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We use an effective matrix model to study deconfinement in a pure SUðNcÞ gauge theory, without
quarks, in d ¼ 2þ 1 dimensions. Expanding about a constant background A0 field, we construct an
effective potential for the eigenvalues of the thermal Wilson line for general Nc and in the large-Nc limit.
The numerical results are presented using one, two, and four free parameters, which are determined by
fitting directly to the lattice data for the pressure. The matrix model shows a good agreement with
numerical lattice simulations for the pressure and the interaction measure, starting from the perturbative
limit up to the critical temperature. For the pressure, the details of A0-dependent nonperturbative terms are
relevant only in a narrow transition region below ∼1.2Td. This is also the range where the Polyakov loop
deviates notably from one. In accordance with the lattice results we find that, up to a trivial factor Nc

2 − 1,
there is only a mild dependence on the number of colors.
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I. MOTIVATION

Nowadays increasing attention is being devoted to the
study of the deconfinement phase transition in QCD. There
are different, complementary approaches to the underlying
physics, which is strictly nonperturbative: numerical sim-
ulations on the lattice, the construction of various effective
theories, and lastly, results from the collisions of heavy ions
at ultrarelativistic energies. In this work we investigate the
key aspects of deconfinement by using an effective matrix
model for three-dimensional pure SUðNcÞ gauge theories.
The matrix model respects the ZðNcÞ center symmetry of

the underlying pure glue theory. It is valid over a wide
temperature range, starting from the perturbative limit up to
the critical temperature for deconfinement Td. The degrees
of freedom are given by the eigenvalues of the thermal
Wilson line, and the parameters of the model are obtained
by fitting the pressure as computed within lattice QCD
in Ref. [1].
It is known that in pure gauge theory the Polyakov loop

approaches unity in the perturbative limit and vanishes
below the deconfining temperature Td. This behavior can
be modeled by constructing an effective theory for the
eigenvalues of the thermal Wilson line. Assuming a
constant background A0 field for the timelike component
of the gluonic vector potential, one first computes the
perturbative potential. In order to drive the transition to

confinement, one then constructs additional A0-dependent
and -independent nonperturbative contributions. This is a
reasonable approach provided that the expectation value of
the Polyakov loop is dominated by the classical configu-
ration for the background A0 field, and not by quantum
fluctuations around A0. This assumption is certainly valid
for an infinite number of colors, where A0 represents a
master field for deconfinement [2]. Namely, in the large-Nc

limit, the vacuum is dominated by a single master field at
any temperature, since quantum fluctuations are typically
suppressed by powers of 1=Nc

2. Nevertheless, we find that
this approach works reasonably well even for two colors,
both in d ¼ 3þ 1 [3,4], and in d ¼ 2þ 1 (see Ref. [5]).
A more complete model for deconfinement should

ideally consider SUðNcÞ gauge theories coupled to light
quarks in d ¼ 3þ 1 space-time dimensions. However,
lattice results provide convincing evidence that the QCD
transition is mainly driven by the dynamics of gluons which
are the dominant degrees of freedom in the deconfined
phase [6]. Moreover, SUðNcÞ gauge theories in three and
four space-time dimensions are closely related and share
many important features, like asymptotic freedom, and a
confinement-deconfinement phase transition at a critical
temperature Td [7–9]. For these reasons, three-dimensional
pure glue theories are widely used both on the lattice and in
effective theories, in order to obtain a better understanding

PHYSICAL REVIEW D 89, 085020 (2014)

1550-7998=2014=89(8)=085020(30) 085020-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.085020
http://dx.doi.org/10.1103/PhysRevD.89.085020
http://dx.doi.org/10.1103/PhysRevD.89.085020
http://dx.doi.org/10.1103/PhysRevD.89.085020


of the QCD transition from a broader perspective (see e.g.
Refs. [7–15]).
An important question is the dependence of thermody-

namic properties on the number of colors. In this sense, the
large-Nc limit is of particular importance, since it serves as
a suitable basis for various effective approaches to QCD
(see e.g. Ref. [16] and references therein for a detailed
discussion). Matrix models, for instance, are motivated by
general expectations that in the large-Nc limit all correla-
tion functions of gauge-invariant operators factorize, and
consequently the functional integral is dominated by a
single master gauge field [2].
Recent lattice simulations of pure gauge theories at

nonzero temperature indicate that, except for a trivial
proportionality to the number of gluons Nc

