
(0,2) dynamics from four dimensions

David Kutasov and Jennifer Lin
EFI and Department of Physics, University of Chicago, 5640S. Ellis Avenue, Chicago, Illinois 60637, USA

(Received 5 February 2014; published 10 April 2014)

We study (0,2) supersymmetric two-dimensional theories obtained by compactifying four-dimensional
N ¼ 1 supersymmetric theories on a two-torus, with a magnetic field for a global Uð1Þ symmetry, and
present evidence that Seiberg duality in four dimensions leads to an identification of different models of
this type.
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I. INTRODUCTION

Supersymmetric quantum field theories (SQFTs) with
four supercharges in various dimensions (d ≤ 4) have been
extensively studied in the past few decades. Many of their
properties have been elucidated using symmetries, anoma-
lies, holomorphy, strong-weak coupling duality and related
ideas (see e.g. [1,2] for reviews of theories in d ¼ 4), as
well as insights from string theory, where many such
theories can be realized as low energy theories on branes
[3–5]. An interesting aspect of this program was the
discovery of connections between the dynamics of such
theories in different dimensions (see e.g. [6] for a recent
discussion of the 3d–4d connection).
It is natural to ask how much of this progress can be

extended to theories with two supercharges in d ≤ 3. In
three dimensions, such theories have the minimal amount
of supersymmetry, N ¼ 1, for which many of the tech-
niques mentioned above are inapplicable. In two dimen-
sions, one can consider either (1,1) SQFTs, which suffer
from the same problem,1 or models with chiral, say (0,2),
supersymmetry (SUSY) which seem more promising from
this point of view, due to their inherent chirality and the fact
that they have the minimal amount of supersymmetry for
which holomorphy, anomalies, etc., place strong con-
straints on the dynamics. They are also interesting for
applications to (heterotic world sheet) string theory.
To explore the 2d–4d connection for theories with (0,2)

supersymmetry, we need a way to associate a (0,2) model
with a given four-dimensional N ¼ 1 SQFT. One way to
do this in a large class of examples is the following. Given
a four-dimensional N ¼ 1 SQFT with a global (non-R)
symmetry, one can couple the current supermultiplet to an
external vector superfield, which consists of a vector field
Aμ, a gaugino λα, and an auxiliary field D. These fields are
nondynamical, but can still take nonzero expectation
values. In a spacetime of the form R1;1 × T2, labeled by
the coordinates ðx0; x3Þ ∈ R1;1, ðx1; x2Þ ∈ T2, it is natural

to turn on an expectation value for the magnetic field
through the torus,

F12 ¼ B: (1.1)

This breaks supersymmetry completely, as can be seen by
examining the variation of the external gaugino field:
δλ ¼ Fμνσ

μνϵ, with μ; ν ¼ 0; 1; 2; 3. For a finite magnetic
field, δλ is nonzero for all ϵ. To preserve some of the
supersymmetry we also turn on a nonzero D field [7],
which modifies the gaugino variation to

δλ ¼ ðFμνσ
μν þ iDÞϵ: (1.2)

Plugging (1.1) into (1.2), one finds

δλ ¼ i

�
D − B 0

0 Dþ B

��
ϵ−

ϵþ

�
; (1.3)

where ϵ− (ϵþ) generates right (left) moving supersymmetry
on R1;1. For generic B and D, supersymmetry is broken as
before, but for D ¼ �B, some of it remains unbroken. For
D ¼ B, the right-hand side (r.h.s.) of (1.3) vanishes for all
ϵ− (and ϵþ ¼ 0);D ¼ −B is the samewith ϵþ↔ϵ−. In other
words, for D ¼ B the theory preserves (0,2) SUSY while
D ¼ −B gives a theory with (2,0) SUSY. Without loss of
generality we can focus on the (0,2) case.
The above construction can be alternatively interpreted

in terms of the three-dimensional N ¼ 2 SQFTobtained by
compactifying the original four-dimensional N ¼ 1 super-
symmetric theory on a circle. The three-dimensional theory
has the Uð1Þ global symmetry of the underlying four-
dimensional model. To get a (0,2) SQFT in 1þ 1 dimen-
sions, we compactify this theory on one more circle and
turn on a real mass term associated with theUð1Þ symmetry
that depends on its position along the circle. This point of
view will be useful below.
The procedure that associates a two-dimensional (0,2)

model with a four-dimensional N ¼ 1 SQFT with a global
Uð1Þ symmetry is clearly not unique in theories with
large global symmetry groups, since then there are many
inequivalent ways to choose theUð1Þ current that figures in

1Indeed, one way to construct (1,1) SQFTs in two dimensions
is to consider the low energy limit of three-dimensional N ¼ 1
SQFTs on a circle.
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the construction. Also, it may be that the resulting (0,2)
theory breaks supersymmetry when quantum effects are
taken into account. The purpose of this paper is to study this
class of theories and to address these and other issues. We
will see that for some choices of the Uð1Þ symmetry,
supersymmetry is broken in the quantum theory, while for
others it is not. Even in cases where SUSY is unbroken,
quantum effects play an important role in the dynamics.
We will also discuss the dependence of the properties

of the two-dimensional (0,2) theory on those of the
underlying four-dimensional one. For example, if the
higher-dimensional theory exhibits Seiberg duality [8],
one can ask whether the two-dimensional theories obtained
by compactifying the electric and magnetic models inherit
it. On the one hand, one can argue that they should, since no
phase transitions are expected as a function of the param-
eters that the models depend on. On the other hand, one
mightworry that the dualitymight be spoiled by the presence
of scalar fields in the adjoint representation (coming from
dimensional reduction of the four-dimensional gauge field),
which are sensitive to the rank of the gauge group. We shall
argue that the duality survives in twodimensions and explain
how it deals with the adjoint fields. Similarly, one can ask
howmirror symmetry in three dimensions [9] is realized after
the reduction. We leave a discussion of this issue to another
publication.
Although the construction described above is general,

we shall mostly focus on the case ofN ¼ 1 supersymmetric
QCD with gauge group UðNcÞ and matter in the (anti)
fundamental representation. This class of theories can be
realized in string theory as low energy theories of systems
of D-branes and NS5-branes [3–5], and we shall find this
description useful for our purposes.
The plan of the paper is as follows. In Sec. II we briefly

review the basic structure of (0,2) supersymmetric gauge
theories in two dimensions. In Sec. III we describe the
effects of background magnetic and D fields on the
spectrum of free charged four-dimensional superfields
compactified on a torus. In Sec. IV we include interactions
and discuss the effect of background fields on a four-
dimensional N ¼ 1 supersymmetric gauge theory, focusing
onN ¼ 1 SQCDwith gauge groupUðNcÞ and fundamental
matter. In Sec. V we embed this theory in string theory as a
low energy theory on branes and explain the effects of the
background fields on it. This embedding is known to be
useful for studying the classical and quantum low energy
dynamics of various gauge theories in different dimensions
[5], and this turns out to be the case here as well.
In Sec. VI we describe our construction from the point of

view of the three-dimensional N ¼ 2 supersymmetric
gauge theory obtained by compactifying four-dimensional
N ¼ 1 SQCD on a circle. In the three-dimensional descrip-
tion, the magnetic field for the backgroundUð1Þ becomes a
real mass term for the fundamentals that depends linearly
on one of the spatial directions. This description is useful

for analyzing the dynamics, particularly in the brane
realization, since the background fields correspond to
geometric deformations in the extra dimensions.
In Sec. VI we discuss some properties of the two-

dimensional quantum theories obtained from our construc-
tion. We show that the classical Coulomb moduli space is
lifted in the quantum theory and is replaced by a discrete set
of vacua. We describe the low energy theory in each of
these vacua and argue that four-dimensional theories
related by Seiberg duality give rise to the same low energy
(0,2) theories in two dimensions. Section VIII contains a
brief discussion of our results. Some technical details
appear in the Appendix.

II. (0,2) SUPERSYMMETRY IN
TWO DIMENSIONS

In this section we review some aspects of (0,2) super-
symmetric field theories in 1þ 1 dimensions which will
play a role in our discussion below. Our main goal is to
establish the notation, which follows that of [10].

A. General structure

In addition to the bosonic coordinates ðx0; x3Þ, (0,2)
superspace has two fermionic coordinates ðθþ; θ̄þÞ. The
right-moving supercharges act on superspace as follows:

Qþ ¼ ∂
∂θþ þ iθ̄þð∂0 þ ∂3Þ;

Q̄þ ¼ −
∂

∂θ̄þ − iθþð∂0 þ ∂3Þ: (2.1)

They satisfy Q2þ ¼ Q̄2þ ¼ 0, fQþ; Q̄þg ¼ −2ið∂0 þ ∂3Þ.
The supercharges anticommute with the superspace covar-
iant derivatives

Dþ ¼ ∂
∂θþ − iθ̄þð∂0 þ ∂3Þ;

D̄þ ¼ −
∂

∂θ̄þ þ iθþð∂0 þ ∂3Þ; (2.2)

which satisfy D2þ ¼ D̄2þ ¼ 0, fDþ; D̄þg ¼ 2ið∂0 þ ∂3Þ.
To construct (0,2) supersymmetric gauge theory, we

extend the superspace derivatives Dþ; D̄þ; ∂0; ∂3 to gauge
covariant superderivatives Dþ; D̄þ;D0;D3. These can be
written in a Wess-Zumino–type gauge as

D0 þD3 ¼ ∂0 þ ∂3 þ iðA0 þ A3Þ;

Dþ ¼ ∂
∂θþ − iθ̄þðD0 þD3Þ;

D̄þ ¼ −
∂

∂θ̄þ þ iθþðD0 þD3Þ;
D0 −D3 ¼ ∂0 − ∂3 þ iV; (2.3)
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where

V ¼ A0 − A3 − 2iθþλ̄− − 2iθ̄þλ− þ 2θþθ̄þD (2.4)

is a vector superfield which transforms in the adjoint
representation of the gauge group G. λ− is the left-moving
gaugino, whileD is a nonpropagating auxiliary field. These
fields and the gauge field can be combined into the (0,2)
field strength

ϒ ¼ ½D̄þ;D0 −D3�
¼ −2ðλ− − iθþðD − iF03Þ − iθþθ̄þðD0 þD3Þλ−Þ;

(2.5)

which transforms in the adjoint representation of the gauge
group and satisfies the chirality constraint D̄þϒ ¼ 0.
We will focus on two types of matter superfields in a

representation r of the gauge group G. One is the bosonic
chiral superfield Φ with component expansion

Φ ¼ ϕþ
ffiffiffi
2

p
θþψþ − iθþθ̄þðD0 þD3Þϕ; (2.6)

obeying D̄þΦ ¼ 0. Here ϕ is a complex scalar field, and
ψþ is a complex right-moving fermion. The second is the
Fermi superfield

