
Dynamical mass reduction in the massive Yang-Mills spectrum
in 1þ 1 dimensions

Axel Cortés Cubero* and Peter Orland†

Baruch College, City University of New York, 17 Lexington Avenue, New York, New York 10010, USA and
Graduate School and University Center, City University of New York,

365 Fifth Avenue, New York, New York 10016, USA
(Received 2 March 2014; published 10 April 2014)

The ð1þ 1Þ-dimensional SUðNÞ Yang-Mills Lagrangian, with bare mass M and gauge coupling
e, naively describes gluons of mass M. In fact, renormalization forces M to infinity. The system is in a
confined phase, instead of a Higgs phase. The spectrum of this diverging-bare-mass theory contains
particles of finite mass. There are an infinite number of physical particles, which are confined hadronlike
bound states of fundamental colored excitations. These particles transform under irreducible representa-
tions of the global subgroup of the explicitly broken gauge symmetry. The fundamental excitations are
those of the SUðNÞ × SUðNÞ principal chiral sigma model, with coupling g0 ¼ e=M. We find the masses
of mesonlike bound states of two elementary excitations. This is done using the exact S matrix of the
sigma model. We point out that the color-singlet spectrum coincides with that of the weakly coupled
anisotropic SUðNÞ gauge theory in 2þ 1 dimensions. We also briefly comment on how the spectrum
behaves in the ’t Hooft limit, N → ∞.
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I. INTRODUCTION

Yang-Mills theory in 1þ 1 dimensions has no local
degrees of freedom. Introducing an explicit massM gives a
theory of longitudinally polarized gluons at tree level. It
may seem intuitively obvious, for small gauge coupling,
that a particle is either a vector boson, with a mass roughly
equal to M, or a bound state of such vector bosons. This
intuition, however, is wrong. We show in this paper that the
massive Yang-Mills theory describes an infinite number of
particles, with masses that are much less than M. This can
be called dynamical mass reduction.
Alternatively, the massive Yang-Mills model can be

thought of as a gauge field, coupled to a SUðNÞ ×
SUðNÞ principal chiral nonlinear sigma model. The
equivalence is seen by choosing the unitary gauge con-
dition. In a perturbative treatment, the spin waves of the
sigma model are Goldstone bosons, giving the vector
particles a mass through the Higgs mechanism. Bardeen
and Shizuya used this formulation in their proof of
renormalizability [1].
The tree-level description fails because the excitations of

the sigmamodel (without the gauge field) are not Goldstone
bosons. These excitations are massive. Introducing a gauge
field produces a confining force between these excitations.
There is no Higgs or Coulomb phase. There is only a
confined phase.
We briefly describe some important earlier inves-

tigations of ð1þ 1Þ-dimensional Yang-Mills theory.

Non-Abelian gauge theories coupled to adjoint matter
were studied with light-cone methods by Dalley and
Klebanov [2]. This led to further investigations of gauged
massive adjoint fermions [3]. Some detailed results for the
spectrum of the model with adjoint scalars were found
later [4]. Conformal– field theory methods have recently
been applied to the model with adjoint fermions [5]. Much
has also been learned about pure Yang-Mills theory in
1þ 1 dimensions [6], and its connections with represen-
tation theory.
Our model differs from the bosonic matter theory of

Refs. [3,4], in that the matter field has a nontrivial self-
interaction. This means that there are two scales in our
problem: the mass gap of the sigma model and the gauge
coupling. This is why a nonrelativistic analysis, in which
the former is assumed much larger than the latter, can work.
A full-fledged relativistic analysis is harder, though we
discuss this problem in the last section of this paper. We
wish to stress that we are not studying a massive deforma-
tion of pure Yang-Mills theory [6] at all. In fact, the
situation is exactly the opposite. The deformation is the
Yang-Mills action, not the mass term.
A quantum field theory of an SUðNÞ gauge field,

coupled minimally to an adjoint matter field, can have
distinct Higgs and confinement phases [7], separated by a
phase boundary, for spacetime dimension greater than 2. If
this dimension is 2, however, there is only the confined
phase. In the confined phase, the excitations are bound
states of the massive particles of the sigma model. These
massive particles are color multiplets of degeneracy N2 [8].
The action of the massive SUðNÞ Yang-Mills field in

