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For general off-shell A" = 2 supergravity-matter systems in three spacetime dimensions, a formalism is
developed to reduce the corresponding actions from superspace to components. The component actions are
explicitly computed in the cases of type I and type II minimal supergravity formulations. We describe the
models for topologically massive supergravity which correspond to all the known off-shell formulations for
three-dimensional A/ = 2 supergravity. We also present a universal setting to construct supersymmetric

backgrounds associated with these off-shell supergravities.
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I. INTRODUCTION

The simplest way to construct N =2 locally super-
symmetric systems in three spacetime dimensions (3D) is
perhaps through dimensional reduction from 4D N =1
theories (see [1-3] for reviews). However, not all 3D
theories with four supercharges can be obtained in this
way. For instance, N = 2 conformal supergravity [4] and
(2,0) anti-de Sitter (AdS) supergravityl [5] cannot be so
constructed. A more systematic approach to generate 3D
N = 2 supergravity-matter systems is clearly desirable.

Matter couplings in three-dimensional A/ =2 super-
gravity were thoroughly studied in the 1990s using on-
shell component approaches [6-8] (see also [9]). More
recently, off-shell formulations for general N' = 2 super-
gravity-matter systems have systematically been developed
[10,11] purely within the superspace framework, extending
earlier off-shell constructions [12-14]. One of the main
goals of this paper is to work out techniques to reduce any
manifestly A/ = 2 locally supersymmetric theory presented
in [10,11] to components. Upon elimination of the auxiliary
fields, one naturally reproduces the partial component
results obtained earlier in [6-8].

The prepotential formulation for 3D N = 2 conformal
supergravity was constructed in [15]. In principle, this
prepotential solution could be obtained by off-shell

'In three dimensions, A/-extended AdS supergravity exists in
[N/2] + 1 different versions [5], with [A//2] the integer part of
N'/2. These were called the (p,q) AdS supergravity theories
where the non-negative integers p > ¢ are such that N' = p + q.
These theories are naturally associated with the 3D AdS super-
groups OSp(p|2; R) x OSp(q|2; R).
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dimensional reduction from 4D N = 1 conformal super-
gravity following the procedure sketched in Sec. 7.2
of Superspace [2]. In practice, however, it is more ad-
vantageous to follow a manifestly covariant approach and
derive the solution from scratch. In this sense the 3D story
is similar to that of N = (2,2) supergravity in two
dimensions [16,17].

Similarly to N =1 supergravity in four dimensions
(see [2,3,18,19] for more details), different off-shell for-
mulations for 3D N = 2 Poincaré and AdS supergravity
theories in superspace can be obtained by coupling con-
formal supergravity to different conformal compensators
[10,11]. There are three inequivalent types of conformal
compensator: (i) a chiral scalar; (ii) a real linear scalar; and
(iii) a (deformed) complex linear scalar.

Choosing the chiral compensator leads to the type I
minimal supergravity [11] which is the 3D analogue of
the old minimal formulation for 4D N = 1 supergravity
[20]. As in four dimensions, this formulation can be used
to realize both Poincaré and AdS supergravity theories;
the latter actually describes the so-called (1,1) AdS
supergravity, following the terminology of [5].

Choosing the real linear compensator leads to the type II
minimal supergravity [11] which is a natural extension of
the new minimal formulation for 4D A = 1 supergravity
[21]. Unlike the four-dimensional case, the type Il formu-
lation is suitable to realize both Poincaré and AdS super-
gravity theories (the new minimal formulation cannot be
used to describe 4D N = 1 AdS supergravity). The point is
that in three dimensions the real linear superfield is the field
strength of an Abelian vector multiplet, and the corre-
sponding Chern-Simons terms may be interpreted as a

© 2014 American Physical Society
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cosmological term [14]. Adding such a Chern-Simons term
to the supergravity action results in the action for (2,0) AdS
supergravity.

Finally, choosing the complex linear compensator leads
to the nonminimal supergravity presented in [11]. It is
analogous to the nonminimal formulation for 4D N = 1
supergravity [22,23], the oldest off-shell locally super-
symmetric theory. Both in three and four dimensions, this
formulation exists in several versions labeled by a real
parameter n # —1/3, 0 in the 4D case [23] or, more
conveniently, by w= (1 —n)/(3n+ 1) in the 3D case
[11]. The reason for such a freedom is that the super-Weyl
transformation of the complex linear compensator is not
fixed uniquely [10]. With the standard constraint

(D> -4R)Z =0 (1.1)
obeyed by the complex linear compensator X, the 4D N =
1 nonminimal formulation is only suitable, for any value of
n, to describe Poincaré supergravity [2]. The situation in the
3D case is completely similar [11]. However, it was shown
in [24] that n = —1 nonminimal supergravity can be used
to describe 4D N =1 AdS supergravity provided the
constraint (1.1) is replaced with a deformed one,2

(D* — 4RI = —4u # 0, u=const. (1.2)
Applying the same ideas in the 3D case gives us the
nonminimal formulation for (1,1) AdS supergravity [11].

All supergravity-matter actions introduced in [10,11] are
realized as integrals over the full superspace or over its
chiral subspace. The most economical way to reduce such
an action to components consists in recasting it as an
integral of a closed super three-form over spacetime (that is,
the bosonic body of the full superspace), in the spirit of the
superform approach3 to the construction of supersymmetric
invariants [25-28]. The required superform construction is
given in Sec. IIL

In this paper, we work out the component supergravity-
matter actions in the cases of type I and type II minimal
supergravity formulations.! The case of nonminimal super-
gravity can be treated in a similar way. As an application,
we describe off-shell models for topologically massive
N = 2 supergravity’ which correspond to all the known
off-shell formulations for three-dimensional A = 2 super-
gravity. However, the component actions for topologically

*The constraint (1.2) is super-Weyl invariant if and only if
n=-1.

’It is also known as the rheonomic approach [25] or the
ectoplasm formalism [26,27].

Various aspects of the component reduction in 4D N = 1
supergravity theories were studied in the late 1970s [23,29-31].
More complete presentations were given in the textbooks [1-3].

5Topologically massive A/ = 1 supergravity was introduced in
[32,33]. Its N = 2 extended version was discussed in [4].
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massive supergravity are given only for the type I and type
IT minimal formulations.

Recently, supersymmetric backgrounds in the type II
supergravity have been studied within the component
approach, both in the Euclidean [34] and Lorentzian
[35] signatures, building on the earlier results in four
and five dimensions; see [36—49] and references therein.
Since the authors of [34,35] did not have access to the
complete off-shell component actions for type II super-
gravity and its matter couplings, their analysis was based
either on the considerations of linearized supergravity [34]
or on the dimensional reduction 4D — 3D of the new
minimal supergravity [35]. Here we present a universal
setting to construct supersymmetric backgrounds associ-
ated with all the known off-shell formulations for 3D
N = 2 supergravity, that is the type I and type II minimal
and the nonminimal supergravity theories.® Our approach
will be an extension of the 4D N =1 formalism to
determine (conformal) isometries of curved superspaces
which was originally developed almost 20 years ago in [3]
and further elaborated in [51].7

This paper is organized as follows. In Sec. II we review
the superspace formulation for the Weyl multiplet of
N =2 conformal supergravity, following [10,11,14].* In
Sec. IIT we present the locally supersymmetric and super-
Weyl invariant action principle which is based on a closed
super three-form. The formalism for component reduction,
including the important Weyl multiplet gauge, is worked
out in Sec. IV. The component actions for type I and type II
supergravity-matter systems are derived in Secs. V and VI
respectively. In Sec. VII we study the off-shell formulations
for topologically massive ' = 2 supergravity. Section VIII
is devoted to the construction of supersymmetric back-
grounds in all the known off-shell formulations for A/ = 2
supergravity.

The main body of the paper is accompanied by four
appendixes. In Appendix A we give a summary of the
notation and conventions used as well as include some
technical relations. In Appendix B we give an alternative
form for the component action of the most general off-shell
nonlinear o-model in type I supergravity. Appendix C
contains the component Lagrangian for the model of an
Abelian vector multiplet in conformal supergravity.
Appendix D is devoted to the superspace action for
N =2 conformal supergravity; at the component level,

SAfter our work was completed, there appeared a new paper in
the hep-th archive [50] which also studied supersymmetric
backgrounds in type I supergravity.

"This approach has been used to construct rigid supersym-
metric field theories in 5D N =1 [52], 4D N = 2 [53,54], and
3D (p, g) anti-de Sitter [11,55,56] superspaces.

¥There exists a more general off-shell formulation for A" = 2
conformal supergravity [57]. It will be briefly reviewed in
Appendix D.

085028-2



THREE-DIMENSIONAL A = 2 SUPERGRAVITY ...

this action reduces to that constructed many years ago by
Rocek and van Nieuwenhuizen [4].

II. THE WEYL MULTIPLET IN U(1) SUPERSPACE

In this section we recall the superspace description of
N =2 conformal supergravity. The results given here are
essential for the rest of the paper.

A. U(1) superspace geometry

We consider a curved superspace in three spacetime
dimensions, M3, parametrized by local bosonic (x™) and
fermionic (6#,6,) coordinates M = (x™,6*,0,), where
m=0, 1, 2 and y = 1,2. The Grassmann variables "
and 9,1 are related to each other by complex conjugation:
0" = ¢". The superspace structure group is chosen to be
SL(2,R) x U(1)g, and the covariant derivatives D, =
(D,.D,.D%) have the form

Dy =E4+Qy +19,7. (2.1)
Here E, = (E,, E,, E*) = E,(2)0/0z™ is the inverse
superspace vielbein,

1 1
Q= 59" M, = EQAﬂyMﬂy = —Q M,

> 2.2)

is the Lorentz connection, and ®, is the U(1), connection.
The Lorentz generators with two vector indices
(M,, = =M,,), one vector index (M), and two spinor
indices (M3 = My,) are related to each other as follows:

1

— b _ d
Ma = EgabcM C, Mab = —8abCML,

1
Map = (r)apMar Ma==5(ra)" Map.

The Levi-Civita tensor &, and the gamma matrices (7, )
are defined in Appendix A. The generators of SL(2,R) x
U(1)g act on the covariant derivatives as follows:

|

{D,. Dy} = —4I_i’/\/laﬂ,

{Dav T)/J} = _21(7/6)(1[}DL - zcaﬂj - 4i8r1/)’8\-7 + 4iSMa/i - 28(1/1(/’75-/\/[;/57
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[J. D% = -D", [7.D,] =0,

(M. D] = gr(az_)ﬂ)’

[\7’ Da] = Daa
[Mep. D] = €, Dp).

[Malﬂpc] - 2’76[an]' (2.3)

The supergravity gauge group includes local K trans-
formations of the form

1
5/CDA = [IC9 DA]9 IC - §CDC + EKCdML‘d + iTj,

2.4)

where the gauge parameters obey natural reality conditions,
but are otherwise arbitrary. Given a tensor superfield U(z),
with its indices suppressed, it transforms as follows:

U =KU. (2.5)

The covariant derivatives obey (anti-)commutation rela-
tions of the form

1 .
[Dy. D} = TapDe + ERABCndd +iR4pJ, (2.6)

where T 5C is the torsion, and R ;53¢ and R 45 constitute the
curvature tensors.

Unlike the 4D case, the spinor covariant derivatives D,,
and D, transform in the same representation of the Lorentz
group, and this may lead to misunderstandings. If there is a
risk for confusion, we will underline the spinor indices
associated with the covariant derivatives D. For instance,
when the index C of the torsion T 45€ takes spinor values,
we will write the corresponding components as T,p"
and TABy'

In order to describe A/ = 2 conformal supergravity, the
torsion has to obey the covariant constraints given in [14].
The resulting algebra of covariant derivatives is [10,11]

. . - - 1 .
[Duv Dﬁ] = leuhc(yb)ﬁyccpy + (ya)/}ySD/ - l(ya)[)’yRDy - (Ya)/}ycy(spMép - g (2D/38 + IDﬁR)Mu

2

L 1 1
- ggabc(yb)ﬁa(zpas + IDaR)MC - E ((Ya)aycaﬂy + 3

[Da, D/f] = _lgabc(yb)/}ycupy + (Ya)ﬁyS,Dy - I(Ya)ﬁyR,D}/ - (}/a)ﬁycyépMéﬂ - g (2Dﬁ's - IDﬂR)Ma

2 = . 1 _ 1
- g 8ahc(yh)/}a(2D(lS - ID(IR)ML + 5 ((},a)aycaf)’y +3

{D,, Dy} = 4RM,y, (2.7a)
(2.7b)

3 (va)s (8D,S + iﬁﬂ‘?)) J, (2.7¢)

0/ (80,5 D)), .70)
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1 L= 4
[D,. D, = §€abc<70)"ﬁ€y5 <_1Ca/35 +§
1

4
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4

_ L2 1 " , 2 o 2\ -
€5<aDﬂ)S +§€5<aDﬂ)R) Dy +§8abc (}’C) Perd <—1Ca/35 +—€5(aDﬁ)8 - geﬁ(aD/})R> 'Dy

3

~ _ 1 o 2 - _
—Eube <— (}’C)aﬂ(}/d)Té(iD(TC(gaﬂ) + iD(rcéaﬂ)) +6 (DZR + D2R> +§iDaDaS - 4CCCd - 482 - 4RR> Md

1 _
Fiea, <2(y")"ﬂ [D,. DylS—e/D,C; —4scc> J.

with C,j, defined by C,5 = —iD(,Cg,). The algebra
involves three dimension-1 torsion superfields: a real scalar
S, a complex scalar R and its conjugate R, and a real vector
C,; the U(1), charge of R is —2. The torsion superfields
obey differential constraints implied by the Bianchi iden-
tities. The constraints are

D,R =0, (2.82)
(D* -4R)S =0, (2.8b)
. [
DuCy = iCapy = 3 ap(Dy R + 4D))S).  (2.80)

Equation (2.8b) means that S is a covariantly linear
superfield. When doing explicit calculations, it is useful
to deal with equivalent forms of the relations (2.7c) and
(2.7d) in which the vector index of D, is replaced by a pair
of spinor indices. Such identities are given in Appendix A.
As an immediate application of the (anti-)commutation
relations (2.7), we compute a covariantly chiral
d’Alembertian. Let y be a covariantly chiral scalar,
Doy =0, of U(1),, charge —w, that is Jy = —wy.’ The
covariantly chiral d’Alembertian [, is defined by

1 -
Oey := — (D* = 4R)D?y.

16 (2.9)

By construction, the scalar [J.y is covariantly chiral and has
U(1)g charge —w. It is an instructive exercise to evaluate
the explicit form of [y using the chirality of y and the
relations (2.7). The result is

Oy = {D“Da + %RDz = 2i(1 —w)C*D, + % (D*R)D,,
+2i(1 = w)(D*S)D,, + w(2 — w)(CC, + 4S5?)

— WiD*D,S + % (D’R — D’R) } " (2.10)

This relation turns out to be useful for the component
reduction of locally supersymmetric sigma models to be
discussed later on.

°The rationale for choosing the U(1), charge of y to be
negative is Eq. (2.15).

(2.7e)

B. Super-Weyl invariance

The algebra of covariant derivatives (2.7) does not
change under a super-Weyl transformation'” of the covar-
iant derivatives [10,11]

Dy =e(Dy+ (Do) M,y — (Do) T),  (2.11a)
Dy =e(Dy+ (D'6) M,y + (Dyo)J),  (2.11b)
i _ _
D/u =e’ <Da - E (ya)yﬁ (D(J/G)Dﬁ) - 5 (711)]/5(2)(}/0)2)5)

+ eare (DY) MC + 5 (D,0) (Do) M,

- § 1V (D, DT =3 (1) (Dye) (D1 )
(2.11¢)

accompanied by the following transformation of the torsion
tensors:

S = (S - %Dﬂ)%) , @2.11d)

1 o -
C; =e’ (Ca + g (ya)yé [DV’ Dé]d + Z (ya)76(Dy0)D56> ’

2.11¢)

1 - 1 - -
R =¢° (R + ZDZO' ~1 (D},a)Dyo) . (2.11D)

The gauge group of conformal supergravity is defined to be
generated by the /C transformation (2.4) and the super-Weyl
transformations. The super-Weyl invariance is the reason
why the U(1) superspace geometry describes the Weyl
multiplet.

Using the above super-Weyl transformation laws, it is an
instructive exercise to demonstrate that the real symmetric
spinor superfield [15]

"The super-Weyl transformation (2.11) is uniquely fixed if
one (i) postulates that the components of the inverse vielbein E,
transform as E/, = eE, and E, = ¢°E, + spinor terms; and
(ii) requires that the transformed covariant derivatives preserve
the constraints [14] leading to the algebra (2.7).
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i

Waﬂ = 2 [D}” ﬁy]caﬂ - [D(a, 'Dﬂ)]S - 4SCaﬂ (212)
transforms homogeneously,
W = € Wap. (2.13)

This superfield is the N' = 2 supersymmetric generaliza-
tion of the Cotton tensor. Using the Bianchi identities, one
can obtain an equivalent expression for this super Cotton
tensor:

1
Wa = - E (ya)aﬂwaﬂ
—_ % (7)™ (D Dy ]S + 26, DPCE +48C,. (2.14)

An application of this relation will be given in Appendix D.
A curved superspace is conformally flat if and only if
W,z = 0; see [57] for the proof.

For our subsequent consideration, it is important to recall
one of the results obtained in [10]. Let y be a covariantly
chiral scalar, D,y = 0, which is primary under the super-
Weyl group, 8,y = woy. Then its super-Weyl weight w and
its U(1), charge are equal and opposite [10],

Dy =0, Ty = —wy, ¥ =evy. (2.15)
Unlike y itself, its chiral d’ Alembertian [y, Eq. (2.10), is
not a primary superfield under the super-Weyl group.

