)

We define the component fields of φI as follows:

XI ≔ φIj; (5.22a)

λIα ≔ Dαφ
Ij; (5.22b)

FI ≔ −
1

4
½D2φI þ ΓI

JKðDαφJÞDαφ
K�j: (5.22c)

Under a holomorphic reparametrization, XI → fIðXÞ, of
the target Kähler space, the fields λIα and FI transform as
holomorphic vector fields. Direct calculations lead to the
following component Lagrangian:

Lkinetic ¼
1

2
Rðe;ψÞ þ i

4
εabcð ~̄ψabψc þ ψ̄a ~ψbcÞ −

1

4
M̄Mþ BaBa

þ gIJ̄

�
FIF̄J̄ − ðDaXIÞDaX̄J̄ −

i
4
λIγa ~Da

↔

λ̄J̄ þ 1

8
λI λ̄J̄ðεabcψ̄aγbψc − ψ̄aψaÞ

−
1

8
λIγaλ̄J̄ðψ̄bγaψb þ εabcψ̄

bψcÞ − 1

2
ψaγb ~γaλ

IDbX̄J̄ −
1

2
λ̄J̄ ~γaγbψ̄

aDbXI

�

þ 1

16
RIK̄JL̄λ

IλJ λ̄K̄ λ̄L̄ −
1

64
ðgIJ̄λI λ̄J̄Þ2; (5.23)

where the auxiliary vector field Ba is defined by the rule

Ba ≔ ba −
1

8
gIJ̄λ

Iγaλ̄
J̄ −

i
4
ðKIDaXI − KĪDaX̄ĪÞ; (5.24)

and is invariant under the Kähler transformations, in
accordance with (5.21). The gravitino field strength in
(5.23) differs from that introduced earlier in (5.6):

~ψab ¼ ~Daψb − ~Dbψa − T ab
cψc; (5.25)

where the Kähler-covariant derivative ~Da is defined (sim-
ilarly to the 4 D case; see e.g. [1]) as follows:

~Daψb ≔ Daψb þ
1

4
ðKJDaXJ − KJ̄DaX̄J̄Þψb; (5.26a)

~Daλ
I ≔ Daλ

I −
1

4
ðKJDaXJ − KJ̄DaX̄J̄ÞλI þ λJΓI

JKDaXK:

(5.26b)

In (5.23), as usual gIJ̄ denotes the Kähler metric, gIJ̄ ¼ KIJ̄,
and RIK̄JL̄ the Riemann curvature,
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RIK̄JL̄ ¼ KIJK̄ L̄ − gMN̄ΓM
IJΓN̄

K̄ L̄; (5.27)

with ΓI
JK ¼ gIL̄KJKL̄ the Christoffel symbol.

We now turn to the third term in (5.15). The correspond-
ing antichiral Lagrangian is L̄c ¼ Φ̄4W̄ðφ̄Þ. To reduce this
functional to components, we again make use of the general

rule (3.13) in conjunction with the relations (5.19) and
(5.22) which define the component fields of Φ and φI. The
second term in (5.15) is just the complex conjugate of the
third term.
The component Lagrangian corresponding to the second

and third terms in (5.15) is

Lpotential ¼ −eK=2
��

M̄ −
1

2
εabcψaγbψc

�
W̄ þ

�
Mþ 1

2
εabcψ̄aγbψ̄c

�
W −

�
F̄Ī þ i

2
ψaγ

aλ̄Ī
�
∇ĪW̄ −

�
FI þ i

2
ψ̄aγ

aλI
�
∇IW

þ 1

4
λ̄Ī λ̄J̄∇Ī∇J̄W̄ þ 1

4
λIλJ∇I∇JW

�
: (5.28)

Here we have introduced the Kähler-covariant derivatives

∇IW ≔ WI þ KIW; (5.29a)

∇I∇JW≔WIJþ2KðI∇JÞW−ΓL
IJ∇LWþKIJWþKIKJW: (5.29b)

The component Lagrangian corresponding to the supergravity-matter system (5.15) is L ¼ Lkinetic þ Lpotential. Putting
together (5.23) and (5.28) gives

L ¼ 1

2
Rðe;ψÞ þ i

4
εabcð ~̄ψabψc þ ψ̄a ~ψbcÞ −

1

4
M̄Mþ BaBa þ gIJ̄

�
FIF̄J̄ − ðDaXIÞDaX̄J̄ −

i
4
λIγa ~Da

↔

λ̄J̄

þ 1

8
λI λ̄J̄ðεabcψ̄aγbψc − ψ̄aψaÞ −

1

8
λIγaλ̄J̄ðψ̄bγaψb þ εabcψ̄

bψcÞ − 1

2
ψaγb ~γaλ

IDbX̄J̄ −
1

2
λ̄J̄ ~γaγbψ̄

aDbXI

�

þ 1

16
RIK̄JL̄λ

IλJ λ̄K̄ λ̄L̄ −
1

64
ðgIJ̄λI λ̄J̄Þ2 − eK=2

��
M̄ −

1

2
εabcψaγbψc

�
W̄ þ

�
Mþ 1

2
εabcψ̄aγbψ̄c

�
W

−
�
F̄Ī þ i

2
ψaγ

aλ̄Ī
�
∇ĪW̄ −

�
FI þ i

2
ψ̄aγ

aλI
�
∇IW þ 1

4
λ̄Ī λ̄J̄∇Ī∇J̄W̄ þ 1

4
λIλJ∇I∇JW

�
: (5.30)

Upon elimination of the auxiliary fields, the Lagrangian turns into

L ¼ 1

2
Rðe;ψÞ þ i

4
εabcð ~̄ψabψc þ ψ̄a ~ψbcÞ þ

1

16
RIK̄JL̄λ

IλJ λ̄K̄ λ̄L̄ −
1

64
ðgIJ̄λI λ̄J̄Þ2 þ gIJ̄

�
−ðDaXIÞDaX̄J̄ −

i
4
λIγa ~Da

↔

λ̄J̄

þ 1

8
λI λ̄J̄ðεabcψ̄aγbψc − ψ̄aψaÞ −

1

8
λIγaλ̄J̄ðψ̄bγaψb þ εabcψ̄

bψcÞ − 1

2
ψaγb ~γaλ

IDbX̄J̄ −
1

2
λ̄J̄ ~γaγbψ̄

aDbXI

�

þ eK=2
�
1

2
εabcðψaγbψcW̄ − ψ̄aγbψ̄cWÞ þ i

2
ψaγ

aλ̄Ī∇ĪW̄ þ i
2
ψ̄aγ

aλI∇IW −
1

4
λ̄Ī λ̄J̄∇Ī∇J̄W̄ −

1

4
λIλJ∇I∇JW

�

− eKðgIJ̄∇IW∇̄J̄W̄ − 4WW̄Þ: (5.31)

The potential generated, P3D ¼ eKðgIJ̄∇IW∇̄J̄W̄ − 4WW̄Þ,
differs slightly from the famous four-dimensional result
P4D ¼ eKðgIJ̄∇IW∇̄J̄W̄ − 3WW̄Þ, see e.g. [1].

D. Supersymmetry transformations in Einstein frame

In matter coupled supergravity, the gauge conditions
(5.19) depend on the matter fields. As a consequence, the
supersymmetry transformation laws of the supergravity

fields will differ from those given in Sec. V B. To preserve
the gauge condition Φj ¼ eK=8, we have to choose

σðϵÞ ¼ 0; τðϵÞ ¼ −
i
4
ðKIϵλ

I − KĪ ϵ̄λ̄
ĪÞ: (5.32)

To preserve the gauge condition DαðΦ̄e−K=4ΦÞj ¼ 0, we
have to apply the compensating S-supersymmetry trans-
formation with parameter
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ηαðϵÞ ¼
1

2
ϵαMþ ϵ̄β

�
−bαβ þ

i
4
ðKIDαβXI − KĪDαβX̄ĪÞ

þ 1

8
gIJ̄ðεαβλI λ̄J̄ þ 2λIðαλ̄

J̄
βÞÞ
�
: (5.33)

Making use of the parameters τðϵÞ and ηαðϵÞ in (4.34),
one may derive the supersymmetry transformations of the
supergravity fields ema and ψm

γ and bm. These expressions
are not illuminating, and here we do not give them. We only
comment upon the derivation of the supersymmetry trans-
formation of M. Its transformation follows from the fact
that M is defined to be the lowest component of the scalar
superfield D2ðΦ̄e−1

4
KΦÞ. Making use of (5.32) and (5.33),

after some algebra we get

δϵM ¼ −εcabϵ̄~γcψ̄ab − iϵ̄~γaψaM − 2ibaϵ̄ψ̄a þ gIJ̄F
I ϵ̄λ̄J̄

− igIJ̄ ϵ̄~γ
aλIDaX̄J̄ −

1

2
ϵ̄~γaγbψ̄aðKĪDbX̄Ī − KIDbXIÞ

þ 2iτðϵÞM: (5.34)

In conclusion, we give the transformation rules of the
component fields of φI:

δϵXI ¼ ϵλI; (5.35a)

δϵλ
I
α ¼ 2ϵα

�
FI þ 1

4
ΓI
JKλ

JλK
�
þ 2iðγaϵ̄Þα

�
DaXI −

1

2
ψaλ

I

�
þ iτðϵÞλIα; (5.35b)

δϵFI¼−ϵλJΓI
JKF

Kþ1

2
λIηðϵÞþ2iτðϵÞFIþ iϵ̄γaðDaþ ibaÞλI

−
1

4
gIL̄RJL̄KP̄ϵ̄λ̄

P̄λJλKþ iϵ̄γaλJΓI
JKDaXK− iϵ̄γaψaFI

− ϵ̄γa ~γbψ̄a

�
DbXI−

1

2
ψbλ

I

�
: (5.35c)

These can be derived by using the definition of the
components of φI (5.22).

VI. TYPE II MINIMAL SUPERGRAVITY

This supergravity theory is a 3D analogue of the new
minimal formulation for 4D N ¼ 1 supergravity [21] (see
[2,3] for reviews). Its conformal compensator is a real
covariantly linear scalar G,

ðD2 − 4R̄ÞG ¼ ðD̄2 − 4RÞG ¼ 0; (6.1)

chosen to be nowhere vanishing, G ≠ 0. The super-Weyl
transformation of G is uniquely fixed by the constraint (6.1)
to be

δσG ¼ σG: (6.2)

A. Real linear scalar

A general solution of the off-shell constraint (6.1) is

G ¼ iD̄αDαG ¼ iDαD̄αG; (6.3)

where the real unconstrained scalar G is defined modulo
gauge transformations of the form

δG ¼ Λþ Λ̄; JΛ ¼ 0; D̄αΛ ¼ 0: (6.4)

This gauge freedom allows us to interpret G as the gauge
prepotential for an Abelian massless vector multiplet,
and G as the gauge invariant field strength.12 The prepo-
tential can be chosen to be inert under the super-Weyl
transformations,13

δσG ¼ 0: (6.5)

Then the field strength G, defined by Eq. (6.3), transforms
according to (6.2).
Making use of the constraint (6.1), we deduce the

important identity

DαβGαβ ¼ 8fðDαSÞD̄α − ðD̄αSÞDαgG
þ 4ifðDαRÞDα þ ðD̄αR̄ÞD̄αgG; (6.6)

where we have denoted

Gαβ ¼ ðγaÞαβGa ≔ ½Dðα; D̄βÞ�Gþ 4CαβG: (6.7)

In the Weyl multiplet gauge (4.26), it follows from (6.6)
that

Gaj ¼ Ha − εabcψ̄bψcGj − iεabcðψbγcDGj þ ψ̄bγcD̄GjÞ;
(6.8)

whereHa denotes the Hodge-dual of the field strength of a
U(1) gauge field aa,

Ha ¼ 1

2
εabcHbc; Hab ¼ Daab −Dbaa − T ab

cac:

(6.9)

The other independent component fields of G may be
chosen as follows:

12In four dimensions, the real linear superfield is naturally
interpreted as the gauge invariant field strength of a massless
tensor multiplet [62].

13The transformation law (6.5) is consistent with the require-
ment that the gauge parameter Λ in (6.4) be super-Weyl inert.
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Gj; DαGj; D̄αGj; iDαD̄αGj: (6.10)

B. Poincaré supergravity

The off-shell action for type II supergravity without a
cosmological term [10,11] is

SPoincare ́ ¼ 4

Z
d3xd2θd2θ̄EðG lnG − 4GSÞ: (6.11)

The action can be written in a different but equivalent form:

SPoincare ́ ¼ 4i
Z

d3xd2θd2θ̄EGDαD̄α ln
G

Φ̄Φ
; (6.12)

where Φ is a nowhere vanishing covariantly chiral super-
field of the type Eq. (5.1). One may see that the variables Φ
and Φ̄ are purely gauge degrees of freedom.
The theory (6.11) was shown in [11] to be classically

equivalent to type I supergravity without a cosmological
term, the latter being defined by Eq. (5.2) with μ ¼ 0. The
above action can equivalently be described by the antichiral
Lagrangian

L̄c ¼ −ðD2 − 4R̄ÞðG lnG − 4GSÞ; (6.13)

which has to be used to carry out the component reduction
of (6.11) by applying the general rule (3.13).
Component reduction is often greatly simplified if

suitable gauge conditions are imposed. Making use of
the Weyl and local S-supersymmetry transformations allow
us to choose the gauge conditions

Gj ¼ 1; (6.14a)

DαGj ¼ 0: (6.14b)

The compensator also contains a real scalar component
field that can be defined as

Z ≔ iDαD̄αGj: (6.15)

It is also useful to choose a WZ gauge for the U(1) gauge
symmetry (6.4). A standard choice is

Gj ¼ 0; (6.16a)

DαGj ¼ 0; (6.16b)

D2Gj ¼ 0: (6.16c)

It then follows from (6.14) and (6.16) that

D2D̄αGj ¼ 0; (6.17a)

D̄αD2Gj ¼ i
2
ðψ̄bγa ~γbÞαaa þ ðψ̄a ~γaÞα; (6.17b)

−
1

4
D̄2D2Gj ¼ i

2
Daaa þ

1

4
ψ̄bγaψbaa þ

i
2
ψ̄aψa þ

1

2
Z:

(6.17c)

The only independent component fields of G are

½Dðα; D̄βÞ�Gj ¼
1

2
aαβ; (6.18a)

ðD̄αDαÞ2Gj ¼ −Z: (6.18b)

By construction, the scalar Z is invariant under the gauge
transformations (6.4).
The component supergravity Lagrangian is

LPoincaré ¼ 1

2
Rðe;ψÞ þ i

4
εabcðψ̄abψc þ ψ̄aψbcÞ

þ aaF a −
1

4
~Ha

~Ha −
1

4
Z2; (6.19)

where we have introduced the combination

~Ha ≔ Ha − εabcψ̄bψc: (6.20)

The gravitino field strength is defined as in (4.14), with
Da ¼ Daðe;ψ ; bÞ the covariant derivative containing the
Uð1ÞR connection ba. In this formulation, the supergravity
multiplet consists of the following fields: the dreibein ema,
the gravitini ψm

α and ψ̄mα, the two gauge fields am and bm,
and the auxiliary scalar Z.
It is not difficult to demonstrate that the vector fields aa

and ba have no propagating degrees of freedom for the
dynamical system (6.19). To see this, let us work out
the equation of motion for the Uð1ÞR gauge field ba. In the
supergravity Lagrangian (6.19), this field appears both in
the Rarita-Schwinger and Chern-Simons terms. We note
that

Z
d3xeaaF a ¼

Z
d3xebaHa; (6.21)

modulo a total derivative. Another relevant observation is
that the Rarita-Schwinger Lagrangian depends on ba only
via the linear term −εabcbaψ̄bψc. As a result, the equation
of motion for ba is

~Ha ¼ 0: (6.22)

This equation tells us that aa has no independent degrees of
freedom on the mass shell. Now, varying (6.19) with
respect to aa and making use of (6.22) gives
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F a ¼ 0; (6.23)

and therefore the Uð1ÞR connection ba is flat and may
completely be gauged away.
The off-shell Lagrangian (6.19) does not coincide with

that proposed in [14] to describe (2,0) Poincaré super-
gravity (in our terminology, type II supergravity without a
cosmological term),; see Eq. (4.1) in [14]. In particular, the
Lagrangian given in [14] contains no HaHa term. The two
Lagrangians are actually equivalent modulo a total deriva-
tive and a redefinition of the ba field.