1þ 1 dimensions is
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S ¼
Z

d2x

�
−
1

4
TrFμνFμν þ e2

2g20
TrAμAμ

�
; (1.1)

where Aμ is Hermitian and Fμν ¼ ∂μAν − ∂νAμ − ie½Aμ; Aν�
with μ; ν ¼ 0; 1 and indices are raised by ημν, where
η00 ¼ −η11 ¼ 1; η01 ¼ η10 ¼ 0. If we drop the cubic and
quartic terms from (1.1), the particles are gluons with
mass M ¼ e=g0.
Let us now consider a closely related field theory,

namely the ungauged principal chiral sigma model, with
action

SPCSM ¼
Z

d2x
1

2g20
Tr∂μU†ðxÞ∂μUðxÞ; (1.2)

where the field UðxÞ is in the fundamental representa-
tion of SUðNÞ. The action (1.2) has a global SUðNÞ ×
SUðNÞ symmetry, given by the transformation UðxÞ →
VLUðxÞVR, where VL;R ∈ SUðNÞ. This model is asymp-
totically free, and has a mass gap, which we call m. It is
possible that this mass gap is generated by nonreal saddle
points of the functional integral [10]. The running bare
coupling g0 is driven to zero as the ultraviolet cutoff is
removed.
We promote the left-handed SUðNÞ global symmetry

of the sigma model to a local symmetry, by introducing
the covariant derivative Dμ ¼ ∂μ − ieAμ, where Aμ is a
new Hermitian vector field that transforms as Aμ →
V†
LðxÞAμVLðxÞ − i

e V
†
LðxÞ∂μVLðxÞ. We do not gauge the

right-handed symmetry. The action is now

S ¼
Z

d2x

�
−
1

4
TrFμνFμν þ 1

2g20
TrðDμUÞ†DμU

�
: (1.3)

In the unitary gauge, withUðxÞ ¼ 1 everywhere, this action
(1.3) reduces to (1.1). In the remainder of this paper,
however, we will study (1.3) in the axial gauge.
In our opinion, it is best to think of the left-handed

symmetry as (confined) color SUðNÞ and the right-
handed symmetry as flavor SUðNÞ. Confinement of left-
handed color means that only singlets of the left-handed
colorgroup exist in the spectrum.There are “mesonic” bound
states, as well as “baryonic” bound states. The mesonic
bound states have one elementary particle of the sigmamodel
and one elementary antiparticle. The simplest baryonic
bound states consist of N of these elementary particles, with
no antiparticles. There are also more complicated bound
states, which exist because there are excitations in the sigma
model (with no gauge field) transforming as higher repre-
sentations of the color group [8]. In this paper, we only
discuss the mesonic states in detail.
Recently Gongyo and Zwanziger have studied the near-

est-neighbor lattice version of the action (1.3) using Monte
Carlo simulations [9]. They computed the static potential
(through theWilson loop) at different values of the coupling.

They find clear evidence of confinement and string breaking
at small values of g−20 (this is proportional to the parameter γ,
in their notation), but a nearly flat potential at large values,
closer to the continuum limit. They suggest their results may
indicate a phase transition to a Higgs phase (although they
do not assert that this is the case).We believe the explanation
is the essential singularity of themass gap as a function of the
bare coupling. This mass, in an asymptotically free theory,
vanishes faster than any power of g0 as g0 → 0. Thus, string
breaking occurs so readily that it may be difficult to
distinguish the two phases. In this paper, the distinction is
clear, because we take very small gauge coupling, sup-
pressing (though not eliminating) string breaking. The
continuum gauge coupling e (with dimensions of mass)
is assumed to be much smaller than the mass gap of the
sigma model. There should be no phase transition as the
gauge coupling is increased. We therefore expect that, for
any gauge coupling and any value of g0, there is only the
confined phase. Gongyo and Zwanziger also computed the
vector-boson propagator (the two-point function of a
composite field), and the order parameter U (in a particular
gauge) and the susceptibility of the latter. The lightest
bound-state masses could be found in the behavior of the
vector-boson propagator. Thiswouldmake for an interesting
comparison with our results.
A mesonic bound state, in the axial gauge, is a sigma-

model particle-antiparticle pair, confined by a linear poten-
tial. The string tension is