In what follows, we often consider the infinitesimal
super-Weyl transformation and denote the corresponding
variation by 9,,.

III. SUPERSYMMETRIC AND SUPER-WEYL
INVARIANT ACTION

There are two (closely related) locally supersymmetric
and super-Weyl invariant actions in A/ = 2 supergravity
[10]. Given a real scalar Lagrangian £ = £ with the super-
Weyl transformation law

5,L = oL, 3.1

the action

S = / d3xd>0d*0EL, E7' =Ber(E,M), (3.2
is invariant under the supergravity gauge group. It is also
super-Weyl invariant due to the transformation law

0,E = —0oF. (3.3)
Given a covariantly chiral scalar Lagrangian £, of super-
Weyl weight two,

PHYSICAL REVIEW D 89, 085028 (2014)

D,L. =0, JL, = =2L,, 5,L. =20L,, (3.4)

the following chiral action
3 2adear e 3.2
S. = [ d°xd-6d QEF = [ d&’xd0EL,  (3.5)

is locally supersymmetric and super-Weyl invariant. The
first representation in (3.5), which is only valid when
R # 0, is analogous to that derived by Zumino [29] in 4D
N =1 supergravity. The second representation in (3.5)
involves integration over the chiral subspace of the full
superspace, with & the chiral density possessing the
properties
JE =2€, 0,€ = —20€. (3.6)

The explicit expression for £ in terms of the supergravity
prepotentials is given in [15]. Complex conjugating
(3.5) gives the action S, generated by the antichiral
Lagrangian L.

The two actions, (3.2) and (3.5), are related to each other
as follows:

/ d*xd?0d*0EL = / dxd20EL.,

L= 1 (D* —4R)L.

1 (3.7)

This relation shows that the chiral action, or its conjugate
antichiral action, is more fundamental than (3.2).

The chiral action can be reduced to component
fields by making use of the prepotential formulation
for N'=2 conformal supergravity [15] and following
the component reduction procedure developed in [3] for
N =1 supergravity in four dimensions. Being concep-
tually straightforward, however, this procedure is tech-
nically rather tedious and time consuming. A simpler
way to reduce S. to components consists in making use
of the superform approach to the construction of super-
symmetric invariants [25-28]. In conjunction with the
requirement of super-Weyl invariance, the latter
approach turns out to be extremely powerful. As a
matter of taste, here we prefer to deal with S., because it
turns out that the corresponding closed three-form
involves no one-forms E,.

The super-Weyl transformation laws of the components
of the superspace vielbein

E* :=dMEA = (E* E* E,), (3.8)

are

§,E% = —cE®, (3.92)

085028-5
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1 i i}
5,E" = ~5 0" + S E'(1,)"D,o.

- 1 - i
50'Ea = —EGEO( + zEb(}/b)a},Dyg. (39b)
We are looking for a dimensionless three-form,

—_

E(L.) = LECAEBAEAZ, 3¢, such that (i) its components
Zapc are linear functions of £. and covariant derivatives
thereof; and (i) Z(L.) is super-Weyl invariant,
5,Z(L,) = 0. Modulo an overall numerical factor, such
a form is uniquely determined to be

_ 1 1
(L) = EEV/\E/}/\ “Eapy + EEY/\EZ’/\E“EW

1
+8EC/\Eb/\E“EahC, (3.10)
where
Eaﬂ}' = 4<ya)ﬂy‘zc’ (31 la)
Eab}’ = _igabd(yd)yﬁﬁézcv (311]3)
- 1 = -
Sabe = Zeabc(D - 16R)[’c (31]C)
It is easy to check that this three-form is closed,
d=(Le) =0, (3.12)

and therefore E(ZC) generates a locally supersymmetric
action.

The locally supersymmetric and super-Weyl invariant
action associated with Z(L,) is

_ 1 - i -
S.=-— / d*xe {ZDZ —4R - 3 "), W'D’
1

+

~ pabc
S (3.13)

n)ﬁywb/”wcﬂ L.

with e = det(e,,”). Here we have used definitions intro-
duced in the next section.

IV. COMPONENT REDUCTION

In this section we develop a simple universal setup to
carry out the component reduction of the general N = 2
supergravity-matter systems presented in [10,11]. Our
consideration below is very similar to that given in standard
textbooks on four-dimensional N' = 1 supergravity [2,3].

Given a superfield U(z) we define its bar projection U| to
be the 0, f-independent term in the expansion of U (x,0, 9)
in powers of #’s and 6’s,

Ul = U(x,0,0)|p_5-0- (4.1)

PHYSICAL REVIEW D 89, 085028 (2014)

Thus U| is a field on the spacetime M?* which is the
bosonic body of the curved superspace M31*.

In a similar way we define the bar projection of the
covariant derivatives:

1 .
Dyl = E,M|0y +§QAbC|Mbc +i®,|T.

4.2)
More  generally, given a differential  operator
O :=1Dy,...Dy,, we define its bar projection, O], by the
rule (O|U)| := (Dy, ... D4 U)|, for any tensor superfield U.

Of special importance is the bar projection of a vector
covariant derivative,“

1 1 -
Dal = Da - EWayDy| - EWayD}/ s (43)
where
(. .
D,=¢,+-w," M. +1b,T, e,=¢e,"0, 4.4)

2

is a spacetime covariant derivative with Lorentz and U(1),
connections. For some calculations, it will be useful to
work with a spacetime covariant derivative without U(1),
connection, ®,, defined by

®,=D,—ib,J. 4.5)

A. The Wess-Zumino and normal gauges

The freedom to perform general coordinate and local
Lorentz transformations can be used to choose a Wess-
Zumino (WZ) gauge of the form

0 - 0

Dyl =6 —, DY =6 —. 4.6
2 “ oo | : 00, (46)

In this gauge, it is easy to see that

m m Iz ! TS H E 1

Ea ‘:ea ’ Ea |:_§Wa 5}/ s Ea;tlz_il//ayéyw
(4.7a)
Qb = w,be, o, = b,. (4.7b)

The gauge condition (4.6) will be used in what follows.
In the WZ gauge, we still have a tail of component fields
which originates at higher orders in the 6,  expansion of
EM, Q,% and ®, and which are pure gauge (that is, they
may be completely gauged away). A way to get rid of such

""The definition of the gravitino agrees with that used in the 4D
case in [1].
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a tail of redundant fields is to impose a normal gauge
around the bosonic body M? of the curved superspace
M?34; see [58] for more details. This gauge is defined by
the conditions

OMEA(x,0) = 0M5,4, (4.8a)
OMQ,,(x,0) =0, (4.8b)
M, (x,0) =0, (4.8¢)
where we have introduced
oM =(0m,0",0,) = (0,0"0,). 4.9)

In (4.8) the connections with world indices are defined in
the standard way: ), = E},AQ,¢ and ®); = E},A®,. It
can be proved [58] that the normal gauge conditions (4.8)
allow one to reconstruct the vielbein Ey”(x,®) and the
connections 2y, (x,®) and ®,(x,®) as Taylor series in
®, in which all the coefficients [except the leading
®-independent terms given by the relations (4.6) and
(4.7)] are tensor functions of the torsion, the curvature
and their covariant derivatives evaluated at ® = 0.

In principle, there is no need to introduce the normal
gauge which eliminates the tail of superfluous fields. Such
fields (once properly defined) are pure gauge and do not
show up in the gauge-invariant action. This is similar to the
concept of double-bar projection; see e.g. [59].

B. The component field strengths

The spacetime covariant derivatives D, defined by (4.3)
obey commutation relations of the form

1
[Da’ Dh] = Tabch =+ ERadeMcd =+ i]:aij (410)

where 7 € is the torsion, R, the Lorentz curvature, and
F . the U(1), field strength. These tensors can be related
|

PHYSICAL REVIEW D 89, 085028 (2014)

to the superspace geometric objects by bar projecting the
(anti-)commutation relations (2.6). A short calculation
gives the torsion

, i, o
T = _E(Waycl//b —WpY W) (4.11)

The Lorentz connection is

1

5 [Tahc - Tbca + Tc‘ub]’ (4]2)

WDype = a)ahc(e) +

where @,;.(e) denotes the torsion-free connection,

wabc(e) == % [

Cap’ = (eqep™ — epe,")e,,". (4.13)

Cabc - Cbca + Ccab]7

For the gravitino field strength defined by
V,aby = Dal//by - Dbl//ay - Tabcl//cy (414)

we read off

. _ 4i -
V' = (lgabc (}’C)aﬂcaﬁy - g“?abc (76)}'51753

2 .
~3 Eabe(Y°) DR + 2iecqra (r°)wy) 5Cd

+ 2(y[a)y51//b]58 + 2i(y[a)y6l/_/b]5R> ‘ (4.15)

This tells us how the gravitino field strength is embedded in
the superspace curvature and torsion. A longer calculation
is to derive an explicit expression for the Lorentz curvature

Rade = Ze[aa)b]“l + 2a)[acfa)b]fd - Cabfa)de. (416)

The result is

i ~ - 1 _ 44 - -
Rap™ = { = Eabe (r)Pe (r)(DcCoap) + DcCoap)) + 5,5, 3 (D’R +D°R) + 7 D*DuS — 8RR — 852}

. 1 4 o
+ 4£ab380dfCeCf + l//[aﬁ {(yb] )/Cy(;pewe(ye)&p + §£b]Cd(2DﬁS +iD4R) — 55[b](yd] )5 (2D,S + 1DJ,R)}

_ 1 _ . 4 e = .
+ ll_’[a/; {(}’b] )ﬂycrépemg (re)” + ggb]Cd(zpﬂS —iD'R) - 552] (yd] )ﬂ}/(zpys - ID;'R)]

+ ECde (ye)yél//[ayl//b]ék - ECde (ye)y(sl/_/[a},l/_/b](;R + 2i80d6 (Yeyél//[ayl/_/b]gs + 2‘//[4171/717]780‘1666} '

4.17)
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Finally, for the U(1), field strength

Fap =Daby, = Dpby — T 4,b, (4.18)

we obtain
1 _
Fab = Eane {5 () [D. Dy]S — /D, Cy — 45C¢

i, D, + e 19,0, | '

+i(re) Wi, 7),C = 201, S| (4.19)

It turns out that the expressions for w7, R4, and F
drastically simplify if we also partially gauge fix the super-
Weyl invariance to choose the so-called Weyl multiplet
gauge that will be introduced in Sec. IV D.

C. Residual gauge transformations

In the WZ gauge, there remains a subset of gauge
transformations which preserve the conditions (4.6). To
work out the structure of this residual gauge freedom, we
start from the transformation laws of the inverse vielbein
E M and of the connections Q,¢ and ®, under the gauge
group of conformal supergravity.

Under the K transformation (2.4), the gauge fields vary
as follows:

SEAM = ECTcpBERM — (DpEB)ExM

| .
+ = K Mg) {BERM +i0(T) 4P ERM.

2 (4.20a)

S Qu ! = ECT ) BQpe + EBRp s — (DpEP)Qpe?
+ KM ) B = (DyK) +it(T) B Q5

(4.20b)
5Py = ETca"Pp + EPRps — (Ds”) P
1 .
+ 5K6d<Mcd)ABq>B +i7(J)s"®p — Dyr.
(4.20c)

Here we have introduced the Lorentz and U(1), generators
(M) ,B and (J),B, respectively, defined by

[MCd,DA] = (MCd)ABDB’ [j, DA] = (j)ABDB-

The super-Weyl transformation (2.11) acts on the gauge
fields as follows:

PHYSICAL REVIEW D 89, 085028 (2014)

i - i -
50EuM = UEuM _E (ya)yﬁ (D(yo)Eﬁ)M _5 (Ya)}/(s(D(}’o-)Eé)M,
(4.21a)
1
B EM = S oEM, 4.21b)

, i = pe 1 = :
50'90}“ :GszabC _E(ya)y(s(p(yg)gé) be _E(ya)ws (,Z)(J/G)S-zﬁ)bC

+2(Ds)sS, 4.21c)

1
5,2, = Eaﬁabc + (D}’a)(ya)me“bc, (4.21d)

i - i _
0,®, = 0d, — 2 ()" (D 0)P5) — o) (72)"°(D,0) 5

1 -
5 7)°[Dy. Do, (421¢)

1
6,P, = EJQI +1iD,0. (4.21f)

Requiring the WZ gauge to be preserved, (6 + 6,)D,| =
0, gives

Dy &"| = ETc |, (4.22a)

D, | = <§CTCaﬁ + %K,/f +itdh + %aafi) ., (4.22b)
Daé[j| = ‘fCTCagL (4.22¢)

DK | = (EPRpo ™ + (Vo) e Dlo)|,  (4.22d)
D, 1| = (EBRp, + iDyo)|. (4.22¢)

We see that the residual gauge transformations are con-
strained. More specifically, only the parameters

v?i=E,  €*:=E&%, wyi=Kg,l, T=1]  (4.23a)
are completely unrestricted in the WZ gauge. Here the
bosonic parameters correspond to general coordinate (v¢),
local Lorentz (w,;,) and local R-symmetry () transforma-
tions; the fermionic parameter €* generates a local Q-
supersymmetry transformation. However, the parameters
D&, DK | and D,z| are fully determined in terms of

those listed in (4.23a) and the following ones:

6= ol N = Dyol. (4.23b)
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Here the parameter ¢ and 7, generate the Weyl and local
S-supersymmetry transformations respectively. It should be
pointed out that there is no parameter generating a local
special conformal transformation. As compared with the
3D N =2 superconformal tensor calculus in superspace
[57], our formulation corresponds to a gauge in which
the dilatation gauge field is switched off by making use of
the local special conformal transformations.

The relations (4.22) comprise all the conditions on the
residual gauge transformations, which are implied by
the WZ gauge. If in addition we also choose the normal
gauge (4.8), then all higher-order terms in the ® expansion
of the gauge parameters will be determined in terms of
those listed in (4.23).

In what follows, we will be interested in local Q-
supersymmetry transformations of the gauge fields e,,?,
v, =en v, and b,, = e,b,. Yet we introduce a more
general transformation

which includes the local Q-supersymmetry (e,) and
S-supersymmetry (7,) transformations, as well as the
Weyl (6) and local R-symmetry (z) transformations.
There is a simple reason for considering this combination
of four transformations. As will be shown in the next two
sections, in any off-shell formulation for Poincaré or AdS
supergravity, the Q-supersymmetry transformation has to
be accompanied by a special S-supersymmetry trans-
formation with parameter 7,(¢) and, in some case, by a
special U(1), transformation with parameter z(¢).
Typically, it will hold that ¢(e) = 0. However, since §,
is part of the super-Weyl transformation, it makes sense
to include &y into (4.24).

Making use of the relations (4.20), (4.21), (4.22), and
(4.23), we read off the transformation laws of the gauge
fields under (4.24):

e, =i(ey W + Erawy) —6e,°,  (4.252)
Sy % = 2D, e% + 2€m”(€ﬁTa/3“| + éﬂTaé“D
. . 1
+ i(y)Piip — iy, + 30V (4.25b)

1 . 1 ~ DR
Sby = {_Eem“eﬂ [I(Va)yécﬂ75| +3(ra)y (81D, S| 'DyRD}
+ eﬂl/_/mg(icljﬂ + 2528|) +%l//m5775 +C‘C‘}

1 -
=D, 7= 2(yn)’[D;. Dslo]. (4.25¢)
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TABLE 1. WZ-gauge choices and the parameters used to
achieve them.

Gauge choice o component

S|=0 (D%, Dlo]
Copl =0 [D(a Dp)lo]
R|=R|=0 D%6|, D?o|
D,R| =D,R| =0 D,D%|, D, D*|
D?R| +D?R| =0 {D?,D*}o|

The superspace torsion and curvature transform as tensors
under the KC-gauge group, Egs. (2.4) and (2.5). Their super-
Weyl transformations follow from the transformation rules
of the dimension-1 torsion superfields given in the previous
section, Eqgs. (2.11d)—(2.11f). This allows one to compute
the variations of the component field strengths under the
supersymmetry transformation (4.24).

D. The Weyl multiplet gauge

The super-Weyl invariance given by Eq. (2.11) preserves
the WZ gauge, so we can eliminate a number of component
fields. We choose the gauge conditions

S|=0, Cul=0. R|=R|=0, D?R|+DR|=0.

(4.26)

which constitute the Weyl multiplet gauge. In Table 1, we
identify those components of the super-Weyl parameter o
which have to be used in order to impose the Weyl
multiplet gauge.

In the gauge (4.26), the super-Weyl gauge freedom is
not fixed completely. We stay with unbroken Weyl and
local S-supersymmetry transformations corresponding
to the parameters ¢ and 7,, 7, respectively. The only
independent component fields are the vielbein e,
the two gravitini w,% and ,% and the U(l), gauge
field b,,. These fields and the associated local sym-
metries correspond to those describing the AV =2 Weyl
multiplet [4].