2 − 1, the
thermodynamic observables in d ¼ 3þ 1 are essentially
independent of Nc, and that SUð3Þc is already sufficiently
close to the large-Nc limit [17–23]. This observation is of
particular importance, because it supports the validity of
analytical techniques and effective theories based on large-
Nc approximations.
In d ¼ 3þ 1, the matrix model has been extensively

studied for various SUðNcÞ groups and also in the large-Nc
limit [3,4,24–42], showing that one- and two- parameter
models provide an overall good agreement with the lattice
data for the pressure and interaction measure. In Ref. [5] we
applied the matrix model to study deconfinement in three-
dimensional pure gauge theory for the special case
SUðNc ¼ 2Þ. As in four dimensions, we find that the
model works reasonably well even for two colors. Similar
to d ¼ 3þ 1, we demonstrated that in three-dimensional
SUð2Þ theory, for the pressure the details of the matrix
model become relevant only in a narrow transition region,
from Td to ∼1.2Td. This is also the range where the
Polyakov loop notably deviates from one. The ’t Hooft
loop, on the other contrary, is sensitive to the details of the
model in a much wider region, up to 4.0 Td.
In this work we extend the study of Ref. [5] to general

SUðNcÞ groups ind ¼ 2þ 1. The thermodynamics of three-
dimensional pure glue theories was studied on the lattice by
many authors (see e.g. Refs. [1,12–15,23,43–45]). An
important observation is that in d ¼ 2þ 1 the behavior of
thermodynamical quantities, like pressure pðTÞ, energy
density ϵðTÞ, and interaction measure ΔðTÞ ¼ ϵðTÞ−
2pðTÞ, looks similar to that in four dimensions. As in
d ¼ 3þ 1, lattice results show that in three dimensions there
is only a small dependence on the number of colors [10].
Remarkably, in three dimensions, the value for the

interaction measure scaled by T2Td and divided by
the number of gluons, Nc

2 − 1, assumes approximately
the same constant value on the lattice for 1.2 Td ≲ T ≲
10 Td for all Nc [1],

ϵðTÞ − 2pðTÞ
ðNc

2 − 1ÞT2Td
∼ const: (1)

This implies that, except for a narrow region near the phase
transition, Td ≤ T ≲ 1.2 Td, the pressure can be approxi-
mated as

pðTÞ − pidealðTÞ
Nc

2 − 1
∼ −T2Td; (2)

where pidealðTÞ ∼ T3 is the pressure of an ideal gas. Similar
lattice results are obtained in four dimensions,

pd¼3þ1ðTÞ − pd¼3þ1
ideal ðTÞ

Nc
2 − 1

∼ −T2Td
2; (3)

for 1.2Td ≤ T ≤ 4.0Td, where pd¼3þ1
ideal ðTÞ ∼ T4.

In d ¼ 2þ 1 lattice calculations can be performed
with a great precision, keeping artifacts well under
control. Therefore, comparing our results to the lattice
data will provide a crucial test for the validity of the
matrix model.
This paper is organized as follows: in Sec. II we

construct the confining and deconfining vacua in the
presence of a constant background field. In Sec. III we
derive the effective potential in d ¼ 2þ 1 for an SUðNcÞ
gauge group as a sum of a perturbative and a nonperturba-
tive part. In Sec. IV we present the analytical and numerical
solution for the potential for general Nc and in the large-Nc
limit using a so-called uniform eigenvalue ansatz. In Sec. V
we show the pressure, the interaction measure, and the
Polyakov loop for Nc ¼ 2, 3, 4, 5, 6, and compare to
the recent lattice data of Ref. [1]. In Sec. VI we address
the question of possible metastable solutions in the per-
turbative potential. Conclusions and outlook are given in
Sec. VII.