σ ¼ e2CN; (1.4)

where CN is the smallest eigenvalue of the Casimir operator
of SUðNÞ. The mass gap is

M ¼ 2mþ E0 ≪ M;

where E0 is the smallest (positive) binding energy, andm is
the mass of a sigma-model elementary excitation. This
mass M is finite, for fixed m, as the ultraviolet cutoff is
removed. In contrast, the bare Yang-Mills mass M, which
is proportional to 1=g0, diverges.
Our approach is similar to that of Ref. [11]. We find the

wave function of anunboundparticle-antiparticle pair, taking
into account scattering at the origin. Next, we generalize this
to thewave function of the pair, confined by a linear potential.
The method is inspired by the determination of the spectrum
of the two-dimensional Ising model in an external magnetic
field [13]. More sophisticated approaches to this and other
two-dimensional models of confinement [14–16], including
fine structure (form factors) of the fundamental excitations,
have been developed. We do not take into account decays or
corrections to the spectrum from matrix elements with more
fundamental excitations [17] in this paper. For a general
review, see Ref. [18].
We briefly introduce the axial gauge formulation in the

next section. In Sec. III we discuss the S matrix of the
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principal chiral nonlinear sigma model, and find the free
particle-antiparticle wave function [for color group SUðNÞ]
for N > 2. In Sec. IV, we find the wave functions and
bound-state spectrum of a confined pair, for N > 2 (includ-
ing N → ∞ [19]). We note that the results generalize the
result of Ref. [11], on the spectrum of (2þ 1)-dimensional
anisotropic SU(2) gauge theories, to SUðNÞ. We treat the
N ¼ 2 case separately in Sec. V. We present some con-
clusions and proposals for further work in the last section.

II. THE AXIAL GAUGE FORMULATION
AND THE CONFINED PHASE

Care is necessary to understand why the bare mass is not
the physical mass. If the axial gauge A1 ¼ 0, is chosen, the
action (1.3) is

S ¼
Z

d2x
�
1

2
Trð∂1A0Þ2 þ

1

2g20
Trð∂0U† þ ieU†A0Þð∂0U

− ieA0UÞ − 1

2g20
Tr∂1U†∂1U

�
:

Let us introduce the traceless Hermitian generators ta of
SUðNÞ, a ¼ 1;…; N2 − 1, with normalization Trtatb ¼
δab and structure coefficients fabc, defined by ½tb; tc� ¼
ifabcta. If we naively eliminate A0, by its equation of
motion (or integrate A0 from the functional integral), we
obtain the effective action

S ¼
Z

d2x

�
1

2g20
Tr∂μU†∂μU þ 1

2
jL0 a

1

−∂2
1 þ e2=g20

jL0 a

�
;

(2.1)

where jLμ ðxÞb ¼ −iTrtb∂μUðxÞU†ðxÞ is the Noether current
of the left-handed SUðNÞ symmetry. The potential induced
on the color-charge density, in the second term of (2.1),
indicates that charges are screened, instead of confined.
This conclusion, however, is based on the fact that
U†U ¼ 1. In the renormalized theory, U is not a physical
field. The physical scaling field of the principal chiral
nonlinear sigma model is not a unitary matrix. This fact is
discussed more explicitly in Refs. [20], in the limitN → ∞,
with g20N fixed. The actual excitations of the principal
chiral model are massive, with a left and right color charge
[8], so that no screening takes place.
A more careful approach is to first find the Hamiltonian

in the temporal gauge A0 ¼ 0. Gauge invariance, or
Gauss’s law, must be imposed on physical states. The
Hamiltonian is

H ¼
Z

dx1
�
g20
2
½jL0 ðx1Þb�2 þ

1

2g20
½jL1 ðx1Þb�2 þ

1

2
½Eðx1Þb�2

þ e
g20

jL1 ðx1ÞbA1ðx1Þb
�
; (2.2)

where A1ðx1Þb ¼ TrtbA and Ea is the electric field, obeying
½Eðx1Þa;A1ðy1Þb�¼−iδabδðx1−y1Þ. The Hamiltonian (2.2)
must be supplemented by Gauss’s law Gðx1ÞaΨ ¼ 0, for
any physical state Ψ, where Gðx1Þa is the generator of
spatial gauge transformations,