14 Indeed, making use
of (6.21) and defining

ba → b0a ¼ ba −
1

4
~Ha; (6.24)

the Lagrangian (6.19) takes the form

LPoincaré ¼ 1

2
Rðe;ψÞ þ i

4
εabcðψ̄ 0

abψc þ ψ̄aψ 0
bcÞ

þ b0aHa −
1

4
Z2; (6.25)

where the gravitino field strength ψ 0
ab is defined as (4.14)

but with the Uð1ÞR connection ba replaced by b0a. The
Lagrangian (6.25) is equivalent to the one given in [14].

C. (2,0) anti-de Sitter supergravity

The main difference between type II supergravity and the
new minimal formulation for N ¼ 1 supergravity in four
dimensions is that the action (6.11) can be deformed by
adding a gauge-invariant cosmological term

Scosm ¼ −4ξ
Z

d3xd2θd2θ̄EGG: (6.26)

To evaluate its component form, we have to make use of the
supersymmetric action principle (3.13) with

L̄c¼ ξðD2−4R̄ÞðGGÞ¼ ξGD2Gþ2ξðDαGÞDαG: (6.27)

A short calculation that makes use of (6.17c) leads to

Lcosm ¼ ξ

�
Z þ 1

4
aaHa −

i
2
εabcψ̄aγbψc

�
: (6.28)

The superfield action for (2,0) AdS supergravity is

SAdS ¼ 4

Z
d3xd2θd2θ̄EðG lnG − 4GS − ξGGÞ: (6.29)

The component Lagrangian for off-shell (2,0) AdS super-
gravity is

LAdS¼
1

2
Rðe;ψÞþ i

4
εabcðψ̄abψcþ ψ̄aψbcÞþaaF a

−
1

4
~Ha

~Ha−
1

4
Z2þξ

�
Zþ1

4
aaHa−

i
2
εabcψ̄aγbψc

�
:

(6.30)

In this theory, the equation of motion for the Uð1ÞR gauge
field ba is still given by (6.22). As concerns the equation of
motion for aa, it becomes

F a þ 1

2
ξHa ¼ 0: (6.31)

We see that the local Uð1ÞR gauge freedom can be
completely fixed by imposing the condition aa ¼ − 2

ξ ba.
Dynamics described by the off-shell theory (6.30) is

equivalent to that generated by

~LAdS ¼
1

2
Rðe;ψÞ þ i

4
εabcðψ̄abψc þ ψ̄aψbc − 2ξψ̄aγbψcÞ

þ ξ2 −
1

ξ
baF a: (6.32)

One can recognize (6.32) to be the standard on-shell
Lagrangian for (2,0) AdS supergravity [5] (see also [7]).
The third term in the parentheses in (6.32) may be absorbed
into the gravitino field strength by introducing a modified
covariant derivative

D̂aψb
β ¼ Daψb

β −
1

2
ξðγaÞβγψb

γ: (6.33)

D. Supersymmetry transformations

The gauge conditions (6.14) completely fix the Weyl and
local S-supersymmetry freedom. To preserve the condition
Gj ¼ 1, no residual Weyl invariance remains, σ ¼ 0.
However, each Q-supersymmetry transformation has to
be accompanied by a compensating S-supersymmetry
transformation in order to preserve the condition
DαGj ¼ 0. Indeed, the field DαGj transforms as

ðδQ þ δSÞDαGj ¼ ϵβDβDαGj þ ϵ̄βD̄βDαGj þ ηαGj

¼ 1

2
~Haðγaϵ̄Þα −

i
2
Zϵ̄α þ ηα; (6.34)

where here we have used the identities (6.6)–(6.8), (6.14),
and (6.15). We have to require ðδQ þ δSÞDαGj ¼ 0, and
therefore

14G. T.-M. is grateful to Daniel Butter for pointing out the same
situation in the new minimal formulation for 4D N ¼ 1 super-
gravity (see, e.g., [63,64] for the relevant discussions).
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ηαðϵÞ ¼ −
1

2
~Haðγaϵ̄Þα þ

i
2
Zϵ̄α: (6.35)

Choosing σ ¼ τ ¼ 0 and ηα ¼ ηαðϵÞ in (4.34), we obtain
the supersymmetry transformations of the gauge fields ema,
ψm

γ and bm:

δϵema ¼ iðϵγaψ̄m þ ϵ̄γaψmÞ; (6.36a)

δϵψm
α¼2Dmϵ

αþ i
2
~Hmϵ

α−
i
2
emaεabc ~H

cð~γbϵÞαþ1

2
Zð~γmϵÞα;
(6.36b)

δϵbm ¼ −
1

4
emafεabcϵψ̄bc þ 2ϵγbψ̄ab − iϵγbψ̄a

~Hb − ϵψ̄aZg
þ c:c: (6.36c)

The supergravity multiplet also includes the fields am
and Z. The supersymmetry transformation of am follows
from its definition am ¼ emaaa, with aa originating as a
component field of G, Eq. (6.18a). Note that, in order to
preserve the WZ gauge (6.16), in computing the super-
symmetry transformations of am it is necessary to include a
compensating ϵ-dependent U(1) gauge transformation (6.4)
with parameter ΛðϵÞ such that

ΛðϵÞj ¼ 0; (6.37a)

DαΛðϵÞj ¼ −
1

4
ðϵ̄γbÞαab þ

i
2
ϵ̄α; (6.37b)

D2ΛðϵÞj ¼ i
2
ϵ̄γa ~γbψ̄aab − ϵ̄γaψ̄a: (6.37c)

We then obtain

δϵam ¼ ðδϵemaÞaa − emaðγaÞαβ
× ðϵγDγ½Dα; D̄β�Gj þ 2iDαβΛðϵÞj þ c:c:Þ

¼ iϵγaψ̄maa þ ðγmÞαβϵγDγ

× fDα; D̄βgGj þ 4iψm
αDαΛðϵÞj þ c:c: (6.38)

Evaluating this variation gives

δϵam ¼ −2ðϵψ̄m þ ϵ̄ψmÞ: (6.39)

The scalar field Z originates as a component field of G,
Eq. (6.15), and therefore its supersymmetry transformation
is

δϵZ ¼ i
2
ϵαD2D̄αGj þ i

2
ϵ̄αD̄2DαGj þ iðDαD̄ασÞGj: (6.40)

Making use of (4.33b), we then derive

δϵZ ¼ −
i
2
ϵγaψ̄aZ −

1

2
εabcϵγaψ̄b

~Hc þ
1

2
ϵψ̄a

~Ha

þ i
2
εabcϵγaψ̄bc þ c:c: (6.41)

For completeness, let us also work out the supersym-
metry transformation of the field strength ~Ha. Making use
of the definition of ~Ha gives

δϵ ~H
a ¼ −

1

2
ðγaÞαβfϵγDγ½Dα; D̄β�Gj þ ϵ̄γD̄γ½Dα; D̄β�Gj

þ ð½Dα; D̄β�σÞGjg: (6.42)

With the aid of (4.33a) we obtain

δϵ ~H
a ¼ −

i
2
εabcϵψ̄b

~Hc þ iϵγ½aψ̄b
~Hb�

þ 1

2
εabcϵγbψ̄cZ − εabcϵψ̄bc þ c:c: (6.43)

E. Matter-coupled supergravity

The action for a locally supersymmetric σ-model
coupled to type II supergravity is

Smatter ¼
Z

d3xd2θd2θ̄EGKðφ; φ̄Þ: (6.44)

Here the Kähler potential Kðφ; φ̄Þ and the matter super-
fields are the same as in Sec. V. In particular, the covariantly
chiral superfields φI are super-Weyl and Uð1ÞR neutral,
δσφ

I ¼ JφI ¼ 0. The action is invariant under the Kähler
transformations (5.16a) due to the identity

Z
d3xd2θd2θ̄EGΛðφÞ ¼ 0: (6.45)

In order to carry out the component reduction of Smatter,
we associate with (6.44) the antichiral Lagrangian

L̄c ¼ −
1

4
ðD2 − 4R̄ÞðGKÞ ¼ −

1

4
GD2K −

1

2
ðDαGÞDαK:

(6.46)

The component fields of φI are defined as in (5.22). Unlike
the type I supergravity case, now we do not have to
modify the gauge conditions on the compensator in the
presence of matter. Direct calculations lead to the following
component Lagrangian:
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Lmatter ¼ gIJ̄

�
FIF̄J̄ − ðDaXIÞDaX̄J̄ −

i
4
λIγa ~Da

↔

λ̄J̄ −
1

2
ψ̄aλ̄J̄DaXI þ 1

2
ψaλ

IDaX̄J̄

−
1

2
εabcðψaγbλ

IDcX̄J̄ − ψ̄aγbλ̄
J̄DcXIÞ þ 1

8
ψaγ

bψ̄aλIγbλ̄
J̄ −

1

8
ψaψ̄

aλI λ̄J̄

þ 1

8
εabcðψaψ̄bλ

Iγcλ̄
J̄ þ ψaγbψ̄cλ

I λ̄J̄Þ þ 1

8
λIγaλ̄

J̄ ~Ha −
i
8
ZλI λ̄J̄

�

þ i
4
Ha½KĪDaX̄Ī − KIDaXI� þ 1

16
RIK̄JL̄λ

IλJ λ̄K̄ λ̄L̄: (6.47)

Here we have introduced the Kähler-covariant derivative

~Daλ
I ≔ Daλ

I þ λJΓI
JKDaXK

¼ Daλ
I þ ibaλI þ λJΓI

JKDaXK: (6.48)

The σ-model action generated by the Lagrangian (6.47)
proves to be invariant under the Kähler transformations.
The first term in the fourth line of (6.47) is the only one
which varies under the Kähler transformations. The cor-
responding contribution to the action is indeed Kähler
invariant due to the identity

R
d3xeHaDaΛ ¼ 0.

As may be seen from (6.47), the gauge fields ba and aa
couple to conserved currents of completely different types.
The Uð1ÞR gauge field couples to the Uð1ÞR Noether
current

J a
Noether ¼ εabcψ̄bψc þ

1

2
gIJ̄λ

Iγaλ̄J̄ : (6.49)

As regards the gauge field aa, it couples to the topological
current

J a
top ¼

1

2
εabcðDbRc −DcRb − T bc

dRdÞ;
Ra ≔ iðKĪDaX̄Ī − KIDaXIÞ; (6.50)

which is identically conserved. These properties were
pointed out in [14].
Now, we consider a complete supergravity-matter

system described by the action [11]

S ¼ 4

Z
d3xd2θd2θ̄E

�
G

�
lnGþ 1

4
Kðφ; φ̄Þ

�
− 4GS

�
:

(6.51)

It describes Poincaré supergravity coupled to the locally
supersymmetric σ-model. As shown in [11], this theory is
dual to the type I supergravity-matter system (5.17). To
compute the corresponding component Lagrangian, we
combine Lmatter given by (6.47) with the type II super-
gravity Lagrangian without cosmological term, Eq. (6.19).
The result is

L ¼ 1

2
Rðe;ψÞ þ i

4
εabcðψ̄abψc þ ψ̄aψbcÞ þ aaF a −

1

4
~Ha

~Ha −
1

4
Z2

þ gIJ̄

�
FIF̄J̄ − ðDaXIÞDaX̄J̄ −

i
4
λIγa ~Da

↔

λ̄J̄ −
1

2
ψ̄aλ̄J̄DaXI þ 1

2
ψaλ

IDaX̄J̄

−
1

2
εabcðψaγbλ

IDcX̄J̄ − ψ̄aγbλ̄
J̄DcXIÞ þ 1

8
ψaγ

bψ̄aλIγbλ̄
J̄ −

1

8
ψaψ̄

aλI λ̄J̄

þ 1

8
εabcðψaψ̄bλ

Iγcλ̄
J̄ þ ψaγbψ̄cλ

I λ̄J̄Þ þ 1

8
gIJ̄λ

Iγaλ̄
J̄ ~Ha

�

þ i
4
Ha½KĪDaX̄Ī − KIDaXI� þ 1

16
RIK̄JL̄λ

IλJ λ̄K̄ λ̄L̄ −
1

64
ðgIJ̄λI λ̄J̄Þ2; (6.52)

where we have defined

Z ≔ Z þ i
4
gIJ̄λ

I λ̄J̄ : (6.53)

Let us show that the dynamical system (6.52) is
equivalent to the type I supergravity-matter system
(5.31) with W ¼ 0. Integrating out Z gives

Z ¼ 0: (6.54)

The equation of motion for the gauge field ba is

Ha ≔ ~Ha −
1

2
gIJ̄λ

Iγaλ̄J̄

¼ Ha − εabcψ̄bψc −
1

2
gIJ̄λ

Iγaλ̄J̄ ¼ 0: (6.55)
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Let us consider the equation of motion for the gauge field
aa. It can be represented in the form

DaBb −DbBa − T ab
cBc ¼ 0; (6.56)

where Ba is defined in (5.24). This equation tells us that the
local Uð1ÞR gauge freedom can be completely fixed by
choosing the condition

ba ¼
1

8
gIJ̄λ

Iγaλ̄
J̄ þ i

4
ðKIDaXI − KĪDaX̄ĪÞ: (6.57)

Making use of the equations (6.54), (6.55), and (6.57)
reduces the supergravity-matter system (6.52) to that
described by the Lagrangian (5.31) with W ¼ 0.
To preserve the gauge condition (6.57), any Kähler

transformation generated by a parameter Λ has to be
accompanied by a special Uð1ÞR transformation with
parameter τ ¼ i

4
ðΛ̄ − ΛÞ; see also Eq. (5.21).