II. THE CONFINED AND DECONFINED VACUA

In the absence of dynamical quarks, the pure gauge
theory exhibits a deconfinement phase transition at a
critical temperature Td, related to the breaking of the
ZðNcÞ center symmetry of the SUðNcÞ gauge group.
The appropriate gauge-invariant order parameter for this
transition is given by the Polyakov loop l, defined as the
trace of the thermal Wilson line L,

l ¼ 1

Nc
trL; (4)

where

L ¼ P exp

�
ig
Z

1=T

0

A0ðτ;xÞdτ
�
: (5)

In the deconfined phase, T ≫ Td, the allowed vacua of the
pure SUðNcÞ gauge theory exhibit an Nc-fold degeneracy,
where the thermal expectation value of the Polyakov loop is
given by one of the Nc−th roots of unity,
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hli ¼ exp

�
i
2πm
Nc

�
≡ lm; m¼ 0;1;2;…;Nc − 1: (6)

These vacuum states are degenerate and can be transformed
into each other by global ZðNcÞ rotations,

ZðNcÞ∶ lm1
→ lðm1þm2ÞmodNc

: (7)

Consequently, when choosing one particular state, the
ZðNcÞ center symmetry is spontaneously broken.
Defining the Polyakov loop to be real, which is always
possible by global ZðNcÞ transformations, the expectation
value of the order parameter approaches unity in the
perturbative vacuum, hli → 1 as T → ∞.
In the confined phase, T < Td, the ZðNcÞ center sym-

metry is restored, and the expectation value of the Polyakov
loop vanishes, hlci ¼ 0. This behavior of the order param-
eter is also confirmed by lattice-QCD calculations, where

the expectation value of the renormalized Polyakov loop is
zero in the confined and nonzero in the deconfined phase,
approaching unity in the perturbative limit.
In general, the Polyakov loop is a complex-valued

quantity. Only for the special case Nc ¼ 2, the order
parameter is real, assuming values between −1 and þ1.
In Fig. 1 we plot the boundaries of l for different numbers
of colors. Depending on the parametrization of A0, which
is an element of the Lie algebra of the SUðNcÞ gauge group,
the Polyakov loop takes certain values within the solid
lines. The degenerate ground states in the deconfined phase
reside at the corners,while the confining vacuum lc corre-
sponds to the origin of the diagrams. It is obtained by
computing the average of the deconfined vacua,

lc ≡ 1

Nc

XNc−1

m¼0

lm; (8)
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FIG. 1 (color online). Boundaries for values of the Polyakov loop for Nc ¼ 3 (left top), 4 (right top), 5 (left bottom), 6 (right bottom).
The dashed lines indicate the region between the perturbative vacuum at l ¼ 1 and the confining vacuum at l ¼ 0.
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and is therefore automatically invariant under ZðNcÞ
transformations.
In this paper the numerical results are obtained using a

uniform eigenvalue ansatz [4]. Within this ansatz, A0 is
parameterized in such a way that the Polyakov loop always
assumes values along the real axis in Fig. 1.

A. Background field

Given the known behavior of the Polyakov loop, we can
model the phase transition and the deconfined phase,
T ≥ Td, by constructing an effective theory for the eigen-
values of the thermal Wilson line. The simplest ansatz is to
assume a constant, but nonzero value for the time compo-
nent A0 of the vector potential. Due to SUðNcÞ gauge
transformations, it is always possible to write the
background A0 field as

A0 ¼
2πT
g

q; (9)

where q is a traceless diagonal matrix in the SUðNcÞ Lie
algebra. The eigenvalues qj are constrained only by the
unimodularity,