In the Weyl multiplet gauge, the explicit expressions
for the gravitino field strength and the curvature tensors

simplify drastically. The gravitino field strength
becomes
y : c\ap v 4i c\roT
Va' = lgubc(y ) C(zﬁ _ggabc(y ) D6S . (427)

The Lorentz curvature takes the form:
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i

PHYSICAL REVIEW D 89, 085028 (2014)

_ _ 41 _
Rade = {_ Z Eabe (ye)aﬂ&ﬁdf(yf)r&(p(rcéaﬂ) + D(rcéaﬂ)> +50 5 DaDaS

3 la”b]

, 2 8 e
+ l//[aﬁ |:(yh] )[iycyﬁ/)gcde (ye)ﬁﬂ + ggh]LdDﬂS - g 52] (yd] )ﬁyDYS:|

From here we read off the scalar curvature

Rle.y) = 4iD"D,8| + {waﬂ ((w)ﬁcﬁy,s

An equivalent form for this result is

iD*D,S| =

B —

The U(1)g field strength becomes

An equivalent form for this result is

- 1, _ 1
Do BylS] = (Vg Fo 3000 -

where F, =3, F".
We need to determine those residual gauge transforma-
tions which leave invariant the Weyl multiplet gauge.

_ = . 2 - 8 e -
| 0 Cye 1% + S DS = S5 1D, . @28)
8
+ 3 (r" )y D,S > + c.c.}. (4.29)
(Rle,w) +iayowr®™ +iway,0r™). (4.30)
1 - . . =
-7:ab = Eabc {5 (yc)a/i [Da’ Dﬂ]S + lé:’cde (7d>ﬁy [WeﬂDyS + WeﬂDy‘S] } ' (431)
_ 1 _ _
W + 1 e (WpyWea = W7 Wea) } (4.32)
[
1 e 1 —be
6bm = _Eema €V Wap + Egabcall “ =iy +cc.
-D,1, (4.34¢)

Imposing the conditions 6C,4| = 6S| = SR| = 0, with the
transformation § defined by (4.24), we obtain

[D(a’ Y_Dﬁ)]ol = _gcab(},c)a/}(apab - allab)» (4333)

oy i _ .
iD'D,o| = Eemb(eycl]/“b + eyy?), (4.33b)
D%6| = D*s| = 0. (4.33¢c)

Using these results in (4.25a)—(4.25c), together with the
fact that the bar projections of all the dimension-1 curvature
superfields vanish, we derive the transformations of the
gauge fields in the Weyl multiplet gauge:

5ema = i<€7a’l7m + E‘y“y/m) - Gema7 (4348.)

1
By = 2Dy + (7 i, = S0y, (434b)

with the y matrices with world indices defined by y,, :=
e,"r, and similarly for 7,

The above description of the Weyl multiplet agrees with
that given in [4].

E. Alternative gauge fixings

There exist different schemes for component reduction
that correspond to alternative choices of fixing the super-
gravity gauge freedom. Here we mention two possible
options that are most useful in the context of type I or type
II supergravity formulations.

The super-Weyl and local U(1), gauge freedom can be
used to impose the gauge condition [10]

S§=0, o, =0, o, =C,. (4.35)
Since the resulting U(1), connection is a tensor superfield,
we may equally well work with covariant derivatives V4
without U(1), connection, which are defined by
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V,: =D, V,=D,-iC,J.  (4.36)

The gauge condition (4.35) does not fix completely the
super-Weyl and local U(1), gauge freedom. The residual

transformation is generated by a covariantly chiral scalar
parameter A, V, A = 0, and has the form [11]

vV, = es(33-2) (Vo + (VI)M,,), (4.37a)
v, = et (va = % (ra)?(V A)Vj — % (ra)?(Vad)Vy

(TG4 DM =TT, ).

(4.37b)
The dimension-1 torsion superfields transform as
. i 1 -
= 7(C, =5Vl =1) 43 (VT
(4.38a)
1 _ -
R = —Ze“(v2 —4R)e™. (4.38b)

This formulation is very similar to the old minimal 4D
N =1 supergravity, see e.g. [3] for a review. It is best
suited when dealing with type I minimal supergravity-
matter systems.

The super-Weyl freedom can be used to impose the
gauge condition [10]

R =0, (4.39)
with the local U(1), group being unbroken. This super-
space geometry is most suitable for the type II minimal
supergravity. The gauge condition (4.39) does not
completely fix the super-Weyl group. The residual super-
Weyl transformation is generated by a real superfield o
constrained by D?*e™° = D% = 0.

Each of the two restricted superspace geometries
considered, (4.35) and (4.39), is suitable for describing
the Weyl multiplet of conformal supergravity. In each
case, we can define a Wess-Zumino gauge and a Weyl
multiplet gauge.

Some alternative gauge conditions will be used in
Sec. VIIL

V. TYPE I MINIMAL SUPERGRAVITY

This off-shell supergravity theory and its matter cou-
plings are analogous to the old minimal formulation for 4D
N =1 supergravity; see [1-3] for reviews. Its specific
feature is that its conformal compensators are a covariantly
chiral superfield ¢ of super-Weyl weight w = 1/2,

PHYSICAL REVIEW D 89, 085028 (2014)

0,P = 10@,

> (5.1)

and its conjugate ®.

A. Pure supergravity

As a warm-up exercise, we first analyze the action for
pure type I supergravity with a cosmological term. It is
obtained from (5.15) by switching off the matter sector, that
is by setting K =0 and W = y = const,

Ssg = —4 / *xd*0d20EDD + p / d*xd>0E D

+ i / d3xd*0 € d*. (5.2)
The second and third terms in the action generate a
supersymmetric cosmological term, with the parameter
|u|> being proportional to the cosmological constant. The
dynamics of this theory was analyzed in superspace in [11].
Here we reduce the action (5.2) to components.

In the Weyl multiplet gauge, the super-Weyl gauge
freedom is not fixed completely. We can use the residual
Weyl and local U(1); symmetries to impose the gauge
condition

P =1. (5.3a)
In addition, the local S-supersymmetry invariance can be
used to make the gauge choice

D,®| = 0. (5.3b)

The only surviving component field of ® may be defined as

M = D*®|. 54

To perform the component reduction of the kinetic term
in (5.2), the first step is to associate with it, by applying the
relation (3.7), the equivalent antichiral Lagrangian
L. = (D> —4R)(®®). After that we can use (3.13) to
reduce the action to components. The antichiral Lagrangian
corresponding to the /i term in (5.2) is £, = a®*. Finally,
the component version of the y term in (5.2) is the complex
conjugate of the ji term.

Direct calculations lead to the supergravity Lagrangian

| P ) o
LSG :ER(e’W> +Z€abc(Wabl//C +l//al//bc) _ZMM+b ba

=1 s 1 abc 1 abce,, -
—j M_ES WaVpWe | —H M+§€ WarvWe |
(5.5)

where the gravitino field strength is defined as
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Yap = gal//b - gbl//a - Tabcl//ca (5.6)
which differs from (4.14). We recall that the covariant
derivative ®,, Eq. (4.5), has no U(1), connection. It is
natural to use D, since the local U(1), symmetry has been
fixed. The type I supergravity multiplet consists of the
following fields: the dreibein e,,%, the gravitini y,,* and
Wma» and the auxiliary fields M, M and b,),.

Upon elimination of the auxiliary fields, the Lagrangian
becomes

| P ]
Lsg =3 Rle.y) + 7 e Wapwc + Wa¥ie)

. H —
+ 4+ S ey = S Py (57)
This Lagrangian describes (1,1) anti-de Sitter supergravity

for 4 # 0 [5].

B. Supersymmetry transformations

The gauge conditions (5.3a) and (5.3b) completely fix
the Weyl, local U(1), and S-supersymmetry invariances.
However, performing just a single Q-supersymmetry trans-
formation, with ¢, and €, the only nonzero parameters
in (4.34), does not preserve these gauge conditions. To
restore the gauge defined by (5.3a) and (5.3b), the
Q-supersymmetry transformation has to be accompanied
by a compensating S-supersymmetry transformation.
Indeed, applying the transformation (4.24) to ®| gives

1 1
5P| = P Dyd| + 3 (6 —it)®| = 3 (6 —it), (5.8)
where we have used Egs. (5.3a) and (5.3b). Setting 56®| = 0
gives

(5.9)

c=17=0.

On the other hand, the transformation of D,®| is

= 1
5Daq>| = eﬁDﬁDaq)| + éﬁDﬂDa(I)| ~Na <j‘1>‘ —iq)D

1 _
=—z€M+ (}/ae)aba + Nas

> (5.10)

where here we have used (5.3a) and (5.3b). Setting
6D, ®| = 0 gives

1

'la(e) = _eaM - (yaé)aba'

5 (5.11)

Using these results in (4.34), we obtain the supersymmetry
transformation laws of the gauge fields:

Seen® = 1(ey W, + €r'w ), (5.12a)
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. . e -
6€Wma = 2'®m€a - 1bmea + lemaeuhcbb(yce)a + EM(ymé)a’

(5.12b)

1 B 1 _ . _
5ebm = - 5 ema {eybl//ab + Egabcewbc + lgabcbbewc

. _ _ i
+i(byeytipy, — 2byeyti,) — §M€l//a} +c.c.
(5.12¢)

The supergravity multiplet also includes the auxiliary
scalar M = D?®|. Due to (5.9) and since D?c| =0,
Eq. (4.33c), the supersymmetry transformation of M is

5.M = DyD*®| + ;D D*®| = &[DF, D?®|.  (5.13)

Making use of the algebra of covariant derivatives gives

SM = —e,,, €7y — iMey y, — 2ib,ep®.  (5.14)

C. Matter-coupled supergravity

We consider a general locally supersymmetric nonlinear
o-model

S = —4/d3xd20d29E<T>e‘K/4@+/d3xd29€<I>4W

+ / dxd?0 E *W. (5.15)
Here the Kihler potential, K = K(¢’, ¢’), is a real function
of the covariantly chiral superfields ¢’ and their conjugates
@', D' = 0. The superpotential, W = W(¢'), is a hol-
omorphic function of ¢’ alone. The matter superfields ¢’
and @’ are chosen to be inert under the super-Weyl and
local U(1), transformations. This guarantees the super-
Weyl invariance of the action. In Appendix B, we describe a
different parametrization of the nonlinear o-model (5.15) in
which the dynamical variables ® and ¢’ are replaced by
covariantly chiral superfields ¢/ = (¢°, ¢') of super-Weyl
weight w = 1/2 that parametrize a Kihler cone.

The action (5.15) is also invariant under a target-space
Kaihler transformation

K(¢.7) = K(¢.9) + Mo) + A(@).  (5.162)
W(p) = e 20w (gp), (5.16b)

provided the compensator changes as
O — A0)/4P, (5.16¢)

with A(¢!) an arbitrary holomorphic function.
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We first compute the component form of (5.15) in the
special case W = 0,

Syinetic = —4 / d3xd?0d2OEDeK(0-0)/4p, (5.17)

Associated with Sy, 18 the antichiral Lagrangian

L. = (D*> —4R)(de K/*®), (5.18)
which has to be used for computing the component action
using the general formula (3.13).

Our consideration in this and the next sections is similar
to that in 4D N = 1 supergravity [60,61]. To reduce the
action to components, we impose the following Weyl and
local S-supersymmetry gauge conditions:

(DeK/4)| = 1, (5.19a)

Dy(Pe~X/40)| = 0. (5.19b)
Both gauge conditions are manifestly Kéhler invariant. It
turns out that the condition (5.19a) leads to the correct
Einstein-Hilbert gravitational Lagrangian at the component
level. On the other hand, the condition (5.19b) guarantees
that no cross terms D*S|D,K| are generated at the
component level. See Appendix B for more details.
Finally we fix the local U(1), symmetry by imposing
the gauge condition

(5.19¢)
|

P| = O| = ek/8,
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The auxiliary scalar fields contained in ® and ® may be
defined in a manifestly Kéhler-invariant way as

M = D2(PeKP)|, WM :=DX(DeKD)|. (5.20)

To make the gauge condition (5.19¢) Kéhler invariant,
the Kéhler transformation generated by a parameter A has
to be accompanied by a special U(1) transformation with
parameter 7 = i (A — A) such that the component vector
field b,,, which belongs to the Weyl multiplet and is defined
by Eq. (4.4), transforms as

b, — b, +%®a(A —X). (5.21)

We define the component fields of ¢! as follows:

X! = ¢1 , (5223.)
AL =Dl (5.22b)
1
Fl= =1 [D¢ + T (D) Dygpk]|. (5.22¢)

Under a holomorphic reparametrization, X! — f/(X), of
the target Kihler space, the fields A, and F! transform as
holomorphic vector fields. Direct calculations lead to the
following component Lagrangian:

1 i, . -
Lkinetic = —R<€, l//) + Zgabc (l//abl//c + l//al//bc) - Z MM + BaBa

2

_ - -1 1 . _ B
+ 917 |[FIF = (DXND X! = 2 A7 D2 + AW (e Warpwe = 'ya)

1 I I D
- gﬂ’y‘%’ Wy aws + €apeWyw®) — Ew“rbm’@”X’ - Eﬂ’ Yar DX’

1

+16

64

where the auxiliary vector field B, is defined by the rule
1 - i -
B, += by~ g 9id'1a¥ - % (K, DX — K;D K1), (5.24)

and is invariant under the Kihler transformations, in
accordance with (5.21). The gravitino field strength in
(5.23) differs from that introduced earlier in (5.6):

l/~/ab = E-‘;)al;(/b - QBbl//a - Tabcl//cv (525)

Rn’(]i/yﬂjzkzi - i (gl]ﬂlzj)za

(5.23)

where the Kihler-covariant derivative @a is defined (sim-
ilarly to the 4 D case; see e.g. [1]) as follows:

~ 1 g
9al/’b = gal//b + Z (KjgaXJ - K]@aX‘I)l//b, (526&)

-~ 1 _ -
gaﬂl = @aﬂl - Z (KJgaXJ - Kjgaxj)/ll + ’IjrgKgaXK'
(5.26b)

In (5.23), as usual g;5 denotes the Kahler metric, ;7 = K7,
and R;z,;; the Riemann curvature,
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Rigjp = Kpygi — QMNF%F]; I (5.27)
with T, = ¢'LK ;x; the Christoffel symbol.

We now turn to the third term in (5.15). The correspond-
ing antichiral Lagrangian is £, = ®*W({). To reduce this
functional to components, we again make use of the general
J
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rule (3.13) in conjunction with the relations (5.19) and
(5.22) which define the component fields of ® and ¢’. The
second term in (5.15) is just the complex conjugate of the
third term.

The component Lagrangian corresponding to the second
and third terms in (5.15) is

1, _ 1, I N i
Lpogenial = —€*/ KM - ESabLll/thV/c> W+ <M + 58““%%%) W — <F T Svar A ) ViW - <F TS war A ) v,w

Q- -1
+ Z/ﬂ/l"VjVjW + ZﬂI/IJVIVJW:| .

Here we have introduced the Kihler-covariant derivatives

V,W = W[ + KIW,

V,VJW:= W[J+2K(]VJ)W—F%JVLW+K[JW+K]KJW.

(5.28)

(5.29a)

(5.29b)

The component Lagrangian corresponding to the supergravity-matter system (5.15) is L = Lyjnegic + Lpoentiar- Putting

together (5.23) and (5.28) gives

1 i 1 - _- -1 o
L = SR(e.y) + e (FapWe + Fatbie) =7 WM + BB, + g {F’F’ — (DX DX~ 2D

| i 1 I I T
+ g e Warywe —wwa) = gAY (B 1 + €ancl W) = Sy 77 oA DX =S 70y DX ]

1

+16

0N i I 1
- <F’ n %way‘%’) VW — <F’ n %y‘/am’> VW FPVVW Z/VMV,V,W} .

1 — | - 1 o
Rygsp A AT AK 2 — a (gi7A127 )% — ek /2 [(M - 58““%%%) W+ (M + EE“waawc) w

(5.30)

Upon elimination of the auxiliary fields, the Lagrangian turns into

1 i - . 1 1 - . -1 a?_,
L= ER@, w) + Zf?abc(ll/abll’c F W aloe) + 2 Riggp A AT AKAE — 61 (93427 )* + 917 {‘(9 XD X~ 1/117 DA

16

8 8

1 o P
+ K2 e (Y W =yt W) + Syar AV W+

— K (g, WV W — 4AWW).

The potential generated, Psp, = eX (g V,WV;W —4WW),
differs slightly from the famous four-dimensional result
Py = eX (g V,WV;W = 3WW), see e.g. [1].

D. Supersymmetry transformations in Einstein frame

In matter coupled supergravity, the gauge conditions
(5.19) depend on the matter fields. As a consequence, the
supersymmetry transformation laws of the supergravity

1 ;57 > — —a 1 a1l (5 - c 1 a,, = vJ 1__‘“ —a
+ g e Warywe —wa) = gAY H 1w + €ancB"WC) = Y 7oA DX =S A Ty @”X’]

i L1
%lpam'v,w — VW =22V, W}

(5.31)

fields will differ from those given in Sec. V B. To preserve
the gauge condition ®| = eX/%, we have to choose

() = —i(K,el’ — K. (532)
To preserve the gauge condition D,(Pe X/4d)| =0, we
have to apply the compensating S-supersymmetry trans-
formation with parameter
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1 _ i -
'/Ia(e) = Eeer + & |:_brxﬂ + Z (Klgrxﬂxl - Kigaﬁxl)

+ égg(eaﬂﬂ’ﬂ + Z/Ifa/%)} . (5.33)

Making use of the parameters z(¢) and 7,(€) in (4.34),
one may derive the supersymmetry transformations of the
supergravity fields e,,“ and y,,” and b,,. These expressions
are not illuminating, and here we do not give them. We only
comment upon the derivation of the supersymmetry trans-
formation of M. Its transformation follows from the fact
that M is defined to be the lowest component of the scalar
superfield Dz(@e‘%’( ®). Making use of (5.32) and (5.33),
after some algebra we get

oM = _ecabéf/cl/_/ab —iey'y M - 2ib ep” + gI]FIé/_lj
- o7 1. o1
—igi7€7 M DX’ = &Y (K1 DpX! - K DyX')
+ 2iz(e)M, (5.34)

In conclusion, we give the transformation rules of the
component fields of ¢/

5.X! = ell, (5.35a)

1 1
S AL =2, <F’ + ngKMK> +2i(y9e), (@axl - 5”’“ﬂl>

+it(e)aL, (5.35b)

1
8. F =—ed'Th FX —1—5),111(6) +2iz(e)F! +iey* (D, +ib,)A!
1 .. _
— IRk AN iy AT D XK ey

1
—&y 7"y, (Q),,X’ —51//,,/1’> . (5.35¢)
These can be derived by using the definition of the
components of ¢! (5.22).

