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We introduce a system composed of two (2þ 1)-dimensional baby-Skyrmion models (BSMs) set on
parallel planes and linearly coupled by tunneling of fields. This system can be realized in a dual-layer
ferromagnetic medium. Unlike dual-core models previously studied in nonlinear optics and Bose-Einstein
condensates, here the symmetry-breaking bifurcation (SBB) in solitons (baby Skyrmions) occurs with the
increase of the intercore coupling (κ), rather than with its decrease, due to the fact that, even in the
uncoupled system, neither core may be empty. Prior to the onset of the symmetry breaking between the two
components of the solitons, they gradually separate in the opposite directions, due to the increase of κ,
which is explained in an analytical form by means of an effective interaction potential. Such evolution
scenarios are produced for originally symmetric states with topological charges in the two cores,
Bð1Þ ¼ Bð2Þ ¼ 1, 2, 3, 4. The evolution of mixed states, of the ðBð1Þ; Bð2ÞÞ ¼ ð1; 2Þ and (2,4) types, with the
variation of κ is studied too.
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I. INTRODUCTION

Diverse models of the field theory support topological
solitons. Many such models have been intensively studied
over the last decades in a wide variety of physical contexts.
Perhaps one of the simplest examples is a modified version
of the nonlinear Oð3Þ σ model in (2þ 1) dimensions
(the so-called “baby-Skyrmion model” [BSM]) [1,2]. This
is a low-dimensional simplified theory which emulates the
conventional Skyrme model in (3þ 1) dimensions [3] in
many respects, and finds direct physical realizations.
In particular, hexagonal lattices of two-dimensional
Skyrmions were observed in a thin ferromagnetic layer
[4], and in a metallic itinerant-electron magnet, where the
Skyrmion lattice was detected by neutron scattering [5],
and through a specific contribution to the topological
quantum Hall effect [6].
According to the Derrick’s theorem [7], to support the

solitons’ stability, the Lagrangian of the BSM should also
include, apart from the usual Oð3Þ sigma-model’s kinetic
term, an interaction term quartic in derivatives1 and the
potential one, which does not contain derivatives. Although
the structure of the potential term is largely arbitrary, its
particular choice determines different ways of symmetry
breaking [8–10].
In various branches of physics, complex systems,

involving several coupled scalar fields, arise (see, e.g.,

Refs. [12–15]). Properties of solitons in these extended
models may be quite different from a straightforward
extension of the single-component counterpart. In particu-
lar, the extended models can support nontopological
solitons [12,15].
Currently, there are a number of experimentally relevant

multicomponent systems, including those in nonconven-
tional superconductivity models (see a topical issue on this
topic [16]), where a few superconducting bands and a set of
corresponding Josephson coupling constants between the
condensates appear. The systems of the latter type give rise
to effective chiral CP2 planar Skyrmions, which were
constructed in the three-component Ginzburg-Landau
model with broken time-reversal symmetry [17]. These
configurations are actually bound states of triplets of
vortices, the system being symmetric with respect to the
dihedral group. It is also relevant to mention a recent
experimental observation of a bound state of two magnetic
baby Skyrmions, and their current-driven motion, in
layered manganites [18].
In this work we introduce a system composed of two

replicas of the usual (2þ 1)-dimensional BSM, set in two
parallel planes (“cores”), which are linearly coupled by
hopping (tunneling) between them. The fields in the two
cores are also referred to below as “sectors” of the coupled
system. Depending on the coupling strength, this dual
system may manifest various symmetries and symmetry-
breaking scenarios. A system of this type may be realized,
in particular, in a bilayer ferromagnetic film, with the BSM
implemented in each layer.