XNc

j¼1

qj ¼ 0; j ¼ 1;…; Nc; (10)

and the number of independent qj’s corresponds to the rank
of the SUðNcÞ group, r ¼ Nc − 1.
In the presence of the background A0 field (9), the

Wilson line is given by a diagonal matrix,

L ¼ P exp

�
ig
Z

1=T

0

A0ðτ;xÞdτ
�
¼ exp ði2πqÞ

¼ diagðei2πq1 ; ei2πq2 ; � � � ; ei2πqNc Þ: (11)

The Polyakov loop is the trace over the Wilson line,

l ¼ 1

Nc
trL ¼ 1

Nc

XNc

j¼1

ei2πqj : (12)

1. Perturbative vacuum

The degenerate ground states (6) in the deconfined phase
can be described by an appropriate choice for the matrix q,

lm ¼ exp

�
i
2πm
Nc

�
¼ 1

Nc
trLm ¼ 1

Nc
tr exp ði2πqmÞ;

m¼ 0;1;…;Nc − 1;

(13)

where qm are Nc traceless diagonal matrices of the form

qm ¼ 1

Nc
diagðm;…; m;m − Nc;…; m − NcÞ; (14)

with Nc −m entries m, and m entries m − Nc. The qm are
also referred to as hypercharges [4], and serve as generators
for the elements of the ZðNcÞ center of the SUðNcÞ gauge
group,

expði2πqmÞ ¼ exp

�
i
2πm
Nc

�
1≡ zm; (15)

where 1 is an Nc × Nc unit matrix. Thus, under global
ZðNcÞ rotations the hypercharges are transformed into each
other,

ZðNcÞ∶ qm1
→ qðm1þm2ÞmodNc

: (16)

The perturbative vacuum where the Polyakov loop is equal
to one, l ¼ 1, is obtained for

q0 ¼ 0: (17)

2. Confining vacuum

In the confining vacuum qc, the Polyakov loop must
vanish, lc ¼ 0. The confining vacuum is constructed as the
average of all degenerate ground states (14),

qc ≡ 1

Nc

XNc−1

m¼0

qm

¼ 1

2Nc

0
BBBBB@

Nc − 1 0 � � � 0

0 Nc − 3 � � � 0

..

. ..
. . .

. ..
.

0 � � � 0 −ðNc − 1Þ

1
CCCCCA
; (18)

and is therefore is automatically ZðNcÞ invariant. The
eigenvalues of qc are separated by a constant spacing,

qj − qjþ1 ¼
1

Nc
: (19)

This implies that the eigenvalues of the Wilson line,

Lc ¼ expði2πqcÞ

¼

0
BB@

eiπðNc−1Þ=Nc 0 � � � 0

0 eiπðNc−3Þ=Nc � � � 0

..

. ..
. . .

. ..
.

0 � � � 0 e−iπðNc−1Þ=Nc

1
CCA;

(20)
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are equally distributed about the unit circle, with a spacing
2π=Nc. Thus, the confining vacuum is characterized by a
uniform, i.e., complete repulsion of eigenvalues.

III. THE POTENTIAL

Provided that the expectation value of the Polyakov loop
near the critical temperature Td is dominated by the
classical configuration of the background A0 field (9),
we can model the deconfinement phase transition
by introducing a potential for q. In this section we
construct the effective potential as a sum of two parts:
the perturbative potential, VptðqÞ, and nonperturbative
contributions VnptðqÞ.

A. Parametrization of the SUðNcÞ generators
Before proceeding, we need to introduce a suitable

parametrization for the generators of the SUðNcÞ Lie
algebra. It is convenient to choose the same basis as in
Ref. [46] comprised of Nc − 1 diagonal matrices, and
Nc

2 − Nc off-diagonal matrices.
The diagonal generators can be chosen as

tj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jðj − 1Þp
0
B@

1j−1 � � � 0

..

.
−ðj − 1Þ ..

.