VI. TYPE II MINIMAL SUPERGRAVITY

This supergravity theory is a 3D analogue of the new
minimal formulation for 4D A = 1 supergravity [21] (see
[2,3] for reviews). Its conformal compensator is a real
covariantly linear scalar G,

(D? —4R)G = (D* —4R)G = 0, (6.1)
chosen to be nowhere vanishing, G # 0. The super-Weyl

transformation of G is uniquely fixed by the constraint (6.1)
to be

PHYSICAL REVIEW D 89, 085028 (2014)
5,G = 0G. (6.2)

A. Real linear scalar

A general solution of the off-shell constraint (6.1) is

G = iD*D,G = iD*D,G, (6.3)
where the real unconstrained scalar G is defined modulo
gauge transformations of the form
6G =A+A, JA =0, D,A=0. (64)
This gauge freedom allows us to interpret G as the gauge
prepotential for an Abelian massless vector multiplet,
and G as the gauge invariant field strength.12 The prepo-
tential can be chosen to be inert under the super-Weyl
transformations,13
4,G = 0. (6.5)
Then the field strength G, defined by Eq. (6.3), transforms
according to (6.2).
Making use of the constraint (6.1), we deduce the
important identity

D?G,; = 8{(D*S)D, — (D*S)D, }G

+4i{(D°R)D, + (D°R)D,}G,  (6.6)
where we have denoted
Gup = (1*)apBa = [D(a» Dp)|G + 4CosG. (6.7

In the Weyl multiplet gauge (4.26), it follows from (6.6)
that

Ga| =H* - 8abcl/_/bl//cG| - ieabc (WbchG| + l/_/b}/cﬁﬁD’

(6.8)

where H* denotes the Hodge-dual of the field strength of a
U(1) gauge field a,,

1
H* = Eg“hc']—{bc’ Hab = gaab - gbaa - Tllbcac'

(6.9)

The other independent component fields of G may be
chosen as follows:

“In four dimensions, the real linear superfield is naturally
interpreted as the gauge invariant field strength of a massless
tensor multiplet [62].

BThe transformation law (6.5) is consistent with the require-
ment that the gauge parameter A in (6.4) be super-Weyl inert.
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G. DG, DG, iD*D,G.

(6.10)

B. Poincaré supergravity

The off-shell action for type II supergravity without a
cosmological term [10,11] is

Spoincare” = 4 / d3xd’0d’0E(GInG — 4GS).  (6.11)

The action can be written in a different but equivalent form:
: 3.420420 T G

Spoincarer = 4 [ d°xd“0d“0EGD*D,, IHE’ (6.12)

where @ is a nowhere vanishing covariantly chiral super-
field of the type Eq. (5.1). One may see that the variables ®
and ® are purely gauge degrees of freedom.

The theory (6.11) was shown in [11] to be classically
equivalent to type I supergravity without a cosmological
term, the latter being defined by Eq. (5.2) with ¢ = 0. The
above action can equivalently be described by the antichiral
Lagrangian

L. =—(D*-4R)(GInG —4GS), (6.13)
which has to be used to carry out the component reduction
of (6.11) by applying the general rule (3.13).

Component reduction is often greatly simplified if
suitable gauge conditions are imposed. Making use of
the Weyl and local S-supersymmetry transformations allow
us to choose the gauge conditions

G| =1, (6.142)

D,G| = 0. (6.14b)

The compensator also contains a real scalar component
field that can be defined as
Z =1iD*D,G|. (6.15)

It is also useful to choose a WZ gauge for the U(1) gauge
symmetry (6.4). A standard choice is

G| =0, (6.16a)
D,G| =0, (6.16b)
D>G| = 0. (6.16¢)
It then follows from (6.14) and (6.16) that
D*D,G| =0, (6.17a)

PHYSICAL REVIEW D 89, 085028 (2014)

i

DPAG| = 5 WPya7p)%a + (F7,)%, (6.17b)
1 - i 1 i 1
——D*D*G| = =D, a* + —* ¢t —Z.
1 | =5 Daa + W rawpat + 50 v + 3
(6.17¢c)

The only independent component fields of G are

_ 1
[D(a,Dﬁ>]G| = Eaaﬂ, (6183)

(D*D,)*G| = -Z. (6.18b)
By construction, the scalar Z is invariant under the gauge
transformations (6.4).

The component supergravity Lagrangian is

1 i _ _
LPoincare’ = ER(E’ 1//) + Z gabc (lllubl//c + l//alllbc)
1~ ~ 1
Fa—— a__72, 6.19
+a, 1 HH 1 (6.19)
where we have introduced the combination
HY = H — by, (6.20)

The gravitino field strength is defined as in (4.14), with
D, =D,(e,y,b) the covariant derivative containing the
U(1), connection b,,. In this formulation, the supergravity
multiplet consists of the following fields: the dreibein e,,,
the gravitini y,,* and ,,,, the two gauge fields a,, and b,,,,
and the auxiliary scalar Z.

It is not difficult to demonstrate that the vector fields a,
and b, have no propagating degrees of freedom for the
dynamical system (6.19). To see this, let us work out
the equation of motion for the U(1), gauge field b,. In the
supergravity Lagrangian (6.19), this field appears both in
the Rarita-Schwinger and Chern-Simons terms. We note

that
/d3xeaaf“ = /d3xeba’H“,

modulo a total derivative. Another relevant observation is
that the Rarita-Schwinger Lagrangian depends on b, only
via the linear term —e™“b ... As a result, the equation
of motion for b, is

(6.21)

H = 0. (6.22)
This equation tells us that a, has no independent degrees of
freedom on the mass shell. Now, varying (6.19) with
respect to a, and making use of (6.22) gives
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Fe=0, (6.23)
and therefore the U(1), connection b, is flat and may
completely be gauged away.

The off-shell Lagrangian (6.19) does not coincide with
that proposed in [14] to describe (2,0) Poincaré super-
gravity (in our terminology, type II supergravity without a
cosmological term),; see Eq. (4.1) in [14]. In particular, the
Lagrangian given in [14] contains no H,H“ term. The two
Lagrangians are actually equivalent modulo a total deriva-
tive and a redefinition of the b, field."* Indeed, making use
of (6.21) and defining

b, > b, =b,—-H,. (6.24)

B —

the Lagrangian (6.19) takes the form

1 1o, _
LPoinca.re’ = E R(E, W) + Z 8abc (Vlizblr”c + l//alll;;c)

1

+ bl H — 122, (6.25)

where the gravitino field strength y/, is defined as (4.14)
but with the U(1), connection b, replaced by b/. The
Lagrangian (6.25) is equivalent to the one given in [14].

C. (2,0) anti-de Sitter supergravity

The main difference between type Il supergravity and the
new minimal formulation for A' = 1 supergravity in four
dimensions is that the action (6.11) can be deformed by
adding a gauge-invariant cosmological term

Secosm = —4& / d*xd’0d’0EGG. (6.26)

To evaluate its component form, we have to make use of the
supersymmetric action principle (3.13) with

L= &(D*~4R)(GG)

A short calculation that makes use of (6.17¢c) leads to

=E(GD*G+2¢(D*G)D,G.  (6.27)

| .
Lcosm = f <Z + Z aaHa - %Sabcl/_/aybl//c> . (628)
The superfield action for (2,0) AdS supergravity is

Saas = 4 / Bxd20d20E(GInG — 4GS — EGG).  (6.29)

“G. T.-M. is grateful to Daniel Butter for pointing out the same
situation in the new minimal formulation for 4D N = 1 super-
gravity (see, e.g., [63,64] for the relevant discussions).
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The component Lagrangian for off-shell (2,0) AdS super-
gravity is

1 1 _ _
Lags :ER(&V/) +Z€abc Wy e +WWhe) +a, F*

1~ 1sa 1 2 1 a iabc—
—ZHaH ZZ +§<Z+Z(1aH 58 l//a}/blllc>.

(6.30)

In this theory, the equation of motion for the U(1), gauge
field b,, is still given by (6.22). As concerns the equation of
motion for a,, it becomes

1
f”—i—ifH":O. (6.31)

We see that the local U(1); gauge freedom can be
completely fixed by imposing the condition a, = —2b,,.

Dynamics described by the off-shell theory (6 30) is
equivalent to that generated by

Lags = —R(e w) + e (

4 YapY e + l//ulllbc - 251//a]//,lllc)

+E2— Eba]-"“. (6.32)

One can recognize (6.32) to be the standard on-shell
Lagrangian for (2,0) AdS supergravity [5] (see also [7]).
The third term in the parentheses in (6.32) may be absorbed
into the gravitino field strength by introducing a modified
covariant derivative

. 1
D! =Dy’ —Ef(Ya)J//il//by- (6.33)

D. Supersymmetry transformations

The gauge conditions (6.14) completely fix the Weyl and
local S-supersymmetry freedom. To preserve the condition
G| =1, no residual Weyl invariance remains, ¢ = 0.
However, each Q-supersymmetry transformation has to
be accompanied by a compensating S-supersymmetry
transformation in order to preserve the condition
D,G| = 0. Indeed, the field D,G| transforms as

(89 + 65)D,G| = ¢DyD,G| + €,D°D,G| + 1,6

1~ i
== ag), —=Z¢ .34

2Ha(7/ 6)(1 2 ea + nav (6 3 )
where here we have used the identities (6.6)—(6.8), (6.14),
and (6.15). We have to require (8, + 65)D,G| = 0, and
therefore
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1~ i
na(e) = _EHa(yaé)a + _Zéa'

2 (6.35)

Choosing ¢ = 7 = 0 and 5, = 1,(€) in (4.34), we obtain
the supersymmetry transformations of the gauge fields e,,*,
v, and b,,:

5eema = i(€}/al/_/m + 57awm), (6.36a)

~ i - 1_ .
5€Wnla = 2Dm€a + Hmea _EemasabcHL (yb€>(x +§Z<7m€)a!

NS

(6.36b)

1 ~
5€bm = _Zemu{gabca/_/bc + 2€ybv_/ab - ieybl/_/aHb - €l/_/aZ}

+c.c. (6.36¢)

The supergravity multiplet also includes the fields a,,
and Z. The supersymmetry transformation of a,, follows
from its definition a,, = ¢,,“a,, with a, originating as a
component field of G, Eq. (6.18a). Note that, in order to
preserve the WZ gauge (6.16), in computing the super-
symmetry transformations of a,, it is necessary to include a
compensating e-dependent U(1) gauge transformation (6.4)
with parameter A(¢) such that

A(e)| =0, (6.37a)
1 .
DoA(e)] = =5 @r")a, + %éa, (6.37b)
DAA(e)| = 5 &P iay = &1"Fa (6370)
We then obtain
Sty = (8eey®)a, — e, (va)?
X (€yD}, [Da, ’Z_)ﬂ]G| + 21DaﬂA(€>| + C.C.)
= ieyal/_/maa + (J/m>aﬂ€yD7
X {Dy. Dp}G| + 4iy,,* D A(€)] + c.c. (6.38)
Evaluating this variation gives
Sey = =2(eW,, + €y,,). (6.39)

The scalar field Z originates as a component field of G,
Eq. (6.15), and therefore its supersymmetry transformation
is

5.7 = %eapzf)am n %éaf)@"m +i(D*D,0)G|. (6.40)
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Making use of (4.33b), we then derive

1 1 ~ 1 ~
0 = — % YW,z — Eeabceyal/_/bHc + Eelpath

i
+ Ee“bfeyalilbc +c.c. (6.41)
For completeness, let us also work out the supersym-
metry transformation of the field strength H,. Making use

of the definition of H,, gives

1 sa 1 a\q B T D
5" =~ (#)*{e'D, D, D,I6] + &, D7[D,, D6l

+ ([D,. Dylo)G|}. (6.42)
With the aid of (4.33a) we obtain
6 = =3 e e H, + ey, H
1
+ Eeabceybl/"/cz —e%ay,. +c.c. (6.43)

E. Matter-coupled supergravity

The action for a locally supersymmetric o-model
coupled to type II supergravity is

S matter = / d3xd*0d’0EGK (¢, p). (6.44)

Here the Kihler potential K (¢, ») and the matter super-
fields are the same as in Sec. V. In particular, the covariantly
chiral superfields ¢’ are super-Weyl and U(1), neutral,
5,¢' = J¢' = 0. The action is invariant under the Kihler
transformations (5.16a) due to the identity

/ Bxd20d20EGA (¢) = 0. (6.45)

In order to carry out the component reduction of Sy, ers
we associate with (6.44) the antichiral Lagrangian

L.= —% (D* —4R)(GK) = —%GDZK - % (D*G)D,K.
(6.46)

The component fields of ¢’ are defined as in (5.22). Unlike
the type I supergravity case, now we do not have to
modify the gauge conditions on the compensator in the
presence of matter. Direct calculations lead to the following
component Lagrangian:
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_- - 1 U 1 -
Linatter = a17 FI'F — (gaxl)gaxJ - Z’llyaDaiJ - El//a/ljguxl + El//ailguxj

+

0| = N =

i _ 1 I
+ M KD~ KD X' + 1 Ry 26

Here we have introduced the Kihler-covariant derivative

DA =D, + 2T D, XK

=DM +ib M + 2T D XK. (6.48)
The o-model action generated by the Lagrangian (6.47)
proves to be invariant under the Kéhler transformations.
The first term in the fourth line of (6.47) is the only one
which varies under the Kéhler transformations. The cor-
responding contribution to the action is indeed Kihler
invariant due to the identity [d*xeH*D,A = 0.

As may be seen from (6.47), the gauge fields b, and a,
couple to conserved currents of completely different types.
The U(1), gauge field couples to the U(1); Noether
current

I B
Roctrer = € WpWe + 3 947K (6.49)

As regards the gauge field a,, it couples to the topological
current

1 i 1~ -
L= ER(E’ l/’) =+ Zgabc(y_/ab‘//c + l/_’al//bc) + aa]:a - ZHaHa --7

L |
eabc (l//aJ/bllchJ - Wayb/ljs)cxl) + gl//a}/bl//a/llnﬂv - gl//al//aﬂlﬂj

- R T
ey Ty F + war D AE) + 2y FH =22

(6.47)

[
I ..
j?op = Eeabc (gbmc - @th - Thcdmd)v

R, = i(K;D X - K;D,X"), (6.50)
which is identically conserved. These properties were
pointed out in [14].

Now, we consider a complete supergravity-matter
system described by the action [11]

S=4 / P xd20d20E (@{mﬁ + %K((p, (p)} - 4GS>.
(6.51)

It describes Poincaré supergravity coupled to the locally
supersymmetric o-model. As shown in [11], this theory is
dual to the type I supergravity-matter system (5.17). To
compute the corresponding component Lagrangian, we
combine L. given by (6.47) with the type II super-
gravity Lagrangian without cosmological term, Eq. (6.19).
The result is

1
4

_ I S B 1 .
+ g |FIF - (D,x1)D% - iﬂyanaﬂ —STHDX + Sy DX

+

0| = | —

i =7 1 | -
+ ZHa [Kj@axl - KIQHXI] + ERII_(JZJ.I/%IJ,K/’{L - (91‘711/’{1)2,

where we have defined

Z=7+ % gl (6.53)

Let us show that the dynamical system (6.52) is
equivalent to the type [ supergravity-matter system
(5.31) with W = 0. Integrating out Z gives

_- . 1 1 .
e (DX =7 yp A DX + cwa i Ay A - gVa AA!

8

. =y, L 77
gabe (W Aly A+ wayw ATA) + gglilIYallJHa

6.52
64 (6.52)
|
Z = 0. (6.54)
The equation of motion for the gauge field b, is
~ 1 -
He = FY — 2 gy T
1 -
= H* — by, — Eg,;/lly"/lj =0. (6.55)
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Let us consider the equation of motion for the gauge field
a,. It can be represented in the form

@aBb - @bBa - TtlchC - O, (656)
where B, is defined in (5.24). This equation tells us that the

local U(1), gauge freedom can be completely fixed by
choosing the condition

1 -5 1 _;
ba = _91]/117/511] + i (Klgaxl - Kigaxl)'

g (6.57)

_ 1
S=4 / Bxd0d20E <G{ln G+ ;K. @)} — 4GS - chG) .

PHYSICAL REVIEW D 89, 085028 (2014)

Making use of the equations (6.54), (6.55), and (6.57)
reduces the supergravity-matter system (6.52) to that
described by the Lagrangian (5.31) with W = 0.

To preserve the gauge condition (6.57), any Kéhler
transformation generated by a parameter A has to be
accompanied by a special U(1), transformation with
parameter 7 = 1 (A — A); see also Eq. (5.21).