1Recently, some modification of the BSM with the
Dzyaloshinskii-Moriya interaction term was suggested to
model noncentrosymmetric ferromagnetic planar structures [11].
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Linearly coupled dual-core systems with nonlinearities
in each core, called “nonlinear couplers” [19], were studied
in detail in relatively simple models of nonlinear optics and
Bose-Einstein condensates (BEC), represented by a single
complex field in each core, which obey the respective
nonlinear Schrödinger (NLS) or Gross-Pitaevskii (GP)
equations. If the intrinsic nonlinearity in the cores is strong
enough, the power exchange between them is affected by
the intensity of the guided waves, which is used for the
design of all-optical switching devices [20]. In addition to
the simplest dual-core system with the cubic nonlinearity
and single component in each core, realizations of non-
linear couplers have been studied in many other settings,
including the bimodal propagation of light [21], twin-core
Bragg gratings [22], [23], lossy optical couplers embedded
into a gain medium [24], systems with saturable [25],
quadratic [26,27], cubic-quintic (CQ) [28], and nonlocal
[29] nonlinearities, dual-core traps for BEC [30], parallel
coupled arrays of discrete waveguides [31], (2þ 1)-
dimensional couplers for spatiotemporal “light bullets” in
planar dual-core waveguides [32], and PT-symmetric
nonlinear couplers, both (1þ 1)-dimensional [33] and
(2þ 1)-dimensional [34]. Note that the (2þ 1)-dimensional
dual-core waveguides have the same geometric dimension
as the dual-core BSM introduced in the present work.
A fundamental property of nonlinear couplers is the

symmetry-breaking bifurcation (SBB), which destabilizes
obvious symmetric states in the system and gives rise to
asymmetric ones. The SBB was analyzed for spatially
uniform states [35] and solitons in twin-core waveguides
[36], as well as for gap solitons in Bragg gratings [22] with
the cubic nonlinearity (these results were originally
reviewed in Ref. [37], and later in Ref. [38]). The SBB
was studied too for solitons supported by the quadratic [26]
and CQ [28] nonlinearities.
In all the above-mentioned systems, the study of the

spontaneous symmetry breaking followed the pattern
which assumed that, in the limit case of the uncoupled
system, one core would carry a usual single-component
soliton, while the other one is empty. Then, with the
increase of the coupling constant, κ, the originally empty
core is filled by the field tunneling from the mate core.
Eventually, only symmetric states, featuring identical
soliton components in both cores, exist above a critical
value of κ, while below that value symmetric states are
unstable, being replaced by stable asymmetric ones. The
principal difference of the situation in the dual-core BSM
considered below is that neither core is supposed to be
empty, due to the boundary conditions imposed on the
fields at infinity. Therefore, it gives rise to an altogether
different scenario of the symmetry breaking, with iden-
tical configurations in the uncoupled cores, which start to
separate in opposite (lateral) directions, and eventually
undergo an SBB, with the increase (rather than decrease)
of κ; however, at critical value κ ¼ κcr given below by

Eq. (12), the coupling cannot stabilize the baby Skyrmion
in the system.
The rest of the paper is structured as follows. In the next

section we briefly review the model which support non-
trivial soliton configurations of the dual-core BSM.
Numerical results are presented in Sec. III, where we
consider various patterns of the evolution of the coupled
configurations in two different cases, viz., the “old” BSM
[2] and the “new” double-vacuum model [39]. For the sake
of compactness, we restrict the analysis to configurations
with topological charge ≤ 4 in each sector. Conclusions
and remarks are formulated in Sec. IV.

II. THE MODEL

As said above, we consider a set of two coupled replicas
of the nonlinear modified Oð3Þ σ model with the Skyrme
term in (2þ 1) dimensions (i.e., the BSM), which is based
on the following Lagrangian density,

L ¼
X
a¼1;2

La þ Lcoupling;

La ¼
1

2
∂μϕ

ðaÞ · ∂μϕðaÞ − 1

4
ð∂μϕ

ðaÞ × ∂νϕ
ðaÞÞ2

−UðϕðaÞÞ;
Lcoupling ¼ κϕð1Þ

3 ϕð2Þ
1 ; (1)

where ϕðaÞ ¼ ðϕðaÞ
1 ;ϕðaÞ

2 ;ϕðaÞ
3 Þ, a ¼ 1, 2, are two vectorial

triplets of scalar fields which are subject to constraint

jϕð1;2Þj2 ¼ 1: (2)

Note that rescaling of the two-component model does not
allow us to absorb all the constants into rescaled parameters
of the potentials. Here we focus on three most essential
coefficients of the model, viz., two mass parameters
μ1;2, which are defined below, and inter-core coupling
constant κ.
The “skew” form of the coupling potential, Lcoupling,

which is defined in Eq. (1), is the one which gives rise to the
symmetry breaking, see below. If, instead, a “straight” form
is taken, with Lcoupling ¼ κϕð1Þ