Gðx1Þa ¼ ∂1Eðx1Þa þ efabcA1ðx1ÞbEðx1Þc −
e
g20

jL0 ðx1Þa:

(2.3)

If we require that the electric field vanishes at the
boundaries x1 ¼ �l=2, Gauss’s law may be explicitly
solved [12], to yield the expression for the electric field,

Eðx1Þa¼
Z

x1

−l=2
dy1

�
Pexp

�
ie
Z

y1

−l=2
dz1A1ðz1Þ

��
b

a

e
g20
jL0 ðy1Þb;

(2.4)

where A1ðx1Þab ¼ ifabcA1ðx1Þc is the gauge field in the
adjoint representation. There remains a global gauge
invariance, which must be satisfied by physical states,
i.e., ΓaΨ ¼ 0, where

Γa ¼
Z

l=2

−l=2
dy1

�
P exp

�
ie
Z

y1

−l=2
dz1A1ðz1Þ

��
b

a

e
g20

jL0 ðy1Þb:

(2.5)

Now we are free to chose A1ðx1Þb ¼ 0, which simplifies
(2.4) and (2.5). The solution for the electric field yields the
Hamiltonian

H ¼
Z

dx1
�
g20
2
½jL0 ðx1Þb�2 þ

1

2g20
½jL1 ðx1Þb�2

�

−
e2

2g40

Z
dx1

Z
dy1jx1 − y1jjL0 ðx1ÞbjL0 ðy1Þb; (2.6)

where in the last step, we have taken the size l of the system
to infinity. The last term is a linear potential which confines
left-handed color. Notice that (2.6) is not bounded from
below on the full Hilbert space. This is because of the last,
nonlocal term; the energy can be lowered by adding pairs of
colored particles (or antiparticles) and by separating them.
The residual Gauss-law condition ΓaΨ ¼ 0 forces the
global left-handed color to be a singlet, thereby removing
the instability.

III. THE FREE PARTICLE-ANTIPARTICLE
WAVE FUNCTION: N > 2

The quantized principal chiral nonlinear sigma model is
integrable. This property, together with physical consid-
erations, has been used to find the exact S matrix [8].
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An excitation has rapidity θ, related to that excitation’s
energy and momentum by E ¼ m sinh θ and p ¼ m cosh θ,
respectively.
Let us consider a state with two excitations. One exci-

tation is an antiparticle of rapidity θ1 and left and right
SUðNÞ color indices a1; b1 ¼ 1;…; N, respectively. The
second excitation is a particle of rapidity θ2, and left and right
color indices a2; b2, respectively. Explicitly the state is

jA; θ1; b1; a1;P; θ2; a2; b2iin:

The S-matrix element, SðθÞd2c2;c1d1a1b1;b2a2
, is defined by

outhA; θ01; d1; c1;P; θ02; c2; d2jA; θ1; b1; a1;P; θ2; a2; b2iin
¼ SðθÞd2c2;c1d1a1b1;b2a2

4πδðθ1 − θ01Þ4πδðθ2 − θ02Þ;

where θ ¼ θ1 − θ2. This S-matrix element is [8]

SðθÞd2c2;c1d1a1b1;b2a2
¼ SðθÞ

�
δc1a1δ

c2
a2 −

2πi
Nðπi − θÞ δa1a2δ

c1c2

�

×

�
δd1b1δ

d2
b2
−

2πi
Nðπi − θÞ δb1b2b

d1d2

�
;

where

SðθÞ ¼ sinh ½ðπi−θÞ
2

− πi
N�

sinh ½ðπi−θÞ
2

þ πi
N�

×

�
Γ½iðπi− θÞ=2πþ 1�Γ½−iðπi− θÞ=2π− 1=N�
Γ½iðπi− θÞ=2πþ 1− 1=N�Γ½−iðπi− θÞ=2π�

�
2

:

(3.1)

For N > 2, the expression (3.1) may be written in the
exponential form [23]

SðθÞ ¼ exp 2
Z

∞

0

dξ
ξ sinh ξ

½2ðe2ξ=N − 1Þ

− sinhð2ξ=NÞ� sinh ξθ
πi

: (3.2)