Finally, we generalize the supergravity-matter system
(6.51) to include a cosmological term. The manifestly
supersymmetric action is

(6.58)

The corresponding component Lagrangian is obtained from the supergravity-matter Lagrangian (6.52) by adding the

cosmological term (6.28). The result is

1

1 i o _ 1~ ~. 1 i o
L= ER(ev l//) + Zgabc ('I/abl//c + l//alllbc) + aafa - ZHaH -7 (Z - 25)2 + ZfaaHa - Eggabcl//a},bl//c + 52

4

_- - i 1 . 1 -1 - -
+ 917 FIFJ - (@axl)gaxl - %;LlyaDallj - EwalJQuXI + Elljulll@axj - Eeahc (l//ayhilgcx‘] - l/_/u},bj“‘lgc)(l)

1 PP I o PR N
+§waybw“ﬂ’ybﬂ’ — gV A +§€“b”(wawb/1’}'c/1’ FWarp A ) + g gy TR =2

i _s 1 1 .
+ HKIDX = KD X' + g Rt W IKIE = 2 (g5a' )2,

(6.59)

We conclude this section by giving the supersymmetry transformations of the component field of ¢!

S.X = ell,

1 1
5L = 2e, (F’ + ZFﬁK/IJAK> +2i(yee), (DaX’ - —zm’) :

(6.60a)

5 (6.60b)

1 1,5 -5 i
8. F! = =T FK + Eiln(e) +ieyD Al — Zg’LRJLKpéﬂP/IJ/lK +iey AT D XK — %éy“waF’

o 1
— &7, (th’ —EWM’)

It is a useful exercise for the reader to derive these
transformation laws.

F. R-invariant sigma models

Type II minimal supergravity admits more general matter
couplings [11] than those we have so far studied. In
particular, it can be coupled to R-invariant o-models,
similarly to the new minimal A/ = 1 supergravity in four
dimensions (see, e.g., [65] for more details). Here we
briefly discuss such theories.

We consider a system of covariantly chiral scalars ¢ of
super-Weyl weights ry,

(6.60c)

[

Dl =0, TP =-rp!,  S,¢' = rop!. (6.61)

We introduce a supergravity-matter system of the form

S=4 / d3xd20d20E
X (G{ln G+ iK(qb’/G”, Jﬂ/@ff)} - 4GS>

+ { / d3xd?0EW (¢') +c.c.}. (6.62)
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This action is super-Weyl invariant if the superpotential

W(g!) obeys the homogeneity equation

> W, =2w.

1

(6.63)

The action is invariant under the local U(1), transforma-
tions if the Kéhler potential K(¢', ¢’) obeys the equation

Zr,d)’K, = ZVIQVKT-
1 1

In a flat superspace limit, the theory (6.62) reduces to a
general R-invariant nonlinear o-model.

The action (6.62) may be reduced to components using
the formalism developed above. In general, however, the
Weyl and S-supersymmetry gauge conditions (6.14) have
to be replaced with matter-dependent ones [similar to the
gauge conditions (5.19) in type I supergravity] if we want
the gravitational action to be given in Einstein frame. We
will not give such an analysis here.

(6.64)

VII. TOPOLOGICALLY MASSIVE
SUPERGRAVITY

Consider N = 2 conformal supergravity (CSG) coupled
to matter supermultiplets. The supergravity-matter action is

1

§= ESCSG + Smatter’ (7.1)

where Scgg denotes the conformal supergravity action
[4,60] and S, the matter action [10,11]. Both terms
in (7.1) must be super-Weyl invariant. As regards Scgg, the
formulation given in [4] is purely component, and the
concept of super-Weyl transformations is not defined
within this approach. However, the super-Weyl invariance
of Scgg 1s manifest in the superspace formulation given
recently in [66]; see Appendix D for a review. Requiring the
super-Weyl invariance of Sy, 1S €quivalent to the fact that
this action will describe an A/ = 2 superconformal field
theory in a flat superspace limit.
The equation of motion for conformal supergravity is

4
_gwaﬂ + ‘-7(1/} = 0’ (7.2)

where W, is the N = 2 super Cotton tensor, Eq. (2.12),
and 7,z is the matter supercurrent. This equation is
obtained by varying S with respect to the real vector
prepotential H* = HP* of conformal supergravity [15],

o o
Wep % ——=Scsa» T ap SHP Smatters  (7.3)

S Ha/}

with 6/6H® a covariantized variational derivative with
respect to H%. Equation (7.2) and the matter equations of
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motion determine the dynamics of the supergravity-matter
system.

A. Properties of the supercurrent

The fundamental properties of the super Cotton tensor
are (1) its super-Weyl transformation law (2.13); and (ii) the
transversality condition [57]

D'Wes = DPW,s = 0. (7.4)
The matter supercurrent must have analogous properties.

Specifically, it is characterized by the super-Weyl trans-
formation law

Ty =T (15)
and obeys the conservation equation
Dﬁjaﬂ = Z_)ﬁjaﬂ =0. (7.6)

These must hold when the matter fields are subject to their
equations of motion. Of course, the relations (7.5) and (7.6)
may be viewed as the consistency conditions for the
equation of motion (7.2). However, there is an independent
way to justify (7.5) and (7.6) that follows from the
definition of ap S the covariantized variational derivative
with respect to H%. Here we only sketch the proof. For a
more complete derivation, it is necessary to develop a
background-quantum formalism for 3D N = 2 supergrav-
ity similar to that given by Grisaru and Siegel for V' = 1
supergravity in four dimensions [67,68] (see [3] for a
pedagogical review).

As demonstrated in [15], in complete analogy with the
4D case [69], the gravitational superfield originates via
exp(—2iH), where

H=H=H"), +H'D,+ H,D" (7.7)
and D, and D* are the spinor covariant derivatives of
Minkowski superspace. By construction, the superfields
HM = (H™,H* , H,) are super-Weyl invariant. The super-
gravity gauge group can be used to gauge away H* and its
conjugate, leaving us with the only unconstrained prepo-
tential H™. This prepotential possesses a highly nonlinear
gauge transformation

O Hap = DgLy) — DLy + O(H), (7.8)
where the gauge parameter L, is an unconstrained complex
spinor. Due to the nonlinear nature of this transformation,
the gravitational superfield is not a tensor object, and
special care is required in order to represent the variation of
the action induced by a variation H" — H™ + 6H™ in a
covariant way. This is what the background-quantum
splitting in supergravity [67,68] is about.
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It turns out that giving the gravitational superfield a finite
displacement is equivalent to a deformation of the covariant
derivatives that can be represented, in a chiral representa-
tion, as follows:

D* - FD+ ..., (7.9a)

D,—»e N FDs+--)e* M, det(N,F)=1, (7.9b)

where
i

1 i - -
H:—EH ﬂ’Da/}—g(’DﬂH ﬂ)Da—g(’DﬂH ﬂ)Da+

(7.10)

The ellipses in these expressions denote all terms with
Lorentz and U(1), generators. The deformed covariant
derivatives must obey the same constraints as the original
ones D,. This can be shown to imply that the complex scalar
F and the unimodular 2 x 2 matrix A/ are determined in
terms of H“. The vector superfield H? describes the finite
deformation of the gravitational superfield. A crucial property
of the first-order operator H is that it is super-Weyl invariant
when acting on any super-Weyl inert real scalar U = U,

oH-U =0, (7.11)
provided H,; transforms as
0,Hyp = —oH . (7.12)

The superfield H,; proves to be defined modulo gauge
transformations of the form
5. Hyy = DLy — DiLy) + O(H),  (7.13)
which are compatible with the super-Weyl transformation
(7.12) provided the gauge parameter is endowed with the
properties
3
JL,=L,, O,L, = _EGL“' (7.14)
Giving the gravitational superfield an infinitesimal
displacement, H, = 0H,,, the matter action changes as

88 matter = / d*xd*0d*0ESH T,

= / d3xd29d2éE5Ha%Smm. (7.15)
This functional must be super-Weyl invariant. Due to
Egs. (3.3) and (7.12), and since the matter equations of
motion hold, we conclude that the super-Weyl transforma-
tion of the supercurrent is given by Eq. (7.5). Since S,aer 15
invariant under the supergravity gauge transformations,
choosing 6H,; = ﬁ((,Lﬂ) - D((,I:ﬂ) in (7.15) should give
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08 matter = 0 1f the matter equations of motion hold. Since
L, is completely arbitrary, this is possible if and only if the
conservation equation (7.6) holds.

B. Topologically massive minimal supergravity: Type I

Let us choose S, to be the superconformal sigma
model (B2). The corresponding supercurrent proves to be

| -
jaﬁ == NijD(a¢1Dﬂ)¢j - Z [D(a, Dﬂ)]N - CaﬂN' (716)
The matter equations of motion are
| -
——(D*>—4R)N; + P; = 0. (7.17)

N

The relative coefficients in (7.16) are uniquely fixed if one
demands the transversality condition (7.6) to hold on the mass
shell, Eq. (7.17). Alternatively, it may be shown that the
relative coefficients in (7.16) are uniquely fixed if one requires
the super-Weyl transformation law (7.5). In the flat superspace
limit, the supercurrent (7.16) reduces to the one givenin [11].

We now turn to considering topologically massive type I
supergravity. It is described by the action

1

StMsG = QSCSG - SsG, (7.18)

where Sgg is the action for type I supergravity with a
cosmological term, Eq. (5.2). In topologically massive
gravity [70] and its supersymmetric extensions [32,33],
the Einstein term appears with the “wrong" sign. In the
context of the o-model action (B2), the matter sector in
(7.18) corresponds to the choice N = 4®® and P = —ud*.
The equation of motion for P is

(D> —4R)® + ud’ = 0. (7.19)

Bl —

The equation of motion for the gravitational superfield (7.2)
becomes

4(i = _
o {5 [D7.D,)Cop — [Dia Dp)|S — 4scaﬂ}
+ 4D, @Dy ® — [D(y. Dp)|(PP) — 4C,y DD = 0.
(7.20)

As shown in [10], the freedom to perform the super-Weyl
and local U(1), transformations can be used to impose the

gauge"

Upon gauge-fixing ® to become constant, there still remain
rigid scale and U(1), transformations that allow us to make f in
(7.21) have any given value. The choice f = 1 leads to a canonically
normalized Einstein-Hilbert term at the component level.
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b = \/]7 = const,

which implies the conditions (4.35). Then, the matter
equation of motion (7.19) turns into

(7.21)

R = p = const. (7.22)

Using the identity D’C,; =—-1D,R-2iD,S, which

follows from (2.8c), we also obtain
Dﬂcaﬂ - Z_)ﬂcaﬂ - O (723)

Now, the conformal supergravity equation (7.20) drastically

simplifies

|
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3D D,)Cp + 9fCap = 0. (7.24)

Equations (7.23) and (7.24) have a solution C, =0,
which corresponds to (i) a flat superspace for y =0, or
(ii) (1,1) anti-de Sitter superspace if p # 0. In the case
=0, we can linearize Eq. (7.24) around Minkowski
superspace. Its obvious implication is ((J—m?)C, = 0,
where m = % fg.

Combining the Lagrangians (5.5) and (D12), we obtain
the component Lagrangian for topologically massive type |
supergravity

1 2 . - 1 i L _
Lmsg = 4—g€abc [Re rgwa’? + gwafgwbghwchf —AF ypbe + Wpevat o w ] — ER(& w) — Zé‘ab‘ (WapWe + W aWpe)

1 - -1 1
+ZMM - baba +/’7<M _Eeabcl//a}’bl//c> +/’[(M +§€abcl/_/a7/bl/_/c>‘

The Lagrangian is computed in the Weyl, local U(1), and
S-supersymmetry gauge (5.3). However, it is possible to
avoid the use of (5.3). To achieve this the component form
of S has to be computed using the results of Appendix B.

C. Topologically massive minimal supergravity: Type II

Topologically massive type Il supergravity is described
by the action

1
StMsG = ESCSG — Sads

(7.26)
where Spgs is the action for (2,0) AdS supergravity,
Eq. (6.29). We can think of the theory with action (6.29)
as a model for the vector multiplet coupled to background
supergravity. Then, the equation of motion for G is

iD*D,InG — 4S8 — 2£G = 0. (7.27)

The supercurrent corresponding to the action Spuer =
-S AdS is

Tap = %DWGD/;)G — [D(a» Dp)|G — 4C4G.
It is an instructive exercise to show that 7,5 possesses the
super-Weyl transformation law (7.5) and obeys the con-
servation equation (7.6) provided (7.27) holds. In the flat
superspace limit, the supercurrent (7.28) reduces to the one
given in [11].

(7.28)

(7.25)

Instead of (7.20), now the equation of motion for the
gravitational superfield is

4 (1 - -
- 5 {5 [D",D,|Cop — [D(ar Dp)|S — 48Caﬂ}

4 _ -
+ 6D(,,GDﬁ)G — [D(a: Dp)|G = 4C,yG = 0. (7.29)
As shown in [10], the freedom to perform the super-Weyl
transformations can be used to impose the gauge

G = f = const, (7.30)

which implies the constraint (4.39). Then the equation of
motion (7.27) tells us that

S= —g = const. (7.31)

These properties lead to the constraint (7.23). As a result,
the conformal supergravity equation (7.29) turns into

i

5 (7.32)

[D",D,|Cap + (gf +28)Cop = 0.
Equations (7.23) and (7.32) have a solution C, = 0, which
corresponds either to a flat superspace for £ = 0 or (2,0)
anti-de Sitter superspace if & # 0.

Combining the Lagrangians (6.30) and (D12), we obtain
the component Lagrangian for topologically massive type
II supergravity
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1 2 . -
Lrvsg = 4—g€abc Ripe fgwaf I+ gwafg wbghwchf —4F b, + 1'I/bc7d}’a€def 'I/ef:|

1 i o _ 1~ ~, 1 1 i L
- ER(ev l//) - ZgabL (Wahl//c + l//avlbc) - aafu + ZHuH + ZZZ - §<Z + ZauHa - _8abLl//ayhl//c> . (733)

The Lagrangian is computed in the Weyl and local
S-supersymmetry gauge 6.14. However, one can avoid
the use of 6.14. To achieve this the component form of S 4g
has to be computed using the results of Appendix C.

D. Topologically massive nonminimal supergravity

Topologically massive nonminimal supergravity is
described by the action

1

StMsG = ESCSG — Sads> (7.34)

where S,45 denotes the action for nonminimal (1,1) AdS
supergravity [11]

Sags = =2 / dxd>0d*0E(TT)~1/2, (7.35)

The dynamical variable I" is a deformed complex linear
scalar I" obeying the constraint (1.2). If we think of (7.35)
as the action describing the dynamics of matter superfields
I and T in a background curved superspace, then this
theory is dual to the type I minimal model (5.2); see [11] for
more details. As a result, topologically massive nonmini-
mal supergravity is dual to that constructed in Sec. VII B.
To relate the two theories, it suffices to note that when I'
and T are subject to their equations of motion, we can
represent

=339, (7.36)

1

2

where @ is a chiral scalar of super-Weyl weight 1/2 under
the equation of motion (7.19).

VIII. SYMMETRIES OF CURVED SUPERSPACE

In this section we derive the conditions for a curved
superspace to possess (conformal) isometries. After that
we concentrate on a discussion of curved backgrounds
admitting conformal and rigid supersymmetries.

A. Conformal isometries

Consider some background superspace M?3* such that
its geometry is of the type described in Sec. II A. In order to
formulate rigid superconformal or rigid supersymmetric
field theories on M3, it is necessary to determine all
(conformal) isometries of this superspace. This can be done
similarly to the case of 4D A/ = 1 supergravity described in
detail in [3] and reviewed in [51]. In this subsection we
study the infinitesimal conformal isometries of M3/,

Let £=E"E, be a real supervector field on M3,
A= (&9,£%&,). Tt is called conformal Killing if one
can associate with & a supergravity gauge transformation'®
(2.4) and an infinitesimal super-Weyl transformation (2.11)
such that their combined action does not change the
covariant derivatives,

(6 +6,)Dy = 0. (8.1)
Since the vector covariant derivative D,, is given in terms of
an anticommutator of two spinor ones, it suffices to analyze
the implications of (8.1) for the case A =a. A short
calculation gives

. . 1 | o
(5}C + 56)Da = {_ (O- + ZIT)Eaﬂ + Da&ﬂ + lé(aycﬂ)y - éaﬂS - EKaﬂ}Dﬁ - {Daéﬂ + lfaﬂR}Dﬁ + {EDagﬂy - 218(1(/36}/) }Dﬂ}’

[\

1 o _
- {Saw(%a) +3DaK = Aeaply) R = HeaplS = 28Cpy + o’ Cps

2
3

. z .z 1
- |:Da(6 + ]T) - 2§ﬁcaﬂ - 415{18 + E §ﬁ7 C{l/iy

- égw(sms + iTD}’R)} J.