0 � � � 0

1
CA; (21)

where j ¼ 2;…; Nc. For the off-diagonal generators it is
useful to introduce a ladder basis,

ðtþj;iÞmn
¼ 1ffiffiffi

2
p δjnδim;

ðt−j;iÞmn
¼ 1ffiffiffi

2
p δjmδin; 1 ≤ i < j ≤ Nc:

(22)

The generators in Eqs. (21) and (22) form an orthogonal
set, with the normalization for the diagonal generators,

trðtitjÞ ¼
1

2
δij; (23)

and for the off-diagonal generators,

trðtþi;jt−i0;j0 Þ ¼
1

2
δii0δjj0 ; trðtþi;jtþi0;j0 Þ ¼ trðt−i;jt−i0;j0 Þ ¼ 0:

(24)

B. Perturbative potential

The perturbative potential is computed by expanding
about the classical background A0 field (9) (see e.g.
Refs. [4,46–48]). To one-loop order in d ¼ 2þ 1, the
result is given by

VptðqÞ ¼
T
2V

tr ln ½−D2ðqÞ� (25)

(see Ref. [48]), where Dμ is the covariant derivative in the
adjoint representation in the presence of the backgroundA0

field,

DμðqÞ ¼ ∂μ − ig½Aμ;� ¼ ∂μ − i2πTδμ;0½q; �; (26)

and D2 is the gauge-covariant d’Alembertian,

D2ðqÞ ¼ ð∂0 − i2πT½q; �Þ2 þ ∂2: (27)

The trace in Eq. (25) is over all momenta and color degrees
of freedom. In order to evaluate the color trace, one has to
sum over all commutators between q and the generators of
the SUðNcÞ Lie algebra defined in Eqs. (21) and (22). This
can be done using the normalizations in Eqs. (23) and (24).
Since q is a diagonal matrix, it commutes with all

diagonal generators,

½q; tj� ¼ 0; j ¼ 2;…; Nc: (28)

Thus, for each degree of freedom along diagonal generators
the potential is as in zero background field, i.e., it has no
q-dependence,

Vdiag
pt ¼ T

2V
tr ln ðk20 þ k2Þ; (29)

where k is the two-dimensional vector in momentum
space, and k0¼ 2πTn, n¼0;�1;�2;…. is the Matsubara
frequency for bosonic fields.
For all off-diagonal generators the commutator with q is

nonzero,

½q; t�j;i� ¼ �qijt�j;i; (30)

where we introduced the notation

qij ≡ qi − qj: (31)

Therefore, the propagators for the degrees of freedom along
the ladder operators t�j;i are as in zero background field,
except that k0 is shifted by a constant amount to
k�0 ¼ 2πTðn� qijÞ,

Voff−diag
pt ðqijÞ ¼

T
2V

tr ln ½ðk�0 Þ2 þ k2�: (32)

Summing over all SUðNcÞ generators, the full perturbative
potential to one-loop order is
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VptðqijÞ ¼
T
2V

�
ðNc − 1Þ tr ln ð−∂2

0 − ∂2Þ

þ
X

1≤i<j≤Nc

tr ln ½−ð∂0 � i2πTqijÞ2 − ∂2�
�

¼ T
2V

�
ðNc − 1Þ tr ln ðk20 þ k2Þ

þ
X

1≤i<j≤Nc

tr ln ½ðk�0 Þ2 þ k2�
�
; (33)

The first term in Eq. (33) is from diagonal modes tj, while
the second term comes from the off-diagonal modes t�i;j. As
demonstrated in Ref. [5], the sum integrals in Eq. (33) can
be evaluated via contour integration [49],

tr ln ðk20 þ k2Þ ¼ −
VT2

π
ζð3Þ; (34)

tr ln ½ðk�0 Þ2 þ k2� ¼ 2V
Z

d2k
ð2πÞ2 ln ð1 − e−jkj=T�i2πqijÞ

¼ −
VT2

π
Li3ðe�i2πqijÞ; (35)

where we used the polylogarithm function,

LijðzÞ ¼
X∞
n¼1

zn

nj
; (36)

and the Riemann zeta function,

ζðjÞ ¼
X∞
n¼1

1

nj
: (37)