Λ ¼ ψ− −
ffiffiffi
2

p
θþF − iθþθ̄þðD0 þD3Þψ− −

ffiffiffi
2

p
θ̄þE;

(2.7)

whose only propagating degree of freedom is a complex
left-moving fermion ψ−. Λ obeys the superspace constraint

D̄þΛ ¼
ffiffiffi
2

p
E; D̄þE ¼ 0: (2.8)

In (2.5)–(2.7), D0; D3 are the usual gauge-covariant deriv-
atives Dμ ¼ ∂μ þ iAa

μTa, or equivalently the superderiva-
tives (2.3) evaluated at θþ ¼ θ̄þ ¼ 0. Ta are the generators
of G in the representation r, and E is a chiral superfield,
usually taken to be a function of the basic chiral superfields
in the theory [10].
The natural supersymmetric actions for the above

superfields are

Sϒ ¼ 1

8g2
Tr

Z
d2xd2θϒ̄ϒ;

SΦ ¼ −
i
2

Z
d2xd2θΦ̄ðD0 −D3ÞΦ;

SΛ ¼ −
1

2

Z
d2xd2θΛ̄Λ; (2.9)

with component expansions

Sϒ ¼ 1

g2
Tr

Z
d2x

�
1

2
F2
03þ iλ̄−ðD0þD3Þλ−þ

1

2
D2

�
;

SΦ ¼
Z

d2xf−jDμϕj2þ iψ̄þðD0−D3Þψþ − i
ffiffiffi
2

p
ϕ̄Taλa−ψþ

þ i
ffiffiffi
2

p
ϕTaψ̄þλ̄a−þ ϕ̄TaϕDag;

SΛ ¼
Z

d2x

�
iψ̄−ðD0þD3Þψ−þjF j2− jEj2

−
�
ψ̄−

∂E
∂ϕi

ψþiþ ψ̄þi
∂Ē
∂ϕ̄i

ψ−

��
: (2.10)

To include a nontrivial kinetic term for Φi, one can replace
the field Φ̄i in the action SΦi

by a more general Kahler
form KiðΦ; Φ̄Þ ¼ ∂K=∂Φi.
Other terms in the action that are often of interest have

the general form
R
d2xdθþð� � �Þjθ̄þ¼0 þ c:c: where ð� � �Þ is

an anticommuting superfield annihilated by D̄þ. One
example is the Fayet-Iliopoulos (FI) term for a Uð1Þ
symmetry,

SFI ¼
t
4

Z
d2xdθþϒjθ̄þ¼0 þ c:c:

¼ it
2

Z
d2xðD − iF01Þ þ c:c:; (2.11)

where

t ¼ irþ θ

2π
(2.12)

is the complexified FI parameter. Another is the (0,2)
superpotential

SW ¼ −
1ffiffiffi
2

p
Z

d2xdθþΛaJajθ̄þ¼0 þ c:c:

¼ −
Z

d2x
�
F aJaðϕiÞ þ ψ−aψþi

∂Ja
∂ϕi

�
þ c:c:;

(2.13)

where Λa are Fermi superfields, and Ja are holomorphic
functions of the (bosonic) chiral superfields. Because of
(2.8), chirality of the superpotential (2.13) requires that

E · J ¼ 0: (2.14)

B. Reduction of (2,2) superfields under (0,2) SUSY

Before turning on the background B and D fields, the
theories we shall study have (2,2) supersymmetry in two
dimensions. The background fields split the (2,2) multiplets
into (0,2) ones. Thus, it is useful to recall how (2,2)
superfields decompose under (0,2) supersymmetry.
The (2,2) SQFT is conveniently described in a super-

space with coordinates ðxμ; θ�; θ̄�Þ, an obvious extension
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of the (0,2) superspace described above to include the left-
moving supercoordinates. The right-moving supercovariant
derivatives (2.3) are supplemented by left-moving ones,

D− ¼ ∂
∂θ− − iθ̄−ðD0 −D3Þ;

D̄− ¼ −
∂

∂θ̄− þ iθ−ðD0 −D3Þ: (2.15)

All the (0,2) superfields described above fit naturally into
two types of (2,2) superfields. One is the chiral superfield
Φð2;2Þ, which satisfies the chirality constraints D̄þΦð2;2Þ ¼
D̄−Φð2;2Þ ¼ 0 and has the free field action

Sð2;2ÞΦ ¼ −
1

4

Z
d2xd4θΦ̄ð2;2Þ

i Φð2;2Þ
i : (2.16)

The other is the twisted chiral superfield Σð2;2Þ ¼
1

2
ffiffi
2

p fD̄þ;D−g, which describes the gauge field strength
and obeys D̄þΣð2;2Þ ¼ D−Σð2;2Þ ¼ 0. It has the action

Sð2;2Þg ¼ −
1

4g2

Z
d2xd4θΣ̄ð2;2ÞΣð2;2Þ: (2.17)

A (2,2) chiral superfield splits into a (0,2) chiral superfield
and a Fermi superfield, as can be seen from the θ−

expansion

Φð2;2Þ ¼Φð0;2Þ þ
ffiffiffi
2

p
θ−Λð0;2Þ− iθ−θ̄−ðD0−D3ÞΦð0;2Þ:

(2.18)

The (2,2) field strength splits into an adjoint chiral super-
field and a (0,2) field strength superfield,

Σð2;2Þ ¼ Σð0;2Þ þ iffiffiffi
2

p θ̄−ϒð0;2Þ − iθ−θ̄−ðD0 −D3ÞΣð0;2Þ:

(2.19)

To reproduce the action of a (2,2) chiral superfield that
transforms nontrivially under a gauge symmetry, one must
include a nonzero E (2.7) for the Fermi superfield in (2.18),

E ¼ i
ffiffiffi
2

p
ΣaTaΦ: (2.20)

III. FREE FIELDS IN A MAGNETIC FIELD

In this section we review the spectrum of charged four-
dimensional free fields of spin 0 and 1=2 in the presence
of a constant external magnetic field. We start with the
noncompact case, and then discuss compactification on a
two-torus.
Consider a free massless (complex) scalar ϕ of charge e

under a Uð1Þ gauge field Aμ. To study its dynamics in the
background magnetic field (1.1), we turn on a background

gauge field A2 ¼ Bx1. The Klein-Gordon equation for ϕ
then takes the form

ð−∂2
0 þ ∂2

3 þ ∂2
1 þ ~D2

2Þϕ ¼ 0; (3.1)

where ~D2 ¼ ∂2 þ ieBx1. The (1þ 1)-dimensional spec-
trum is obtained by writing

ϕðx0; x1; x2; x3Þ ¼ φðx0; x3Þχðx1; x2Þ: (3.2)

If we take χ to be an eigenfunction of

H ¼ −ð∂2
1 þ ~D2

2Þ ¼ p2
1 þ ðp2 þ eBx1Þ2; (3.3)

Hχ ¼ m2χ, Eq. (3.1) gives rise to a two-dimensional scalar
field φ with mass m. The Hamiltonian (3.3) is just that of
the Landau problem of a particle in a magnetic field, whose
spectrum is given by

m2
n ¼ ð2nþ 1ÞjeBj: (3.4)

Thus, turning on B leads to a discrete spectrum of (1þ 1)-
dimensional massive particles, as expected.
As mentioned in the Introduction, to preserve super-

symmetry we must turn on in addition to the magnetic field
also the D component of the corresponding vector multi-
plet. The latter contributes to the scalar Lagrangian the term
eDjϕj2, which shifts (3.5) to

m2
n ¼ ð2nþ 1ÞjeBj − eD: (3.5)

For the case B ¼ D, for which the background fields
preserve (0,2) supersymmetry, we see that fields with
eB > 0 give rise to massless (1þ 1)-dimensional scalars,
while those with eB < 0 lead to a massive spectrum.
Without loss of generality we can restrict to the case
B > 0 (otherwise, we can take Aμ; D; e to minus them-
selves), so that fields with positiveUð1Þ charge are the ones
that give massless fields in two dimensions. As is familiar
from the Landau problem, the spectrum (3.5) is in general
degenerate. We will discuss this degeneracy below when
we turn to the compact case.
The above discussion can be repeated for spin 1=2 fields.

A four-dimensional charged Weyl fermion in a magnetic
field satisfies the wave equation

i

�
−∂0 − ∂3 −∂1 þ i ~D2

−∂1 − i ~D2 −∂0 þ ∂3

��
ψ−

ψþ

�
¼ 0: (3.6)

The top component of the spinor (ψ−) is a left-moving
fermion in the two dimensions ðx0; x3Þ; the bottom
component, ψþ, is right moving. Squaring (3.6) yields
decoupled equations for ψ�,

ð−∂2
0 þ ∂2

3 þ ∂2
1 þ ~D2

2∓i½∂1; ~D2�Þψ� ¼ 0: (3.7)
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Using the fact that ½∂1; ~D2� ¼ ½∂1; ∂2 þ ieBx1� ¼ ieB,
Eq. (3.7) is essentially identical to (3.3). So the right-
and left-moving fermions have the spectrum

m2þ ¼ ð2nþ 1ÞjeBj − eB; m2
−∶ð2nþ 1ÞjeBj þ eB:

(3.8)

Comparing to (3.5) we see that for B ¼ D the right-moving
fermions align with the scalars, while the left-moving
fermions do not, in agreement with the expectation from
(0,2) supersymmetry.
To summarize, a four-dimensional free massless chiral

superfield Φ with Uð1Þ charge e reduces in a constant
B ¼ D > 0 background to a massless (0,2) chiral super-
field (2.6) for e > 0, and to a massless Fermi superfield
(2.7) for e < 0. In both cases one also finds an infinite
tower of massive two-dimensional chiral and Fermi super-
fields with the spectrum (3.5) and (3.8), respectively.
So far we have discussed the effects on the spectrum

of charged fields of turning on a magnetic field in
noncompact four-dimensional spacetime. Since we are
interested in turning on a magnetic field on T2, we need
to take the coordinates ðx1; x2Þ to be periodic, xi∼
xi þ 2πRi. The background gauge field A2 ¼ Bx1 is not
periodic on the torus; rather, it satisfies

A2ðx1 þ 2πR1Þ ¼ A2ðx1Þ þ 2πR1B ¼ A2ðx1Þ þ ∂2Γ;
(3.9)

with Γðx2Þ ¼ 2πR1Bx2 a gauge transformation parameter.
A field ϕ of charge e transforms under the gauge

transformation generated by Γðx2Þ as ϕ → expðieΓÞϕ.
Requiring that expðieΓÞ is well defined on the torus leads
to the Dirac quantization condition for the magnetic field

eBA ∈ 2πZ; (3.10)

where A ¼ 2πR1 × 2πR2 is the area of the torus.
The eigenvalue problem for wave functions on the mag-

netized torus is nowmore complicated, due to the periodicity
conditions. One finds (see e.g. [11]) that the spectrum is still
givenby (3.5) and (3.8), and thedegeneracyof states at a given
level is

ne ¼
jejBA
2π

: (3.11)

Since the charges are proportional to the degeneracies with a
universal proportionality constant, one can normalize them
such that a field of charge e has degeneracy jej; we shall use
this normalization in our discussion below. Thus, a field of
charge e > 0 gives e massless (0,2) chiral superfields, while
one of charge e < 0 gives jej massless Fermi superfields.