_ - 1 S
- —ea(ﬂfy)g(ZD‘sS +iD°R) + 3 (2D,S + iDaR)fﬂy] MPr

8.2)

16Strictly speaking, the parameters of gauge transformations are usually restricted to have compact support in spacetime; see e.g. [71].
The (conformal) Killing vector and spinor fields do not have this property.
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The right-hand side of (8.2) is a linear combination of the
five linearly independent operators D, DF, DF’, MPr and
J. Therefore, demanding (¢ + 6,)D, =0 gives five
different equations. Let us first consider the equations
associated with the operators D? and D in the right-hand
side of (8.2),

1 L 1
Dyép= —Eeaﬂ(ﬁ 2ir) —i€(,/Cpy, + 50,/,5+§Ka,,, (8.3a)

Dby, = Heap,),

as well as their complex conjugate equations. These
relations imply, in particular, that the parameters
éa,éa,KO,ﬂ,o and 7 are uniquely expressed in terms of
&% and its covariant derivatives as follows:

(8.3b)

o= iDE E=— D, B4
o= % (D&% + D%E,), (8.4b)

T=- % (D& - DFE,), (8.4¢)
K= D(afﬂ) - Z_)(afﬂ) - 2§aﬂ8. (8.4d)

This is why we may also use the notation K = K[¢] and
o = o[&]. In accordance with (8.3b), the remaining vector
parameter £ satisfies the equation17

Dy =0 (8.5)

and its complex conjugate. Immediate corollaries of (8.5)
are

(D* +4R)¢, = (D* +4R)E, = 0, (8.62)

Daib = Naqp0 — SachC' (86b)

The latter relation implies the conformal Killing equation

N 8.7
If Eq. (8.5) holds and the conditions (8.4a)—(8.4d) are
adopted, it can be shown that the conditions (8.1) are
satisfied identically. Therefore, (8.5) is the fundamental
equation containing all the information about the conformal
Killing supervector fields. As a consequence, we can
give an alternative definition of the conformal Killing
supervector field. It is a real supervector field

"Equation (8.5) is analogous to the conformal Killing
equation, ‘E)(aﬁVy(s) =0, on a (pseudo)Riemannian three-
dimensional manifold.
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E=8E, B=(e8)= (5“, <Dy, —%Dﬂ%)
(8.8)

which obeys the master equation (8.5).

If &, and &, are two conformal Killing supervector fields,
their Lie bracket [£;, &,] is a conformal Killing supervector
field. It is obvious that, for any real ¢ numbers r; and r,, the
linear combination r;&; + r,é, is a conformal Killing
supervector field. Thus the set of all conformal Killing
supervector fields is a super Lie algebra. The conformal
Killing supervector fields generate the symmetries of a
superconformal field theory on M3!4.

Making use of (8.2), the condition (5 + 6,)D, =0
leads to several additional relations which can be repre-
sented in the form

Daéﬁ = —ié’aﬂk (8.92)

_ 1 .- =
D(IK/)’;/ = 4C(a[)’§y) - 2C§(a/3§y)5 - g (ID((zR + ZD(aS)é[)’y)
— L= 8 -
+ Ea(p —2D7)6 —+ 8R§},) -+ 8185},) + gcy)g'fa

4 10, o
= 3Gl + 5 &aliDR +2D7S) |, (89b)

DaT = iDaO' + 48511 - 2ica556 + %Caﬁpéap

+ é (DPR - 8iDPS)E,p. (8.9¢)
Actually these relations have nontrivial implications.
Equations (8.3) and (8.9) tell us that the spinor covariant
derivatives of the parameters Y := (&8, KP7,7) can be
represented as linear combinations of Y, o, D, and
D,o. It turns out that the vector covariant derivative of
Y can be represented as a linear combination of Y, ¢ and
D,o. In order to prove this assertion, the key observation is
that, because of (8.1), the torsion tensor T 45, the Lorentz
and U(1), curvature tensors R,5°? and R, all defined by
Eq. (2.6), as well as their covariant derivatives are invariant
under the transformation 6 = dx + 6, generated by the
conformal Killing supervector field. In particular, the
dimension-1 torsion tensors S, R and C, are invariant,
and therefore

- iDﬂT)ﬂo = (£8Dy + 0)S, (8.10a)

1 -
—1 D% ~(&8Dy + )R~ 20k, (3.10b)

1 _
_g (7a)ﬂy [Dﬂ’ Dy]o- :<§BDB + G)Ca + Kabcb’ (8100)
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To complete the proof, it only remains to make use
of Eq. (2.7b).

It is an instructive exercise to derive the following
identity

2 _
D, Dy,0 = ggaw{zicmp% +48D,0 + 3iRD,0

1= i -
- Z D” (DZG) - 5 D},> (D(SD{;O')}

i
—ED(Q([Dﬁ,Dy)]a) (8.11)
and its complex conjugate. In conjunction with Egs. (8.10),
they tell us that D,Dyo can be represented as a linear
combination of Y, ¢ and D-o. We have already established
that D, Y is a linear combination of Y, ¢ and Dco. These
properties mean that the super Lie algebra of the conformal
Killing vector fields on M?3* is finite dimensional. The
number of its even and odd generators cannot exceed those
in the /' = 2 superconformal algebra 03p(2|4).

To study supersymmetry transformations at the compo-
nent level, it is useful to spell out one of the implications of
(8.1) with A = a. Specifically, we consider the equation
(6 +6,)D, = 0 and read off its part proportional to a
linear combination of the spinor covariant derivatives Dp.
The result is

i _ . :
0= Daga + 5 (ya)aﬁDﬁG —1&qpc (yh)aﬂcc 5/}

- (}/a)aﬂ(é:ﬂs + EﬁR)
1

4 2
- 5 gabcgb(y )ﬂ7 <1Caﬂy - ? Sa(ﬂDy)S - g ga(ﬁDV)R> :

(8.12)

B. Conformally related superspaces

Consider a curved superspace M3 that is conformally
related to M3*. This means that the covariant derivatives
D, and D,, which correspond to M3 and MM respec-
tively, are related to each other in accordance with (2.11),

D, = (D, + (D'w) M,y — (D) T ), (8.13a)
A i _ i _
Da =e? <Da - 5 (}/a)}’ﬁ(D(ya))’D5> - 5 (7a)y§ (D(yw>D5)

i

+ (Dyw) (Z_)ya))Ma + Eabe (wa)Mc

| = N

([0 D) T =3 () (D) DT ).
(8.13b)

for some super-Weyl parameter w. The two superspaces
M3 and L1314 prove to have the same conformal Killing
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supervector fields. Given such a supervector field &, it can
be represented in two different forms

§=EEy=8'E,, (8.14)
where E, is the inverse vielbein associated with the

covariant derivatives @A. The parameters &* and EA are
related to each others as follows:

F—gmwga = (5“ + %gﬁa@ﬂw) (8.15)

One may prove that the following identities hold:

o] = olé] - tw. (8.16a)

1[8] = 7[¢] - iED,0 + iE, D0

1 = 1 >
438700 Dyl - (D) Dy (5.16b)

KoplE] = Koplé] = 26Dy + 2§Dy

‘ i
+ € (1e)paDo + 5 ap(D' ) Dy, (8.16¢)

These identities imply the following important relation:

K[ =&D, +%K“’[§]M6d +irlf T =K[g. (8.17)

C. Isometries

In order to describe N' =2 Poincaré or anti-de Sitter
supergravity theories, the Weyl multiplet has to be coupled
to a certain conformal compensator = and its conjugate. In
general, the latter is a scalar superfield of super-Weyl
weight w # 0 and U(1), charge ¢,

(8.18)
chosen to be nowhere vanishing, = # 0. It is assumed that
g = 0 if and only if = is real, which is the case for type II
supergravity. Different off-shell supergravity theories cor-
respond to different superfield types of =.

Once = and its conjugate have been fixed, the off-shell
supergravity multiplet is completely described in terms of
the following data: (i) the U(1) superspace geometry
described earlier; (ii) the conformal compensator and its
conjugate. Given a supergravity background, its isometries
should preserve both of these inputs. This leads us to the
concept of Killing supervector fields.

A conformal Killing supervector field & = &4 E, on M3
is said to be Killing if the following conditions hold:
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B 1 bc :
f DB_'—EK [S]Mbc +IT[§}‘7,DA +56[§]DA :O,

(8.19a)

(EBDg +igr|é] + wolé])= =0, (8.19b)
with the parameters K?¢[&], 7[¢] and o[¢] defined as in (8.4).
The set of all Killing supervector fields on M3 is a super
Lie algebra. The Killing supervector fields generate the
symmetries of rigid supersymmetric field theories on M3!4.

The Killing equation (8.19) are super-Weyl invariant.
Specifically, if (D4, Z) and (D,, ) are conformally related
supergravity backgrounds,

[1p

,ba - e%w(Da + (Dyw)MJ’(l - (Daa))j), =e"=

’

(8.20)

then Eq. (8.19) imply that & = EPE, = EBEBA is also a
Killing supervector field with respect to (Dy,Z). In
particular, it holds that

(E8Dy +igr[g] + wol8))Z = 0. (8.21)

The super-Weyl and local U(1), symmetries allow us to
choose a useful gauge

[1]

=1 (8.22)

which characterizes the off-shell supergravity formulation
chosen. If ¢ # 0, there remains no residual super-Weyl and
local U(1)g freedom in this gauge. Otherwise, the local
U(1)z symmetry remains unbroken while the super-Weyl
freedom is completely fixed.

In the gauge (8.22), the Killing equation (8.19b)
becomes

iqg(E8®p + 7[¢]) + wolé] = 0. (8.23)

Hence, the isometry transformations are generated by those
conformal Killing supervector fields which respect the
conditions

(8.24a)

e = -&805, g #0. (8.24b)
These properties provide the main rationale for choosing
the gauge condition (8.22) which is for any off-shell
supergravity formulation; the isometry transformations
are characterized by the condition ¢[¢] = 0.

Since for ¢ # 0 the local U(1), symmetry is completely
fixed in the gauge (8.22), it is reasonable to switch to new

covariant derivatives without U(1), connection which are

PHYSICAL REVIEW D 89, 085028 (2014)

defined by Dy — V, := D, —i®,.7."® The original U(1),
connection ®, turns into a tensor superfield.

D. Charged conformal Killing spinors

We wish to look for those curved superspace back-
grounds which admit at least one conformal supersym-
metry. By definition, such a superspace possesses a
conformal Killing supervector field & with the property

& =0, €= &% #0. (8.25)
All other bosonic parameters will also be assumed to
vanish, o| = 7| = K,4| = 0. Our analysis will be restricted
to U(1) superspace backgrounds without covariant fer-
mionic fields, that is
D,S| =0, D,R| =0, D,Cs|=0.  (8.26)
These conditions mean that the gravitini can completely be
gauged away such that the projection (4.3) becomes
D,=D, = y,*=0. (8.27)
In what follows, we always assume that the gravitini have
been gauged away.

The above definitions provide a superspace realization
for what is usually called a “supersymmetric spacetime.”
For instance, according to [14], it is a supergravity back-
ground “for which all fermions and their supersymmetry
variations vanish for some nonzero supersymmetry
parameter.”

We introduce scalar and vector fields associated with the
superfield torsion:

s=§|, r:=R|, cq=C,l. (8.28)
We also recall that the S-supersymmetry parameter is
e == D,o|. Bar projecting Eq. (8.12) gives

i,. . - - s
0= Daea + 5 (yaﬁ)a + l’gabccb (7C€)a - s(}/ae)a - lr(yaé)a'

(8.29)

This is equivalent to the following two equations:

0= (Do — ic(ap)Ey): (8.30a)

5
i = —gl((y“Dae)a 4 2i(y%€) yCu + 3564 +3ir,). (8.30b)
Equation (8.30a) tells us that the supersymmetry parameter

is a charged conformal Killing spinor, since (8.30a) can be
rewritten in the form

"®This is similar to the 4D procedure of degauging introduced
by Howe [18] and reviewed in [2].
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D((lﬁe‘},) = O, Daﬁe}, = Qaﬁe}, - l(baﬁ + Ca/})ey' (831)
Let us choose €, to be a bosonic (commuting) spinor. Then
it follows from (8.31) that the real vector field V, :=
(va)¥e,e; has the following properties: (i) V, is a
conformal Killing vector field, D,;V,s = 0; and (ii) V,
is null or timelike, since V¢V, = (€%,)* < 0. This vector
field is null if and only if €, x €,. As a result, we have
reproduced two of the main results of [35].

By construction, the conditions (8.26) are supersym-
metric, that is

(5IC + 5{7)7)(15 =0, (5IC + 60)D(1R =0,

(6x + 8,)DuCyy = 0. (8.32)

Evaluating the bar projection of these variations gives,
respectively,

D*D,0| = & (8D 55 — 4i[Dy,. Dy |S| — 4ie,sD' D, S|)

+ 16ie,7s — 8in,s + 67,7, (8.33a)
D?D,o| = € (8i(Dyp + 2ibyp — 2iCyy)F — 32ie 557
+2&,D*R| — 4iD 41" + 4in,s — 6ij,7, (8.33b)

O = €<a(®ﬁy) + 2lb/j},) + 41Cﬁ}/))F

) Lo
+ €5{®((1{)’6y5) - 5 (D(acﬁyﬁ) + D(ac/}yé))l

= : 3 ca
+ &5(a {[Dﬂ’ D,)|S| - iDgy)s + 7¢ b<7c)ﬂr)®acb

1 3i
+ 6Cﬁ7)s} } - ED(a/}rly) =5 Clap'ly)- (8.33¢)

E. Supersymmetric backgrounds

In order to describe a rigid supersymmetry transfor-
mation, the structure equations given in the previous
subsection have to be supplemented by the additional
condition

o] =0=1,=0, (8.34)

in accordance with (8.24a). Here we do not specify any
particular compensator. However, we assume that some
compensator has been chosen and the gauge condition
(8.22) has been imposed.

Because of (8.34), Eq. (8.29) turns into

D, e = —ie . c?(76€)* + 5(7,6)* +ir(7,6)*.  (8.35)

In the spinor notation, this equation reads
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D€, = ic(qpey) = 2i€)(opp).

2
pui= 5l —ise, + 1. (836)

This relation shows that, in a neighborhood of any given
point x,, the supersymmetry parameter €, (x) is determined
by its value at xy. As a result, any nonzero solution of
Eq. (8.35) or, equivalently, (8.36), is nowhere vanishing if
the spacetime M is a connected manifold."

F. Supersymmetric backgrounds with
four supercharges

The existence of rigid supersymmetries imposes non-
trivial restrictions on the background fields. For simplicity,
here we work out these restrictions in the case of four
supercharges. Since ¢ = 0, one may deduce from (8.33) the
following conditions:

D’R| = D'D,S| = [D(o. Dp)|S| = (D(oClys) + D(aCpys))|
=0. (8.37)
It is an instructive exercise to demonstrate that these

conditions constrain the background fields s, r and ¢, as
follows:

D,s =0, (8.38a)
D,r = 2ib,r, (8.38b)
D,Ccp = 2€,4p.CS, (8.38¢)
rs =0, (8.38d)

re, = 0. (8.38e)

It follows from (8.38c) that ¢, is a Killing vector field,

D,cp, + Dy, =0. (8.39)
The U(1), field strength proves to vanish,
Far=0. (8.40)
The Einstein tensor (A12) is uniquely fixed to be
Gap = AcqaCh + Nap(s* + 7r)]. (8.41)

"This can be proved as follows. Let us assume that €,(x)
vanishes at some point xo € M?>. We can expand ¢,(x) 1 a
covariant Taylor series centered at x, (see, e.g., [58]) in an open
neighborhood U of x,. Then, due to (8.36), €,(x) is equal to zero
on U. It is also clear that €,(x) vanishes on the closure U of U.
Now we can introduce the subset W € M? consisting of all zeros
of €,(x). It follows that this subset is open and closed, and
therefore it coincides with M? since the latter is connected.
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We recall that in three dimensions the Riemann tensor is
determined in terms of the Einstein tensor according to
Eq. (A12). For the Cotton tensor (A14) we obtain

1
Wap = —24s |:Cacb - g”]abcdcd] : (8.42)

The spacetime is conformally flat if sc, = 0.

So far we have not specified any compensator. We now
turn to considering the known off-shell supergravity
formulations [11].

G. Type I minimal backgrounds with four supercharges

In type I supergravity, the conformal compensators are a
covariantly chiral superfield ® of super-Weyl weight w =
1/2 and its complex conjugate ®. We recall that the
properties of ® are given by Eq. (5.1). The freedom to
perform the super-Weyl and local U(1), transformations
can be used to impose the gauge

o =1. (8.43)
Such a gauge fixing is accompanied by the consistency
conditions [10]

i
0="D,=—=,.
a 2 a

0={D,, Z_)/,}q) = -y + Ca/, - 2ieaﬁ8, (8.44)
and therefore
S=0, P, =0, D5 = Cop. (8.45)

Since the local U(1) invariance is completely fixed in this
gauge, it is more convenient to make use of covariant
derivatives without U(1), connection,

V, =D, —idP, 7, (8.46)
which satisfy the anticommutation relations

{Ve Vp} = —=4RM . {Va. Vs} = 4RM,;, (8.47a)

{Va. Vy} = =2iV, 5 — 26,5C° M, 5. (8.47b)
The Killing spinor equation (8.35) becomes
D% = ic €% — e (76€)* + ir(7,E)%. (8.48)

The supersymmetric backgrounds with four supercharges
are characterized by the properties
rc, = O’ (8493)

(8.49b)
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D,cp, = 0. (8.49¢)
The Einstein tensor is
Gap = 4[cacp + napTrl. (8.50)
Such a spacetime is necessarily conformally flat,
W =0. (8.51)

The solution with ¢, = 0 corresponds to the (1,1) AdS
superspace [11].