3 ϕð2Þ
3 , it will not give rise to

any symmetry breaking.
We consider fields ϕðaÞ as maps, ϕðaÞ∶R2 → S2, which

are characterized by two integers (topological charges),
BðaÞ ¼ π2ðS2Þ. Explicitly, they are given as integrals of
vectorial products,

BðaÞ ¼ 1

4π

ZZ
ϕðaÞ · ð∂1ϕ

ðaÞ × ∂2ϕ
ðaÞÞdxdy; (3)

thus the two-component configuration possesses topologi-
cal charges in both cores, that will be referred to as
ðBð1Þ; Bð2ÞÞ. Note that the symmetry of the configuration
with respect to the reflections in the internal space,
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ϕðaÞ
2 → −ϕðaÞ

2 , which inverts of the sign of the topological
charge of the corresponding constituent, allows us to
restrict the consideration to positive values of Bð1;2Þ.
In the decoupled limit, κ → 0, each component

approaches the vacuum value at the infinitely remote spatial
boundary in the respective two-dimensional plane. This
boundary value is commonly taken as ϕð1;2Þ

∞ ¼ ð0; 0; 1Þ,
thus anOð3Þ-symmetry-breaking potential, UðϕðaÞÞ, which
vanishes at the boundary, stabilizes the configuration.
In the dual-core system, we can relax the restriction on
the asymptotic value of one component, say ϕð2Þ

∞ . For the
fields taking values on the unit sphere, as per Eq. (2), we
assume

ϕð1Þ
∞ ¼ ð0; 0; 1Þ; (4)

which provides the one-point compactification of the
spatial boundary.
The explicit form of potential UðϕðaÞÞ is largely

arbitrary. There are a few familiar examples, such as the
BSM with the so-called “old” potential [2],

UðϕðaÞÞ ¼ μ2a½1 − ϕðaÞ
3 �; (5)

which corresponds to the unique vacuum of component
ϕðaÞ, or the double-vacuum model [39], with

UðϕðaÞÞ ¼ μ2a½1 − ðϕðaÞ
3 Þ2�: (6)

Both potentials are invariant with respect to isorotations
about the third component ϕðaÞ

3 ; hence, at κ ¼ 0 the
symmetry of the model is broken2 to SOð2Þ × SOð2Þ.
On the other hand, the vacuum structure strongly depends
on the value of the intercore coupling, κ, as the coupling
term in (1) violates the rotational invariance, and it can
completely break the symmetry.
Note that the structure of the potential term is important

for the stability. For example, isorotations of Skyrmions
with topological charge B in the model with the “old”
potential may break them into B Skyrmions with charge
1 [40].
The violation of the rotational invariance in the BSM has

recently drawn a great deal of attention. It was demon-
strated that the effect strongly depends on the particular
choice of the above-mentioned potential [8–10]. Here we
consider another symmetry-breaking mechanism, intro-
duced by the linear coupling between the cores carrying
the two sectors of systems. As mentioned above, this
mechanism was previously studied in detail in systems
of linearly coupled NLS/GP equations.
First we consider the model with the double vacuum

potentials in each sector, hence the total potential is

Uðϕð1Þ;ϕð2ÞÞ ¼ μ21½1 − ðϕð1Þ
3 Þ2� þ μ22½1 − ðϕð2Þ

3 Þ2�
þ κϕð1Þ

3 ϕð2Þ
1 : (7)

Evidently, the coupling between the sectors may stabilize
the configuration when both mass parameters μ1, μ2
are zero.