We will discuss the N ¼ 2 case separately in Sec. V.
The wave function of a free antiparticle at x1 and a free

particle at x2, with momenta p1 and p2, respectively, is

Ψp1;p2
ðx1; y1Þa1a2;b1b2 ¼

8>><
>>:

eip1x1þip2y1Aa1a2;b1b2 ; for x1 < y1;

eip2x1þip1y1SðθÞd2c2;c1d1a1b1;b2a2
Ac1c2;d1d2 ; for x1 > y1;

(3.3)

where Aa1a2;b1b2 is set of arbitrary complex numbers.
The residual Gauss’s law in the axial gauge, ΓaΨ ¼ 0,

restricts physical states to those which are invariant under
global left-handed SUðNÞ color transformations. This
means that the particle-antiparticle state of the form (3.3)
must be projected to a global left-color-singlet. A left-color-
singlet wave function is

Ψp1p2
ðx1; y1Þb1b2 ¼ δa1a2Ψp1;p2

ðx1; y1Þa1a2b1b2 : (3.4)

There are states of degeneracy N2 − 1, which resemble
massive gluons. These transform as the adjoint representa-
tion of the right-handed color symmetry. The wave function
of such a state is traceless in the right-handed color indices,

δb1b2Ψp1p2
ðx1; y1Þb1b2 ¼ 0: (3.5)

We use a nonrelativistic approximation p1;2 ≪ m. The
wave function in this limit becomes

Ψp1p2
ðx1;y1Þb1b2

¼
�
eip1x1þip2y1Ab1b2 ; for x1<y1;

eip2x1þip1y1 expðiπ− ihN
πm jp1−p2jÞAb1b2 ; for x1>y1;

(3.6)

where TrA ¼ 0, and

hN ¼ 2

Z
∞

0

dξ
sinh ξ

½2ðe2ξ=N − 1Þ − sinhð2ξ=NÞ�

¼ −4γ − ψ

�
1

2
þ 1

N

�
− 3ψ

�
1

2
−

1

N

�
− 4 ln 4; (3.7)

where γ is the Euler-Mascheroni constant, and ψðxÞ ¼
d lnΓðxÞ=dx is the digamma function. The expression in
(3.6) must be equal to the wave function of two confined
particles for sufficiently small jx1 − y1j. To compare the
two expressions, it is convenient to use center-of-mass
coordinates X; x, and their respective momenta P; p.
Explicitly, X ¼ x1 þ y1, x ¼ y1 − x1, P ¼ p1 þ p2 and
p ¼ p2 − p1. In these coordinates, the wave function is

ΨpðxÞb1b2 ¼
�
cosðpxþωÞAb1b2 ; for x>0;

cos½−pxþω−ϕðpÞ�Ab1b2 ; for x<0;
(3.8)

for some constant ω, with the phase shift ϕðpÞ ¼
π − hN

πm jpj.
Another type of mesonic state is the right-handed color

singlet, with Ab1b2 ¼ δb1b2 . The nonrelativistic limit of the
wave function in this case is
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ΨpðxÞsinglet ¼
�
cosðpxþ ωÞ; for x > 0;

cos½−pxþ ω − χðpÞ�; for x < 0;
(3.9)

where χðpÞ ¼ − hN
πm jpj.

IV. MESONIC STATES OF MASSIVE
YANG-MILLS THEORY: N > 2

The wave function of a particle-antiparticle pair, con-
fined by string tension σ, satisfies the Schrödinger equation

−
1

m
d2

dx2
ΨðxÞb1b2 þ σjxjΨðxÞb1b2 ¼ EΨðxÞb1b2 ; (4.1)

where E is the binding energy [13]. The solution to
Eq. (4.1) is

ΨðxÞb1b2 ¼
�

CAi½ðmσÞ13ðxþE
σÞ�Ab1b2 ; for x>0

C0Ai½ðmσÞ13ð−xþE
σÞ�Ab1b2 ; for x<0;

(4.2)

where AiðxÞ is the Airy function of the first kind, and C;C0
are constants.
For jxj ≪ ðmσÞ−1=3, the potential energy in (4.1) is

sufficiently small that the wave function is (3.8), with
jpj ¼ ðmEÞ12. The wave function (4.2) is approximated in
this region by

ΨðxÞb1b2 ¼

8>><
>>:

C 1

ðxþE
σÞ

1
4

cos
h
2
3
ðmσÞ12

�
xþ E

σ

�3
2 − π

4

i
Ab1b2 ; for x > 0;

C0 1

ð−xþE
σÞ

1
4

cos
h
− 2

3
ðmσÞ12

�
−xþ E

σ

�3
2 þ π

4

i
Ab1b2 ; for x < 0.