Finally, we generalize the supergravity-matter system
(6.51) to include a cosmological term. The manifestly
supersymmetric action is

S ¼ 4

Z
d3xd2θd2θ̄E

�
G

�
lnGþ 1

4
Kðφ; φ̄Þ

�
− 4GS − ξGG

�
: (6.58)

The corresponding component Lagrangian is obtained from the supergravity-matter Lagrangian (6.52) by adding the
cosmological term (6.28). The result is

L ¼ 1

2
Rðe;ψÞ þ i

4
εabcðψ̄abψc þ ψ̄aψbcÞ þ aaF a −

1

4
~Ha

~Ha −
1

4
ðZ − 2ξÞ2 þ 1

4
ξaaHa −

i
2
ξεabcψ̄aγbψc þ ξ2

þ gIJ̄

�
FIF̄J̄ − ðDaXIÞDaX̄J̄ −

i
4
λIγa ~Da

↔

λ̄J̄ −
1

2
ψ̄aλ̄J̄DaXI þ 1

2
ψaλ

IDaX̄J̄ −
1

2
εabcðψaγbλ

IDcX̄J̄ − ψ̄aγbλ̄
J̄DcXIÞ

þ 1

8
ψaγ

bψ̄aλIγbλ̄
J̄ −

1

8
ψaψ̄

aλI λ̄J̄ þ 1

8
εabcðψaψ̄bλ

Iγcλ̄
J̄ þ ψaγbψ̄cλ

I λ̄J̄Þ þ 1

8
gIJ̄λ

Iγaλ̄
J̄ ~Ha −

i
4
ξλI λ̄J̄

�

þ i
4
Ha½KĪDaX̄Ī − KIDaXI� þ 1

16
RIK̄JL̄λ

IλJ λ̄K̄ λ̄L̄ −
1

64
ðgIJ̄λI λ̄J̄Þ2: (6.59)

We conclude this section by giving the supersymmetry transformations of the component field of φI:

δϵXI ¼ ϵλI; (6.60a)

δϵλ
I
α ¼ 2ϵα

�
FI þ 1

4
ΓI
JKλ

JλK
�
þ 2iðγaϵ̄Þα

�
DaXI −

1

2
ψaλ

I

�
; (6.60b)

δϵFI ¼ −ϵλJΓI
JKF

K þ 1

2
λIηðϵÞ þ iϵ̄γaDaλ

I −
1

4
gIL̄RJL̄KP̄ϵ̄λ̄

P̄λJλK þ iϵ̄γaλJΓI
JKDaXK −

i
2
ϵ̄γaψaFI

− ϵ̄γa ~γbψ̄a

�
DbXI −

1

2
ψbλ

I

�
: (6.60c)

It is a useful exercise for the reader to derive these
transformation laws.

F. R-invariant sigma models

Type II minimal supergravity admits more general matter
couplings [11] than those we have so far studied. In
particular, it can be coupled to R-invariant σ-models,
similarly to the new minimal N ¼ 1 supergravity in four
dimensions (see, e.g., [65] for more details). Here we
briefly discuss such theories.
We consider a system of covariantly chiral scalars ϕI of

super-Weyl weights rI,

D̄αϕ
I ¼ 0; JϕI ¼ −rIϕI; δσϕ

I ¼ rIσϕI: (6.61)

We introduce a supergravity-matter system of the form

S ¼ 4

Z
d3xd2θd2θ̄E

×

�
G

�
lnGþ 1

4
KðϕI=GrI ; ϕ̄J̄=GrJÞ

�
− 4GS

�

þ
�Z

d3xd2θEWðϕIÞ þ c:c:

�
: (6.62)
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This action is super-Weyl invariant if the superpotential
WðϕIÞ obeys the homogeneity equationX

I

rIϕIWI ¼ 2W: (6.63)

The action is invariant under the local Uð1ÞR transforma-
tions if the Kähler potential KðϕI; ϕ̄J̄Þ obeys the equationX

I

rIϕIKI ¼
X
Ī

rIϕ̄ĪKĪ : (6.64)

In a flat superspace limit, the theory (6.62) reduces to a
general R-invariant nonlinear σ-model.
The action (6.62) may be reduced to components using

the formalism developed above. In general, however, the
Weyl and S-supersymmetry gauge conditions (6.14) have
to be replaced with matter-dependent ones [similar to the
gauge conditions (5.19) in type I supergravity] if we want
the gravitational action to be given in Einstein frame. We
will not give such an analysis here.

VII. TOPOLOGICALLY MASSIVE
SUPERGRAVITY

Consider N ¼ 2 conformal supergravity (CSG) coupled
to matter supermultiplets. The supergravity-matter action is

S ¼ 1

g
SCSG þ Smatter; (7.1)

where SCSG denotes the conformal supergravity action
[4,66] and Smatter the matter action [10,11]. Both terms
in (7.1) must be super-Weyl invariant. As regards SCSG, the
formulation given in [4] is purely component, and the
concept of super-Weyl transformations is not defined
within this approach. However, the super-Weyl invariance
of SCSG is manifest in the superspace formulation given
recently in [66]; see Appendix D for a review. Requiring the
super-Weyl invariance of Smatter is equivalent to the fact that
this action will describe an N ¼ 2 superconformal field
theory in a flat superspace limit.
The equation of motion for conformal supergravity is

−
4

g
Wαβ þ J αβ ¼ 0; (7.2)

where Wαβ is the N ¼ 2 super Cotton tensor, Eq. (2.12),
and J αβ is the matter supercurrent. This equation is
obtained by varying S with respect to the real vector
prepotential Hαβ ¼ Hβα of conformal supergravity [15],

Wαβ ∝
δ

δHαβ SCSG; J αβ ∝
δ

δHαβ Smatter; (7.3)

with δ=δHαβ a covariantized variational derivative with
respect to Hαβ. Equation (7.2) and the matter equations of

motion determine the dynamics of the supergravity-matter
system.

A. Properties of the supercurrent

The fundamental properties of the super Cotton tensor
are (i) its super-Weyl transformation law (2.13); and (ii) the
transversality condition [57]

DβWαβ ¼ D̄βWαβ ¼ 0: (7.4)

The matter supercurrent must have analogous properties.
Specifically, it is characterized by the super-Weyl trans-
formation law

J 0
αβ ¼ e2σJ αβ (7.5)

and obeys the conservation equation

DβJ αβ ¼ D̄βJ αβ ¼ 0: (7.6)

These must hold when the matter fields are subject to their
equations of motion. Of course, the relations (7.5) and (7.6)
may be viewed as the consistency conditions for the
equation of motion (7.2). However, there is an independent
way to justify (7.5) and (7.6) that follows from the
definition of J αβ as the covariantized variational derivative
with respect to Hαβ. Here we only sketch the proof. For a
more complete derivation, it is necessary to develop a
background-quantum formalism for 3D N ¼ 2 supergrav-
ity similar to that given by Grisaru and Siegel for N ¼ 1
supergravity in four dimensions [67,68] (see [3] for a
pedagogical review).
As demonstrated in [15], in complete analogy with the

4D case [69], the gravitational superfield originates via
expð−2iHÞ, where

H ¼ H̄ ¼ Hm∂m þHμDμ þ H̄μD̄μ (7.7)

and Dμ and D̄μ are the spinor covariant derivatives of
Minkowski superspace. By construction, the superfields
HM ¼ ðHm;Hμ; H̄μÞ are super-Weyl invariant. The super-
gravity gauge group can be used to gauge away Hμ and its
conjugate, leaving us with the only unconstrained prepo-
tential Hm. This prepotential possesses a highly nonlinear
gauge transformation

δLHαβ ¼ D̄ðαLβÞ −DðαL̄βÞ þOðHÞ; (7.8)

where the gauge parameter Lα is an unconstrained complex
spinor. Due to the nonlinear nature of this transformation,
the gravitational superfield is not a tensor object, and
special care is required in order to represent the variation of
the action induced by a variation Hm → Hm þ δHm in a
covariant way. This is what the background-quantum
splitting in supergravity [67,68] is about.
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It turns out that giving the gravitational superfield a finite
displacement is equivalent to a deformation of the covariant
derivatives that can be represented, in a chiral representa-
tion, as follows:

D̄α → F̄ D̄α þ � � � ; (7.9a)

Dα→ e−2iHðN α
βFDβþ���Þe2iH; detðN α

βÞ¼1; (7.9b)

where

H ¼ −
1

2
HαβDαβ −

i
6
ðDβHαβÞD̄α −

i
6
ðD̄βHαβÞDα þ � � �

(7.10)

The ellipses in these expressions denote all terms with
Lorentz and Uð1ÞR generators. The deformed covariant
derivatives must obey the same constraints as the original
onesDA. This can be shown to imply that the complex scalar
F and the unimodular 2 × 2 matrix N are determined in
terms of Ha. The vector superfield Ha describes the finite
deformationof thegravitational superfield.A crucial property
of the first-order operatorH is that it is super-Weyl invariant
when acting on any super-Weyl inert real scalar U ¼ Ū,

δσH · U ¼ 0; (7.11)

provided Hαβ transforms as

δσHαβ ¼ −σHαβ: (7.12)

The superfield Hαβ proves to be defined modulo gauge
transformations of the form

δLHαβ ¼ D̄ðαLβÞ −DðαL̄βÞ þOðHÞ; (7.13)

which are compatible with the super-Weyl transformation
(7.12) provided the gauge parameter is endowed with the
properties

JLα ¼ Lα; δσLα ¼ −
3

2
σLα: (7.14)

Giving the gravitational superfield an infinitesimal
displacement, Ha ¼ δHa, the matter action changes as

δSmatter ¼
Z

d3xd2θd2θ̄EδHaJ a

≡
Z

d3xd2θd2θ̄EδHa δ
δHa Smatter: (7.15)

This functional must be super-Weyl invariant. Due to
Eqs. (3.3) and (7.12), and since the matter equations of
motion hold, we conclude that the super-Weyl transforma-
tion of the supercurrent is given by Eq. (7.5). Since Smatter is
invariant under the supergravity gauge transformations,
choosing δHαβ ¼ D̄ðαLβÞ −DðαL̄βÞ in (7.15) should give

δSmatter ¼ 0 if the matter equations of motion hold. Since
Lα is completely arbitrary, this is possible if and only if the
conservation equation (7.6) holds.

B. Topologically massive minimal supergravity: Type I

Let us choose Smatter to be the superconformal sigma
model (B2). The corresponding supercurrent proves to be

J αβ ¼ Nij̄DðαϕiD̄βÞϕ̄j̄ −
1

4
½Dðα; D̄βÞ�N − CαβN: (7.16)

The matter equations of motion are

−
1

4
ðD̄2 − 4R̄ÞNi þ Pi ¼ 0: (7.17)

The relative coefficients in (7.16) are uniquely fixed if one
demands the transversality condition (7.6) to hold on themass
shell, Eq. (7.17). Alternatively, it may be shown that the
relative coefficients in (7.16) are uniquely fixed if one requires
thesuper-Weyl transformation law (7.5). In the flat superspace
limit, the supercurrent (7.16) reduces to the one given in [11].
We now turn to considering topologically massive type I

supergravity. It is described by the action

STMSG ¼ 1

g
SCSG − SSG; (7.18)

where SSG is the action for type I supergravity with a
cosmological term, Eq. (5.2). In topologically massive
gravity [70] and its supersymmetric extensions [32,33],
the Einstein term appears with the “wrong" sign. In the
context of the σ-model action (B2), the matter sector in
(7.18) corresponds to the choice N ¼ 4Φ̄Φ and P ¼ −μΦ4.
The equation of motion for Φ is

1

4
ðD̄2 − 4RÞΦ̄þ μΦ3 ¼ 0: (7.19)

The equation of motion for the gravitational superfield (7.2)
becomes

−
4

g

�
i
2
½Dγ; D̄γ�Cαβ − ½Dðα; D̄βÞ�S − 4SCαβ

�
þ 4DðαΦD̄βÞΦ̄ − ½Dðα; D̄βÞ�ðΦ̄ΦÞ − 4CαβΦ̄Φ ¼ 0:

(7.20)

As shown in [10], the freedom to perform the super-Weyl
and local Uð1ÞR transformations can be used to impose the
gauge15

15Upon gauge-fixing Φ to become constant, there still remain
rigid scale and Uð1ÞR transformations that allow us to make f in
(7.21) have any givenvalue. The choicef ¼ 1 leads to a canonically
normalized Einstein-Hilbert term at the component level.
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Φ ¼
ffiffiffi
f

p
¼ const; (7.21)

which implies the conditions (4.35). Then, the matter
equation of motion (7.19) turns into

R ¼ μ ¼ const: (7.22)

Using the identity DβCαβ ¼ − 1
2
D̄αR̄ − 2iDαS, which

follows from (2.8c), we also obtain

DβCαβ ¼ D̄βCαβ ¼ 0: (7.23)

Now, the conformal supergravity equation (7.20) drastically
simplifies

i
2
½Dγ; D̄γ�Cαβ þ gfCαβ ¼ 0: (7.24)

Equations (7.23) and (7.24) have a solution Ca ¼ 0,
which corresponds to (i) a flat superspace for μ ¼ 0, or
(ii) (1,1) anti-de Sitter superspace if μ ≠ 0. In the case
μ ¼ 0, we can linearize Eq. (7.24) around Minkowski
superspace. Its obvious implication is ð□ −m2ÞCa ¼ 0,
where m ¼ 1

2
fg.