III. NUMERICAL RESULTS

A. States with the equal topological charges
in the two sectors

In this section results produced by numerical solutions
are presented for the dual-core BSM. The solutions
were chiefly constructed on an equidistant grid in polar
coordinates ðρ; θÞ, employing the compactified radial
coordinate,

ξ ¼ ρ=ð1þ ρÞ ∈ ½0; 1�; (8)

and θ ∈ ½0; 2π�, i.e., x ¼ ρ sin θ, y ¼ ρ cos θ. To find
minima of the functional corresponding to Lagrangian
density (1), we have implemented a simple forward-
differencing scheme on a square lattice with spacing
Δx ¼ 0.01. Typically, the grids of size 120 × 120 were
used, the relative errors of the final solutions being ≲10−4.
To check our results for the correctness, we evaluated the
values of the topological charges of the components by
direct integration of expressions (3).
Initial configurations were taken as per the straightfor-

ward hedgehog ansatz,

ϕðaÞ
1 ¼ sin ðfðρÞÞ cosðBðaÞθÞ;

ϕðaÞ
2 ¼ sin ðfðρÞÞ sinðBðaÞθÞ;

ϕðaÞ
3 ¼ cos ðfðρÞÞ; (9)

where the input profile function is fðρÞ ¼ 4 arctanðe−ρÞ.
Evidently, this corresponds to the configuration with
topological charge BðaÞ and standard boundary conditions
(B.C.) imposed on the profile function, fðρÞ, in both sectors
of the dual-core system (1). Note that ansatz (9) is rota-
tionally invariant, because the spatial SOð2Þ rotation about
the z axis is equivalent to the Oð2Þ isorotation about
component ϕðaÞ

3 . However, in our calculations we do not
adopt any a priori assumptions about spatial symmetries of
components of the field configuration, ϕðaÞ.
As said above [see Eq. (4)], for component ϕð1Þ, the B.C.

is chosen as

ϕð1Þ
1 jρ→∞ → 0; ϕð1Þ

2 jρ→∞ → 0; ϕð1Þ
3 jρ→∞ → 1;

(10)

while the second component is subject to B.C.
2In the double vacuum model, there is an additional reflection

symmetry, Z2 × Z2.
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∂ρϕ
ð2Þ
1 jρ→∞→0; ϕð2Þ

2 jρ→∞→0; ∂ρϕ
ð2Þ
3 jρ→∞→0: (11)

Then, the total potential energy of system (7) can
be minimized. Indeed, B.C. (10), (11), along with the
restriction of the fields to the unit sphere [Eq. (2)],
demonstrates that as ρ → ∞, the potential tends to

Uðϕð1Þ;ϕð2ÞÞ∞ ¼ μ22ðϕð2Þ
1 Þ2 þ κϕð2Þ

1 ; thus, the originally

unknown asymptotic values of the components ϕð2Þ
1 and

ϕð2Þ
3 depend on mass parameter μ2 and coupling constant κ.
Furthermore, the total asymptotic potential possess a

minimum if ϕð2Þ
1 j∞ ¼ −κ=ð2μ22Þ ∈ ½−1; 1�. We fix the

scales by setting μ2 ¼ 1, hence there is a critical value
of the coupling,

κcr ¼ 2: (12)

Indeed, it is seen in Fig. 1, which displays components
ϕð2Þ
1 and ϕð2Þ

3 of the ðBð1Þ; Bð2ÞÞ ¼ ð1; 1Þ configurations
along the compactified y axis, for some set of values of
coupling κ, that, as the coupling approaches the critical
value (12), the asymptotic behavior of component ϕð2Þ

3

becomes different, ceasing to decay exponentially. Thus, in
this limit the total potential cannot stabilize the correspond-
ing baby Skyrmion in the second sector, where the mode
becomes unstable with respect to radiation of scalar
radiation waves.
As the coupling increases above the critical value (12),

the configuration again gets stabilized. Eventually, at large
κ the fields approach the vacuum values at a finite distance
from the center, and their asymptotic values cease to vary.
Hereafter, we restrict the consideration for the coupled

BSMs with fixed values of the mass parameters,
μ1 ¼ μ2 ¼ 1, unless stated otherwise (recall μ2 ¼ 1 was
already fixed above), and coupling constant κ gradually
increasing from zero. In Figs. 2–9 we present the so found
contour plots of the energy densities in the two sectors of
the system, given by functions L1ðx; yÞ and L2ðx; yÞ, and
the coupled field components, ϕð2Þ