IV. FOUR-DIMENSIONAL N ¼ 1 SQFT
ON A MAGNETIZED TORUS

So far we discussed the effect of a magnetic field on free
superfields in four dimensions; in this section we generalize
to the interacting case. We take as the starting point an
N ¼ 1 supersymmetric gauge theory with gauge group G
and chiral matter fields Φi in representations ri of the gauge
group. There can also be a (gauge invariant) superpotential
and other interactions, which we shall discuss later.
If we compactify such a theory on a two-torus without

turning on a magnetic field, we find at low energies a two-
dimensional (2,2) supersymmetric theory, which contains
the (2,2) chiral superfieldsΦi and a twisted chiral superfield
Σ in the adjoint representation describing the field strength
of G. To reduce the supersymmetry to (0,2) we need to
identify a suitable Uð1Þ global symmetry. We assign to the
superfields Φi global charges ei and demand that the
symmetry be nonanomalous (i.e. conserved in the quantum
theory). This leads to the constraints

X
i

eiTðriÞ ¼ 0;

X
i

e2iTrT
aðriÞ ¼ 0; (4.1)

where TaðrÞ are the generators of G in the representation
r and TðrÞ is defined by TrrTaTb ¼ TðrÞδab, with
a; b ¼ 1;…; dimG. The first condition in (4.1) comes
from the anomaly of one global and two gauge currents,
while the second is the anomaly of two global and one
gauge currents. We need to impose it since there is a
nonzero source for the global Uð1Þ. Note that we do not
need to impose the vanishing of the anomaly of three global
currents since F ~F ¼ 0 for it.
In general there may be many solutions to (4.1), which

correspond to different Uð1Þ subgroups of the global
symmetry group of the model. We will comment on the
dependence on the choice of Uð1Þ below. Note also that
solutions to (4.1) include Uð1Þ factors of the gauge group.
For those, one can show that the B and D fields that play a
role in our construction are equivalent to a B field and FI
term for the dynamical Uð1Þ. We will not discuss these
cases in detail here and will choose the Uð1Þ to be
orthogonal to the gauge group.
Four-dimensional theories of the sort discussed above

typically develop strong coupling in the UV or IR,
when studied on R3;1. If TðadjÞ > P

iTðriÞ=3, the four-
dimensional theory is asymptotically free in the UV, and
in general develops strong coupling in the IR below the
dynamically generated scale Λ. One can then ask whether/
how we can apply the results of the previous section to
study the effects of the B and D fields on such a theory.
As we saw, turning on the external fields leads to the
appearance of a new energy scale associated with
the Landau levels (3.5). The other relevant scale is the
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Kaluza-Klein scale associated with the size of the two-
torus. If these scales are much larger than Λ, we can use the
results of the previous section to analyze the theory, since at
the energies at which the B field and compactification
modify the dynamics, the four-dimensional theory is still
weakly coupled.
If the hierarchy of scales is the other way around, naively

we cannot use the results of the previous section and have to
search for a description of the four-dimensional theory that is
weakly coupled at the scales associated with the B field and
compactification. As usual, we may hope that since the two
regimes are connected by a continuous deformation (the size
of the torus), if there are no phase transitions as we vary the
parameters, we nevertheless should find the right result by
following the procedure of the previous section.We shall see
examples of this later in the paper.
Clearly, any nontrivial solution to (4.1) must involve

some positive and negative ei. As mentioned above, each
field with ei > 0 gives ei (0,2) massless chiral superfields
ϕi, while fields with ei < 0 give jeij Fermi superfields.
Fields with ei ¼ 0, which include the gauge multiplet and
any chiral superfields that are not charged under the Uð1Þ,
are not influenced by the background fields and can be
treated by standard Kaluza-Klein methods. In particular,
the gauge multiplet gives rise to the (0,2) multipletsϒ;Σ as
in (2.19), while uncharged chiral superfields give chiral and
Fermi superfields (2.18) in the appropriate representations
of G.
To find the two-dimensional Lagrangian for these fields,

we start with the four-dimensional Lagrangian

L ¼ LV þ
X
i

Li;

LV ¼ −
1

4g2
ðFa

μνFaμν þ 4iλ̄aσ̄μDμλ
a − 2DaDaÞ;

Li ¼ −Dμϕ̄iDμϕi − iψ̄ iσ̄
μDμψ i þ F̄ iF i þ i

ffiffiffi
2

p
ðϕ̄iTaψ iλ

a

− λ̄aψ̄ iTaϕiÞ þ ϕ̄iTaϕiDa; (4.2)

where ϕi and ψ i are components of the chiral superfieldsΦi
and λa are the gauginos ofG. We need to couple (4.2) to the
background fields described above and reduce it on the torus,
using the wave functions of the various fields. Although
we are interested in low energy dynamics, some of the
contributionsofmassivemodes to (4.2) need tobekept, since
integrating them out may give terms in the Lagrangian of the
massless modes that are relevant in the infrared.
The Lagrangian of the vector superfield, LV , gives rise to

the standard (2,2) Lagrangian (2.17), or equivalently the
Lagrangian for the (0,2) gauge superfield ϒ and chiral
superfield in the adjoint representation,2 Σ, given in the first
and second lines of (2.9). The bottom component of Σ is a
scalar field

σ ¼ A1 þ iA2ffiffiffi
2

p (4.3)

that comes from components of the gauge field along the
two-torus.
Turning to the chiral superfields Φi, we need to discuss

separately the cases of fields with positive, negative and
zero Uð1Þ charge. For fields with ei ¼ 0, the compactifi-
cation preserves (2,2) SUSY and the Lagrangian is the
usual one, reviewed in Sec. II. Fields with ei < 0 give rise
to Fermi multiplets Λi, and their Lagrangians are given by
the last lines of (2.9) and (2.10). The holomorphic functions
Ei (2.8) vanish in the massless sector, but receive nonzero
contributions (2.20) from massive modes.
The reduction of fields with ei > 0 is more subtle. These

fields give (0,2) chiral superfields, which we shall also
denote by Φi, dropping the superscript (0,2) in (2.18).
Before turning on the magnetic field, the Lagrangian of the
scalars ϕi that are the bottom components of these super-
fields contains a potential proportional to jσj2jϕij2, which
in (0,2) language comes from the jEij2 terms in (2.10), with
Ei given by (2.20). However, after turning on the magnetic
field the Ei must vanish in the light sector, for the same
reason as in the ei < 0 case: the Fermi superfields asso-
ciated with Φi are lifted, and there are no Fermi superfields
with the right quantum numbers in the light sector to give
rise to a jσj2jϕij2 potential.
To see how this happens, consider a massless four-

dimensional complex scalar field ϕ charged under a
dynamical Uð1Þ gauge field Aμ and under a global Uð1Þ
for which we turn on (equal) background B and D fields.
The kinetic term for ϕ,

Lϕ ¼ −DμϕDμϕ̄þ eDjϕj2 þ � � � ; (4.4)

contains couplings to the dynamical and background
Uð1Þ gauge fields Aμ, ~Aμ, Dμϕ ¼ ð∂μ þ iAμ þ ie ~AμÞϕ.
The terms with μ ¼ 1; 2, in particular, contain the coupling
to the background B field and the zero mode of the
dynamical gauge field, σ (4.3). Plugging the background
gauge potential ~A2 ¼ Bx1 into (4.4) and using (4.3), we see
that the role of a nonzero σ is to shift the location of the zero
mode of ϕ in the x1 plane. It has the same effect on the wave
functions as a Wilson line for ~Aμ, discussed e.g. in [11].
For non-Abelian gauge groups we do not expect the

jσj2ϕ2
i terms in the potential to completely disappear.

The (0,2) D-term potential includes terms of the form
ϕ̄i½σ̄; σ�ϕi. They can be obtained by reducing the four-
dimensional action to two dimensions, taking into account
the massive modes.
To summarize, starting with a four-dimensional N ¼ 1

SUSY gauge theory with gauge group G, and chiral matter
superfields Φi in representations ri of the gauge group, and
compactifying it on a two-torus with equal background
magnetic and D fields for a global Uð1Þ symmetry under2Σð0;2Þ in (2.19).
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which Φi have charges ei ∈ Z, leads at low energies to
a two-dimensional (0,2)-supersymmetric gauge theory
containing the following:
(1) A G gauge superfield ϒ.
(2) An adjoint chiral superfield Σ.
(3) ei (0,2) chiral superfields Φi in the representation ri,

for fields with ei > 0.
(4) jeij Fermi superfields Λi in the representation ri,

for ei < 0.
(5) A chiral superfield Φi and Fermi superfield Λi in the

representation ri, for ei ¼ 0.
In addition to the gauge interactions described in Sec. II,
the fields above couple to the massive modes. These
couplings are important for understanding some aspects
of the dynamics.
The global symmetries of the resulting theory can

be described from either the four-dimensional or two-
dimensional point of view. Consider, for example, a Uð1Þ
symmetry that assigns charges qi to the chiral superfields
Φi. In four dimensions, we have to impose the conditions3

X
i

qiTðriÞ ¼ 0;

X
i

eiqiTrTaðriÞ ¼ 0; (4.5)

coming from anomalies of one global and two gauge, and
one global, one background and one gauge currents.
The first of these is an inherently four-dimensional
constraint,4 while the second has a natural two-dimensional
interpretation—it is the two-dimensional gauge anomaly of
one global and one gauge current in the gauge theory with
matter content (1)–(5).
An example of the above construction that will play a

central role in our discussion below is supersymmetric
QCD with gauge group G ¼ UðNcÞ and Nf flavors of
chiral superfields in the fundamental representation of the
gauge group, Qi, ~Qi, i ¼ 1; 2;…; Nf. This theory has been
extensively studied in the past and has been found to exhibit
a rich dynamical structure; see e.g. [1,2] for reviews. For
0 < Nf < Nc it exhibits runaway behavior (no supersym-
metric vacuum), while for Nf ≥ Nc it has nontrivial
infrared behavior and exhibits interesting dynamical phe-
nomena such as quantum deformations of the classical
moduli space, confinement, and Seiberg duality.
The global (non-R) symmetry group of this theory is

SUðNfÞ × SUðNfÞ: (4.6)

The two factors act by special unitary transformations on
the Q’s and ~Q’s. For our construction we need to pick a