The Killing spinor equation (8.48) is equivalent to the
condition that the gravitino variation (5.12b) vanishes,

1 . .
_Eéelﬂma = _Q)mea +%bm€a - %emagabcbb(j;ce)a

i

- ZM(}?mg)" =0, (8.52)
provided we replace
: b 1 M (8.53)
- = - ——M. .
Ca 2 a’ r 4

H. Type II minimal backgrounds with four
supercharges

Type II minimal supergravity is obtained by coupling the
Weyl multiplet to a real linear compensator G with
the super-Weyl transformation law given by Eq. (6.2).
The super-Weyl invariance allows us to choose the gauge

G=1. (8.54)

Because the compensator is real, its U(1), charge (8.18) is

equal to zero, and thus the local U(1), group remains

unbroken in the gauge chosen. The consistency condition
for (8.54) is

R=R=0. (8.55)

Then, the anticommutators of spinor covariant derivatives
become

{Da, Dﬂ} = {Da, Z_)ﬂ} = 0, (8563)
{Da’ T)ﬂ} = _2iDaﬂ - 20{1/3\7 - 4i8(1[)’8\7
-+ 418Ma} - ZeaﬁCV‘sMﬂg. (856b)

The Killing spinor equation for type II minimal super-
gravity is

Daea = _iEabccb (?Ce)a + S(];HG)Q. (857)
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All supersymmetric backgrounds with four supercharges
are characterized by the conditions

D,s =0, (8.58a)
D, cp = 2€,44.CCS. (8.58b)

The Einstein tensor is
Gap = 4lcacs + Naps®], (8.59)

and the Cotton tensor is given by Eq. (8.42). The solution
with ¢, = 0 corresponds to the (2,0) AdS superspace [11].
In the case c, # 0, the traceless Ricci tensor is

1 1
Rap — gﬂabR =4 [Cacb - gﬂabcz] . (8.60)

From this we conclude (see, e.g., Table 1 in [72]) that
spacetime is of type N (for ¢, null), type D, (for c,
spacelike) or D, (for c, timelike) in the Petrov-Segre
classification. For D; and D, it is shown in [72] that
spacetime is necessarily biaxially squashed AdS;.

The Killing spinor equation (8.57) is equivalent to
the condition that, in the gauge y,,* = 0, the gravitino
variation (6.36b) vanishes,

| . .
- E 5elllma = _Dmea - iHmea + % emagabcHC (?be)a
1
— ZZ(?mg)a =0, (861)
provided we make the replacements
b,—=b ! H ! H ! Z (8.62)
->b, —— - —— - ——7. .
a a 4 a’ Ctl 2 as s 4

I. Nonminimal backgrounds with four supercharges

Nonminimal supergravity in three dimensions was stud-
ied in [10,11]. It is obtained by coupling the Weyl multiplet
to a complex linear compensator X and its conjugate. Here
2 obeys the constraint

(D*> - 4R)X =0 (8.63)
and is subject to no reality condition. By definition, the
compensator X is chosen to be nowhere vanishing and
transforms as a primary field of weight w # 0, 1 under the
super-Weyl group. Then, the U(1) charge of X is uniquely
determined [10],

5,2 =woX = JX = (1l —w)Z. (8.64)

The super-Weyl and local U(1), symmetries can be used
to impose the gauge condition

PHYSICAL REVIEW D 89, 085028 (2014)

X=1. (8.65)
In this gauge, some restrictions on the geometry occur [10].
To describe them, it is useful to split the covariant
derivatives as

D, =V, +iT,J, D, =V, +iT,J,  (8.66)
where the original U(1), connection ®, has been renamed
as T,. In the gauge (8.65), the constraint (D> — 4R)X = 0
turns into

1—w
4

R= (V1% 4+ wT,T%). (8.67)
We see that R becomes a descendant of T',. Equation (8.67)
is not the only consistency condition implied by the gauge
fixing (8.65). Evaluating explicitly {D,,D4z}X and
{D,,Ds}% and then setting X = 1 gives

l,- 3 B}
Vialp=0. S=g(V'T,~VT +27T,). (8.682)

i - i= -

5 (8.68b)

If we define a new vector covariant derivative V, by
D, =V, +i®,J, then the algebra of the covariant deriv-
atives V, = (V,, V., V,) proves to be

(Voo Vst = =24T( V) —i(w = 1)(VIT, +iwT7T,) My,
(8.69a)

{Va, vﬂ} = —21Va/; - IT/}V{I + 1Tav/; - 28{1/}6]/5./\/175

1

+ - (V'T, = VT, + 2iT'T,) M,p.  (8.69b)

NS}

The Killing spinor equation in this case is

Dy = 10, |6 —iegpec” (7€) + 5(7a€)* +ir(748)"
(8.70)

It should be kept in mind that R, S and ®, are now
composite superfields constructed in terms of T,, T, and
their covariant derivatives, in accordance with Egs. (8.67),
(8.68a) and (8.68b) respectively. Supersymmetric back-
grounds with four supercharges are very constrained in the
nonminimal case. Indeed, the requirement that 7,,| = 0 be
invariant under the isometry transformations leads to the
condition

0=¢€"V,T,|-&V,T,| (8.71)
which implies V,T; = V,T; = 0. Due to (8.67)—(8.68b),
we deduce that
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r=0, s =0, D, = c, (8.72)
and then ¢, is covariantly constant,
D,c, = 0. (8.73)
The Einstein tensor becomes
Gap = 4c ). (8.74)

Such a spacetime is necessarily conformally flat, W, = 0.

Nonminimal supergravity is the only off-shell super-
gravity formulation which does not allow for anti-de Sitter
backgrounds. However, there exists an alternative non-
minimal formulation in the case w = —1 [11], inspired by
the 4D construction in [24], which admits an anti-de Sitter
solution.

J. Nonminimal AdS backgrounds with
four supercharges

In the case w = —1, the complex linear constraint (8.63)
admits a nontrivial deformation. We introduce a new
conformal compensator I' that has the transformation
properties

6, = —oT, Jr=2r (8.75)
and obeys the improved linear constraint™
1~
——(D* —4R)T" = u = const, (8.76)

~

with the complex parameter u # 0 inducing a cosmological
constant. This constraint is super-Weyl invariant.
The super-Weyl and local U(1), symmetries allow us to
impose the gauge condition
r=1. (8.77)
As in the previous subsection, this gauge condition implies

some restrictions on the geometry. Indeed, the constraint
(D* — 4R)T" = y turns into

R=p+~(V,T0+iT,T%.

> (8.78)

We see that R becomes a descendant of T,,. Next,
evaluating the expressions {D,,Dy}I" and {D,,Ds}I
and then setting I' =1, we again obtain the relations
(8.68a) and (8.68b). As in the previous subsection, we
can introduce covariant derivatives without U(1), con-
nection, V, = (V,,V,,V,). Their algebra proves to be

_2OIn the case w = —1, there exists a more general deformation,
(D* —4R)T = —4W(p), where W(¢') is a matter superpotential
depending on super-Weyl inert chiral superfields ¢’. This super-
Weyl invariant constraint reduces to (8.76) for W = p.
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(V.V} = =21, V) — 4aM gy + 20(VIT, —iT'T,) M,y
(8.79a)

{vm v/)’} = 2iva/3 - iT/)’va + iTav/} - Zgaf)’cyﬁMyé

4= (VIT, = V'T, + 24T7T,) M,y (8.79b)

NS}

The Killing spinor equation coincides with (8.70). Unlike
the nonminimal formulation studied in the previous sub-
section, the scalar R is now given by Eq. (8.78). This
modified expression for R leads to different backgrounds
with four supercharges. Due to the presence of the
parameter u in (8.78), demanding the existence of four
supersymmetries gives

S| =0, R| = u, o, =C,| = c,. (8.80)
Moreover, one also finds the condition C.|R| = 0. Since
R| = p # 0, we conclude that

¢, = 0. (8.81)

The Einstein tensor is

gab = 477:117/2”' (882)
This background corresponds to the (1,1) anti-de Sitter
superspace [11].

After this work was completed, there appeared a new
paper [50] which has some overlap with our results in
Secs. VII B and VIII G.
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APPENDIX A: NOTATION, CONVENTIONS AND
SOME TECHNICAL DETAILS

Our 3D notation and conventions follow those used in
[10]. In particular, the vector indices are denoted by
lower case Latin letters from the beginning of the alphabet,
for instance a,b =0,1,2. The Minkowski metric is
Nap, = diag(—1,1,1), and the Levi-Civita tensor &, is
normalized by &;;, = —1, and hence £°'? = 1. The spinor
indices are denoted by small Greek letters from the
beginning of the alphabet, for instance a,f =1, 2.

To deal with spinors, we introduce a basis of real
symmetric 2 X 2 matrices

Ya = (Ya)ap = Va)pa = (1,01, 03), (Ala)
and also define
Vo= ra)? = (r)/* = €7 (y,),5,  (Alb)

with ¢, and o5 two of the three Pauli matrices. The spinor
indices are raised and lowered using the SL(2, R) invariant
tensors

0 -1 0
gaﬁ: < >’ gaﬂ: (
1 0 -1

as follows:

! A2
Y

l//a = tc"{l/}l///} ’ Yo = 8(1/31//ﬂ' (A3)

The 3D Dirac y matrices are

}7 = (ya)aﬂ = gﬁy(ya)ay’ j}aj}b = nabﬂ + 8abcj}c- (A4)
In this representation of the y matrices, the Majorana
spinors are real.

In N = 2 supersymmetry, we usually deal with complex
spinors. Only in the case of complex spinors, we
use throughout this paper the following types of index

contraction:
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WY =W Y WX =W Y

WY =W Y WX =Wl (ASa)

ra¥)a = Va)apt” = W)

Faw)™ = (ra)Pwp = (W7 (A5b)
wrad =y (ra)ad’s Wi = walva)Pap. (AS0)

In particular, contractions of two spinor covariant deriva-
tives are defined as
D? := DD, D?> = D, D" (A6)
Any three-vector F, can equivalently be realized as a
symmetric spinor F,; = F,. The relationship between F,
and F; is as follows:

1
Faﬁ = <7a)aﬂFa = Fﬂav Fo= _E(ya)aﬁFaﬁ' (A7)

We can also describe the one-form F, in terms of its
Hodge-dual two-form F,, = —F,,

1 b
F,=—epF.  (A8)

F,, = —€e, F€,
ab abc 2

Then, the symmetric spinor F 3 = Fp,, which is associated
with F,, can equivalently be defined in terms of F:

1 :
Fa/j = (},a)a/iFa = E(ya)aﬁgachhc' (A9)

These three algebraic objects, F,, F, and F 4, are in one-

to-one correspondence to each other. Their inner products
are related as follows:

a 1 a 1 {07
—F Ga :—F bGabZEFﬂGa/}'

5 (A10)

An equivalent form of the commutation relations (2.7¢)
and (2.7d) is

[Dap: Dy} = =i oCppsD° +iCpaDyp) = 26/(«SDp) = 2iey(aRDp) + 26(aCyspyM? = 3 (2D (oS +iD(R) My,

1 . 1 =
+ g (ZDJ,S + IDJ,R)M(I/} + (Cu/)’y + §8y<(l(8D/})S + IDﬂ)R)) j, (A] ]a)
(Do Dy] = iaCp)sD° = iCy(aDp) = 26,wSDyp) + 2ieyaRDp) + 28,(uCp)spM” = 3 (2D(oS = ID(R) My,
| . ~ 1 - .
+ g (ZD},S - ID}/R)Maﬂ - (Caﬂy + §€y<a(8Dﬁ)S - 1Dﬁ)R>> j (Al lb)

These relations are very useful for actual calculations.
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In three dimensions, the Weyl tensor is identically zero,
and the Riemann tensor R,,.; is related to the Einstein
tensor by the simple rule

1 1
ZEacdgbef'R,Cdef — gab = Rab _ 5,,Iabf]z’

Rabcd = 8abeecdfgef- (A12)

As a consequence, the Riemann tensor is expressed in
terms of the Ricci tensor R, := R, and the scalar
curvature R = n?*R,,;, as follows:

7—\)“abcd = nacRbd - ”adec + ”bdRac - ”bcRad

- % (Machba = Naallbe) R- (A13)
The Cotton tensor is defined as follows
Wap = %EachCdb = Whas

Ware = 2D R + 310 DuRe (Al4)

A spacetime is conformally flat if and only if W, = 0[73]
(see [57] for a modern proof).

APPENDIX B: SUPERCONFORMAL
SIGMA MODEL

In this appendix we consider an alternative parametriza-
tion of the supergravity-matter system (5.15) and reduce it
to components without gauge fixing the Weyl, local U(1),
and S-supersymmetry transformations.

In the new parametrization, the matter sector of the
theory is described in terms of several covariantly chiral
superfields ¢’ = (¢°, @) of super-Weyl weight w = 1/2,

- . 1 . A
D =0.  Jh ==3¢. &4 =304 (B

The action is defined to be
S = / d*xd20d*0E N(¢', ¢/)

+ {/d3xd295 P(¢') + c.c.}

= Skinetic + Spotential (B2)
and may naturally be interpreted as a locally supersym-
metric 6-model. For the action to be super-Weyl and U(1),
invariant, the Kéhler potential N and the superpotential P
should obey the homogeneity conditions
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D_#'Ni=D d'Ni=N.

(B3a)

(B3b)

> ¢'P;=4p.

Equation (B3a) means that the o-model target space is a
Kihler cone [74].

Before reducing the action to components, we introduce
several standard o-model definitions. As usual, multiple
derivatives of the Kdhler potential are denoted as

op+a)
Ni i~ - = - ——= —N
1 PJr-Jg 8¢"...8¢’I’8¢11.,,8¢/q

(B4)

The Kihler metric”' N;; = Nj; is assumed to be non-
singular, with its inverse being denoted N/ = N/',

NgNW =35, N*Ny =5k (BS)
The Christoffel symbols y}; are
7= NN 7k = N, (B6)
and the Riemann curvature Rz is
Rizji = Rii;”Nyi = (Oprl))N i (B7)

We define the component fields of ¢’ as follows:

P =Dudp'|, (B8a)

. 1 . . .
Fii= = [D¢ + 7, (D)D)l (BSb)

4

The physical scalar ¢'| will be denoted by the same symbol
as the chiral superfield ¢’ itself.

To reduce the kinetic term in (B2) to components, we
associate with it the antichiral Lagrangian

L, = —%(zﬁ —4R)N (B9)

and make use of the action principle (3.13). The resulting
component Lagrangian is

*'We do not assume the Kihler metric to be positive definite.
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4 2

1 i : - - i T api 7 i—_'a~ i iia~ i ina i
Lyinetie = —g R+§€“”‘ (Wuth+Wath'):|N +Nj; {f Fl— (D )Ducbf—zp’)f D' ——p'y*Dp + s, p' D’

2
1 abc - in] - i, 5]
+3¢€ (WY oW ' P+ Wl pp'y p?)

. R ) . 1
+ g€ Wt P Ni=Wapy p'Ni| + 1 Wapty [NDe§ = NiD '] 41 Ritp' o0,

where we have introduced the target-space covariant
derivative

f)apfl = Dupfl + },;‘kpgll)a¢k' (Bl 1)
A short calculation of the component Lagrangian corre-
sponding t0 Spoenga ZIVES

- 1 : . i
Lyoeniat = F'Pi =2 (Pj = vy POpp! + 5.y *0'P,

|
- Eeuhcway,,y/cp +c.c. (B12)

Both Lagrangians (B10) and (B12) are quite compact.
Now, we relate the theory under consideration to the
o-model (5.15). We assume that the chiral scalar ¢° from
the set ¢’ = (¢°,¢') is nowhere vanishing, ¢° # 0, and
therefore it may be chosen to play the role of conformal
compensator. We introduce a new parametrization of the
dynamical chiral superfields defined by
P =0, ¢ = (B13)
Here the chiral scalars ¢! are neutral under the super-Weyl
and U_(l) r transformations. Since ® is nowhere vanishing,
N(¢, ¢) and P(¢) may be represented in the form
N(p, ) = —4de K@D, P(p) = D*W(g).
We assume that K (¢, @) is the Kihler potential of a Kihler
manifold with positive definite metric g;5 := Kj.