Let us now consider the ðN2 − 1Þ-plet of mesonic states.
The wave functions (3.8) and (4.2) should be the same for
x↓0, yielding

C

ðEσÞ
1
4

cos

�
2

3
ðmσÞ12

�
E
σ

�3
2

−
π

4

�
¼ cosðωÞ: (4.3)

Equation (4.3) implies

C ¼
�
E
σ

�1
4

; ω ¼ 2

3
ðmσÞ12

�
E
σ

�3
2

−
π

4
:

The wave functions (3.8) and (4.2) should also be the same
for x↑0, yielding

C0

ðEσÞ
1
4

cos

�
−
2

3
ðmσÞ12

�
E
σ

�3
2þπ

4

�
¼ cos

�
ω−πþ hN

πm
ðmEÞ12

�
;

(4.4)

hence C0 ¼ C ¼ ðEσÞ
1
4. The arguments of the cosine on each

side of (4.4) must be the same, modulo 2π,

−
2

3
ðmσÞ12

�
E
σ

�3
2 þ π

4
þ 2πn

¼ 2

3
ðmσÞ12

�
E
σ

�3
2

−
5π

4
þ hN
πm

ðmEÞ12;

for n ¼ 0; 1; 2;…. We simplify this to

4

3
ðmσÞ12

�
E
σ

�3
2 þ hN

πm
ðmEÞ12 −

�
nþ 3

4

�
2π ¼ 0: (4.5)

An analysis which is similar to that of the previous
paragraph yields the quantization condition for the right-
handed singlet state (3.9). This is

4

3
ðmσÞ12

�
E
σ

�3
2 þ hN

πm
ðmEÞ12 −

�
nþ 1

4

�
2π ¼ 0: (4.6)

Equations (4.5) and (4.6) are depressed cubic equations
of the variable Zn ¼ E

1
2
n. These cubic equations have

only one real solution for each value of n, because
hN=ðπm1

2Þ > 0. The solution of Eqs. (4.5) and (4.6) is

En ¼ f½ϵn þ ðϵ2n þ β3NÞ
1
2�13 þ ½ϵn − ðϵ2n þ β3NÞ

1
2�13g1

2; (4.7)

where

ϵn ¼
3π

4

�
σ

m

�1
2

�
nþ 1

2
� 1

4

�
; βN ¼ hNσ

1
2

4πm
; (4.8)

where � ¼ þ for the ðN2 − 1Þ-plet, and � ¼ − for the
singlet.
We show in the next section that the expressions (4.7)

and (4.8) remain valid for the SU(2) case, with h2 ¼
−4 ln 2þ 2 and, significantly, with a reversal of the sign
in (4.8). For N ¼ 2 only we must take � ¼ − for the
ðN2 − 1Þ-plet (the triplet) and � ¼ þ for the singlet.
As it happens, the results we have just obtained for the

singlet spectrum generalize the result of Ref. [11], on the
spectrum of 2þ 1-dimensional anisotropic SU(2) gauge
theories, to SUðNÞ (where σ is replaced by 2σ).
Another interesting special case is the ’t Hooft limit

N → ∞ [20,24]. The mass gap of the sigma model should
be fixed in this limit. The string tension σ will be fixed as
well [19], provided e2N is fixed. In this limit hN → 0, and
we find
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En ¼
�
3π

2

�
σ

m

�1
2

�
nþ 1

2
� 1

4

��
1=3

: (4.9)