Uð1Þ subgroup of (4.6), which can be done by assigning
integer charges ei toQi and ~ei to ~Qi. The anomaly freedom
constraints (4.1) imply that

X
i

ei þ
X
i

~ei ¼ 0;

X
i

e2i −
X
i

~e2i ¼ 0: (4.7)

The simplest solution to (4.7) is ei ¼ e, ~ei ¼ −e. However,
this corresponds to picking the Uð1Þ to be the baryon
number, which is gauged in our model. If we want the
global Uð1Þ used for our construction to be orthogonal to
the gauge group, we need to further require

X
i

ei ¼
X
i

~ei ¼ 0: (4.8)

An example of a solution to (4.8), which exists for all
even Nf, is to take Nf=2 of the ei to be equal to þ1 and
the rest equal to −1, and similarly for ~ei. This breaks the
symmetry (4.6) to

SUðNf=2Þ4 ×Uð1Þ: (4.9)

The Nf fundamentals Qi give rise to Nf=2 chiral super-
fields and Nf=2 Fermi superfields in the fundamental, and
similarly for ~Q. Much of our discussion below will focus
on this example.
More generally, we can take Nþ of ei to be positive and

N− ¼ Nf − Nþ to be negative, and similarly for ~e [while
imposing (4.7) and (4.8)]. The resulting theory hasP

i∈Nþei chiral multiplets and
P

i∈N−
ei Fermi multiplets

in the fundamental, and
P

j∈ ~Nþ
~ej chiral and

P
j∈ ~N−

~ej
Fermi multiplets in the antifundamental. We will not study
this more general case in detail, but will comment on
it later.
The N ¼ 1 SQCD in four dimensions exhibits Seiberg

duality [8], which is the conjecture that its infrared limit is
equivalent to that of a different theory, which has gauge
group UðNf − NcÞ, Nf chiral multiplets qi in the funda-
mental, ~qi in the antifundamental, and a mesonMi

j which is
a singlet of the gauge group, and is the dual of the gauge
invariant composite field Qi ~Qj in the electric theory. The
magnetic theory further includes a superpotential coupling
the magnetic meson M to the magnetic quarks q, ~q,

W ¼ Mi
jqi ~q

j: (4.10)

Part of the statement of the duality is the identification of
the global symmetry group of the electric theory, Eq. (4.6),
with the corresponding symmetry in the magnetic theory.
Hence, given a choice of charges ei, ~ei in the electric
theory, we can write down the corresponding charges in the
magnetic one. The magnetic quarks qi have charge −ei, ~qi
have charge−~ei, andMi

j have charge ei þ ~ej. The spectrum

3Note that (4.1) is a special case of this, with qi ¼ ei.
4Therefore, it can be lifted in the two-dimensional infrared

theory, if all the terms in the Lagrangian that violate symmetries
that do not satisfy this constraint are irrelevant in the IR.
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of the low energy (0,2) theory can then be read off the
general analysis above. The superpotential (4.10) gives rise
at low energies to a (0,2) superpotential, which will be
discussed below.

V. BRANE CONSTRUCTION

The N ¼ 1 SQCD has a natural embedding in string
theory as the low energy effective theory on a system of
D-branes and NS5-branes.5 This description was found in
the past to be useful for analyzing both supersymmetric and
nonsupersymmetric aspects of the dynamics of the theory,
and it is natural to ask whether that is the case here as
well. In this section we shall describe the gauge theory
construction of the previous section in terms of branes.
The brane system whose infrared limit corresponds to

the N ¼ 1 SQCD is shown in Fig. 1. It contains three types
of BPS branes in type IIA string theory: Neveu-Schwarz
(NS) five-branes, Dirichlet four-branes and six-branes.
All branes are extended in the 3þ 1 dimensions xμ,
μ ¼ 0; 1; 2; 3. The Nc D4-branes are further stretched in
the x6 direction between two differently oriented NS5-
branes, which we shall refer to as NS and NS0-branes. The
former are stretched in ðx4; x5Þ; the latter in ðx8; x9Þ. The
Nf D6-branes are extended in the directions ðx7; x8; x9Þ and
are placed between the five-branes.
The configuration of Fig. 1 preserves four supercharges.

Thus, the theory that lives at the intersection of the different
branes is N ¼ 1 supersymmetric in the 3þ 1 dimensions
xμ; this theory is N ¼ 1 SQCD [4]. The UðNcÞ vector
superfield and corresponding supersymmetric Yang-Mills
(SYM) Lagrangian [the first line of (4.2)] comes from
taking the low energy limit of 4 − 4 strings. For infiniteD4-
branes this gives five-dimensional SYM with 16 super-
charges; however, here one of the world volume directions
(x6) is a line segment, so the low energy theory is 3þ 1
dimensional. The boundary conditions at the ends of the
line segment, where the four-branes end on five-branes,
give mass to all fields other than the N ¼ 1 SYM ones.
The Nf fundamental chiral superfieldsQi, ~Qi come from

4–6 strings which are localized in x6. The full global
symmetry (4.6) is not manifest in Fig. 1. The diagonal
SUðNfÞ is visible as the gauge symmetry on the flavor
branes6 (the D6-branes). The full symmetry (4.6) is from
the point of view of Fig. 1 an accidental symmetry of the
low energy theory. One can make it manifest by moving
all the D6-branes in the x6 direction to the location of
the NS0-brane [12]. Then the D6-branes are split into
two disconnected components (with x7 ≥ 0 and x7 ≤ 0,

respectively) by the five-brane, and one can perform
separate SUðNfÞ transformations on the two components.
To implement our construction, we would like to

compactify ðx1; x2Þ on a torus, pick a Uð1Þ inside the
global symmetry group (4.6), and turn on the magnetic field
on the torus and D field for it. As mentioned above, in the
brane construction it is slightly simpler to deal with the
diagonal SUðNfÞ; therefore, we shall take the Uð1Þ to be a
subgroup of this SUðNfÞ. It is possible to generalize
the discussion to other Uð1Þ symmetries, by placing the
D6-branes of Fig. 1 at the location of the NS0-brane and
using the results of [12].
In terms of the branes, the procedure of turning on the

external fields discussed above is described as follows.
Each of the Nf D6-branes gives rise to one hypermultiplet,
Qi, ~Qi, which is charged under the Uð1Þ gauge field living
on the six-brane. We turn on a magnetic field Bi for this
Uð1Þ field and accompany it by a suitable rotation of the
D6-brane from the x7 to the x6 direction. The latter is the
brane analog of the D term in the low energy gauge theory,
and it preserves SUSY if we tune the rotation angle to
correspond to the magnetic field that we turned on. This can
be shown directly, but we shall see it in a slightly different
language later. The requirement that the B field lies in the
diagonal SUðNfÞ [i.e. is orthogonal to the gauge group, as
in (4.8)] is in this language

P
iBi ¼ 0. The resulting

configuration in the ðx6; x7Þ plane is exhibited in Fig. 2.
The Nf D6-branes are rotated from the x7 axis by angles θi
that are determined by the magnetic fields Bi, tan θi ∝ Bi.
This corresponds in the field theory to giving to the ith
flavor charge ei proportional to Bi for Qi and ~ei ¼ −ei
for ~Qi.
Since we shall be discussing below the consequences

of Seiberg duality in the compactified theory with the
background B and D fields, it is useful to review the

NS NS’D6

D4

FIG. 1. The brane system that realizes N ¼ 1 SQCD in type IIA
string theory consists of Nc D4-branes stretched in the x6

direction between two differently oriented NS5-branes. Nf
D6-branes intersect the D4-branes at a particular x6.

5We shall not provide a self-contained discussion of this
system, instead referring the reader to the review [5].

6The gauge symmetry on the six-branes is in fact UðNfÞ, but
Uð1Þ acts on the low energy theory in the same way as the Uð1Þ
factor in UðNcÞ, and so is not an independent symmetry.

DAVID KUTASOV AND JENNIFER LIN PHYSICAL REVIEW D 89, 085025 (2014)

085025-8



generalization of the above discussion to the magnetic
theory. The brane configuration corresponding to the
Seiberg dual theory [4,5] is depicted in Fig. 3.
The Nf − Nc color D4-branes connecting the NS5-

branes give rise to the magnetic gauge group
UðNf − NcÞ. The Nf flavor D4-branes stretched between
the NS0-brane and D6-branes give the magnetic meson M.
The magnetic quarks q, ~q come from strings stretched
between the color and flavor branes, and are thus localized
near the NS0-brane.
Turning on the B field on the D6-branes and rotating

them in the (67) plane by a suitable amount leads to the
configuration of Fig. 4. The flavor D4-branes are now
rotated in the (67) plane by the same angle as the
corresponding D6-branes. Supersymmetry seems to be
superficially violated, but is restored by a nonzero value
of the magnetic field on the flavor D4-branes.

In the brane systems described in this section, theD field
deformation is described geometrically, but the magnetic
field on the torus is not. It would be nice to geometrize the
B field as well. To this end we next turn to a description of
our system as a compactification of the three-dimensional
theory obtained by first compactifying N ¼ 1 SQCD on a
circle.

VI. THREE-DIMENSIONAL DESCRIPTION

Three-dimensional N ¼ 2 SQCD has a brane description
which is formally obtained by T dualizing the system of
Fig. 1 in, say, the x2 direction [5]. This does not do anything
to the NS5-branes, but turns the D4-branes into D3-branes
stretched in (0136), and the D6-branes into D5-branes
stretched in (013789), in type IIB string theory. Since we
want to think of the theory as a compactification of four-
dimensional N ¼ 1 SQCD on a finite circle, we keep the
size of the x2 circle finite.
As before, we want to also compactify x1 on a circle and

turn on the background fields B and D described above. In
the four-dimensional description, the B field corresponds to
a vector potential A2 ¼ Bx1 for a global Uð1Þ, which is
realized in the brane construction as the Uð1Þ gauge field
on a D6-brane. In three dimensions, A2 becomes a scalar
field in the vector multiplet on a D5-brane. Turning on an
expectation value for it corresponds to rotating the D5-
brane in the ðx1; x2Þ plane. The quantization of the B field is
manifest in the three-dimensional description: it is due to
the fact that as the D5-brane wraps the x1 circle once, it has
to return to its original position on the torus, and thus must
wrap the x2 circle an integer number of times (see Fig. 5).
As is clear from the figure, rotating the D5-brane in this
way localizes the matter coming from 3–5 strings on the x1
circle, as is expected from the four-dimensional perspec-
tive, where this is due to the magnetic field. The degeneracy
(3.11) comes in this language from the fact that a D5-brane
that wraps e times around the x2 circle as it goes once

D4

7

6

D6

FIG. 2. Turning on the D field gives rise to a configuration in
which the D6-branes are rotated in the ðx6; x7Þ plane.