The final result for the one-loop perturbative potential is
then given by

VptðqijÞ ¼ −
T3

2π

�
ðNc − 1Þζð3Þ

þ
X

1≤i<j≤Nc

½Li3ðei2πqijÞ þLi3ðe−i2πqijÞ�
�
; (38)

where ζð3Þ ¼ Li3ð1Þ.
The result for VptðqijÞ, Eq. (38), can also be written as a

sum of the zero-field contribution, independent of qij,

Vptð0Þ ¼ −ðNc
2 − 1ÞT

3

2π
ζð3Þ; (39)

and the quantum correction,

Vqu
pt ðqijÞ

¼ −
T3

2π

� X
1≤i<j≤Nc

½Li3ðei2πqijÞ þ Li3ðe−i2πqijÞ− 2ζð3Þ�
�

≡ T3
X

1≤i<j≤Nc

~Vqu
pt ðqijÞ: (40)

Note that the quantum correction is automatically zero in
the perturbative vacuum q0 ¼ 0. The zero-field contribu-
tion (39) corresponds to the free energy of an ideal gas of
Nc

2 − 1 massless gluons.

C. Nonperturbative potential

In order to model the deconfinement phase transition at
T ¼ Td, it is necessary to add nonperturbative terms to the
perturbative potential. In general, the nonperturbative con-
tributions may include similar functions of q to the ones
found at one-loop order.

1. q-independent term

Since the lattice data for ðϵ − 2pÞ=ðTdT2Þ is constant in
the region 1.2Td ≲ T ≲ 10Td [1,12] for allNc [see Eq. (1)],
we must certainly include a nonperturbative term which is
independent of q,

∼TdT2ðNc
2 − 1Þ ζð3Þ

2π
; (41)

similar to the free energy of an ideal gas of Nc
2 − 1

massless gluons in Eq. (39).
Notably, in d ¼ 2þ 1 dimensions the one-loop pertur-

bative corrections to the pressure are∼g2T2 [50–52], and so
automatically proportional to TdT2, because in three
dimensions g2 has the dimension of mass. The results of
numerical simulations on the lattice are nevertheless
surprising, since it is not natural to expect that perturbation
theory at one-loop order is dominant down to temperatures
as low as ∼1.2Td. Moreover, on the lattice there is no
evidence of higher-order perturbative contributions. The
two-loop order terms would be ∼g4T, while the three-loop
order contributions are independent of temperature, ∼g6. In
detail, perturbation theory is more involved, including
logarithms of g2=T [50–52].

2. q-dependent term

In addition, we may also add a q-dependent term similar
to the one-loop quantum correction (40),

∼TdT2
X

1≤i<j≤Nc

1

2π
½Li3ðei2πqijÞþLi3ðe−i2πqijÞ−2ζð3Þ�: (42)

The temperature dependence ∼TdT2 is a necessary con-
dition for the q-independent term (41), but for the
q-dependent term this is manifestly an assumption.
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3. Vandermonde determinant

Finally, in order to avoid another phase transition above
Td, we need to add a Vandermonde-like term to the
potential (see Ref. [5]). It is interesting to note that in
our matrix model a Vandermonde term can be introduced
using different approaches.

Leading order in a mass expansion.—One possibility is to
consider a mass parameter in the gluon propagator, and
then to expand the one-loop determinant (25) to leading
order in the mass [5],

T
V
tr ln ð−D2 þm2Þ ¼ T

V
tr ln ð−D2Þ

þm2
T
V
tr

�
1

−D2

�
þ � � � : (43)

The first term in the expansion reproduces the one-loop
order perturbative potential, while the second term corre-
sponds to the Vandermonde determinant.
The trace over momentum in Eq. (43) can be evaluated

via contour integration,

VVdmðqijÞ ¼ m2
T
V
tr

�
1

−D2

�

¼ m2T
X

1≤i<j≤Nc

1

2π
½Li1ðei2πqijÞ þ Li1ðe−i2πqijÞ�

(44)