1 ;ϕð1Þ
3 , which illustrate

typical configurations of the ðBð1Þ; Bð2ÞÞ ¼ ð1; 1Þ, (2,2),
(3,3) and (4,4) types.
First, we consider in detail the simplest configuration, of

the (1,1) type. As the intercore coupling, κ, increases, the
components in the two cores rapidly start to separate, the
distance between them attaining a maximum at κ ≈ 0.15.
This distance is, actually, slightly smaller than the size of the
charge-1 baby Skyrmion, as seen in the second row of Fig. 2.
To explain this observation, we note that the coupling

remains weak, and the components in this regime are
almost undeformed, which suggests to evaluate the effec-
tive potential of the interaction between the two compo-
nents as a function of the separation between them.
To this end, following the well-known approach adopted
in the perturbation theory for solitons [41], we take
unperturbed baby Skyrmions of unit charge in the two

cores, separated by distance d in the lateral direction, and
calculate the corresponding interaction potential of the
(1,1) configuration:

UintðdÞ ¼ κ

Z Z
ϕð1Þ
3

�
x; yþ d

2

�
ϕð2Þ
1

�
x; y − d

2

�
dxdy

(13)

Numerical evaluation shows that this potential has a
minimum at d ¼ −1.4, see plot (b) in Fig. 10, which
clearly explains the spontaneous separation between the
components.
When coupling becomes stronger, the asymptotic values

of the components ϕð2Þ
1 and ϕð2Þ

3 start to vary and the
constituents begin to deform. The baby Skyrmion in the
first sector with Bð1Þ ¼ 1 remains almost rotationally
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FIG. 1 (color online). Field components ϕð2Þ
1

and ϕð2Þ
3 of the (1,1) configuration along the positive y axis

compactified onto the unit interval, Y ¼ y=ð1þ yÞ ∈ ½0; 1� [cf.,
Eq. (8)] in the model with potential (7) at κ ¼ 0;
0.2; 0.4; 1.0; 1.5; 1.9; 2.0.
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FIG. 2 (color online). The upper and lower
rows display contour plots of the energy density in the two
sectors of the (1,1) configuration in the model with potential (7) at
κ ¼ 0, 0.1, 1.0, 1.5, 2.0 (from left to right).

FIG. 3 (color online). Contour plots of coupled components
ϕð1Þ
3 and ϕð2Þ

1 (the upper and lower rows, respectively) of the (1,1)
configuration in the model with potential (7) at κ ¼ 0, 0.1, 1.0,
1.5, 2.0 (from left to right).
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FIG. 4 (color online). Contour plots of the
energy density of the sectors in the (2,2) configuration in the
model with potential (7) at κ ¼ 0, 0.2, 0.7, 1.0, 2.0 (from left
to right).

FIG. 5 (color online). Contour plots of coupled components
ϕð1Þ
3 and ϕð2Þ

1 (the upper and lower rows, respectively) of the (2,2)
configuration in the model with potential (7) at κ ¼ 0, 0.2, 0.7,
1.0, 2.0 (from left to right).
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FIG. 6 (color online). Contour plots of the energy density
of the sectors in the (3,3) configuration in the model with
potential (7) at κ ¼ 0, 0.4, 0.8, 1.5, 2.0 (from left to right).

FIG. 7 (color online). Contour plots of coupled components
ϕð1Þ
3 and ϕð2Þ

1 (the upper and lower rows, respectively) of the (3,3)
configuration in the model with potential (7) at κ ¼ 0, 0.4, 0.8,
1.5, 2.0 (from left to right).
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FIG. 8 (color online). Contour plots of the energy density of the
components of the (4,4) configuration in the model with potential
(7) at κ ¼ 0, 0.4, 0.8, 1.5, 2.0 (from left to right).

FIG. 9 (color online). Contour plots of coupled components
ϕð1Þ
3 and ϕð2Þ

1 (the upper and lower rows, respectively) of the (4,4)
configuration in the model with potential (7) at κ ¼ 0, 0.4, 0.8,
1.5, 2.0 (from left to right).
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invariant, with a small local minimum of the energy density
at the soliton’s center, while the soliton with Bð2Þ ¼ 1 in the
second sector features broken rotational invariance, see the
third row in Figs. 2 and 1. This transition from the separated
but intrinsically symmetric configuration to the one with
the broken symmetry between the components of the state
of the (1,1) type is a specific realization of the SBB in the
present system. Below, realizations of the SBB in configu-
rations of the (2,2), (3,3) and (4,4) types are presented too.
Further increase of the coupling leads to breaking of the

rotational symmetryof theSkyrmion in the first sector too, and
it becomes symmetric with respect to the reflection, x → −x.
Finally, as the coupling constant approaches the critical value