D4

NSNS’D6

D4

FIG. 3. The brane system that realizes the Seiberg dual of
N ¼ 1 SQCD includes Nf − Nc color D4-branes connecting two
NS5-branes, and Nf flavor D4-branes, each connecting the
NS0-brane to one of Nf D6-branes.

7

D4 NSNS’

6
D6

FIG. 4 (color online). The effect of the D field on the magnetic
brane system.
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around x1 intersects the D3-branes at e points on the x1

circle.
In the low energy field theory, moving a D5-brane in x2

corresponds to giving equal and opposite real masses to the
corresponding chiral superfields Q, ~Q. Rotating it in the
ðx1; x2Þ plane thus corresponds to a real mass that depends
linearly on x1, which breaks Lorentz symmetry to SOð1; 1Þ
and localizes these fields at the minimum of the resulting
potential.
Turning on the D field again corresponds to rotating the

D5-brane in the ðx6; x7Þ plane, as in Fig. 2. The fact that
the configuration preserves supersymmetry can be seen as
in other cases involving rotated branes [13]. Defining
z1 ¼ x1 þ ix7 and z2 ¼ x2 þ ix6, the D5-branes are origi-
nally located at z2 ¼ 0 (say), and together with the other
branes in the configuration preserve N ¼ 2 supersymmetry
in the three dimensions ðx0; x1; x3Þ. Rotating aD5-brane by
a general angle θ,

z → ΩðθÞz; (6.1)

with ΩðθÞ the standard 2 × 2 rotation matrix, preserves two
of the four supercharges, which form a (0,2) superalgebra
in the 1þ 1 dimensions ðx0; x3Þ.
We can now combine all of the above elements to

describe the models of Sec. IV in terms of branes. Consider
e.g. the model in which we give Nf=2 of the Q’s ( ~Q’s)
charge e ¼ þ1 (−1), and to the other Nf=2 the opposite
charge. The corresponding brane configuration is depicted

in Fig. 6. Each intersection of theNc D3-branes with one of
the Nf rotated D5-branes supports either a (0,2) chiral
superfield coming fromQ and a Fermi superfield from ~Q or
the other way around, depending on the sign of the rotation
angle. The Σ chiral superfield comes from the low lying
modes living on the D3-branes, as does the gauge super-
field ϒ. In the next section we shall study the dynamics of
these fields.
Note, incidentally, that if we were to remove the

constraint (4.8) that the Uð1Þ which we use for the
construction is not part of the gauge group, we could
consider taking the charges to be ei ¼ e, ~ei ¼ −e for all
i ¼ 1;…; Nf. This corresponds to turning on a magnetic
field and D field for the Uð1Þ factor in the gauge group,
Uð1ÞB. In the brane picture, this would correspond to
rotating all Nf D5-branes by the same angle, leading to the
brane configuration of Fig. 7(a).
An equivalent brane configuration can be obtained by

turning on an FI term for the Uð1Þ factor in the gauge
group. Indeed, the latter corresponds to the relative dis-
placement of the two NS5-branes in x7 [5]. Naively, this
deformation breaks supersymmetry; however, there are two
ways to restore it (classically). If the number of flavors is
large enough, one can break the gauge group and go into
the Higgs branch, while maintaining (2þ 1)-dimensional
Poincaré symmetry. Another option, which is available
for all Nf, is to turn on the scalar field ϕ2 in theUð1Þ vector
multiplet, ϕ2 ∝ x1, breaking the (2þ 1)-dimensional
Lorentz symmetry down to 1þ 1 dimensions. The result-
ing brane configuration is plotted in Fig. 7(b). Clearly,
Figs. 7(a) and 7(b) are related by an overall rotation in the
(67) plane and lead to equivalent physics. This is a quick
way to see that rotating the flavor branes in the (67) plane

D3

D51

2

FIG. 5 (color online). Quantization of the magnetic field on the
two-torus corresponds in the IIB language to quantization of the
angle that the D5-brane makes with the x1 axis. Plotted is a D5-
brane with e ¼ 2 in the double covering space of the torus
(parallel dashed lines are identified). As the D5-brane wraps the
x1 circle once, it wraps the x2 circle twice.

2

(a)

D3

D5D5

NS NS’

D5 D5

D3

6

7

(b)
1

FIG. 6 (color online). Two views of the brane configuration
describing compact three-dimensional N ¼ 2 SQCD in a back-
ground global Uð1Þ under which half of the flavors have charge
þ1 and half −1. (a) The configuration in the (12) plane; the flavor
branes wind once around the x2 circle as they wind once around
the x1 one. (b) The configuration in the (67) plane; turning on the
D field for the flavor symmetry corresponds to a rotation of the
flavor branes from x7 to x6.
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corresponds to turning on a D term for a Uð1Þ symmetry.
Note that the above discussion also implies that turning on
an FI term for a Uð1Þ gauge symmetry in the higher
dimensional theory does not correspond to turning on the
FI term (2.11) in the low energy two-dimensional (0,2)
theory.

VII. COMMENTS ON THE QUANTUM THEORY

In this section we discuss some aspects of the low energy
dynamics of the systems described in the previous sections.
We will focus on the choice of charges depicted in Fig. 6,
but it is easy to generalize to other cases.
The light spectrum of the resulting model is summarized

in Table I, where we indicated the transformation properties
of the superfields under the SUðNf=2Þ factors in (4.9), as
well as under the global Uð1Þ used in our construction,
which is denoted by Uð1Þe in the table. The gauge trans-
formation properties have been suppressed in the table. The
first (last) two fields in the table transform in the (anti)
fundamental representation of the UðNcÞ gauge group.
In addition to the fields in Table I, there is the (0,2) chiral

superfield Σ and the field strength ϒ. Both transform in the
adjoint of UðNcÞ and are singlets under all the symmetries
listed in Table I. As explained in Sec. IV, the E functions for
the Fermi superfields in Table I vanish in the light sector,
and in particular there is no potential of the form jσj2jΦj2
coupling the fundamentals ðΦ ¼ Q; ~QÞ and adjoint. This is
easy to see from the brane perspective. Before turning on
the background B and D fields, this potential could be
understood as follows. The imaginary part of σ can be
thought of as parametrizing the location of theD3-branes in
the x2 direction.7 For generic positions of the three-branes,
strings stretched between them and the five-branes have a

minimal length proportional to theD3–D5 separation in the
x2 direction. This gives rise to a mass for the chiral
superfields which is captured by the jσj2jΦj2 potential.
After turning on the background fields, it is no longer true
that changing σ gives a mass to the chiral superfields. As is
clear from Fig. 6(a), all it does is change their location in x1,
an effect that we saw in the discussion of the gauge theory
Lagrangian (4.4).
One of our goals in this section is to compare the

two-dimensional theory obtained from SQCD to the one
obtained from its Seiberg dual. To facilitate the comparison,
we present in Table II the two-dimensional spectrum
and quantum numbers of the charged superfields in the
magnetic theory.
Here λ1 and ~λ2 are Fermi superfields obtained from the

four-dimensional chiral superfields q1 and ~q2, which have
Uð1Þe charge −1, using the construction of Sec. III.
Similarly, q2 and ~q1, which have charge þ1, give rise to
chiral superfields. The four-dimensional singlet meson
fields Mi

i, i ¼ 1, 2, have Uð1Þe charge 0 and thus give
upon reduction a Kaluza-Klein (KK) tower of chiral and
Fermi superfields, the lowest of which are massless. The
off-diagonal meson fields M1

2 and Λ2
1 have charges þ2 and

−2, respectively, and give chiral and Fermi superfields with
degeneracy two. This degeneracy is due to the fact that the
flavor D3-branes in the brane configuration dual to that of
Fig. 6 intersect twice on the torus. Each intersection
supports one copy of the above chiral and Fermi super-
fields. The magnetic superpotential (4.10) gives rise in two
dimensions to an effective (0,2) superpotential of the
schematic form

D3

NS NS’

D5

D3

(a)

NS

NS’

D5

7

6 (b)

FIG. 7 (color online). Turning on B and D fields for a global
symmetry that acts on the dynamical fields in the same way as the
Uð1Þ part of the gauge group leads to the brane configuration (a),
which is equivalent to the configuration (b) obtained by turning
on an FI term and scalar field ϕ2ðx1Þ for that Uð1Þ.

TABLE I. The quantum numbers of the light states of the
electric model.

Field SUðNf=2Þ1 SUðNf=2Þ2 SUðNf=2Þ3 SUðNf=2Þ4 Uð1Þe
Q1 Nf=2 1 1 1 þ1
Λ2 1 Nf=2 1 1 −1
~Λ1 1 1 Nf=2 1 −1
~Q2 1 1 1 Nf=2 þ1

TABLE II. The quantum numbers of the light states of the
magnetic model.

Field SUðNf=2Þ1 SUðNf=2Þ2 SUðNf=2Þ3 SUðNf=2Þ4 Uð1Þe
λ1 Nf=2 1 1 1 −1
q2 1 Nf=2 1 1 þ1

~q1 1 1 Nf=2 1 þ1

~λ2 1 1 1 Nf=2 −1
M1

1, Λ
1
1 Nf=2 1 Nf=2 1 0

M2
2, Λ

2
2 1 Nf=2 1 Nf=2 0

M1
2ð×2Þ Nf=2 1 1 Nf=2 þ2

Λ2
1ð×2Þ 1 Nf=2 Nf=2 1 −2

7On the Coulomb branch, the UðNcÞ gauge symmetry is
broken to Uð1ÞNc . The real part of σ can be thought of as the dual
of the unbroken gauge field.
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W ¼ M1
1λ1 ~q

1 þM2
2q2 ~λ

2 þ Λ2
1q2 ~q

1: (7.1)

We would like to understand the low energy dynamics of
the electric and magnetic theories described above. Starting
with the electric theory, the first issue we would like to
discuss is the fate of the Coulomb branch. The D-term
potential Tr½σ; σ̄�2 can be used as usual to diagonalize the
adjoint scalar field σ. The Coulomb branch is labeled by the
eigenvalues of this matrix. From the brane perspective it
corresponds to displacing the color branes in the x2

direction, as depicted in Fig. 8(a).
Classically, the potential on the Coulomb branch is flat,

but quantummechanically it is not. At a generic point in the
Coulomb branch, the chiral superfields Q1 and ~Q2 are
localized at different places on the x1 circle [see Fig. 8(a)].
Locally in x1 the theory thus looks like two copies of a
Uð1Þ gauge theory, one with just Q1 and Λ2, the other with
~Λ1, ~Q2. Each of these theories separately breaks super-
symmetry due to a nonzero expectation value of the D term
in the quantum theory. Therefore, it is natural to expect
that the theory that contains both also has this property. A
more detailed discussion of this issue is presented in the
Appendix.
The analysis of the Appendix implies that the Coulomb

branch of Fig. 8(a) is replaced in the quantum theory by a
discrete set of vacua, labeled by an integer N, which in the
brane description corresponds to the number of color three-
branes that are placed at one of the intersections of the
flavor branes. The other Nc − N color branes are placed at
the other intersection [see Fig. 8(b)]. Superficially it looks
like the integer N runs from 0 toNc, but we shall next argue
that it must satisfy further constraints.
The D-term conditions for the modes localized at one

of the intersections in Fig. 8(b), say the one with N color
D3-branes, are given in the Appendix. They are the same as
those for four-dimensional N ¼ 1 SQCD with gauge group