¼ −m2T
X

1≤i<j≤Nc

1

2π
fln ½1 − exp ði2πqijÞ�

þ ln ½1 − exp ð−i2πqijÞ�g

¼ −m2T
X

1≤i<j≤Nc

1

π
ln ½2 sinðπqijÞ�

≡m2T
X

1≤i<j≤Nc

~VVdmðqijÞ: (45)

The function ~VVdmðqijÞ is divergent at qij ¼ 0; 1 and has a
minimum at qij ¼ 1=2 (see Fig. 2). Moreover, due to the

ZðNcÞ symmetry, ~VVdmðqijÞ is periodic in qij → qij þ 1

(see Sec. III E). Identifying the mass parameter with the
Debye screening mass mD, in three dimensions m2

D ∼ g2T
(see e.g. Refs. [53,54]). Thus, the overall temperature
dependence of the Vandermonde term is g2T2 ∼ TdT2,

VVdmðqijÞ ¼ TdT2
X

1≤i<j≤Nc

~VVdmðqijÞ; (46)

where Td acts just as a mass parameter.

Two-loop quantum correction.—Performing a mass expan-
sion is just one possibility to derive the Vandermonde
determinant. The same term can also be found at two-loop
order which may already include nonperturbative contri-
butions. From perturbative calculations in four dimensions
[46,55,56], we know that the two-loop corrections to the
potential in a constant background A0 field (9) include
terms similar to the ones obtained at one-loop order, as well
as terms similar to the second derivative of the one-loop
result with respect to 2πqij.
Similar arguments should apply in d ¼ 2þ 1. Thus we

derive

X
1≤i<j≤Nc

d2

4π2ðdqijÞ2
−1
2π

½Li3ðei2πqijÞ þ Li3ðe−i2πqijÞ�

¼
X

1≤i<j≤Nc

1

2π
½Li1ðei2πqijÞ þ Li1ðe−i2πqijÞ�: (47)

This result is identical to the Vandermonde term obtained
via the mass expansion, Eq. (44).

4. Linear term

In order to derive a regularized version of the
Vandermonde term, we expand the function ~VVdmðqijÞ
around its minimum at qij ¼ 1=2, keeping only terms up to
order ðqij − 1=2Þ2,

~VVdmðqijÞ ¼ −
1

π
ln ½2 sinðπqijÞ�

→ −
ln 2
π

þ π

2

�
qij − floorðqijÞ −

1

2

�
2

; (48)

where qij − floorðqijÞ returns the decimal part of qij. This
ensures that the periodicity in qij → qij þ 1 is maintained
(see Fig. 2). We refer to this term as linear, since it gives a
contribution linear in qij for small qij when expanding
around the minimum. Including the temperature depend-
ence and the sum, the linear nonperturbative term is

0.5 0.5 1. 1.5 2. 2.5
qij

0.6

0.4

0.2

0.2

V

FIG. 2 (color online). The perturbative potential ~Vpt (solid line),
the Vandermonde nonperturbative term V

̬
Vdm (dashed line), and

the linear nonperturbative term ~V lin (dotted line) as a function of qij.
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V linðqijÞ¼TdT2
X

1≤i<j≤Nc

�
−
ln2
π

þπ

2

�
qij− floorðqijÞ−

1

2

�
2
�

≡TdT2
X

1≤i<j≤Nc

~V linðqijÞ: (49)

Adjoint Higgs phase.—The need for a Vandermonde or a
linear contribution to the potential is the following: for
static fields, A0 couples to the spatial degrees of freedom
Ai as an adjoint scalar. When q, and consequently A0,
develops a nonvanishing expectation value, the system is in
an adjoint Higgs phase [29,57]. While there is no gauge-
invariant order parameter for an adjoint Higgs phase, there
can still be a first-order transition from a truly perturbative
phase, where hqi ¼ 0, to one where hqi ≠ 0. This scenario
would correspond to a second phase transition, at a temper-
ature higher than Td. Though possible, lattice calculations
find no evidence of such a second phase transition.
This can be avoided by adding a Vandermonde or a linear

term to the effective potential, which will generate a
nonzero expectation value for A0 at any temperature,
obviating such a second phase transition. As a conse-
quence, the theory is in an adjoint Higgs phase for all T. In
practice, however, for the parameters of the model deter-
mined by fitting the lattice data, the condensate is very
small except near the critical temperature Td (see Sec. V).