(12), components ϕð2Þ
1 and ϕð2Þ

3 swap their roles, as shown in

Fig. 1. Indeed, the strong couplingbetweencomponentϕð1Þ
3 in

the first sector, which is subject to the fixed vacuum-

asymptotic behavior, ϕð1Þ
3 → −1 at ρ ¼ 0 and ϕð1Þ

3 → 1 as
ρ → ∞, and the “flexible” component in the second sector,

ϕð2Þ
1 , forces the latter one to interpolate between the “upper”

vacuum value, ϕð2Þ
1 → 1, at the origin, and the “lower”

vacuum value, ϕð2Þ
1 → −1, as ρ → ∞. As the asymptotic

behavior of componentϕð2Þ
2 is fixed, in this limit configuration

components ϕð2Þ
1 and ϕð2Þ

3 are actually swapped.
In plot (a) of Fig. 10, we display the results of the

analysis of the SBB in the systematic form, displaying the
intercore symmetry-breaking energy measure,

Δ ¼ ðEð2Þ − Eð1ÞÞ=ðEð2Þ þ Eð1ÞÞ; (14)

where EðaÞ ¼ R R
Ladxdy is defined as per Eq. (1), as a

function of the coupling constant, κ, for the static configu-
rations with identical topological charges in both sectors.
Evidently, the asymmetry is growing from zero to a

maximal value which corresponds to the critical coupling
(12). Note that the asymmetry between the sectors
decreases with the increase of the common topological
charge of both sectors.
In the uncoupled double-vacuum system, the baby

Skyrmions are always rotationally invariant. As the cou-
pling strength, κ, increases, the symmetry gets broken and
the norm of the soliton in the second sector grows faster, as
its symmetry is lower. When the coupling approaches the
critical value (12), the charge-1 soliton in the first sector
regains the rotational invariance, featuring an annular
shape of its energy-density distribution. On the other hand,
the second sector is composed of two segments, featuring
the discrete dihedral D2 symmetry, similar to the solutions
presented in Ref. [8] in the single-component model
with an Oð2Þ-symmetry-breaking potential, UðϕÞ ¼
μ2ð1 − ϕ2

3Þð1 − ϕ2
1Þ, cf. Eq. (7). Further increase of κ

almost does not affect the asymptotic values of the fields,
the asymmetry between the components remaining nearly
constant; however as mentioned above, in that limit the

baby Skyrmions are, in fact, compactons, with the fields
reaching the vacuum values at a finite distance from the
center of the configuration.

B. States with different topological charges in the
sectors and other forms of the coupling

The pattern of the evolution of the coupled configuration
with different topological charges, following the increase of
κ, is somewhat different from what is outlined above. In
Figs. 11, 12 and 13, 14 we display contour plots for the
energy-density distributions in the coupled components of
the (1,2) and (2,4) configurations, respectively, for a set of
values of κ.
Unlike the configuration (1,1) that we considered above,

the increase of κ from the initial zero value does not cause
displacement of the components from their initial positions.
Instead, they start to break the rotationally symmetric
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FIG. 10 (color online). (a) The symmetry measure, defined
as per Eq. (14), for the (1,1), (2,2), (3,3) and (4,4) configu-
rations, versus the coupling constant, κ. (b) The effective
potential of interaction between the components of the (1,1)
configuration, defined as per Eq. (13), versus the separation
between them, d.
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FIG. 11 (color online). Contour plots of the energy density of
the sectors in the (1,2) configuration in the model with potential
(7) at κ ¼ 0, 0.4, 1.0, 1.5, 2.0 (from left to right).

FIG. 12 (color online). Contour plots of coupled components
ϕð1Þ
3 and ϕð2Þ

1 (the upper and lower rows, respectively) of the (1,2)
configuration in the model with potential (7) at κ ¼ 0, 0.4, 1.0,
1.5, 2.0 (from left to right).
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FIG. 13 (color online). Contour plots of the energy density of
the sectors of the (2,4) configuration in the model with potential
(7) at κ ¼ 0, 0.4, 0.8, 1.5, 2.0 (from left to right).