V. THE N ¼ 2 CASE

The exponential expression for the S matrix (3.2) is only
correct forN > 2. The principal chiral model with SUð2Þ ×
SUð2Þ symmetry is equivalent to the Oð4Þ-symmetric
nonlinear sigma model. We will express the S matrix, first
found in Ref. [21], by an exponential expression [22].
A state with one excitation has a left-handed color index

a ¼ 1; 2 and a right-handed color index b ¼ 1; 2. In the
Oð4Þ formulation, excitations have a single species index
j ¼ 1; 2; 3; 4. The SUð2Þ × SUð2Þ-symmetric states are
related to the Oð4Þ-symmetric states by

jP; θ; a; biin ¼
X
j

1ffiffiffi
2

p ðδj4δab − iσjabÞjθ; jiin;

jA; θ; a; biin ¼
X
j

1ffiffiffi
2

p ðδj4δab − iσjabÞ�jθ; jiin;

where σj with j ¼ 1; 2; 3 are the Pauli matrices. The Oð4Þ
two-excitation S matrix, SðθÞj1j2j0

1
j0
2
is given by

outhθ01; j01; θ02; j02jθ1; j1; θ2; j2iin
¼ SðθÞj1j2j0

1
j0
2
4πδðθ1 − θ01Þ4πδðθ2 − θ02Þ;

where [22]

SðθÞj1j2j0
1
j0
2
¼
�
θþπi
θ−πi

ðP0Þj1j2j0
1
j0
2
þ θ−πi
θþπi

ðPþÞj1j2j0
1
j0
2
þðP−Þj1j2j0

1
j0
2

�

×QðθÞ;QðθÞ¼ exp2
Z

∞

0

dξ
ξ

e−ξ−1

eξþ1
sinh

�
ξθ

πi

�
;

and P0; Pþ, and P− are the singlet, symmetric-traceless,
and antisymmetric projectors, which are

ðP0Þj1j2j0
1
j0
2
¼ 1

4
δj1j2δj0

1
j0
2
;

ðPþÞj1j2j0
1
j0
2
¼ 1

2
ðδj1j0

1
δj2j0

2
þ δj1j0

2
δj2j0

1
Þ − 1

4
δj1j2δj0

1
j0
2
;

ðP−Þj1j2j0
1
j0
2
¼ 1

2
ðδj1j0

1
δj2j0

2
− δj1j0

2
δj2j0

1
Þ;

respectively.
We write the left-color-singlet wave function for a free

particle and antiparticle,

Ψp1;p2
ðx1; y1Þb1b2

¼ Dj1j2
b1b2

(
eip1x1þip2y1Aj1j2 ; for x1 > y1

eip2x1þip1y1SðθÞj01j02j1j2
Aj0

1
j0
2
; for x1 < y1;

(5.1)

where

Dj1j2
b1b2

¼ 1

2
δa1a2ðδj14δa1b1 − iσj1a1b1Þ

�ðδj24δa2b2 − iσj2a2b2Þ:

There is a triplet of degenerate states and one singlet state.
The triplet satisfies

δb1b2Ψp1;p2
ðx1; y1Þb1b2 ¼ 0: (5.2)

Substituting (5.1) into (5.2) gives the condition

δb1b2Dj1j2
b1b2

Aj1j2 ¼ δj1j2Aj1j2 ¼ 0:

The traceless matrix Aj1j2 can be split into a symmetric and
an antisymmetric part, Aþ

j1j2
¼ðAj1j2þAj2j1Þ=2 and A−

j1j2
¼

ðAj1j2 − Aj2j1Þ=2, respectively. The matrix Aþ
j1j2

, however,
does not contribute to the wave function (5.1), because

Dj1j2
b1b2

Aþ
j1j2

¼ 1

2
δb1b2 TrA

þ ¼ 0:

The matrix A−
j1j2

satisfies [21,22]

SðθÞj1j2j0
1
j0
2
A−
j1j2

¼ QðθÞA−
j0
1
j0
2
: (5.3)

Substituting (5.3) into (5.1), in center-of-mass coordinates
and the nonrelativistic limit, we find

ΨpðxÞb1b2 ¼Dj1j2
b1b2

�
cosðpxþωÞAj1j2 ; for x>0;

cos½−pxþω−ϕðpÞ�Aj1j2 ; for x<0;

(5.4)

where ϕðpÞ ¼ − ih2
πm jpj, where

h2 ¼ 2

Z
∞

0

dξ
e−ξ − 1

eξ þ 1
¼ −4 ln 2þ 2: (5.5)