UðNÞ and Nf=2 flavors Q1 and ~Q2. The classical moduli
space of that theory has been well studied (see e.g. [1,2]).
For Nf ≥ 2N, the gauge symmetry is generically com-
pletely broken, and the moduli space is NfN − N2 dimen-
sional. For Nf < 2N, the gauge symmetry is generically
broken to UðN − 1

2
NfÞ by the fundamentals. The classical

Higgs moduli space is in this case N2
f=4 dimensional and

can be parametrized by the gauge invariant meson fields
Q1 ~Q2. In two dimensions there are also Coulomb moduli
associated with the unbroken part of the gauge group,
which break it further to the Cartan subalgebra.
Quantum mechanically, we expect supersymmetry to be

broken at intersections with Nf < 2N. Indeed, in other
situations of this sort, such as N ¼ 1 SQCD in four
dimensions and N ¼ 2 SQCD in three dimensions with
more colors than flavors, the theory develops a quantum
superpotential for some of the classical moduli that pushes
them to infinity. We expect the same to happen here, but
will not attempt to show that it does.
In the brane picture, the fact that the gauge symmetry is

not completely broken along the Higgs moduli space
implies that at a generic point in moduli space N − 1

2
Nf

of the D3-branes continue to stretch between the NS5-
branes. Quantum mechanically, suchD-branes are typically
repelled by other D3-branes ending on the five-branes [5].
This generates a potential for the corresponding Coulomb
branch moduli that pushes them away from the intersection.
Assuming that the above picture is correct, we conclude

that if we want the low energy theory to have a super-
symmetric vacuum, N must lie in the range

Nc − Nf

2
≤ N ≤

Nf

2
; (7.2)

where we also included the constraint that follows from
requiring stability of the vacuum at the other intersection.
Note that (7.2) implies in particular that Nf ≥ Nc. This is
satisfactory since if Nf and Nc are outside this range, the
four-dimensional theory does not have a vacuum even
before we compactify it and turn on any background
fields.
To summarize, we conclude that quantum vacua of the

two-dimensional theory obtained from N ¼ 1 SQCD via
our construction are labeled by an integer N, which can be
thought of as a discrete remnant of the classical Coulomb
branch and takes values in the range

max

�
0; Nc − 1

2
Nf

�
≤ N ≤ min

�
Nc;

1

2
Nf

�
: (7.3)

The total number of disconnected branches of moduli
space is

Nbr ¼
�
Nf − Nc þ 1 for Nf ≤ 2Nc

Nc þ 1 for Nf ≥ 2Nc
: (7.4)

1

(a)

D5D5 D5D5

D3

N −N  D3c

N  D3

(b)

2

FIG. 8 (color online). (a) At a generic point on the Coulomb
branch, the Nc D3-branes are separated in x2. (b) At special
points on the Coulomb branch, the Q’s and ~Q’s are localized at
the same points in x1.
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In each component, the low energy theory consists of
theories localized at the two intersections. In general, we
expect these theories to be coupled by terms obtained
from integrating out massive modes living on the three-
branes and exchange of modes living on the five-branes,
but these couplings can be suppressed by taking the size
to the x2 circle to infinity. Therefore, below we shall
assume that the two theories are decoupled.
The bosonic part of the theory at the intersection

corresponding to the N color branes is a σ model on the
moduli space of solutions to the UðNÞ D-term equations.
As mentioned above, the complex dimension of this space
isNfN − N2. The right-moving central charge, and the left-
moving one that is equal to it due to the absence of a
gravitational anomaly in the spectrum of Table I, can be
read off by going to large values of Q, ~Q, where the theory
becomes weakly coupled. This gives

cR ¼ cL ¼ 3ðNfN − N2Þ: (7.5)

Near the origin of the Higgs branch, the theory becomes
strongly interacting in the IR due to the gauge dynamics. If
Nf ≫ N, one can use vector model techniques to solve it.
We next turn to the magnetic theory, whose brane

description is given in Fig. 9. Flavor D3-branes are
plotted in black in the figure. They split into two groups
according to the global Uð1Þ charges (which are �1, as
before) and intersect at two points on the torus. Color
branes, plotted in blue, split into two groups of N̂ and
Nf − Nc − N̂ which are placed at the two intersections,
as in the electric theory.
The dynamics is again localized at the two intersections.

Consider e.g. the intersection associated with the N̂ color

branes. It is a UðN̂Þ gauge theory with the matter content
listed in Table II above and superpotential (7.1). The
parameter N̂ takes a value in the range 0≤ N̂≤Nf−Nc,
but as in the electric case we expect it to also satisfy the
constraints N̂, Nf − Nc − N̂ ≤ Nf=2. Indeed, if the singlet
mesons Mi

j were not coupled to the magnetic theory, the
latter would be identical to the electric theory with the
replacement Nc → Nf − Nc, N → N̂, and the parameter N̂
would satisfy the analog of (7.3),

max

�
0;
1

2
Nf − Nc

�
≤ N̂ ≤ min

�
Nf − Nc;

1

2
Nf

�
:

(7.6)

The number of branches of moduli space would again
be given by (7.4), which is essentially the statement
that this expression is invariant under Seiberg duality,
Nc → Nf − Nc. Coupling the meson fields to the magnetic
theory is not expected to change the number of branches;
hence the vacua of the full magnetic theory are also
expected to be labeled by the integer N̂ taking value in
the range (7.6).
The map between the electric and magnetic vacua can be

obtained by comparing the ‘t Hooft anomalies of the two
models. In the electric theory, the spectrum of Table I gives
rise to the following nonzero anomalies:

½SUðNf=2Þ1�2∶ þ N;

½SUðNf=2Þ2�2∶ − N;

½SUðNf=2Þ3�2∶ − N;

½SUðNf=2Þ4�2∶ þ N: (7.7)

In the magnetic theory we find the same result, with N
replaced by Nf=2 − N̂. Therefore, we conclude that the
map between the electric and magnetic vacua is

N̂ ¼ Nf

2
− N: (7.8)

This relation maps the range (7.3)–(7.6).
The equivalence between the electric and magnetic

theories can be thought of as a strong-weak coupling
duality in the following sense. As explained above, the
electric theory, which is a (0,2) sigma model on the
Higgs branch of the UðNÞ gauge theory with Nf=2
flavors, becomes weakly coupled in the region of large
Q1, ~Q2. In the magnetic theory, the field parametrizing
the target space of this sigma model is the singlet meson
M1

2. Since it does not appear in the magnetic super-
potential (7.1), superficially it appears that this field is
free in the infrared. However, one can show that
integrating out the massive fields leads to the appearance
of interactions of this field with the Fermi superfields that
are charged under the gauge group in Table II. Denoting

c

2

1

D3 D3

N  D3

N   − N   − N  D3f

FIG. 9 (color online). The magnetic brane configuration for
general Nf , Nc. Vacua are labeled by an integer N̂ that runs over
the range described in the text. For each N̂ the theory splits into
two decoupled theories at the intersections.
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these superfields collectively by λ, the leading couplings
take the schematic form

L ∼
Z

d2θjM1
2j2jλj2: (7.9)

These interactions make the magnetic theory strongly
coupled in the large M1

2 region, where the electric theory
is weakly coupled. This is reminiscent of what happens
in four dimensions [8], where going along the electric
Higgs branch makes the electric (magnetic) theory more
weakly (strongly) coupled.
Another sense in which the relation between the electric

and magnetic theories is a strong-weak coupling duality is
the following. As mentioned above, for Nf=2 ≫ N, the
electric theory becomes a gauge theory with many more
flavors than colors, which can be treated using large N
vector model techniques. In this sense, the electric gauge
dynamics becomes weakly coupled in this limit. The
relation (7.8) implies that in this limit the magnetic gauge
dynamics is strongly coupled, since the rank of the
magnetic gauge group, N̂, is comparable to the number
of flavors, Nf=2. Conversely, for Nf=2 ≫ N̂, the magnetic
gauge dynamics is weakly coupled, since the number of
flavors is much larger than the rank of the magnetic gauge
group, while the electric theory is strongly coupled since
the electric rank and number of flavors are comparable.
This is similar to what happens in the three-dimensional
analogs of Seiberg duality [14,15].
Earlier in this section we wrote down the central charge

of the electric theory localized at an intersection with N
color branes, Eq. (7.5). This was done by studying the low
energy theory at large values of the scalar fields that
parametrize the Higgs branch, where the theory simplifies.
In the magnetic theory, the analogous calculation is more
involved, due to the presence of the singlet mesons and
superpotential (7.1). However, we can attempt to calculate
the central charge by using its relation to the anomaly of the
Uð1ÞR symmetry which belongs to the N ¼ 2 supercon-
formal multiplet.
In the electric theory thisUð1ÞR assigns charge zero toQ

and ~Q, since they parametrize the target space of the
low energy σ model (as in [16]). The fermions in these
multiplets thus have R charge −1. The Fermi superfields
have R charge zero, being left moving. The adjoint chiral
superfield Σ is massive, hence its R charge is one. Finally,
ϒ has R charge one, as is clear from its mode expansion
(2.5). Altogether we find the anomaly

k ¼ 2 ×
1

2
NfN − N2; (7.10)

with the first contribution coming from the fermions in Q,
~Q, and the second from ϒ. Multiplying by three we get the
central charge of the theory, Eq. (7.5).