FIG. 14 (color online). Contour plots of coupled components
ϕð1Þ
3 and ϕð2Þ

1 (the upper and lower rows, respectively) of the (2,4)
configuration in the model with potential (7), at κ ¼ 0, 0.4, 0.8,
1.5, 2.0 (from left to right).
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shapes in each sector, evolving towards two different D2-
symmetric solitons stretched along the y and x axes in the
first and second sectors, respectively, see the second row in
Fig. 11. As the coupling becomes stronger and κ increases
above a certain value close to 1, the dihedral D2 symmetry
of the soliton in the second sector breaks down, and two
pairs of segments emerge in this charge-2 component.
Similar to the pattern reported above for the (1,1) configu-
ration, at the critical value (12) of the coupling constant,

components ϕð2Þ
1 and ϕð2Þ

3 actually swap, κ playing the role
of the angle of the isorotation of the configuration in the
second sector about component ϕð2Þ

2 . The final configura-
tion then consist of a charge-1 rotationally invariant
Skyrmion in the first sector, with an annular shape of
the energy-density distribution, and a charge-2 Skyrmion
with discrete dihedral D4 symmetry in the second sector.
Similar evolution scenarios were observed for configu-

rations with higher charges. To summarize those results, we

FIG. 15 (color online). Energy density plots of the two components in the (1,2) and (3,3) configurations (the top
and bottom panels, respectively) for κ ¼ 2, in the model with potential (7) and μ1 ¼ μ2 ¼ 1 (the first and third rows), or μ1 ¼ μ2 ¼
0 (the second and forth rows).
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mention that the evolution of the ðn;mÞ configuration in the
model with potential (7) starts from the rotationally invariant
configurations in both sectors. As the coupling, κ, increases,
the energy-density distributions in both components become
polygonal, i.e., symmetric with respect to dihedral groupDm
with symmetry axes of different orders. The further increase
of κ induces the permutation of the asymptotic forms of
components ϕð2Þ

1 and ϕð2Þ
3 , and the configuration approaches

the critical limit when the first component with topological
charge Bð1Þ ¼ n regains the rotational invariance, while the
second component with charge Bð2Þ ¼ m is shaped as a
necklace built of 2m half-Skyrmions, which is symmetric
with respect to dihedral groupD2m. In particular, exactly this
scenario is observed for configurations of (2,2),(3,3),(2,4)
and (4,4) types in Figs. 4, 6, 8, and 14.
Some additional remarks are necessary here. Firstly, as

mass parameters μ1 and μ2 of potential (7) are vanishing,
the asymmetry between the sectors vanishes too, the
configurations in both sectors getting rotationally invariant
for all values of κ, see Fig. 15. In that case, the system is
stable due to the coupling between the sectors, the coupling
constant is unbounded from above, there being no critical
value of κ [cf. Eq. (12)], and norms in both sectors increase
equally with the subsequent growth of κ; hence, the
asymmetry does not change anymore. Furthermore, the
coupling can stabilize the system even when the mass
parameters take negative values.
Secondly, for the model with “old” potential (5), the

general evolution scenario is similar to that in the model
with the double vacuum potential (7) considered above,
although some peculiarities may differ. To demonstrate
that, we briefly consider model (1) with potential

Uðϕð1Þ;ϕð2ÞÞ ¼ μ21½1 − ðϕð1Þ
3 Þ� þ μ22½1 − ðϕð2Þ

3 Þ�
þ κϕð1Þ

3 ϕð2Þ
1 : (15)