Combining the Lagrangians (5.5) and (D12), we obtain
the component Lagrangian for topologically massive type I
supergravity

LTMSG ¼ 1

4g
εabc½Rbcfgωa

fg þ 2

3
ωaf

gωbg
hωch

f − 4F abbc þ iψ̄bcγd ~γaε
defψef� −

1

2
Rðe;ψÞ − i

4
εabcðψ̄abψc þ ψ̄aψbcÞ

þ 1

4
M̄M − baba þ μ̄

�
M̄ −

1

2
εabcψaγbψc

�
þ μ

�
M þ 1

2
εabcψ̄aγbψ̄c

�
: (7.25)

The Lagrangian is computed in the Weyl, local Uð1ÞR and
S-supersymmetry gauge (5.3). However, it is possible to
avoid the use of (5.3). To achieve this the component form
of SSG has to be computed using the results of Appendix B.

C. Topologically massive minimal supergravity: Type II

Topologically massive type II supergravity is described
by the action

STMSG ¼ 1

g
SCSG − SAdS; (7.26)

where SAdS is the action for (2,0) AdS supergravity,
Eq. (6.29). We can think of the theory with action (6.29)
as a model for the vector multiplet coupled to background
supergravity. Then, the equation of motion for G is

iDαD̄α lnG − 4S − 2ξG ¼ 0: (7.27)

The supercurrent corresponding to the action Smatter ¼
−SAdS is

J αβ ¼
4

G
DðαGD̄βÞG − ½Dðα; D̄βÞ�G − 4CαβG: (7.28)

It is an instructive exercise to show that J αβ possesses the
super-Weyl transformation law (7.5) and obeys the con-
servation equation (7.6) provided (7.27) holds. In the flat
superspace limit, the supercurrent (7.28) reduces to the one
given in [11].

Instead of (7.20), now the equation of motion for the
gravitational superfield is

−
4

g

�
i
2
½Dγ; D̄γ�Cαβ − ½Dðα; D̄βÞ�S − 4SCαβ

�

þ 4

G
DðαGD̄βÞG − ½Dðα; D̄βÞ�G − 4CαβG ¼ 0: (7.29)

As shown in [10], the freedom to perform the super-Weyl
transformations can be used to impose the gauge

G ¼ f ¼ const; (7.30)

which implies the constraint (4.39). Then the equation of
motion (7.27) tells us that

S ¼ −
ξ

2
¼ const: (7.31)

These properties lead to the constraint (7.23). As a result,
the conformal supergravity equation (7.29) turns into

i
2
½Dγ; D̄γ�Cαβ þ ðgf þ 2ξÞCαβ ¼ 0: (7.32)

Equations (7.23) and (7.32) have a solution Ca ¼ 0, which
corresponds either to a flat superspace for ξ ¼ 0 or (2,0)
anti-de Sitter superspace if ξ ≠ 0.
Combining the Lagrangians (6.30) and (D12), we obtain

the component Lagrangian for topologically massive type
II supergravity
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LTMSG ¼ 1

4g
εabc

�
Rbcfgωa

fg þ 2

3
ωaf

gωbg
hωch

f − 4F abbc þ iψ̄bcγd ~γaε
defψef

�

−
1

2
Rðe;ψÞ − i

4
εabcðψ̄abψc þ ψ̄aψbcÞ − aaF a þ 1

4
~Ha

~Ha þ 1

4
Z2 − ξ

�
Z þ 1

4
aaHa −

i
2
εabcψ̄aγbψc

�
: (7.33)

The Lagrangian is computed in the Weyl and local
S-supersymmetry gauge 6.14. However, one can avoid
the use of 6.14. To achieve this the component form of SAdS
has to be computed using the results of Appendix C.

D. Topologically massive nonminimal supergravity

Topologically massive nonminimal supergravity is
described by the action

STMSG ¼ 1

g
SCSG − SAdS; (7.34)

where SAdS denotes the action for nonminimal (1,1) AdS
supergravity [11]

SAdS ¼ −2
Z

d3xd2θd2θ̄EðΓ̄ΓÞ−1=2: (7.35)

The dynamical variable Γ is a deformed complex linear
scalar Γ obeying the constraint (1.2). If we think of (7.35)
as the action describing the dynamics of matter superfields
Γ and Γ̄ in a background curved superspace, then this
theory is dual to the type I minimal model (5.2); see [11] for
more details. As a result, topologically massive nonmini-
mal supergravity is dual to that constructed in Sec. VII B.
To relate the two theories, it suffices to note that when Γ
and Γ̄ are subject to their equations of motion, we can
represent

Γ ¼ Φ−3Φ̄; (7.36)

where Φ is a chiral scalar of super-Weyl weight 1/2 under
the equation of motion (7.19).

VIII. SYMMETRIES OF CURVED SUPERSPACE

In this section we derive the conditions for a curved
superspace to possess (conformal) isometries. After that
we concentrate on a discussion of curved backgrounds
admitting conformal and rigid supersymmetries.

A. Conformal isometries

Consider some background superspace M3j4 such that
its geometry is of the type described in Sec. II A. In order to
formulate rigid superconformal or rigid supersymmetric
field theories on M3j4, it is necessary to determine all
(conformal) isometries of this superspace. This can be done
similarly to the case of 4DN ¼ 1 supergravity described in
detail in [3] and reviewed in [51]. In this subsection we
study the infinitesimal conformal isometries of M3j4.
Let ξ ¼ ξAEA be a real supervector field on M3j4,

ξA ≡ ðξa; ξα; ξ̄αÞ. It is called conformal Killing if one
can associate with ξ a supergravity gauge transformation16

(2.4) and an infinitesimal super-Weyl transformation (2.11)
such that their combined action does not change the
covariant derivatives,

ðδK þ δσÞDA ¼ 0: (8.1)

Since the vector covariant derivativeDa is given in terms of
an anticommutator of two spinor ones, it suffices to analyze
the implications of (8.1) for the case A ¼ α. A short
calculation gives

ðδK þ δσÞDα ¼
�
1

2
ðσþ 2iτÞεαβ þDαξβ þ iξðαγCβÞγ − ξαβS −

1

2
Kαβ

�
Dβ − fDαξ̄β þ iξαβR̄gD̄β þ

�
1

2
Dαξβγ − 2iεαðβξ̄γÞ

�
Dβγ

−
�
εαðβðDγÞσÞ þ

1

2
DαKβγ − 4εαðβξγÞR̄− 4iεαðβξ̄γÞS − 2ξ̄αCβγ þ ξα

δCβγδ

−
2

3
εαðβξγÞδð2DδSþ iD̄δR̄Þ þ 1

6
ð2DαSþ iD̄αR̄Þξβγ

�
Mβγ

−
�
Dαðσþ iτÞ− 2ξ̄βCαβ − 4iξ̄αSþ 1

2
ξβγCαβγ −

1

6
ξαγð8DγSþ iD̄γR̄Þ

�
J : (8.2)

16Strictly speaking, the parameters of gauge transformations are usually restricted to have compact support in spacetime; see e.g. [71].
The (conformal) Killing vector and spinor fields do not have this property.
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The right-hand side of (8.2) is a linear combination of the
five linearly independent operators Dβ, D̄β, Dβγ , Mβγ and
J . Therefore, demanding ðδK þ δσÞDα ¼ 0 gives five
different equations. Let us first consider the equations
associated with the operators Dβ and Dβγ in the right-hand
side of (8.2),

Dαξβ¼−
1

2
εαβðσþ2iτÞ− iξðαγCβÞγþξαβSþ1

2
Kαβ; (8.3a)

Dαξβγ ¼ 4iεαðβξ̄γÞ; (8.3b)

as well as their complex conjugate equations. These
relations imply, in particular, that the parameters
ξα; ξ̄α; Kαβ; σ and τ are uniquely expressed in terms of
ξa and its covariant derivatives as follows:

ξα ¼ −
i
6
D̄βξ

βα; ξ̄α ¼ −
i
6
Dβξβα; (8.4a)

σ ¼ 1

2
ðDαξ

α þ D̄αξ̄αÞ; (8.4b)

τ ¼ −
i
4
ðDαξ

α − D̄αξ̄αÞ; (8.4c)

Kαβ ¼ DðαξβÞ − D̄ðαξ̄βÞ − 2ξαβS: (8.4d)

This is why we may also use the notation K ¼ K½ξ� and
σ ¼ σ½ξ�. In accordance with (8.3b), the remaining vector
parameter ξa satisfies the equation17

DðαξβγÞ ¼ 0 (8.5)

and its complex conjugate. Immediate corollaries of (8.5)
are

ðD2 þ 4R̄Þξa ¼ ðD̄2 þ 4RÞξa ¼ 0; (8.6a)

Daξb ¼ ηabσ − εabcKc: (8.6b)

The latter relation implies the conformal Killing equation

Daξb þDbξa ¼
2

3
ηabDcξc: (8.7)

If Eq. (8.5) holds and the conditions (8.4a)–(8.4d) are
adopted, it can be shown that the conditions (8.1) are
satisfied identically. Therefore, (8.5) is the fundamental
equation containing all the information about the conformal
Killing supervector fields. As a consequence, we can
give an alternative definition of the conformal Killing
supervector field. It is a real supervector field

ξ¼ ξAEA; ξA≡ðξa;ξα; ξ̄αÞ¼
�
ξa;−

i
6
D̄βξ

βα;−
i
6
Dβξβα

�
(8.8)

which obeys the master equation (8.5).
If ξ1 and ξ2 are two conformal Killing supervector fields,

their Lie bracket ½ξ1; ξ2� is a conformal Killing supervector
field. It is obvious that, for any real c numbers r1 and r2, the
linear combination r1ξ1 þ r2ξ2 is a conformal Killing
supervector field. Thus the set of all conformal Killing
supervector fields is a super Lie algebra. The conformal
Killing supervector fields generate the symmetries of a
superconformal field theory on M3j4.
Making use of (8.2), the condition ðδK þ δσÞDα ¼ 0

leads to several additional relations which can be repre-
sented in the form

Dαξ̄β ¼ −iξαβR̄; (8.9a)

DαKβγ ¼ 4Cðαβξ̄γÞ − 2CδðαβξγÞδ −
1

3
ðiD̄ðαR̄þ 2DðαSÞξβγÞ

þ εαðβ

�
−2DγÞσ þ 8R̄ξγÞ þ 8iSξ̄γÞ þ

8

3
CγÞδξ̄δ

−
4

3
CγÞδρξδρ þ

10

9
ξγÞδðiD̄δR̄þ 2DδSÞ

�
; (8.9b)

Dατ ¼ iDασ þ 4Sξ̄α − 2iCαδξ̄δ þ
i
2
Cαδρξ

δρ

þ 1

6
ðD̄βR̄ − 8iDβSÞξαβ: (8.9c)

Actually these relations have nontrivial implications.
Equations (8.3) and (8.9) tell us that the spinor covariant
derivatives of the parameters Υ ≔ ðξB; Kβγ; τÞ can be
represented as linear combinations of Υ, σ, Dασ and
D̄ασ. It turns out that the vector covariant derivative of
Υ can be represented as a linear combination of Υ, σ and
DAσ. In order to prove this assertion, the key observation is
that, because of (8.1), the torsion tensor TAB

C, the Lorentz
and Uð1ÞR curvature tensors RAB

cd and RAB, all defined by
Eq. (2.6), as well as their covariant derivatives are invariant
under the transformation δ ¼ δK þ δσ generated by the
conformal Killing supervector field. In particular, the
dimension-1 torsion tensors S, R and Ca are invariant,
and therefore

−
i
4
DβD̄βσ ¼ ðξBDB þ σÞS; (8.10a)

−
1

4
D̄2σ ¼ðξBDB þ σÞR − 2iτR; (8.10b)

−
1

8
ðγaÞβγ½Dβ; D̄γ�σ ¼ðξBDB þ σÞCa þ Ka

bCb: (8.10c)

17Equation (8.5) is analogous to the conformal Killing
equation, DðαβVγδÞ ¼ 0, on a (pseudo)Riemannian three-
dimensional manifold.
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To complete the proof, it only remains to make use
of Eq. (2.7b).
It is an instructive exercise to derive the following

identity

DαDβγσ ¼ 2

3
εαðβ

�
2iCγÞδDδσ þ 4SDγÞσ þ 3iR̄D̄γÞσ

−
i
4
D̄γÞðD2σÞ − i

2
DγÞðDδD̄δσÞ

�

−
i
2
Dðαð½Dβ; D̄γÞ�σÞ (8.11)

and its complex conjugate. In conjunction with Eqs. (8.10),
they tell us that DADBσ can be represented as a linear
combination of Υ, σ and DCσ. We have already established
that DAΥ is a linear combination of Υ, σ and DCσ. These
properties mean that the super Lie algebra of the conformal
Killing vector fields on M3j4 is finite dimensional. The
number of its even and odd generators cannot exceed those
in the N ¼ 2 superconformal algebra ospð2j4Þ.
To study supersymmetry transformations at the compo-

nent level, it is useful to spell out one of the implications of
(8.1) with A ¼ a. Specifically, we consider the equation
ðδK þ δσÞDa ¼ 0 and read off its part proportional to a
linear combination of the spinor covariant derivatives Dβ.
The result is

0 ¼ Daξα þ
i
2
ðγaÞαβD̄βσ − iεabcðγbÞαβCcξβ

− ðγaÞαβðξβS þ ξ̄βRÞ

−
1

2
εabcξ

bðγcÞβγ
�
iC̄αβγ −

4i
3
εαðβD̄γÞS −

2

3
εαðβDγÞR

�
:

(8.12)

B. Conformally related superspaces

Consider a curved superspace M̂3j4 that is conformally
related to M3j4. This means that the covariant derivatives
DA and D̂A, which correspond to M3j4 and M̂3j4 respec-
tively, are related to each other in accordance with (2.11),

D̂α ¼ e
1
2
ωðDα þ ðDγωÞMγα − ðDαωÞJ Þ; (8.13a)

D̂a ¼ eω
�
Da −

i
2
ðγaÞγδðDðγωÞD̄δÞ −

i
2
ðγaÞγδðD̄ðγωÞDδÞ

þ i
2
ðDγωÞðD̄γωÞMa þ εabcðDbωÞMc

−
i
8
ðγaÞγδð½Dγ; D̄δ�ωÞJ −

3i
4
ðγaÞγδðDγωÞðD̄δωÞJ

�
;

(8.13b)

for some super-Weyl parameter ω. The two superspaces
M3j4 and M̂3j4 prove to have the same conformal Killing

supervector fields. Given such a supervector field ξ, it can
be represented in two different forms

ξ ¼ ξAEA ¼ ξ̂AÊA; (8.14)

where ÊA is the inverse vielbein associated with the
covariant derivatives D̂A. The parameters ξA and ξ̂A are
related to each others as follows:

ξ̂a ¼ e−ωξa; ξ̂α ¼ e−
1
2
ω

�
ξα þ i

2
ξβαD̄βω

�
: (8.15)