Let us express the geometric objects in terms of the new
coordinates introduced. A short calculation gives

(B14)

w4 dK;
Nj=e™ I (B15a)
DK, PDK 5
where we have denoted
0K A 1

It follows from (B15a) that the conditions det(N;;) # 0 and
det(g;7) # 0 are equivalent. For the inverse metric we
obtain

U T R VEENS R
— =W, p'Dp +58“b“(wmprc¢’ — W 7oP D) =W p' D+ o'y

8

(B10)
l
] “H(1-KkrKL) K
fo:e%K< A s ) (B16a)
Ll L plJ
w5 K 75 K
where we have denoted
K! = g[jK]’ Kl = gTJKJ. (B16b)
For the Christoffel symbols 7}, we read off
0 0
= ( 1 I 1 )
0 Z<I><1“KLK, — Ky - ZKKKL)
0 1st
I 7L
Yk = ( >, (B17)
é%{ Fg{L - %K(Kfsi)

where T’k is the Christoffel symbol for the Kihler metric
grj. Since aﬁyg = 0, the Riemann tensor is characterized
by the properties

m()l_cﬂ - 2Ri()ﬂ - ERil'coi - 2Ril%j() =0. (B13)
Thus the only nonzero components of the Riemann tensor
are

- 1
Rk = ddeik (RII_(JZ ~2 (KixKjz + KJI_(KIE)>1

Rigsr = 9pL Ok 7). (B19)

Our next step is to express the auxiliary fields F',
Eq. (B8b), and the spinor fields D,p},, Eq. (B11), in terms
of the component fields of ® and ¢'. We recall that the
component fields of ¢’ are defined in (5.22). We do not
introduce special names for the component fields of ®; we
simply write them as ®, D,® and D?®, with the bar
projection being always assumed here and in what follows.
For the auxiliary fields F' we get

1 1 1
FO= —ZD2¢> - 1—6@<F5<LK1 — Ky = ZKKKL)AK/ILv
(B20a)

1 1
Fl=Fl 520D, + 7K, (B20b)

8
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For the spinor fields f)apﬁ, we derive

~ ~ 1 1

DaD(z(I) = Dapg = D(/ID{I(I) + Z¢)<F5(LKI - KKL - ZKKKL>;L(II(D(1XL7 (BZ]a)
YL I [ ) kK, 2 ;1 (7 J)
D2 = Dy + D iD XK + 2 (D,®)D X' = S K 2 D X7, (B21b)

Using the above results, for the kinetic term (B10) we obtain
1 i _ _ - - - o~ -
Lkinetic = |:§R + ZgabL (l//ulllhc + l//av/hc):| Q)e_%K(I) -4 |:f0f0 - (Daé) (I> -7 ((D (I))yaDuD@ + (D(I))yaDaDq))

1 _ _
+5¥a(DO)DD + S, (DE)D'D + 2gabc(
.
T3e

e (77 (DP)D ® +y 19, (DO)y D D) —

$)D,® - y,7,(DP)D, )

N[ —

7s(T

1 .1 I

gV Va(DR)D P+ oy 'y Wy (DR)y, D@ e
1

+ [}‘ — (D®)D, X’ —Z(/I’ 7D, D® + (D®)y*D, A +2wa(D<I>)D“X’ +2y/a/1’D“<I>

abc (lpasziDc(I) —Yalb (D(I))Dc(ﬁ )

_|_

Wy A DO — w iy Ay D)

abe(
- 1 _ 1 ~ _ - _ ~
v ADE ~ yy b Ay, DB e KK + [ — (D*X"\D,® —i(ﬂ’y“DaD{)—&—(D(I))y“Dal’)

+

= 1 _ = 1 _ - _
l//ulIDa(I) + El/_/a (D (I))Daxl + 5 Sabc (l/_/ayb(D (I))DCXI - l//ayb’lch(p)

_|_

e (War oW A DO +y ol 1 D®) =y il DB+ oy 'y ol y, DB DK,

h
w9

_ I | 1 -
— (D*X")D, X — % (D2’ + 2y "DF) + 5w DX + 2, DX

+

+
ool»—k N|>—n,—| oo|,_ N — ool»— NI—

e (W A’ D X =y 7,/ D X) + 3 e (w vy A+ iy Aly )

1 I
— g A+ v P Alyd! } e KDDK ;5

Bl =

B} 1
gabe [@ <iy/az/7,,(4Dc<I> — DK DX") = S (4DD <I>K,/1’)) + c.c} eIk

1

1
1 16 |:RIK]L 5 gll(gJL:| AH ARG (B22)

The potential term (B12) becomes
1
Lpoential = o* [F’W, - O'WD?® - 302W(DP)DP — 20~ W, A DD — Z/II/V(WU —Ifwg)

i 1
+ %u‘/uy“ (47 WD + Wkl ) + 2 We i | +coc. (B23)

The sum of the expressions (B22) and (B23) constitutes the component Lagrangian of the theory (5.15) with no gauge
condition on the chiral compensator ¢ imposed. Looking at the explicit form of (B22), it is easy to understand why the
gauge conditions (5.19) have been chosen. First of all, it is seen from the first line of (B22) the canonically normalized
Hilbert-Einstein gravitational Lagrangian corresponds to the Weyl gauge condition (5.19a). Secondly, consider the terms in
(B22) which involve the gravitino field strength coupled to the matter fermions. These consist of
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. l 1 o
(I)V,alﬂ/c (e_ZKDa(I) — Z ) e_ZK[/lé) = y/abcha(CI) e‘ZKCD)
(B24)

and its complex conjugate. To eliminate these cross terms,
we have to impose the S-supersymmetry gauge condition
(5.19b). Finally, the U(1), gauge condition (5.19c¢) elim-
inates an overall phase factor in the superpotential (B23). In
the gauge (5.19), the only remaining field in ® occurs at the
6* component. It can be defined in the Kihler invariant
way (5.20).

In the gauge (5.19), the following useful relations hold

1
D,® = etk ALK, (B25a)

0 1 ik U ik
F =-z¢" M—i—zes F'K;, (B25b)
Fl=Fl (B25c¢)

As usual, the bar projection is assumed here. Using these
relations one may obtain the component Lagrangians (5.23)
and (5.28) from (B22) and (B23).

APPENDIX C: VECTOR MULTIPLET MODEL

In this appendix we present the component Lagrangian
for the model of an Abelian vector multiplet coupled to
conformal supergravity. As in Sec. VI A, we denote by G
the gauge prepotential of the vector multiplet, and by G the
corresponding guage-invariant field strength. The vector
multiplet action is

Sy = —4 / Pxd0P0E(GInG — 4GS — kGG),  (C1)

with x a constant parameter.
|
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We define the component fields of the vector multiplet as
follows:

V=G, (C2)
v, = D,G, (C3)
Z =1iD*D,G], (C4)
a 1 a\af D
B s= =3 (') [P D)6
= H* = e Vipy. —ie (yyy o+ yy.0).  (C5)

Asin Sec. VI, H* denotes the Hodge dual of the component
field strength,

1
H = Egathhcs Hah = gaab - ghaa - Tab("at" (C6)

We also choose the WZ gauge (6.16) for the vector
multiplet. Then, the other component fields of G are

_ 1
[D(m Dﬁ)]G| = 5 Claﬂ, (C7)
DD,G| = 2iv,. (C8)
D>D2G| = —2iDya® — 2(y,y"v + W,r*D)
- Ziyl/_/al//a - lpaybl//aab -2Z. (€9)

The component Lagrangian corresponding to the
action (C1) is

1 N N 1 1 \ N 1
Lyw = 7 V7 BB, = a,F* = Y (D°V)D,Y = S VR + 2 V7 22 =i~ (57 Dyv + vy Dy5) =5 V2B,5y%

1

r o ) _ 1. . N
+ {—18’”" (207 W e + VW alie) =5 Yy 7o (Dby -

4

Here we have introduced new covariant derivatives

D,Y:=D,Y -

2

A P VAN
Dava = DaUu - _l//aaZ + 5 (l//ayh) g (Dby - 58b> .

1 i
+ YV ey 0® + {ywa}'“v - Zgabcaall/bch:| + C-C-}-

1 1 N | _ 1 _
- E)}‘QZT)U -3 V=30*0? +k {—yz ~2 a,Bb —ivv + Esabcy%//aybylc - Zeabcyacy/ay/b

1

1 i
53b> + Zy_IZI//a}/aU - Zy_zl//ayaﬁvz

(C10)
1 1
—W 0 — =D 11
FWa? =5 Wab. (C11)
(C12)
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APPENDIX D: THE ACTION FOR
CONFORMAL SUPERGRAVITY

In the family of N = 2 locally supersymmetric theories
in three dimensions, conformal supergravity [4] is one
of the oldest. Originally it was constructed by gauging the
3D N = 2 superconformal algebra, 03p(2|4), in ordinary
spacetime, as a direct generalization of the formulation for
N = 1 conformal supergravity [75] (the latter theory being a
natural reformulation of topologically massive N = 1 super-
gravity [32,33]). The construction in [4] was soon general-
ized to the case of A/-extended conformal supergravity [76].
In accordance with [76], the action for A -extended con-
formal supergravity is a locally supersymmetric completion
of the gravitational and SO(N') gauge Chern-Simons terms.
This action is on shell for A > 3, and therefore its applica-
tions are rather limited.> As concerns the off-shell A" = 1
and N = 2 component actions [4,75], it appears useful to
recast them in a superfield form, simply because all V' = 1
and N =2 locally supersymmetric matter systems are
naturally formulated in superspace.

As mentioned in the Introduction, Refs. [10,11] described
the most general matter couplings to conformal supergravity
in the cases 1 < N < 4, including the off-shell formulations
for Poincaré and AdS supergravity theories. But no conformal
supergravity action was considered in these publications, due
to the fact that an alternative action principle is required in
order to describe pure conformal supergravity. Building on
the earlier incomplete results in [2,12,79], the action for N/ =
1 conformal supergravity has recently been constructed in
terms of the superfield connection as a superspace integral
[80]. However, such a construction becomes impossible
starting at N = 2.7 This is because (i) the spinor and vector
parts of the superfield connection have positive dimension
equal to 1/2 and 1 respectively; and (ii) the dimension of the
full superspace measure is (N —3). As a result, it is not
possible to construct contributions to the action that are cubic
in the superfield connection for N > 2.

Nevertheless, it was argued in [80] that off-shell con-
formal supergravity actions (assuming their existence) may
be realized in terms of the curved superspace geometry
given in [10,14] [also known as SO(N') superspace]
provided one makes use of the superform approach for
the construction of supersymmetric invariants. Such a
realization was explicitly worked out in [80] for the case

22Recently, off-shell conformal supergravity actions have been
constructed for the cases N' =3, 4, 5 [66] and N = 6 [77,78].
Upon elimination of the auxiliary fields, these actions reduce to
those proposed in [76] only for A" = 3, 4, 5. In the case N = 6,
however, the on-shell version of the off-shell action in [77,78]
contains an additional U(1) gauge Chern-Simons term as com-
pared with [76].

ZIf a prepotential formulation is available, the conformal
supergravity action may be written as a superspace integral in
terms of the prepotentials. Currently, the prepotential formula-
tions are known only for the cases AV =1 [2] and N = 2 [15].

PHYSICAL REVIEW D 89, 085028 (2014)

N =1, and a general method of constructing conformal
supergravity actions for AV > 1 was outlined. However, it
turns out that SO(N') superspace [10,14] is not an optimum
setting to carry out this program; see [57] for a detailed
discussion. From a technical point of view, the derivation of
the conformal supergravity actions greatly simplifies if one
makes use of the so-called \-extended conformal superspace
of [57], which is a novel formulation for conformal super-
gravity. The SO () superspace of [ 10,14] is obtained from the
N -extended conformal superspace by gauge fixing certain
local symmetries; see [57] for more details. In conformal
superspace, the action for NV = 2 conformal supergravity is
simply the Chern-Simons term associated with 03p(2|4) [66].
Below we reformulate this action in SO(2) superspace.

1. Conformal superspace and SO(2) superspace

Conceptually, the N/ = 2 conformal superspace of [57]
corresponds to a certain gauging of the superconformal
algebra 08p(2|4) in superspace [57]. The corresponding
covariant derivatives V, include two types of connections:
(i) the Lorentz and U(1)p connections [as in SO(2)
superspace]; and (ii) those associated with the dilatation
(D), special conformal (K,) and S-supersymmetry (S, S%)
generators of the A =2 superconformal algebra. To
emphasize this grouping, the covariant derivatives V,
can be written in the form”*

Vi =Dy +BsD+ FualKy + F4”Sp + FasS’, (Dla)
where we have denoted

Dy = EM0y — M, +id,T. (D1b)
By construction, the operators V, are subject to certain
covariant constraints [57] such that the entire algebra of
covariant derivatives is expressed in terms of a single
primary superfield—the super Cotton tensor Ws.

As demonstrated in [57], the conformal superspace is
intimately related to the SO(2) superspace via a degauging
procedure. The crucial observation here is that the local special
conformal and S-supersymmetry gauge freedom can be used
to switch off the dilatation connection, B, = 0. In this gauge,
there remains no residual special conformal and S-supersym-
metry gauge freedom, but the covariant derivatives (D1a) still
include the connections associated with the generators K, Sy
and §”. These connections are tensor superfields with respect
to the remaining local Lorentz and U(1), symmetries. From
the constraints obeyed by the conformal covariant derivatives,
one may deduce that the operators D ', look like
D,=D,  D'=D

D,=D,+iC,J. (D2)

where D, are the covariant derivatives of the SO(2) super-
space, as defined in Sec. II A, and C, is one of the

**The connections in D 1 differ in sign from those used in [57].

085028-37



SERGEI M. KUZENKO et al.

corresponding torsion superfields. The connections §’s are
uniquely determined as functionals of the torsion superfields
of the SO(2) superspace. In terms of the one-forms F“ :=
EBZ s and &, == EBF p,. one obtains

1 1 A =
g =E ) (vs)p 7" + 6 (v4) (iDsR + Dy S)]

— E°R + Ej[0P" + iePS),

(D3a)
- iRl 1 . _
%(l = Eb _E (yb)/}ycaﬁy + 6 (yb)aﬂ(ID/}R - DﬂS):|
— EP[Cpy + ie4eS] — E°R. (D3b)

2. Curvature two-forms

In SO(2) superspace, there exists a two-parameter free-
dom to define the vector covariant derivative. Instead of
|

PHYSICAL REVIEW D 89, 085028 (2014)

dealing with D,, one may work equally well with a
deformed covariant derivative D, defined by
D, =D, + IASM, + piC, T, (D4)
where A and p are real parameters. A natural question is
the following: What is special about the deformation (D2)?
Here we answer this question.
Let us introduce the torsion and curvature tensors for the
covariant derivatives (D2),
[D4.Dp} = TupDe = RygM, +iRypJ. (D5)
Associated with the Lorentz and U(1), curvature tensors
are the following two-forms: R® =1EBAEAR," and

R=1EPAEAR,5. The explicit expressions for these
two-forms are

Lo _ _ 1. .
Re = EPNETAR(r) o] + EGNE“[=4iS(r°), — 486C°] + 5 EpNEo[=4R(r) ]

2

+ EPAEC

+ EgnE®

2 4

vt (3 @D, + | R+ DR -4 -4k |

: 1 . _ o
(7a) ﬁr(yc)rspcy(;,, + 3 (6/7,6; + 2e,,° (7/”)/) (2D,S + 1’DyR)}
- 1 _ .
(7)) (r)?Cys + 3 (677685 + 26,5 (y*)7) (2D, S - 1DVR)}

1 1 P = .
+5 Eb/\EaSabd |:_ (yd)a/)’(yc)ré(lp(rc&aﬁ) + ID(rC(Saﬁ)) - 4CdCL

(D6a)

~ — 1 -
R = EgnE[4iC,F + 4548) + EP AEC [i(yu)rﬁcﬂy(s —5 (1) (DR - zmp‘)}

- ~ 1 - 1
+ Eﬁ/\Ea [i(ya)yﬁcﬂy(s - § (YH)ﬁy (’DVR + 21’D78):| - EEb/\Ea [Eabcwc],

with W¢ the super Cotton tensor, Eq. (2.14). For com-

pleteness, we also reproduce the expressions for the two-

forms R® =  E®AEAR,p° and R = 1 EB AE*R 43, where the

curvature tensors are those which appear in (2.6). Direct
calculations give

R¢ = Re, (D7a)

k =R+ Eﬂ/\Ea [21Caﬂ} + Eﬂ/\Ea |:% (ya)y6Cﬂy5

AN =

(ya)ﬁy(@y]_? + 4iDyS)}

_ i ; 1 -
+ EpAE |3 (12,507 = 2 (1), (DR = 4iD7S)

1
=5 EPAE g0t/ DCy (D7b)

(D6b)

I

The unique feature of the deformation (D2) is that the top
component of the U(l) curvature two-form (D6b) is a
primary superfield equivalent to the super-Cotton tensor.”

3. Closed three-form

In N =2 conformal superspace, the Chern-Simons
three-form X g is characterized by the following properties
[66]: (i) it is closed, dXcg = 0; and (ii) under the gauge
transformations, it is invariant modulo exact terms. This
three-form generates the off-shell action for N' =2 con-
formal supergravity. In this subsection, we follow the
degauging procedure of [57] to obtain an expression
for this closed three-form in SO(2) superspace,

»S.M.K. and G.T.-M. are grateful to Joseph Novak for this
observation.
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3 = Zs|de-gauged- The calculations are straightforward, and
we present only the final result.
The three-form  turns out to be

A A 1 A A A A A
S =-RNQ, + ggcml’maeabc —2RAD

— SIEAF NG (70" (D8)
The expression for § is naturally written in terms of the
deformed covariant derivatives @A. Making use of (D2), it
is a simple exercise to rewrite (D8) in terms of the original
covariant derivatives D,.

It is interesting to note that the closed three-form {§ can
be written as

S =Zcs - Zr. (D9a)

where we have introduced
S = —8IEAFAG(7a)o - (D9b)
Ses = RIAQ, _%Qmﬁma% LoRAD. (DY)

The three-form g is a sum of the Lorentz and U(1),
Chern-Simons  three-forms associated with the covariant
derivatives D,. The components of X; are functions of the
torsion tensor and its covariant derivatives only; this is why
2, was called the torsion induced three-form in [80]. The
three-forms 3cg and 7 satisfy the equations

d¥; = dScs = RIAR, + 2RAR. (D10)

PHYSICAL REVIEW D 89, 085028 (2014)

By construction, the closed three-form & is invariant
under the super-Weyl transformations modulo exact terms.
In fact, the relative coefficient between the Lorentz and
U(1); Chern-Simons terms in (D10) is fixed by the
condition that § be super-Weyl invariant modulo
exact terms.

The covariant derivatives (D2) and the closed three-form
(D9) constitute the unique solution to the A/ = 2 problem
posed in [80].

4. Conformal supergravity action
Using the three-form § =3 ECAEBAEAGS spc =
3:dzP AdZ¥ Az Fpyyp, we can write down the locally
supersymmetric and super-Weyl invariant action ("’ :=
sabceamebnecp)

1
S:/ S = /dBX@*S|6‘Ov *S :_gmnpl(}mnp'
M3 3'

(D11)

Upon implementing the component and gauge fixing
reduction described in Sec. IV, the action becomes

1 2
S = Z/d%es“’” {Rbcfga)gfg + gwafga)bghwchf
(D12)

- 4]:ahbc + ill_,bc},df/ugdefu’ef:| .

This is the component action for A" = 2 conformal super-
gravity of [4].
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