In the numerical solution, we fix the mass parameters as
above, μ1 ¼ μ2 ¼ 1, and let the coupling constant, κ,
gradually increase from zero. Then, in Figs. 16–18 we
display contour plots of the energy density, which illustrate
a typical scenario of the evolution of configurations (1,1),
(2,2) and (3,3) in the model with potential (15), cf., similar
plots in Figs. 2, 4, and 6. Once again, the (1,1) configu-
ration in the weak-coupling regime exhibits separation of
the components without their deformations, see Fig. 16.
However as coupling becomes stronger, some novelty is
observed. The difference from the model with the double
vacuum potential (7) is that, depending on values of masses
μ1;2, the configurations with topological charge Bð1;2Þ ≥ 2
may not possess the initial rotational invariance [42].
Accordingly, the symmetry breaking evolves differently,
two distinct steps being identified in the evolution of the
coupled configuration. At first, similar to the model with
potential (7), as κ increases from zero, the energy-density

distributions of both components become symmetric with
respect to dihedral groupDm, with symmetry axes of different
orders. However, as the coupling grows stronger, at κ > 1 the
asymptotic forms of components ϕð2Þ

1 and ϕð2Þ
3 are not

completely swapped, and the configuration approaches
another critical limit, when the first component with topo-
logical charge Bð1Þ ¼ n again restores the rotational invari-
ance, while the second component with topological charge
Bð2Þ ¼ m is formed as a set of m individual charge-1
Skyrmions, which is symmetric with respect to dihedral
group Dm; hence, the number of the respective segments is
twice as small as in the model with the potential (7).
Thus, the above results depend on the choice of the

symmetry-breaking interaction potential, such as those
given by Eq. (7) and (15). Other options for inducing

FIG. 16 (color online). Contour plots of
the energy density of the components of the (1,1) configuration
in the model with potential (15), at κ ¼ 0, 0.2, 1.0, 2.0
(from left to right).
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symmetry breaking are also possible. In particular, while
the above-mentioned “straight” coupling, of the form of
κϕð1Þ

3 ϕð2Þ
3 , in Eq. (1) does not, by itself, break the symmetry

between the two cores, it can be demonstrated that the
linear-coupling potential chosen as κϕð1Þ

1 ϕð2Þ
2 leads to a

completely different pattern of the symmetry breaking in
the dual-core system.
Another interesting possibility is to consider the

“skew-symmetrized” form of the coupling potential

Lcoupling ¼ κðϕð1Þ
3 ϕð2Þ

1 þ ϕð1Þ
1 ϕð2Þ

3 Þ

and impose identical boundary conditions (11) in both
sectors to allow the transformation of components ϕð1Þ

1

and ϕð1Þ
3 too. Then, as κ increases from zero, the initial

rotational invariance of both components of the ðm;mÞ
configuration gradually becomes broken to dihedral group
D2m with symmetry axes of the same orders.
Finally, it can be demonstrated that the coupling of the

soliton component with a topologically trivial field in the
second sector yields a nontopological soliton (lump),
whose structure precisely matches the distribution of the
coupling energy. In this configuration, only one component
of the field in the second sector, ϕð2Þ

1 , is nontrivial at κ > 0.

IV. CONCLUSIONS

The objective of this work is to introduce a class of dual-
core (2þ 1)-dimensional field-theory models, such as the
BSM (baby Skyrme model). Each Skyrmion resides in its
plane (core), the two parallel planes being related by linear

FIG. 17 (color online). The energy density of components of
the (2,2) configuration in the model with potential (15), at κ ¼ 0,
0.2, 1.0, 2.0 (from left to right).

FIG. 18 (color online). The energy density of components of
the (3,3) configuration in the model with potential (15), at κ ¼ 0,
0.3, 1.0, 2.0 (from left to right).
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tunneling of the fields. This model can be implemented in
dual-layer magnetic media. As in previously studied dual-
core models of nonlinear optics and BEC, the interplay of
the intracore nonlinearity and linear intercore coupling (κ)
gives rise to the SBB (symmetry-breaking bifurcation) of
the solitons, but, on the contrary to those models, where the
SBB occurs with the decrease of κ, in the present system is
takes place with the increase of κ, which is explained by the
fact that cores cannot be empty even at κ ¼ 0. The SBB
follows the initial increase of the lateral separation between
the two components without the symmetry breaking, which
is caused by the increase of κ from zero and was explained
by means of the effective potential of the interaction
between the two components. These evolution scenarios

were studied for different species of the two-component
baby Skyrmions, categorized by values of the topological
charge in the components: initially symmetric ones, of the
(1,1), (2,2), (3,3), and (4,4) types, and asymmetric
composite states, (1,2) and (2,4).
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