One may prove that the following identities hold:

σ½ξ̂� ¼ σ½ξ� − ξω; (8.16a)

τ½ξ̂� ¼ τ½ξ� − iξαDαωþ iξ̄αD̄αω

þ 1

8
ξαβ½Dα; D̄β�ω −

1

4
ξαβðDαωÞD̄βω; (8.16b)

Kαβ½ξ̂� ¼ Kαβ½ξ� − 2ξðαDβÞωþ 2ξ̄ðαD̄βÞω

þ εabcðγcÞαβξaDbωþ i
2
ξαβðDγωÞD̄γω: (8.16c)

These identities imply the following important relation:

K½ξ̂� ≔ ξ̂AD̂A þ 1

2
Kcd½ξ̂�Mcd þ iτ½ξ̂�J ¼ K½ξ�: (8.17)

C. Isometries

In order to describe N ¼ 2 Poincaré or anti-de Sitter
supergravity theories, the Weyl multiplet has to be coupled
to a certain conformal compensator Ξ and its conjugate. In
general, the latter is a scalar superfield of super-Weyl
weight w ≠ 0 and Uð1ÞR charge q,

δσΞ ¼ wσΞ; JΞ ¼ qΞ; (8.18)

chosen to be nowhere vanishing, Ξ ≠ 0. It is assumed that
q ¼ 0 if and only if Ξ is real, which is the case for type II
supergravity. Different off-shell supergravity theories cor-
respond to different superfield types of Ξ.
Once Ξ and its conjugate have been fixed, the off-shell

supergravity multiplet is completely described in terms of
the following data: (i) the U(1) superspace geometry
described earlier; (ii) the conformal compensator and its
conjugate. Given a supergravity background, its isometries
should preserve both of these inputs. This leads us to the
concept of Killing supervector fields.
A conformal Killing supervector field ξ ¼ ξAEA onM3j4

is said to be Killing if the following conditions hold:
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�
ξBDB þ 1

2
Kbc½ξ�Mbc þ iτ½ξ�J ;DA

�
þ δσ½ξ�DA ¼ 0;

(8.19a)

ðξBDB þ iqτ½ξ� þ wσ½ξ�ÞΞ ¼ 0; (8.19b)

with the parameters Kbc½ξ�, τ½ξ� and σ½ξ� defined as in (8.4).
The set of all Killing supervector fields on M3j4 is a super
Lie algebra. The Killing supervector fields generate the
symmetries of rigid supersymmetric field theories onM3j4.
The Killing equation (8.19) are super-Weyl invariant.

Specifically, if ðDA;ΞÞ and ðD̂A; Ξ̂Þ are conformally related
supergravity backgrounds,

D̂α ¼ e
1
2
ωðDα þ ðDγωÞMγα − ðDαωÞJ Þ; Ξ̂ ¼ ewσΞ;

(8.20)

then Eq. (8.19) imply that ξ ¼ ξBEB ¼ ξ̂BÊB is also a
Killing supervector field with respect to ðD̂A; Ξ̂Þ. In
particular, it holds that

ðξ̂BD̂B þ iqτ½ξ̂� þ wσ½ξ̂�ÞΞ̂ ¼ 0: (8.21)

The super-Weyl and local Uð1ÞR symmetries allow us to
choose a useful gauge

Ξ ¼ 1 (8.22)

which characterizes the off-shell supergravity formulation
chosen. If q ≠ 0, there remains no residual super-Weyl and
local Uð1ÞR freedom in this gauge. Otherwise, the local
Uð1ÞR symmetry remains unbroken while the super-Weyl
freedom is completely fixed.
In the gauge (8.22), the Killing equation (8.19b)

becomes

iqðξBΦB þ τ½ξ�Þ þ wσ½ξ� ¼ 0: (8.23)

Hence, the isometry transformations are generated by those
conformal Killing supervector fields which respect the
conditions

σ½ξ� ¼ 0; (8.24a)

τ½ξ� ¼ −ξBΦB; q ≠ 0: (8.24b)

These properties provide the main rationale for choosing
the gauge condition (8.22) which is for any off-shell
supergravity formulation; the isometry transformations
are characterized by the condition σ½ξ� ¼ 0.
Since for q ≠ 0 the local Uð1ÞR symmetry is completely

fixed in the gauge (8.22), it is reasonable to switch to new
covariant derivatives without Uð1ÞR connection which are

defined by DA → ∇A ≔ DA − iΦAJ .18 The original Uð1ÞR
connection ΦA turns into a tensor superfield.

D. Charged conformal Killing spinors

We wish to look for those curved superspace back-
grounds which admit at least one conformal supersym-
metry. By definition, such a superspace possesses a
conformal Killing supervector field ξA with the property

ξaj ¼ 0; ϵα ≔ ξαj ≠ 0: (8.25)

All other bosonic parameters will also be assumed to
vanish, σj ¼ τj ¼ Kαβj ¼ 0. Our analysis will be restricted
to U(1) superspace backgrounds without covariant fer-
mionic fields, that is

DαSj ¼ 0; DαRj ¼ 0; DαCβγj ¼ 0: (8.26)

These conditions mean that the gravitini can completely be
gauged away such that the projection (4.3) becomes

Daj ¼ Da ⟺ ψm
α ¼ 0: (8.27)

In what follows, we always assume that the gravitini have
been gauged away.
The above definitions provide a superspace realization

for what is usually called a “supersymmetric spacetime.”
For instance, according to [14], it is a supergravity back-
ground “for which all fermions and their supersymmetry
variations vanish for some nonzero supersymmetry
parameter.”
We introduce scalar and vector fields associated with the

superfield torsion:

s ≔ Sj; r ≔ Rj; ca ≔ Caj: (8.28)

We also recall that the S-supersymmetry parameter is
ηα ≔ Dασj. Bar projecting Eq. (8.12) gives

0 ¼ Daϵ
α þ i

2
ð~γaη̄Þα þ iεabccbð~γcϵÞα − sð~γaϵÞα − irð~γaϵ̄Þα:

(8.29)

This is equivalent to the following two equations:

0 ¼ ðDðαβ − icðαβÞϵγÞ; (8.30a)

η̄α¼−
2i
3
ððγaDaϵÞαþ2iðγaϵÞαcaþ3sϵαþ3irϵ̄αÞ: (8.30b)

Equation (8.30a) tells us that the supersymmetry parameter
is a charged conformal Killing spinor, since (8.30a) can be
rewritten in the form

18This is similar to the 4D procedure of degauging introduced
by Howe [18] and reviewed in [2].
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~DðαβϵγÞ ¼ 0; ~Dαβϵγ ≔ Dαβϵγ − iðbαβ þ cαβÞϵγ: (8.31)

Let us choose ϵα to be a bosonic (commuting) spinor. Then
it follows from (8.31) that the real vector field Va ≔
ðγaÞαβϵ̄αϵβ has the following properties: (i) Va is a
conformal Killing vector field, DðαβVγδÞ ¼ 0; and (ii) Va
is null or timelike, since VaVa ¼ ðϵ̄αϵαÞ2 ≤ 0. This vector
field is null if and only if ϵ̄α ∝ ϵα. As a result, we have
reproduced two of the main results of [35].
By construction, the conditions (8.26) are supersym-

metric, that is

ðδK þ δσÞDαS ¼ 0; ðδK þ δσÞDαR ¼ 0;

ðδK þ δσÞDαCβγ ¼ 0: (8.32)

Evaluating the bar projection of these variations gives,
respectively,

D2D̄ασj ¼ ϵ̄βð8Dαβs − 4i½Dðα; D̄βÞ�Sj − 4iεαβDγD̄γSjÞ
þ 16iϵαr̄s − 8iηαsþ 6η̄αr̄; (8.33a)

D2D̄ασj ¼ ϵβð8iðDαβ þ 2ibαβ − 2icαβÞr̄ − 32iεαβsr̄Þ
þ 2ϵ̄αD̄2R̄j − 4iDαβη

β þ 4iηαs − 6η̄αr̄; (8.33b)

0 ¼ ϵðαðDβγÞ þ 2ibβγÞ þ 4icβγÞÞr̄

þ ϵ̄δ
�
DðαβcγδÞ −

1

2
ðDðαC̄βγδÞ þ D̄ðαCβγδÞÞj

þ εδðα

�
½Dβ; D̄γÞ�Sj − iDβγÞsþ

3

2
εcabðγcÞβγÞDacb

þ 6cβγÞs
��

−
1

2
DðαβηγÞ −

3i
2
cðαβηγÞ: (8.33c)

E. Supersymmetric backgrounds

In order to describe a rigid supersymmetry transfor-
mation, the structure equations given in the previous
subsection have to be supplemented by the additional
condition

σ½ξ� ¼ 0 ⟹ ηα ¼ 0; (8.34)

in accordance with (8.24a). Here we do not specify any
particular compensator. However, we assume that some
compensator has been chosen and the gauge condition
(8.22) has been imposed.
Because of (8.34), Eq. (8.29) turns into

Daϵ
α ¼ −iεabccbð~γcϵÞα þ sð~γaϵÞα þ irð~γaϵ̄Þα: (8.35)

In the spinor notation, this equation reads

Dαβϵγ ¼ icðαβϵγÞ − 2iεγðαρβÞ;

ρα ≔
2

3
caðγaϵÞα − isϵα þ rϵ̄α. (8.36)

This relation shows that, in a neighborhood of any given
point x0, the supersymmetry parameter ϵγðxÞ is determined
by its value at x0. As a result, any nonzero solution of
Eq. (8.35) or, equivalently, (8.36), is nowhere vanishing if
the spacetime M3 is a connected manifold.19

F. Supersymmetric backgrounds with
four supercharges

The existence of rigid supersymmetries imposes non-
trivial restrictions on the background fields. For simplicity,
here we work out these restrictions in the case of four
supercharges. Since σ ¼ 0, one may deduce from (8.33) the
following conditions:

D2Rj ¼ DγD̄γSj ¼ ½Dðα; D̄βÞ�Sj ¼ ðDðαC̄βγδÞ þ D̄ðαCβγδÞÞj
¼ 0: (8.37)

It is an instructive exercise to demonstrate that these
conditions constrain the background fields s, r and ca as
follows:

Das ¼ 0; (8.38a)

Dar ¼ 2ibar; (8.38b)

Dacb ¼ 2εabcccs; (8.38c)

rs ¼ 0; (8.38d)

rca ¼ 0: (8.38e)

It follows from (8.38c) that ca is a Killing vector field,

Dacb þDbca ¼ 0: (8.39)

The Uð1ÞR field strength proves to vanish,

F ab ¼ 0: (8.40)

The Einstein tensor (A12) is uniquely fixed to be

Gab ¼ 4½cacb þ ηabðs2 þ r̄rÞ�: (8.41)

19This can be proved as follows. Let us assume that ϵγðxÞ
vanishes at some point x0 ∈ M3. We can expand ϵγðxÞ in a
covariant Taylor series centered at x0 (see, e.g., [58]) in an open
neighborhood U of x0. Then, due to (8.36), ϵγðxÞ is equal to zero
on U. It is also clear that ϵγðxÞ vanishes on the closure Ū of U.
Now we can introduce the subsetW ∈ M3 consisting of all zeros
of ϵγðxÞ. It follows that this subset is open and closed, and
therefore it coincides with M3 since the latter is connected.
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We recall that in three dimensions the Riemann tensor is
determined in terms of the Einstein tensor according to
Eq. (A12). For the Cotton tensor (A14) we obtain

Wab ¼ −24s
�
cacb −

1

3
ηabcdcd

�
: (8.42)

The spacetime is conformally flat if sca ¼ 0.
So far we have not specified any compensator. We now

turn to considering the known off-shell supergravity
formulations [11].

G. Type I minimal backgrounds with four supercharges

In type I supergravity, the conformal compensators are a
covariantly chiral superfield Φ of super-Weyl weight w ¼
1=2 and its complex conjugate Φ̄. We recall that the
properties of Φ are given by Eq. (5.1). The freedom to
perform the super-Weyl and local Uð1ÞR transformations
can be used to impose the gauge

Φ ¼ 1: (8.43)

Such a gauge fixing is accompanied by the consistency
conditions [10]

0 ¼ DαΦ ¼ −
i
2
Φα;

0 ¼ fDα; D̄βgΦ ¼ −Φαβ þ Cαβ − 2iεαβS; (8.44)

and therefore

S ¼ 0; Φα ¼ 0; Φαβ ¼ Cαβ: (8.45)

Since the local Uð1ÞR invariance is completely fixed in this
gauge, it is more convenient to make use of covariant
derivatives without Uð1ÞR connection,

∇A ≔ DA − iΦAJ ; (8.46)

which satisfy the anticommutation relations

f∇α;∇βg ¼ −4R̄Mαβ; f∇̄α; ∇̄βg ¼ 4RMαβ; (8.47a)

f∇α; ∇̄βg ¼ −2i∇αβ − 2εαβCγδMγδ: (8.47b)

The Killing spinor equation (8.35) becomes

Daϵ
α ¼ icaϵα − iεabccbð~γcϵÞα þ irð~γaϵ̄Þα: (8.48)

The supersymmetric backgrounds with four supercharges
are characterized by the properties

rca ¼ 0; (8.49a)

Dar ¼ 0; (8.49b)

Dacb ¼ 0: (8.49c)

The Einstein tensor is

Gab ¼ 4½cacb þ ηabr̄r�: (8.50)

Such a spacetime is necessarily conformally flat,

Wab ¼ 0: (8.51)

The solution with ca ¼ 0 corresponds to the (1,1) AdS
superspace [11].
The Killing spinor equation (8.48) is equivalent to the

condition that the gravitino variation (5.12b) vanishes,

−
1

2
δϵψm

α ¼ −Dmϵ
α þ i

2
bmϵα −

i
2
emaεabcbbð~γcϵÞα

−
i
4
M̄ð~γmϵ̄Þα ¼ 0; (8.52)

provided we replace

ca →
1

2
ba; r → −

1

4
M̄: (8.53)

H. Type II minimal backgrounds with four
supercharges

Type II minimal supergravity is obtained by coupling the
Weyl multiplet to a real linear compensator G with
the super-Weyl transformation law given by Eq. (6.2).
The super-Weyl invariance allows us to choose the gauge

G ¼ 1: (8.54)

Because the compensator is real, its Uð1ÞR charge (8.18) is
equal to zero, and thus the local Uð1ÞR group remains
unbroken in the gauge chosen. The consistency condition
for (8.54) is

R ¼ R̄ ¼ 0: (8.55)