In the magnetic theory, the adjoint fieldsϒ and Σ have R
charge one, as before. The magnetic meson M1

2 has R
charge zero, since it is related to the chiral superfield Q1 ~Q2

in the electric theory. We will assume that the fieldsM1
1 and

Λ1
1 are massive in the quantum theory. Indeed, a coupling of

the E-type (2.8), D̄þΛ1
1 ¼ mM1

1 is consistent with all the
symmetries of the problem, and we expect it to be
generated by the quantum dynamics, since the electric
field dual toM1

1,Q
1 ~Q1, is massive. The singlet meson Λ1

1 in
the magnetic theory is dual to Q1 ~Λ1 in the electric one,
which has R charge zero. Thus, we assign R charge zero to
Λ1
1 and one to M1

1. The magnetic chiral superfields q2; ~q1

are assigned charge Rq, while the Fermi superfields λ1 and
~λ2 are assigned charge Rλ.
The magnetic superpotential (7.1) then implies that

Rq þ Rλ ¼ 0, and RðΛ2
1Þ ¼ 1 − 2Rq. Thus, all R charges

are determined by Rq. To find it we evaluate the Uð1Þ2R
anomaly in the magnetic theory, which gives

k ¼ NfN̂ðRq − 1Þ2 − NfN̂R2
q þ

N2
f

4
−
N2

f

4
ð1 − 2RqÞ2 − N̂2;

(7.11)

and demand that it be equal to (7.10). This gives8

Rq ¼ −Rλ ¼
2N
Nf

−
1

2
¼ N − N̂

Nf
: (7.12)

The electric theory has a nonvanishing Uð1ÞeUð1ÞR
anomaly

Uð1ÞeUð1ÞR∶ − NNf: (7.13)

One can check that the magnetic theory with the charge
assignments above gives the same anomaly.
It is natural to ask whether the result (7.12) can be

understood directly in the magnetic theory, rather than by
demanding agreement with the electric one. We do not have
a full answer to this question, but can offer the following
observations. First, note that the Uð1ÞR anomaly (7.10) can
be written in terms of magnetic variables as

k ¼
�
Nf

2

�
2

− N̂2: (7.14)

If the N̂2 term was absent, it would be natural to interpret it
as due to the ðNf=2Þ2 chiral superfields M1

2, which do not
appear in the superpotential (7.1), and thus, at least naively,
seem to be free. In fact, as mentioned above, these fields
have interactions with the Fermi superfields charged under
the magnetic gauge group, of the schematic form (7.9).
These and other interactions presumably reduce the rank of

8A second solution, Rq ¼ 1=2, can be discarded based on the
Uð1ÞeUð1ÞR anomaly.
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the part of the M1
2 matrix that is genuinely free by N̂, and

give rise to (7.14). We have not studied the detailed way in
which this happens, but it seems that at least in the limit
Nf ≫ 2N̂, we can approximately treat the full Nf

2
× Nf

2
matrix M1

2 as consisting of free noncompact chiral super-
fields, whose R charge is fixed at zero. The R charge Rq
can then be evaluated by extremizing k (7.11) subject
to this constraint [17,18].9 This gives Rq ¼ N=Nf, which
agrees with (7.12), since in the limit Nf=2 ≫ N̂ one
has N ¼ Nf=2 − N̂ ≃ Nf=2.
For generic Nf; N̂, it is less clear what to do. From the

duality we expect part of the matrix M1
2 to give rise to a

noncompact moduli space of complex dimension (7.14),
which implies that using k extremization is more involved.
The derivation of (7.12) in that case remains an open
problem.

VIII. DISCUSSION

Our main purpose in this paper was to explore the
theories one gets by starting with four-dimensional N ¼ 1
supersymmetric gauge theories and reducing them on a
two-torus with a nonzero magnetic field and corresponding
D term for a global Uð1Þ symmetry. This gives rise at
long distances to two-dimensional field theories with (0,2)
supersymmetry, and our goal was to explore their dynam-
ics. We focused on the special case of N ¼ 1 SQCD and a
particular choice of global Uð1Þ symmetry, which is a
subgroup of the global symmetry group of the model.
We showed that the low energy theory has a nontrivial
vacuum structure, and in a given vacuum it gives a (0,2)
supersymmetric σ model on the Higgs branch.
We also discussed the fate of Seiberg duality in four

dimensions under such a reduction. We presented evidence
that it survives the compactification to two dimensions and
the reduction of supersymmetry from four to two super-
charges. In particular, the vacuum structure of the electric
theory appears to be reproduced by the magnetic theory.
Our analysis was incomplete in many respects. In particu-
lar, parts of the discussion of quantum effects in Sec. VII
relied to a large extent on the brane picture, and analogies to
what happens in other dimensions. It would be interesting
to fill these gaps and understand the dynamics directly in
field theory.
Most of our analysis was restricted to the case where the

global charges of the fields under the Uð1Þ for which we
turn the background fields are þ1 for half of the flavors
and −1 for the other half. One might wonder what happens
if we take a more general choice of solution to the
constraints (4.7) and (4.8).
A simple generalization is to replace the charges �1 in

the construction by�n, with n an integer larger than one. It
is particularly easy to see what happens in that case in the

type IIB brane construction of Sec. VI. The flavor branes
have 2n intersections, which split into two groups of n
intersections at a given value of x2. Thus, the low energy
theory is a sum of n theories of the sort described above
with gauge group UðNÞ living at one value of x2, and n
theories with gauge group UðNc − NÞ living at the other.
Thus, taking n > 1 does not introduce any genuinely new
elements into the discussion.
Other generalizations of our construction involve non-

trivial solutions of the equations for the ei, (4.7), (4.8). As a
simple example, consider a Uð1Þ gauge theory with three
flavors and charges e1 ¼ 2, e2 ¼ e3 ¼ −1 (and ~ei ¼ −ei).
It is easy to see what happens in this model using the brane
construction. The three flavors correspond to D5-branes,
one of which has winding number two (as in Fig. 5), and
the other two winding one with the opposite orientation.
The colorD3-brane is again pushed toward the intersection
of the D5-branes; however, now even at the intersection,
the D-term potential leads in the quantum theory to
supersymmetry breaking due to an incomplete cancellation
between the contributions of Q and ~Q. This is typically
what happens for general global charge assignments.
There are many natural generalizations of the discussion

in this paper. In particular, one can study more general N ¼
1 gauge theories and the corresponding two-dimensional
(0,2) models [20], generalize to models with N ¼ 2 SUSY
in four dimensions, and embed our construction in a
holographic setting (for N ¼ 4 SYM this was discussed
in [7,18]). Hopefully, such generalizations will help elu-
cidate the relation between the dynamics of the underlying
four-dimensional models and the long distance two-
dimensional ones, and shed light on both. It would also be
interesting to understand the relation between our construction
and other ways of getting (0,2) models in two dimensions
from higher dimensional theories, such as [21–23].
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APPENDIX: COULOMB BRANCH ANALYSIS

In this appendix we discuss the classical Coulomb
branch of the theory discussed in the text and show that
it is lifted by quantum corrections.

1. Classical analysis

We begin by studying the classical vacuum structure.
To introduce some of the issues in a simpler setting, we

9For a discussion of k extremization in the context of gauge/
gravity duality, see [19].
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start with the case Nf ¼ Nc ¼ 1 (depicted in Fig. 5).
This case does not satisfy the constraints (4.8) but is a
useful warm-up for models with larger Nf and Nc.
Before turning on the background fields (in the brane
realization when the three-brane and five-brane in Fig. 5
are both stretched in the x1 direction), the low energy
theory is a three-dimensional field theory with N ¼ 2
SUSY, Uð1Þ gauge group, and two charged chiral
superfields Q, ~Q with global charges þ1 and −1,
respectively, compactified on a circle. After turning
on the background fields, Q and ~Q give (0,2) chiral
and Fermi superfields Q, ~Λ, while the vector superfield
gives rise to the (0,2) field strength superfield ϒ and
adjoint chiral superfield Σ.
The classical moduli space consists of a one-

dimensional Coulomb branch labeled by σ. This is easy
to see in the brane picture, where the Coulomb branch is
parametrized by the position of the D3-brane in the x2

direction and the dual of the Uð1Þ gauge field on the
three-brane. The two-dimensional theory does not have
a Higgs branch; the field Q is set to zero by the D-term
potential, which is proportional to jQj4. We would like
to verify this picture in the higher dimensional field
theory.
The fields that enter our analysis are the scalar field

ϕ ¼ Im σ parametrizing the position of the D3-brane in
the x2 direction, the auxiliary field D in the vector
multiplet on the D3-brane, and Q, as well as the back-
ground fields ϕB (which parametrizes the location of the
D5-brane in x2) and DB. In addition, it is necessary to
include in the discussion fields Qn that correspond to
wound open strings in the brane picture. The chiral
superfield Q is in the brane picture a string stretching
from the three-brane to the five-brane. Because x2 is
compact, there are actually infinitely many such fieldsQn,
corresponding to strings that stretch between the three-
brane and five-brane while winding n times around the x2

circle.10 For a given position of the D-branes, at most one
of these fields is light; however, relative motions of the
branes change which one it is. For example, keeping the
three-brane fixed and sending the five-brane around the x2

circle takes the mass of Qn to that of Qn�1, depending on
the direction of the motion. In the presence of the
nontrivial ϕB required by our construction, the position
of the five-brane in x2 changes with x1, so a similar shift
occurs as a function of x1.
Since we are only interested in the scalar potential,

we take all fields to be constant in ðx0; x3Þ. Denoting
the remaining coordinate x1 by x, the scalar potential is
given by

U¼
Z

2πR1

0

dx

�
1

2g2
ðϕ02−D2Þþ

X
n∈Z

ðjQ0
nj2− jQnj2ðDB−DÞ

þjQnj2ðϕB−ϕþ2πnR2TÞ2Þ
�
; (A1)

where T ¼ 1=2πα0 is the string tension and the prime
denotes differentiation in x1. Equation (A1) includes the
kinetic terms for thevarious fields and the standardcouplings
(4.2) of charged fields to the auxiliary fields in the vector
multiplets. The relative minus sign between the DB and D
couplings is due to the fact thatQ corresponds to an oriented
3–5 string, and therefore has opposite charges under the
gauge groups on the D3- and D5-branes.
The mass (last) term is the energy of a string stretching

from the three-brane to the five-brane while winding n
times around the x2 circle. Note that we have set the x
component of the dynamical gauge field A1ðxÞ to zero; this
can (almost) be done by a Uð1Þ gauge transformation. The
only information in A1 that cannot be gauged away is the
Wilson line expði R dxA1Þ or in other words constant A1,
which parametrizes one of the two directions of the
compact Coulomb branch of the model (the other being
the constant mode of ϕ). We shall set it to zero below.
To arrive at the configuration in Fig. 5, we take the

background fields to have the values

ϕB ¼ Bx; DB ¼ B: (A2)

Plugging (A2) into (A1) gives

U¼
Z

2πR1

0

dx
�
1

2g2
ðϕ02−D2Þ

þ
X
n

ðjQn
0þðϕB−ϕþ2πnR2TÞQnj2−jQnj2ðϕ0−DÞÞ

�
;

(A3)

where we used integration by parts and the fact
that ϕB

0 ¼ DB.
We also require that the integrand (A3) be well defined

on the circle. While ϕ and D are periodic, ϕB satisfies
ϕBðxþ 2πR1Þ ¼ ϕBðxÞ þ 2πR1B. If B satisfies

R1B ¼ lR2T (A4)

for some integer l, we can absorb this violation of
periodicity by demanding that

Qnðxþ 2πR1Þ ¼ QnþlðxÞ: (A5)

The constraint (A4) on the magnetic field B is the same
as the one obtained in the four-dimensional analysis (3.10).
The two are related by the standard T-duality relation