The wave function of the right-color-singlet bound
state is

Ψsinglet
p1;p2

ðx1; y1Þ ¼
�
eip1x1þip2y1 ; for x1 > y1;

eip2x1þip1y1 θþπi
θ−πiQðθÞ; for x1 < y1:

(5.6)

In center-of-mass coordinates, in the nonrelativistic
approximation, this becomes

Ψsinglet
p ðxÞ ¼

�
cosðpxþ ωÞ; for x > 0;

cos½−pxþ ω − χðpÞ�; for x < 0;
(5.7)

where χðpÞ ¼ π − ih2
πm jpj.
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From this point onward, the analysis is similar to what
we have presented in the last two sections. We obtain (4.7),
(4.8), except that hN [defined in (3.7)] is replaced with
h2 [defined in (5.5)], with one important difference: we
have � ¼ þ for the singlet and � ¼ − for the triplet in
Eq. (4.8). As mentioned at the end of the last section, the
singlet spectrum coincides with that of Ref. [11], in which σ
must be replaced by 2σ.

VI. CONCLUSIONS AND OUTLOOK

We have found the spectrum of massive ð1þ 1Þ-
dimensional SUðNÞ Yang-Mills theory, for small gauge
coupling. To do this, we formulated the model as a
principal chiral sigma model coupled to a massless
Yang-Mills field. In the axial gauge, there are sigma-model
particles and antiparticles which bind to make left-color-
singlets. We obtained the mesonic spectrum by determining
the particle-antiparticle wave function in the nonrelativistic
limit, taking into account the phase shift at the origin.
In the future, we would like to find relativistic correc-

tions to the mass spectrum. This was done in Ref. [16] for
the Ising model in an external magnetic field. The goal
would be to find mesonic eigenstates of the Hamiltonian
(2.6) of the form

jΨBib1b2 ¼ jΨð2Þ
B ib1b2 þ jΨð4Þ

B ib1b2 þ jΨð6Þ
B ib1b2 þ…;

where the state jΨð2MÞ
B ib1b2 contains M particles and M

antiparticles. The multiparticle contributions are included
because an electric string may break [17], producing pairs
of sigma-model excitations. Nonetheless, for small gauge
coupling, the “two-quark” approximation is valid. In this
approximation, the bound state is treated as

jΨBib1b2 ≈ jΨð2Þ
B ib1b2

¼1

2

Z
dθ1
4π

dθ2
4π

Ψðp1;p2Þa2a2jA;θ1;b1;a1;P;θ2;a2;b2i;

where

Ψðp1; p2Þa1a2 ¼ SðθÞ
�
δc1a1δ

c2
a2 −

2πi
Nðπi − θÞ δa1a2δ

c1c2

�
×Ψðp2; p1Þc1c2 : (6.1)

The spectrum of masses Δ, of the states (6.1) is found from
the Bethe-Salpeter equation ðH − ΔÞjΨð2Þ

B ib1b2 ¼ 0. Acting
on this state with the Hamiltonian (2.6) yields

ðm cosh θ1 þm cosh θ2 − ΔÞΨðp0
1; p

0
2Þc1c2δb1d1δb2d2

¼ e2

4g40

Z
dθ1
4π

dθ2
4π

Ψðp1; p2Þa1a2
Z

dx1dy1jx1 − y1j

× hA; θ01; d1; c1;P; θ02; c2; d2jTr½jL0 ðx1ÞjL0 ðy1Þ�jA;
× θ1; b1; a1;P; θ2; a2; b2i; (6.2)

where the operator Tr½jL0 ðx1ÞjL0 ðy1Þ� is not time ordered.
The matrix element

hA; θ01; d1; c1;P; θ02; c2; d2j
× Tr½jL0 ðx1ÞjL0 ðy1Þ�jA; θ1; b1; a1;P; θ2; a2; b2i

is obtained by inserting a complete set of states between the
current operators and using the exact form factors of the
currents of the principal chiral sigma model. For finite N,
only the leading two-particle form factors of currents are
known [23] and only a vacuum insertion can be made. The
complete matrix element is known at large N [24], which
should help in finding the relativistic corrections to the
eigenvalues of Eq. (6.2).
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