Then, the anticommutators of spinor covariant derivatives
become

fDα;Dβg ¼ fD̄α; D̄βg ¼ 0; (8.56a)

fDα; D̄βg ¼ −2iDαβ − 2CαβJ − 4iεαβSJ

þ 4iSMαβ − 2εαβCγδMγδ: (8.56b)

The Killing spinor equation for type II minimal super-
gravity is

Daϵ
α ¼ −iεabccbð~γcϵÞα þ sð~γaϵÞα: (8.57)
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All supersymmetric backgrounds with four supercharges
are characterized by the conditions

Das ¼ 0; (8.58a)

Dacb ¼ 2εabcccs: (8.58b)

The Einstein tensor is

Gab ¼ 4½cacb þ ηabs2�; (8.59)

and the Cotton tensor is given by Eq. (8.42). The solution
with ca ¼ 0 corresponds to the (2,0) AdS superspace [11].
In the case ca ≠ 0, the traceless Ricci tensor is

Rab −
1

3
ηabR ¼ 4

�
cacb −

1

3
ηabc2

�
: (8.60)

From this we conclude (see, e.g., Table 1 in [72]) that
spacetime is of type N (for ca null), type Ds (for ca
spacelike) or Dt (for ca timelike) in the Petrov-Segre
classification. For Dt and Ds it is shown in [72] that
spacetime is necessarily biaxially squashed AdS3.
The Killing spinor equation (8.57) is equivalent to

the condition that, in the gauge ψm
α ¼ 0, the gravitino

variation (6.36b) vanishes,

−
1

2
δϵψm

α ¼ −Dmϵ
α −

i
4
Hmϵ

α þ i
4
emaεabcHcð~γbϵÞα

−
1

4
Zð~γmϵÞα ¼ 0; (8.61)

provided we make the replacements

ba→ba−
1

4
Ha; ca→−

1

2
Ha; s→−

1

4
Z: (8.62)

I. Nonminimal backgrounds with four supercharges

Nonminimal supergravity in three dimensions was stud-
ied in [10,11]. It is obtained by coupling the Weyl multiplet
to a complex linear compensator Σ and its conjugate. Here
Σ obeys the constraint

ðD̄2 − 4RÞΣ ¼ 0 (8.63)

and is subject to no reality condition. By definition, the
compensator Σ is chosen to be nowhere vanishing and
transforms as a primary field of weight w ≠ 0; 1 under the
super-Weyl group. Then, the Uð1ÞR charge of Σ is uniquely
determined [10],

δσΣ ¼ wσΣ ⟹ JΣ ¼ ð1 − wÞΣ: (8.64)

The super-Weyl and local Uð1ÞR symmetries can be used
to impose the gauge condition

Σ ¼ 1: (8.65)

In this gauge, some restrictions on the geometry occur [10].
To describe them, it is useful to split the covariant
derivatives as

Dα ¼ ∇α þ iTαJ ; D̄α ¼ ∇̄α þ iT̄αJ ; (8.66)

where the original Uð1ÞR connection Φα has been renamed
as Tα. In the gauge (8.65), the constraint ðD̄2 − 4RÞΣ ¼ 0
turns into

R ¼ 1 − w
4

ði∇̄αT̄α þ wT̄αT̄αÞ: (8.67)

We see that R becomes a descendant of T̄α. Equation (8.67)
is not the only consistency condition implied by the gauge
fixing (8.65). Evaluating explicitly fDα;DβgΣ and
fDα; D̄βgΣ and then setting Σ ¼ 1 gives

∇ðαTβÞ ¼0; S¼1

8
ð∇̄αTα−∇αT̄αþ2iTαT̄αÞ; (8.68a)

Φαβ ¼ Cαβ þ
i
2
∇ðαT̄βÞ þ

i
2
∇̄ðαTβÞ þ TðαT̄βÞ: (8.68b)

If we define a new vector covariant derivative ∇a by
Da ¼ ∇a þ iΦaJ , then the algebra of the covariant deriv-
atives ∇A ¼ ð∇a;∇α; ∇̄αÞ proves to be

f∇α;∇βg ¼ −2iTðα∇βÞ − iðw − 1Þð∇γTγ þ iwTγTγÞMαβ;

(8.69a)

f∇α; ∇̄βg ¼ −2i∇αβ − iT̄β∇α þ iTα∇̄β − 2εαβCγδMγδ

þ i
2
ð∇̄γTγ −∇γT̄γ þ 2iTγT̄γÞMαβ: (8.69b)

The Killing spinor equation in this case is

Daϵ
α ¼ iΦajϵα − iεabccbð~γcϵÞα þ sð~γaϵÞα þ irð~γaϵ̄Þα:

(8.70)

It should be kept in mind that R, S and Φa are now
composite superfields constructed in terms of Tα, T̄α and
their covariant derivatives, in accordance with Eqs. (8.67),
(8.68a) and (8.68b) respectively. Supersymmetric back-
grounds with four supercharges are very constrained in the
nonminimal case. Indeed, the requirement that Tαj ¼ 0 be
invariant under the isometry transformations leads to the
condition

0 ¼ ϵγ∇γTαj − ϵ̄γ∇̄γTαj; (8.71)

which implies ∇αTβ ¼ ∇̄αTβ ¼ 0. Due to (8.67)–(8.68b),
we deduce that
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r ¼ 0; s ¼ 0; Φaj ¼ ca; (8.72)

and then cb is covariantly constant,

Dacb ¼ 0: (8.73)

The Einstein tensor becomes

Gab ¼ 4cacb: (8.74)

Such a spacetime is necessarily conformally flat,Wab ¼ 0.
Nonminimal supergravity is the only off-shell super-

gravity formulation which does not allow for anti-de Sitter
backgrounds. However, there exists an alternative non-
minimal formulation in the case w ¼ −1 [11], inspired by
the 4D construction in [24], which admits an anti-de Sitter
solution.

J. Nonminimal AdS backgrounds with
four supercharges

In the case w ¼ −1, the complex linear constraint (8.63)
admits a nontrivial deformation. We introduce a new
conformal compensator Γ that has the transformation
properties

δσΓ ¼ −σΓ; J Γ ¼ 2Γ (8.75)

and obeys the improved linear constraint20

−
1

4
ðD̄2 − 4RÞΓ ¼ μ ¼ const; (8.76)

with the complex parameter μ ≠ 0 inducing a cosmological
constant. This constraint is super-Weyl invariant.
The super-Weyl and local Uð1ÞR symmetries allow us to

impose the gauge condition

Γ ¼ 1: (8.77)

As in the previous subsection, this gauge condition implies
some restrictions on the geometry. Indeed, the constraint
ðD̄2 − 4RÞΓ ¼ μ turns into

R ¼ μþ i
2
ð∇̄αT̄α þ iT̄αT̄αÞ: (8.78)

We see that R becomes a descendant of T̄α. Next,
evaluating the expressions fDα;DβgΓ and fDα; D̄βgΓ
and then setting Γ ¼ 1, we again obtain the relations
(8.68a) and (8.68b). As in the previous subsection, we
can introduce covariant derivatives without Uð1ÞR con-
nection, ∇A ¼ ð∇a;∇α; ∇̄αÞ. Their algebra proves to be

f∇α;∇βg ¼ −2iTðα∇βÞ − 4μ̄Mαβ þ 2ið∇γTγ − iTγTγÞMαβ;

(8.79a)

f∇α; ∇̄βg ¼ − 2i∇αβ − iT̄β∇α þ iTα∇̄β − 2εαβCγδMγδ

þ i
2
ð∇̄γTγ −∇γT̄γ þ 2iTγT̄γÞMαβ: (8.79b)

The Killing spinor equation coincides with (8.70). Unlike
the nonminimal formulation studied in the previous sub-
section, the scalar R is now given by Eq. (8.78). This
modified expression for R leads to different backgrounds
with four supercharges. Due to the presence of the
parameter μ in (8.78), demanding the existence of four
supersymmetries gives

Sj ¼ 0; Rj ¼ μ; Φaj ¼ Caj ¼ ca: (8.80)

Moreover, one also finds the condition CcjRj ¼ 0. Since
Rj ¼ μ ≠ 0, we conclude that

ca ¼ 0: (8.81)

The Einstein tensor is

Gab ¼ 4ηabμ̄μ: (8.82)

This background corresponds to the (1,1) anti-de Sitter
superspace [11].
After this work was completed, there appeared a new

paper [50] which has some overlap with our results in
Secs. VII B and VIII G.
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APPENDIX A: NOTATION, CONVENTIONS AND
SOME TECHNICAL DETAILS

Our 3D notation and conventions follow those used in
[10]. In particular, the vector indices are denoted by
lower case Latin letters from the beginning of the alphabet,
for instance a; b ¼ 0; 1; 2. The Minkowski metric is
ηab ¼ diagð−1; 1; 1Þ, and the Levi-Civita tensor εabc is
normalized by ε012 ¼ −1, and hence ε012 ¼ 1. The spinor
indices are denoted by small Greek letters from the
beginning of the alphabet, for instance α; β ¼ 1; 2.
To deal with spinors, we introduce a basis of real

symmetric 2 × 2 matrices

γa ¼ ðγaÞαβ ¼ ðγaÞβα ¼ ð1; σ1; σ3Þ; (A1a)

and also define

~γa ¼ ðγaÞαβ ¼ ðγaÞβα ≔ εαγεβδðγaÞγδ; (A1b)

with σ1 and σ3 two of the three Pauli matrices. The spinor
indices are raised and lowered using the SLð2;RÞ invariant
tensors

εαβ ¼
�
0 −1
1 0

�
; εαβ ¼

�
0 1

−1 0

�
(A2)

as follows:

ψα ¼ εαβψβ; ψα ¼ εαβψ
β: (A3)

The 3D Dirac γ matrices are

γ̂ ¼ ðγaÞαβ ≔ εβγðγaÞαγ; γ̂aγ̂b ¼ ηab1þ εabcγ̂
c: (A4)

In this representation of the γ matrices, the Majorana
spinors are real.
InN ¼ 2 supersymmetry, we usually deal with complex

spinors. Only in the case of complex spinors, we
use throughout this paper the following types of index
contraction:

ψχ ≔ ψαχα; ψχ̄ ≔ ψαχ̄α;

ψ̄χ ≔ ψ̄αχα; ψ̄ χ̄ ≔ ψ̄αχ̄
α; (A5a)

ðγaψÞα ≔ ðγaÞαβψβ ¼ ðψγaÞα;
ð~γaψÞα ≔ ðγaÞαβψβ ¼ ðψ ~γaÞα; (A5b)

ψγaχ ≔ ψαðγaÞαβχβ; ψ ~γaχ ≔ ψαðγaÞαβχβ: (A5c)

In particular, contractions of two spinor covariant deriva-
tives are defined as

D2 ≔ DαDα; D̄2 ¼ D̄αD̄α: (A6)

Any three-vector Fa can equivalently be realized as a
symmetric spinor Fαβ ¼ Fβα. The relationship between Fa
and Fαβ is as follows:

Fαβ ≔ ðγaÞαβFa ¼ Fβα; Fa ¼ −
1

2
ðγaÞαβFαβ: (A7)

We can also describe the one-form Fa in terms of its
Hodge-dual two-form Fab ¼ −Fba,

Fab ≔ −εabcFc; Fa ¼
1

2
εabcFbc: (A8)

Then, the symmetric spinor Fαβ ¼ Fβα, which is associated
with Fa, can equivalently be defined in terms of Fab:

Fαβ ≔ ðγaÞαβFa ¼
1

2
ðγaÞαβεabcFbc: (A9)

These three algebraic objects, Fa, Fab and Fαβ, are in one-
to-one correspondence to each other. Their inner products
are related as follows:

−FaGa ¼
1

2
FabGab ¼

1

2
FαβGαβ: (A10)

An equivalent form of the commutation relations (2.7c)
and (2.7d) is

½Dαβ;Dγ� ¼ −iεγðαCβÞδDδ þ iCγðαDβÞ − 2εγðαSDβÞ − 2iεγðαR̄D̄βÞ þ 2εγðαCβÞδρMδρ −
4

3
ð2DðαS þ iD̄ðαR̄ÞMβÞγ

þ 1

3
ð2DγS þ iD̄γR̄ÞMαβ þ

�
Cαβγ þ

1

3
εγðαð8DβÞS þ iD̄βÞR̄Þ

�
J ; (A11a)

½Dαβ; D̄γ� ¼ iεγðαCβÞδD̄δ − iCγðαD̄βÞ − 2εγðαSD̄βÞ þ 2iεγðαRDβÞ þ 2εγðαC̄βÞδρMδρ −
4

3
ð2D̄ðαS − iDðαRÞMβÞγ

þ 1

3
ð2D̄γS − iDγRÞMαβ −

�
C̄αβγ þ

1

3
εγðαð8D̄βÞS − iDβÞRÞ

�
J : (A11b)

These relations are very useful for actual calculations.
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In three dimensions, the Weyl tensor is identically zero,
and the Riemann tensor Rabcd is related to the Einstein
tensor by the simple rule

1

4
εacdεbefRcdef ¼ Gab ≔ Rab −

1

2
ηabR;

Rabcd ¼ εabeεcdfGef: (A12)

As a consequence, the Riemann tensor is expressed in
terms of the Ricci tensor Rab ≔ Rc

acb and the scalar
curvature R ≔ ηabRab as follows:

Rabcd ¼ ηacRbd − ηadRbc þ ηbdRac − ηbcRad

−
1

2
ðηacηbd − ηadηbcÞR: (A13)

The Cotton tensor is defined as follows

Wab ≔
1

2
εacdWcd

b ¼ Wba;

Wabc ¼ 2D½aRb�c þ
1

2
ηc½aDb�R: (A14)

A spacetime is conformally flat if and only ifWab ¼ 0 [73]
(see [57] for a modern proof).