10These fields owe their existence to the compactness of x2.
From the point of view of the underlying four-dimensional theory
they are the momentum modes of the four-dimensional field Q in
the x2 direction.
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RðIIBÞ
2 ¼ α0=RðIIAÞ

2 . In the following we shall restrict to the
case l ¼ 1.
The equation of motion for D in (A3) sets it to

D ¼ g2
X
n

jQnj2: (A6)

Plugging this back into (A3) yields the energy function

U ¼
Z

2πR1

0

dx

�
1

2g2

�
ϕ0 − g2

X
n
jQnj2

�
2

þ
X
n

jQn
0

þ ðϕB − ϕþ 2πnR2TÞQnj2
�
: (A7)

Note that the first term in (A7) is the square of the
supersymmetry variation of the right-moving gaugino λþ
in the vector multiplet, and the second term is the square of
the variation of the right-moving fermion ðψþÞn in the
chiral multiplet Qn.
The vanishing of the energy necessary for supersym-

metry implies that the two terms in (A7) vanish separately.
In particular,

ϕ0 ¼ g2
X
n

jQnj2: (A8)

However, this relation is inconsistent with the periodicity
of ϕ. Indeed, upon integrating (A8) over the x1 circle, the
left-hand side vanishes since ϕ is periodic, while the r.h.s.
is positive definite. We conclude that Qn must vanish for
the vacuum to be supersymmetric. On the other hand,
configurations with Qn ¼ ϕ0 ¼ 0 manifestly satisfy U ¼ 0
for arbitrary (constant) values of ϕ. The classical moduli
space of the model with G ¼ Uð1Þ and one flavor there-
fore indeed consists of a Coulomb branch parametrized
by ϕ.
To get a nontrivial Higgs branch, we add another

chiral superfield with opposite Uð1Þ charge, so that
there are two flavors ðQi; ~QiÞ, i ¼ 1, 2. This is the
simplest model that satisfies (4.8). After turning on the
background fields (A2), we arrive at the system of
Fig. 6. The brane picture suggests that there is again a
Coulomb branch, parametrized by the scalar field σ,
whose imaginary part is the position of the D3-brane in
x2. At generic points on the Coulomb branch, the chiral
superfields ðQi; ~QiÞ give rise to two (0,2) chiral super-
fields Q ¼ Q1 and ~Q ¼ ~Q2 (as well as two Fermi
superfields, Λ2 and ~Λ1), which are localized at different
points on the x1 circle.
To analyze this case, we again start from the three-

dimensional Lagrangian and turn on the background fields.
The analogs of (A6) and (A7) are

D ¼ g2
X
n

ðjQnj2 − j ~Qnj2Þ;

U ¼
Z

2πR1

0

dx

�
1

2g2

�
ϕ0 − g2

X
n
ðjQnj2 − j ~Qnj2Þ

�
2

þ
X
n

½jQn
0 þ ðϕB − ϕþ 2πnR2TÞQnj2

þ j ~Qn
0 þ ðϕB þ ϕþ 2πnR2TÞ ~Qnj2�

�
: (A9)

The three terms in the scalar potential correspond to the
supersymmetry variations of the right-moving fermion
inside the vector, Qn and ~Qn multiplets, respectively,
and all three must vanish for (0,2) supersymmetry to be
preserved. It is clear that U ¼ 0 when ϕ0 ¼ Qn ¼ ~Qn ¼ 0
for arbitrary values of constant ϕ, corresponding to the
classical Coulomb branch. One can also satisfy the
conditions for unbroken supersymmetry by taking
QnðxÞ ¼ ~QnðxÞ and D ¼ ϕ0 ¼ 0; this is the Higgs branch
mentioned above.
Note that for constant ϕ the condition for the vanishing

of the last two terms in U can be thought of as follows.
Using the matching conditions (A5) (with l ¼ 1), we can
construct out of the Qn a single function QðxÞ on the
covering space of the x1 circle, and similarly for ~Q. The
vanishing of the last two terms in U is the requirement that
QðxÞ and ~QðxÞ are ground states of the harmonic oscillator,
localized at x ¼ ϕ=B and −ϕ=B, respectively. The first
term in U (A9) then requires ϕ ¼ 0; i.e. it fixes the
Coulomb modulus.
In the classical theory there actually seem to be solutions

with U ¼ 0 that have nontrivial D ¼ ϕ0 (as well as Q,
~Q ≠ 0). We shall not discuss them here since, as we shall
see below, they are lifted by quantum effects.
The above picture can be generalized to higher Nf, Nc.

The analog of (A9) for the general case is

Da¼g2
X
n

ðQ̄i
nTaQi

n− ~Qn
ρTa ~Qn

ρÞ−g2½σ̄;σ�a;

U¼
Z

2πR1

0

dx
�

1

2g2

�
ðϕaÞ0−g2

X
n
ðQ̄i

nTaQi
n− ~Qn

ρTa ~Qn
ρÞ
�
2

þ
X
n

½jðQi
nÞ0þðϕB−ϕaTaþ2πnR2TÞQi

nj2

þjð ~Qn
ρÞ0þðϕBþϕaTaþ2πnR2TÞ ~Qn

ρj2�
�
: (A10)

A new element in this case is the fact that the scalar fields
ϕa belong to the adjoint representation of UðNcÞ. We can
think of them as forming a Hermitian Nc × Nc matrix,
which can be diagonalized by a UðNcÞ gauge transforma-
tion. The eigenvalues of ϕ parametrize the Coulomb branch
of the model and correspond in the brane desription to the
positions of the Nc D3-branes in the x2 direction [as in
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Fig. 8(a)]. It is easy to generalize the Uð1Þ analysis to
this case.

2. Quantum analysis

We now turn to a discussion of quantum effects.
Since we are interested in the Coulomb moduli, we set

Qn ¼ ~Qn ¼ 0 and ask whether the moduli space labeled by
σ survives in the quantum theory. To see the basic physics it
is enough to consider the case Nc ¼ 1. The generalization
to larger Nc is straightforward.
The scalar potential U for this case can be written in

the form

U ¼
Z

2πR1

0

dx

�
1

2g2
ðϕ02 −D2Þ þ

X
n

ðjQ0
n þ ðϕB − ϕþ 2πnR2TÞQnj2

þj ~Qn
0 þ ðϕB þ ϕþ 2πnR2TÞ ~Qnj2 − ðjQnj2 − j ~Qnj2Þðϕ0 −DÞÞ

�
; (A11)

where we suppressed the flavor indices of Q and ~Q.
Although we are interested in the fate of classical vacua
withQ ¼ ~Q ¼ 0, in the quantum theory we need to include
the effects of fluctuations of these fields on the Coulomb
modulus ϕ. At large Nf this can be done by performing the
Gaussian integral over Q, ~Q and treating ϕ and D semi-
classically, and we shall do that below. In general ϕ and D
should be path integrated over as well, but we do not expect
this to change the conclusions.
The fields Q abd ~Q have an expansion in Landau levels,

Qnðx0; x3; xÞ ¼
X∞
a¼0

Qaðx0; x3Þφa
nðxÞ;

~Qnðx0; x3; xÞ ¼
X
a

~Qaðx0; x3Þ ~φa
nðxÞ; (A12)

where Qa and ~Qa are two-dimensional fields with masses
that scale as M2

a ¼ ajeBj (3.5). At one loop one has (see
e.g. [21] for a related discussion)

hQ̄0Q0i ¼ h ~Q0
~Q0i ¼

Nf

2

Z
d2k
ð2πÞ2

1

k2 þ μ2
∼
Nf

2
ln
Λ
μ
;

(A13)

where μ is an infrared scale; for the massive fieldsQa≠0 and
~Qa≠0, μ is replaced by ma. Since the infrared scale μ is in
general well below ma, the contributions of the massive
fields to the two point function are suppressed relative to
the massless ones. Therefore, we need only consider the
fluctuations of Q0 and ~Q0 in (A11). As discussed above,
the wave functions φ0

n and ~φ0
n are segments of the wave

function of the ground state of the harmonic oscillator,
localized at x ¼ ϕ0=B and −ϕ0=B, respectively.
It is convenient to define ϕnz ¼ ϕ − ϕ0, where ϕ0 is the

average value of ϕ on the x1 circle, and ϕ0 ¼ ϕ0
nz. After

integrating outQ0, ~Q0 (A13), the effective potential for ϕnz
and D reads

Ueff ¼
Z

2πR1

0

dx
�
1

2g2
ðϕ02

nz−D2ÞþNf

2

�
ln
Λ
μ

�
jϕnzj2ðFQðxÞ

þF ~QðxÞÞ−
Nf

2

�
ln
Λ
μ

�
ðFQðxÞ−F ~QðxÞÞðϕ0

nz−DÞ
�
:

(A14)

Here FQðxÞ ¼
P

njφ0
nðxÞj2 and F ~QðxÞ ¼

P
nj ~φ0

nðxÞj2. The
two differ by a shift F ~QðxÞ ¼ FQðxþ x0Þ with x0 propor-
tional to the Coulomb modulus ϕ0.
The equations of motion for ϕ0

nz and D that follow from
(A14) are

1

g2
ϕ00
nz−Nf

2

�
ln
Λ
μ

�
ðF0

Q−F0
~Q
Þ¼Nf

�
ln
Λ
μ

�
ϕnzðFQþF ~QÞ;

1

g2
D−Nf

2

�
ln
Λ
μ

�
ðFQ−F ~QÞ¼0: (A15)

As mentioned previously, ϕ0 −D is the variation of the
right-moving gaugino in the vector multiplet which must
vanish in order for (0,2) supersymmetry to be preserved.
From the above equations of motion, one can show that this
is equivalent to requiring FQ ¼ F ~Q. But FQ, F ~Q are
identical up to a shift in x. This condition is satisfied iff
the shift is zero, i.e. Q and ~Q are localized at the same
position in x.
To summarize, we find that for Nc ¼ 1 the Coulomb

moduli space labeled by ϕ is replaced in the quantum
theory by two isolated vacua. In the brane picture, they
correspond to having a straight D3-brane pass through one
of the two intersections of the D5-branes.
In the non-Abelian case, the same mechanism leads to

the collapse of the classical moduli space of Fig. 8(a) to
the isolated vacua of Fig. 8(b). The dynamics at a given
intersection involves additional phenomena that place
further constraints on the integer N, as described in
the text.
The above analysis involved in an important way the

massive KK modes of the various three-dimensional fields.
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It is natural to ask how the quantum effects that fix the
Coulomb moduli manifest themselves in the two-
dimensional low energy theory of the light modes. We
have not understood this in detail, but D-term couplings of

the adjoint chiral superfield Σ with the charged Fermi
superfields, which can be shown to have the schematic
form

R
d2θjΣj2jΛj2 (for small Σ) seem to play an important

role in this problem.
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