APPENDIX B: SUPERCONFORMAL
SIGMA MODEL

In this appendix we consider an alternative parametriza-
tion of the supergravity-matter system (5.15) and reduce it
to components without gauge fixing the Weyl, local Uð1ÞR
and S-supersymmetry transformations.
In the new parametrization, the matter sector of the

theory is described in terms of several covariantly chiral
superfields ϕi ¼ ðϕ0;ϕIÞ of super-Weyl weight w ¼ 1=2,

D̄αϕ
i ¼ 0; Jϕi ¼ −

1

2
ϕi; δσϕ

i ¼ 1

2
σϕi: (B1)

The action is defined to be

S ¼
Z

d3xd2θd2θ̄ENðϕi; ϕ̄j̄Þ

þ
�Z

d3xd2θ E PðϕiÞ þ c:c:

�
≡ Skinetic þ Spotential (B2)

and may naturally be interpreted as a locally supersym-
metric σ-model. For the action to be super-Weyl and Uð1ÞR
invariant, the Kähler potential N and the superpotential P
should obey the homogeneity conditions

X
i

ϕiNi ¼
X
ī

ϕ̄īNī ¼ N; (B3a)

X
i

ϕiPi ¼ 4P: (B3b)

Equation (B3a) means that the σ-model target space is a
Kähler cone [74].
Before reducing the action to components, we introduce

several standard σ-model definitions. As usual, multiple
derivatives of the Kähler potential are denoted as

Ni1…ip j̄1…j̄q
≔

∂ðpþqÞ

∂ϕi1…∂ϕip∂ϕ̄j̄1…∂ϕ̄j̄q
N: (B4)

The Kähler metric21 Nij̄ ¼ Nj̄i is assumed to be non-
singular, with its inverse being denoted Nīj ¼ Njī,

Nik̄N
k̄j ¼ δji ; NīkNkj̄ ¼ δīj̄: (B5)

The Christoffel symbols γkij are

γkij ≔ Nijl̄N
l̄k; γk̄ī j̄ ≔ Nlī j̄N

lk̄; (B6)

and the Riemann curvature Rik̄jl̄ is

Rik̄jl̄ ¼ Rik̄j
pNpl̄ ¼ ð∂ k̄γ

p
ijÞNpl̄: (B7)

We define the component fields of ϕi as follows:

ρiα ≔ Dαϕ
ij; (B8a)

F i ≔ −
1

4
½D2ϕi þ γijkðDαϕjÞDαϕ

k�j: (B8b)

The physical scalar ϕij will be denoted by the same symbol
as the chiral superfield ϕi itself.
To reduce the kinetic term in (B2) to components, we

associate with it the antichiral Lagrangian

L̄c ¼ −
1

4
ðD2 − 4R̄ÞN (B9)

and make use of the action principle (3.13). The resulting
component Lagrangian is

21We do not assume the Kähler metric to be positive definite.
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Lkinetic¼−
1

8

�
Rþ i

2
εabcðψaψ̄bcþ ψ̄aψbcÞ

�
NþNij̄

�
F iF̄ j̄−ðDaϕiÞDaϕ̄

j̄−
i
4
ρ̄j̄γa ~Daρ

i−
i
4
ρiγa ~Daρ̄

j̄þ i
2
ψaρ

iDaϕ̄j̄

−
i
2
ψ̄aρ̄

j̄Daϕiþ i
2
εabcðψ̄aγbρ̄

j̄Dcϕ
i−ψaγbρ

iDcϕ̄
j̄Þ−1

8
ψaψ̄aρ

iρ̄j̄þ1

8
ψaγbψ̄aρ

iγbρ̄j̄

þ1

8
εabcðψaγbψ̄cρ

iρ̄j̄þψaψ̄bρ
iγcρ̄

j̄Þ
�

þ1

8
εabc½ψ̄abγcρ̄

īNī−ψabγcρ
iNi�þ

i
4
εabcψaψ̄b½NiDcϕ

i−NīDcϕ̄
ī�þ 1

16
Rik̄jl̄ρ

iρjρ̄k̄ρ̄l̄; (B10)

where we have introduced the target-space covariant
derivative

~Daρ
i
α ≔ Daρ

i
α þ γijkρ

j
αDaϕ

k: (B11)

A short calculation of the component Lagrangian corre-
sponding to Spotential gives

Lpotential ¼ F iPi −
1

4
ðPjk − γijkPiÞρjρk þ

i
2
ψ̄aγ

aρjPj

−
1

2
εabcψ̄aγbψ̄cPþ c:c: (B12)

Both Lagrangians (B10) and (B12) are quite compact.
Now, we relate the theory under consideration to the

σ-model (5.15). We assume that the chiral scalar ϕ0 from
the set ϕi ¼ ðϕ0;ϕIÞ is nowhere vanishing, ϕ0 ≠ 0, and
therefore it may be chosen to play the role of conformal
compensator. We introduce a new parametrization of the
dynamical chiral superfields defined by

ϕ0 ¼ Φ; ϕI ¼ ΦφI: (B13)

Here the chiral scalars φI are neutral under the super-Weyl
and Uð1ÞR transformations. Since Φ is nowhere vanishing,
Nðϕ; ϕ̄Þ and PðϕÞ may be represented in the form

Nðϕ; ϕ̄Þ ¼ −4Φ̄e−1
4
Kðφ;φ̄ÞΦ; PðϕÞ ¼ Φ4WðφÞ: (B14)

We assume that Kðφ; φ̄Þ is the Kähler potential of a Kähler
manifold with positive definite metric gIJ̄ ≔ KIJ̄.
Let us express the geometric objects in terms of the new

coordinates introduced. A short calculation gives

Nij̄ ¼ e−
1
4
K

�
−4 Φ̄KJ̄

ΦKI ΦΦ̄K̂IJ̄

�
; (B15a)

where we have denoted

KI ≔
∂K
∂φI ; K̂IJ̄ ≔ gIJ̄ −

1

4
KIKJ̄: (B15b)

It follows from (B15a) that the conditions detðNij̄Þ ≠ 0 and
detðgIJ̄Þ ≠ 0 are equivalent. For the inverse metric we
obtain

Nīj ¼ e
1
4
K

 
− 1

4

	
1 − 1

4
KLKL



1
4ΦK

J

1
4Φ̄

KĪ 1
ΦΦ̄

KĪJ

!
; (B16a)

where we have denoted

KI ≔ gIJ̄KJ̄; KĪ ≔ gĪJKJ: (B16b)

For the Christoffel symbols γikl we read off

γ0kl ¼
� 0 0

0 1
4
Φ
	
ΓI
KLKI − KKL − 1

4
KKKL


�;
γIkl ¼

�
0 1

Φ δ
I
L

1
Φ δ

I
K ΓI

KL − 1
2
KðKδILÞ

�
; (B17)

where ΓI
KL is the Christoffel symbol for the Kähler metric

gIJ̄. Since ∂ 0̄γ
k
ij ¼ 0, the Riemann tensor is characterized

by the properties

R0k̄jl̄ ¼ Ri0̄jl̄ ¼ Rik̄0l̄ ¼ Rik̄j0̄ ¼ 0: (B18)

Thus the only nonzero components of the Riemann tensor
are

RIK̄JL̄ ¼ ΦΦ̄e−
1
4
K

�
RIK̄JL̄ −

1

4
ðKIK̄KJL̄ þ KJK̄KIL̄Þ

�
;

RIK̄JL̄ ¼ gPL̄∂K̄ΓP
IJ: (B19)

Our next step is to express the auxiliary fields F i,
Eq. (B8b), and the spinor fields ~Daρ

i
α, Eq. (B11), in terms

of the component fields of Φ and φI. We recall that the
component fields of φI are defined in (5.22). We do not
introduce special names for the component fields of Φ; we
simply write them as Φ, DαΦ and D2Φ, with the bar
projection being always assumed here and in what follows.
For the auxiliary fields F i we get

F 0 ¼ −
1

4
D2Φ −

1

16
Φ

�
ΓI
KLKI − KKL −

1

4
KKKL

�
λKλL;

(B20a)

F I ¼ FI −
1

2Φ
λαIDαΦþ 1

8
λIλJKJ: (B20b)
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For the spinor fields ~Daρ
i
α we derive

~DaDαΦ ¼ ~Daρ
0
α ¼ DaDαΦþ 1

4
Φ

�
ΓI
KLKI − KKL −

1

4
KKKL

�
λKαDaXL; (B21a)

~Daλ
I
α ¼ Daλ

I
α þ ΓI

JKλ
J
αDaXK þ 2

Φ
ðDαΦÞDaXI −

1

2
KJλ

ðI
α DaXJÞ: (B21b)

Using the above results, for the kinetic term (B10) we obtain

Lkinetic ¼
�
1

2
Rþ i

4
εabcðψaψ̄bc þ ψ̄aψbcÞ

�
Φ̄e−

1
4
KΦ − 4

�
F 0F̄ 0̄ − ðDaΦÞDaΦ̄ −

i
4
ððD̄ Φ̄Þγa ~DaDΦþ ðDΦÞγa ~DaD̄ΦÞ

þ 1

2
ψaðDΦÞDaΦ̄þ 1

2
ψ̄aðD̄ Φ̄ÞDaΦþ 1

2
εabcðψ̄aγbðD̄ Φ̄ÞDcΦ − ψaγbðDΦÞDcΦ̄Þ

þ 1

8
εabcðψaγbψ̄cðDΦÞD̄ Φ̄þψaψ̄bðDΦÞγcD̄ Φ̄Þ − 1

8
ψaψ̄aðDΦÞD̄ Φ̄þ 1

8
ψaγcψ̄aðDΦÞγbD̄ Φ̄

�
e−

1
4
K

þ
�
F 0F̄ Ī − ðDaΦÞDaX̄Ī −

i
4
ðλ̄Īγa ~DaDΦþ ðDΦÞγa ~Daλ̄

ĪÞ þ 1

2
ψaðDΦÞDaX̄Ī þ 1

2
ψ̄aλ̄

ĪDaΦ

þ 1

2
εabcðψ̄aγbλ̄

ĪDcΦ − ψaγbðDΦÞDcφ̄
ĪÞ þ 1

8
εabcðψaγbψ̄cλ̄

ĪDΦ − ψaψ̄bλ̄
ĪγcDΦÞ

−
1

8
ψaψ̄aλ̄

ĪDΦ −
1

8
ψaγbψ̄aλ̄

ĪγbDΦ
�
e−

1
4
KΦ̄KĪ þ

�
F IF̄ 0̄ − ðDaXIÞDaΦ̄ −

i
4
ðλIγa ~DaD̄ Φ̄þðD̄ Φ̄Þγa ~Daλ

IÞ

þ 1

2
ψaλ

IDaΦ̄þ 1

2
ψ̄aðD̄ Φ̄ÞDaXI þ 1

2
εabcðψ̄aγbðD̄ Φ̄ÞDcXI − ψaγbλ

IDcΦ̄Þ

þ 1

8
εabcðψaγbψ̄cλ

ID̄ Φ̄þψaψ̄bλ
IγcD̄ Φ̄Þ − 1

8
ψaψ̄aλ

ID̄ Φ̄þ 1

8
ψaγbψ̄aλ

IγbD̄ Φ̄

�
e−

1
4
KΦKI

þ
�
F IF̄ J̄ − ðDaXIÞDaX̄J̄ −

i
4
ðλ̄Īγa ~Daλ

I þ λIγa ~Daλ̄
J̄Þ þ 1

2
ψaλ

IDaX̄J̄ þ 1

2
ψ̄aλ̄

J̄DaXI

þ 1

2
εabcðψ̄aγbλ̄

J̄DcXI − ψaγbλ
IDcX̄J̄Þ þ 1

8
εabcðψaγbψ̄cλ

I λ̄J̄ þ ψaψ̄bλ
Iγcλ̄

J̄Þ

−
1

8
ψaψ̄aλ

I λ̄J̄ þ 1

8
ψaγbψ̄aλ

Iγbλ̄
J̄

�
e−

1
4
KΦΦ̄K̂IJ̄

−
1

4
εabc

�
Φ̄

�
iψaψ̄bð4DcΦ − ΦKIDcXIÞ − 1

2
ψabγcð4DΦ − ΦKIλ

IÞ
�
þ c:c:

�
e−

1
4
K

þ 1

16

�
RIK̄JL̄ −

1

2
gIK̄gJL̄

�
λIλJ λ̄K̄ λ̄L̄: (B22)

The potential term (B12) becomes

Lpotential ¼ Φ4

�
FIWI − Φ−1WD2Φ − 3Φ−2WðDΦÞDΦ − 2Φ−1WIλ

IDΦ −
1

4
λIλJðWIJ − ΓK

IJWKÞ

þ i
2
ψ̄aγ

að4Φ−1WDΦþWIλ
IÞ þ 1

2
Wεabcψ̄aγbψ̄c

�
þ c:c: (B23)

The sum of the expressions (B22) and (B23) constitutes the component Lagrangian of the theory (5.15) with no gauge
condition on the chiral compensator Φ imposed. Looking at the explicit form of (B22), it is easy to understand why the
gauge conditions (5.19) have been chosen. First of all, it is seen from the first line of (B22) the canonically normalized
Hilbert-Einstein gravitational Lagrangian corresponds to the Weyl gauge condition (5.19a). Secondly, consider the terms in
(B22) which involve the gravitino field strength coupled to the matter fermions. These consist of
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Φ̄ψabγc

�
e−

1
4
KDαΦ −

1

4
Φ e−

1
4KIλ

I
α

�
¼ ψabγcDαðΦ̄ e−

1
4
KΦÞ
(B24)

and its complex conjugate. To eliminate these cross terms,
we have to impose the S-supersymmetry gauge condition
(5.19b). Finally, the Uð1ÞR gauge condition (5.19c) elim-
inates an overall phase factor in the superpotential (B23). In
the gauge (5.19), the only remaining field in Φ occurs at the
θ2 component. It can be defined in the Kähler invariant
way (5.20).
In the gauge (5.19), the following useful relations hold

DαΦ ¼ 1

4
e
1
8
KλLαKL; (B25a)

F 0 ¼ −
1

4
e−

1
8
KMþ 1

4
e
1
8
KFIKI; (B25b)

F I ¼ FI: (B25c)

As usual, the bar projection is assumed here. Using these
relations one may obtain the component Lagrangians (5.23)
and (5.28) from (B22) and (B23).

APPENDIX C: VECTOR MULTIPLET MODEL

In this appendix we present the component Lagrangian
for the model of an Abelian vector multiplet coupled to
conformal supergravity. As in Sec. VI A, we denote by G
the gauge prepotential of the vector multiplet, and by G the
corresponding guage-invariant field strength. The vector
multiplet action is

SVM ¼ −4
Z

d3xd2θd2θ̄EðG lnG − 4GS − κGGÞ; (C1)

with κ a constant parameter.

We define the component fields of the vector multiplet as
follows:

Y ≔ Gj; (C2)

υα ≔ DαGj; (C3)

Z ≔ iDαD̄αGj; (C4)

Ba ≔ −
1

2
ðγaÞαβ½Dðα; D̄βÞ�Gj

¼ Ha − εabcYψ̄bψc − iεabcðψbγcυþ ψ̄bγcῡÞ: (C5)

As in Sec. VI,Ha denotes the Hodge dual of the component
field strength,

Ha ¼ 1

2
εabcHbc; Hab ¼ Daab −Dbaa − T ab

cac: (C6)

We also choose the WZ gauge (6.16) for the vector
multiplet. Then, the other component fields of G are

½Dðα; D̄βÞ�Gj ¼
1

2
aαβ; (C7)

D2D̄αGj ¼ 2iυα; (C8)

D̄2D2Gj ¼ −2iDbab − 2ðψaγ
aυþ ψ̄aγ

aῡÞ
− 2iYψ̄aψ

a − ψ̄aγ
bψaab − 2Z: (C9)

The component Lagrangian corresponding to the
action (C1) is

LVM ¼ 1

4
Y−1BaBa − aaF a − Y−1ðD̂aYÞD̂aY −

1

2
YRþ 1

4
Y−1Z2 − iY−1ðῡγaD̂aυþ υγaD̂aῡÞ −

1

2
Y−2Baῡγ

aυ

−
i
2
Y−2Zῡυ −

1

2
Y−3υ2ῡ2 þ κ

�
−YZ −

1

4
aaBb − iῡυþ i

2
εabcY2ψ̄aγbψc −

1

4
εabcYacψ̄aψb

�

þ
�
−
1

4
εabcð2ῡγaψ̄bc þ iYψaψ̄bcÞ −

1

2
Y−1ψaγ

a ~γbυ

�
D̂bY −

i
2
Bb

�
þ 1

4
Y−1Zψaγ

aυ −
i
4
Y−2ψaγ

aῡυ2

þ 1

4
Y−1εabcψaγbψcυ

2 þ κ

�
Yψaγ

aυ −
i
4
εabcaaψbγcυ

�
þ c:c:

�
: (C10)

Here we have introduced new covariant derivatives

D̂aY ≔ DaY −
1

2
ψaυ −

1

2
ψ̄aῡ; (C11)

D̂aυ
α ≔ Daυ

α −
i
2
ψ̄a

αZ þ i
2
ðψ̄a

~γbÞα
�
D̂bY −

i
2
Bb

�
: (C12)
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APPENDIX D: THE ACTION FOR
CONFORMAL SUPERGRAVITY

In the family of N ¼ 2 locally supersymmetric theories
in three dimensions, conformal supergravity [4] is one
of the oldest. Originally it was constructed by gauging the
3D N ¼ 2 superconformal algebra, ospð2j4Þ, in ordinary
spacetime, as a direct generalization of the formulation for
N ¼ 1 conformal supergravity [75] (the latter theory being a
natural reformulationof topologicallymassiveN ¼ 1 super-
gravity [32,33]). The construction in [4] was soon general-
ized to the case ofN -extended conformal supergravity [76].
In accordance with [76], the action for N -extended con-
formal supergravity is a locally supersymmetric completion
of the gravitational and SOðN Þ gauge Chern-Simons terms.
This action is on shell for N ≥ 3, and therefore its applica-
tions are rather limited.22 As concerns the off-shell N ¼ 1
and N ¼ 2 component actions [4,75], it appears useful to
recast them in a superfield form, simply because allN ¼ 1
and N ¼ 2 locally supersymmetric matter systems are
naturally formulated in superspace.
As mentioned in the Introduction, Refs. [10,11] described

the most general matter couplings to conformal supergravity
in the cases 1 ≤ N ≤ 4, including the off-shell formulations
for Poincaré andAdSsupergravity theories. But no conformal
supergravity action was considered in these publications, due
to the fact that an alternative action principle is required in
order to describe pure conformal supergravity. Building on
the earlier incomplete results in [2,12,79], the action forN ¼
1 conformal supergravity has recently been constructed in
terms of the superfield connection as a superspace integral
[80]. However, such a construction becomes impossible
starting atN ¼ 2.23 This is because (i) the spinor and vector
parts of the superfield connection have positive dimension
equal to 1=2 and 1 respectively; and (ii) the dimension of the
full superspace measure is (N − 3). As a result, it is not
possible to construct contributions to the action that are cubic
in the superfield connection for N ≥ 2.
Nevertheless, it was argued in [80] that off-shell con-

formal supergravity actions (assuming their existence) may
be realized in terms of the curved superspace geometry
given in [10,14] [also known as SOðN Þ superspace]
provided one makes use of the superform approach for
the construction of supersymmetric invariants. Such a
realization was explicitly worked out in [80] for the case

N ¼ 1, and a general method of constructing conformal
supergravity actions for N > 1 was outlined. However, it
turns out that SOðN Þ superspace [10,14] is not an optimum
setting to carry out this program; see [57] for a detailed
discussion. From a technical point of view, the derivation of
the conformal supergravity actions greatly simplifies if one
makes use of the so-calledN -extended conformal superspace
of [57], which is a novel formulation for conformal super-
gravity.TheSOðN Þ superspaceof [10,14] isobtained fromthe
N -extended conformal superspace by gauge fixing certain
local symmetries; see [57] for more details. In conformal
superspace, the action for N ¼ 2 conformal supergravity is
simply the Chern-Simons term associatedwith ospð2j4Þ [66].
Below we reformulate this action in SO(2) superspace.

1. Conformal superspace and SO(2) superspace

Conceptually, the N ¼ 2 conformal superspace of [57]
corresponds to a certain gauging of the superconformal
algebra ospð2j4Þ in superspace [57]. The corresponding
covariant derivatives ∇A include two types of connections:
(i) the Lorentz and Uð1ÞR connections [as in SO(2)
superspace]; and (ii) those associated with the dilatation
(D), special conformal (Ka) and S-supersymmetry ðSα; S̄αÞ
generators of the N ¼ 2 superconformal algebra. To
emphasize this grouping, the covariant derivatives ∇A
can be written in the form24

∇A ¼ D̂A þ BADþFA
bKb þFA

βSβ þ ~FAβS̄β; (D1a)

where we have denoted

D̂A ¼ EA
M∂M − Ω̂A

aMa þ iΦ̂AJ : (D1b)

By construction, the operators ∇A are subject to certain
covariant constraints [57] such that the entire algebra of
covariant derivatives is expressed in terms of a single
primary superfield—the super Cotton tensor Wαβ.
As demonstrated in [57], the conformal superspace is

intimately related to the SO(2) superspace via a degauging
procedure.Thecrucialobservationhere is that the local special
conformal and S-supersymmetry gauge freedom can be used
to switch off the dilatation connection,BA ¼ 0. In this gauge,
there remains no residual special conformal and S-supersym-
metry gauge freedom, but the covariant derivatives (D1a) still
include the connections associated with the generatorsKb, Sβ
and S̄β. These connections are tensor superfields with respect
to the remaining local Lorentz and Uð1ÞR symmetries. From
the constraints obeyed by the conformal covariant derivatives,
one may deduce that the operators D̂A look like

D̂a ¼ Da þ i CaJ ; D̂α ¼ Dα;
ˆ̄D
α ¼ D̄α; (D2)

where DA are the covariant derivatives of the SO(2) super-
space, as defined in Sec. II A, and Ca is one of the

22Recently, off-shell conformal supergravity actions have been
constructed for the cases N ¼ 3, 4, 5 [66] and N ¼ 6 [77,78].
Upon elimination of the auxiliary fields, these actions reduce to
those proposed in [76] only for N ¼ 3, 4, 5. In the case N ¼ 6,
however, the on-shell version of the off-shell action in [77,78]
contains an additional U(1) gauge Chern-Simons term as com-
pared with [76].

23If a prepotential formulation is available, the conformal
supergravity action may be written as a superspace integral in
terms of the prepotentials. Currently, the prepotential formula-
tions are known only for the cases N ¼ 1 [2] and N ¼ 2 [15]. 24The connections in D 1 differ in sign from those used in [57].
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corresponding torsion superfields. The connections F’s are
uniquely determined as functionals of the torsion superfields
of the SO(2) superspace. In terms of the one-forms Fα ≔
EBFB

α and ~Fα ≔ EB ~FBα, one obtains

Fα ¼ Eb

�
−
1

2
ðγbÞβγCαβγ þ 1

6
ðγbÞαβðiD̄βR̄þDβSÞ

�
− EαR̄þ Ēβ½Cβα þ iεβαS�; (D3a)

~Fα ¼ Eb

�
−
1

2
ðγbÞβγC̄αβγ þ

1

6
ðγbÞαβðiDβR − D̄βSÞ

�
− Eβ½Cβα þ iεβαS� − ĒαR: (D3b)

2. Curvature two-forms

In SO(2) superspace, there exists a two-parameter free-
dom to define the vector covariant derivative. Instead of

dealing with Da, one may work equally well with a
deformed covariant derivative Da defined by

Da ¼ Da þ λSMa þ ρiCaJ ; (D4)

where λ and ρ are real parameters. A natural question is
the following: What is special about the deformation (D2)?
Here we answer this question.
Let us introduce the torsion and curvature tensors for the

covariant derivatives (D2),

½D̂A; D̂Bg ¼ T̂AB
CD̂C − R̂AB

cMc þ iR̂ABJ : (D5)

Associated with the Lorentz and Uð1ÞR curvature tensors
are the following two-forms: R̂c ¼ 1

2
EB∧EAR̂AB

c and
R̂ ¼ 1

2
EB∧EAR̂AB. The explicit expressions for these

two-forms are

R̂c ¼ 1

2
Eβ∧Eα½4R̄ðγcÞαβ� þ Ēβ∧Eα½−4iSðγcÞαβ − 4δβαCc� þ 1

2
Ēβ∧Ēα½−4RðγcÞαβ�

þ Eβ∧Ea

�
ðγaÞβγðγcÞδρCγδρ þ

1

3
ðδγβδca þ 2εab

cðγbÞβγÞð2DγS þ iD̄γR̄Þ
�

þ Ēβ∧Ea

�
ðγaÞβγðγcÞδρC̄γδρ þ

1

3
ðεβγδca þ 2εab

cðγbÞβγÞð2D̄γS − iDγRÞ
�

þ 1

2
Eb∧Eaεabd

�
1

4
ðγdÞαβðγcÞτδðiDðτC̄δαβÞ þ iD̄ðτCδαβÞÞ − 4CdCc

þ ηcd
�
2i
3
ðDαD̄αSÞ þ

1

6
ðD2Rþ D̄2R̄Þ − 4S2 − 4R̄R

��
; (D6a)

R̂ ¼ Ēβ∧Eα½4iCαβ þ 4δβαS� þ Eβ∧Ea

�
iðγaÞγδCβγδ −

1

3
ðγaÞβγðD̄γR̄ − 2iDγSÞ

�

þ Ēβ∧Ea

�
iðγaÞγδC̄βγδ −

1

3
ðγaÞβγðDγRþ 2iD̄γSÞ

�
−
1

2
Eb∧Ea½εabcWc�; (D6b)

with Wc the super Cotton tensor, Eq. (2.14). For com-
pleteness, we also reproduce the expressions for the two-
formsRc ¼ 1

2
EB∧EARAB

c andR ¼ 1
2
EB∧EARAB, where the

curvature tensors are those which appear in (2.6). Direct
calculations give

R̂c ¼ Rc; (D7a)

R̂ ¼ Rþ Ēβ∧Eα½2iCαβ� þ Eβ∧Ea

�
i
2
ðγaÞγδCβγδ

−
1

6
ðγaÞβγðD̄γR̄þ 4iDγSÞ

�

þ Ēβ∧Ea

�
i
2
ðγaÞγδC̄βγδ −

1

6
ðγaÞβγðDγR − 4iD̄γSÞ

�

−
1

2
Eb∧Ea½εabcεcefDeCf�: (D7b)

The unique feature of the deformation (D2) is that the top
component of the U(1) curvature two-form (D6b) is a
primary superfield equivalent to the super-Cotton tensor.25

3. Closed three-form

In N ¼ 2 conformal superspace, the Chern-Simons
three-form ΣCS is characterized by the following properties
[66]: (i) it is closed, dΣCS ¼ 0; and (ii) under the gauge
transformations, it is invariant modulo exact terms. This
three-form generates the off-shell action for N ¼ 2 con-
formal supergravity. In this subsection, we follow the
degauging procedure of [57] to obtain an expression
for this closed three-form in SO(2) superspace,

25S. M. K. and G. T.-M. are grateful to Joseph Novak for this
observation.
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J ≔ ΣCSjde-gauged. The calculations are straightforward, and
we present only the final result.
The three-form J turns out to be

J ¼ −R̂a∧Ω̂a þ
1

6
Ω̂c∧Ω̂b∧Ω̂aεabc − 2R̂∧Φ̂

− 8iEa∧Fα∧F̄βðγaÞαβ: (D8)

The expression for J is naturally written in terms of the
deformed covariant derivatives D̂A. Making use of (D2), it
is a simple exercise to rewrite (D8) in terms of the original
covariant derivatives DA.
It is interesting to note that the closed three-form J can

be written as

J ¼ Σ̂CS − ΣT; (D9a)

where we have introduced

ΣT ¼ −8iEa∧Fα∧ ~FβðγaÞαβ; (D9b)

Σ̂CS ¼ R̂a∧Ω̂a −
1

6
Ω̂c∧Ω̂b∧Ω̂aεabc þ 2R̂∧Φ̂: (D9c)

The three-form Σ̂CS is a sum of the Lorentz and Uð1ÞR
Chern-Simons three-forms associated with the covariant
derivatives D̂A. The components of ΣT are functions of the
torsion tensor and its covariant derivatives only; this is why
ΣT was called the torsion induced three-form in [80]. The
three-forms Σ̂CS and ΣT satisfy the equations

dΣT ¼ dΣ̂CS ¼ R̂a∧R̂a þ 2R̂∧R̂: (D10)

By construction, the closed three-form J is invariant
under the super-Weyl transformations modulo exact terms.
In fact, the relative coefficient between the Lorentz and
Uð1ÞR Chern-Simons terms in (D10) is fixed by the
condition that J be super-Weyl invariant modulo
exact terms.
The covariant derivatives (D2) and the closed three-form

(D9) constitute the unique solution to the N ¼ 2 problem
posed in [80].

4. Conformal supergravity action

Using the three-form J ¼ 1
3!
EC∧EB∧EAJABC ¼

1
3!
dzP∧dzN∧dzMJMNP, we can write down the locally

supersymmetric and super-Weyl invariant action (εmnp ≔
εabceamebnecp)

S ¼
Z
M3

J ¼
Z

d3xe�Jjθ¼0;
�J ¼ 1

3!
εmnpJmnp:

(D11)

Upon implementing the component and gauge fixing
reduction described in Sec. IV, the action becomes

S ¼ 1

4

Z
d3xeεabc

�
Rbcfgωa

fg þ 2

3
ωaf

gωbg
hωch

f

− 4F abbc þ iψ̄bcγd ~γaε
defψef

�
: (D12)

This is the component action for N ¼ 2 conformal super-
gravity of [4].
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