5. Full nonperturbative potential

Summing all contributions, the nonperturbative potential
with the Vandermonde determinant (44) takes the form

VnptðqijÞ ¼ TdT2C1

X
1≤i<j≤Nc

1

2π
½Li1ðei2πqijÞ þ Li1ðe−i2πqijÞ�

þ TdT2C2

X
1≤i<j≤Nc

1

2π
½Li3ðei2πqijÞ

þ Li3ðe−i2πqijÞ − 2ζð3Þ�

þ TdT2C3ðNc
2 − 1Þ ζð3Þ

2π
; (50)

where we introduced three parameters C1; C2; C3 which
will be determined in Sec. IVG. For the linear term (49) the
full nonperturbative potential is obtained by replacing in
Eq. (50) the term ∼C1 as

1

2π
½Li1ðei2πqijÞ þ Li1ðe−i2πqijÞ�

→ −
ln 2
π

þ π

2

�
qij − floorðqijÞ −

1

2

�
2

: (51)

D. Effective potential

The effective potential is given by the sum of the
perturbative term (38) plus the nonperturbative contribu-
tions (50) and (51),

VeffðqÞ ¼ VptðqÞ þ VnptðqÞ: (52)

In the presence of the Vandermonde term (44) we
derive

VeffðqijÞ ¼ TdT2C1

X
1≤i<j≤Nc

1

2π
½Li1ðei2πqijÞ þ Li1ðe−i2πqijÞ�

− T3

�
1 −

Td

T
C2

� X
1≤i<j≤Nc

1

2π
½Li3ðei2πqijÞ

þ Li3ðe−i2πqijÞ − 2ζð3Þ�

− T3

�
1 −

Td

T
C3

�
ðNc

2 − 1Þ ζð3Þ
2π

: (53)

For the linear term (49) the effective potential is given by
replacing the term ∼C1 in Eq. (53) as

1

2π
½Li1ðei2πqijÞ þ Li1ðe−i2πqijÞ�

→ −
ln 2
π

þ π

2

�
qij − floorðqijÞ −

1

2

�
2

: (54)

E. ZðNcÞ symmetry

The effective potential (53) is a function of ei2πqij , where
ei2πqj are the eigenvalues of the thermal Wilson lineL (11).
They are the fundamental variables of the matrix model.
While the Wilson line is gauge variant, its eigenvalues are
gauge invariant.
Applying a global ZðNcÞ transformation to the Wilson

line, L ¼ exp ði2πqÞ,

ZðNcÞ∶L→zmL¼exp

�
i
2πm
Nc

�
L; 0≤m≤Nc−1; (55)

the eigenvalues undergo a uniform rotation along the unit
circle by a constant angle 2πm=Nc,

ZðNcÞ∶ ei2πqj → ei2πðqjþ
m
Nc
Þ: (56)

Due to the periodicity in ei2πqj → ei2πðqjþ1Þ, it is sufficient
to restrict the eigenvalues of the matrix q to lie in the
interval −1 ≤ qj ≤ 1. Thus, the ZðNcÞ transformation (56)
is associated with a constant shift of the matrix elements qj,

ZðNcÞ∶ qj →

�
qj þ m

Nc
if qj þ m

Nc
≤ 1

qj þ m
Nc

− 1 if qj þ m
Nc

> 1
: (57)

This implies that the differences qij ¼ qi − qj either vanish
or equal �1, leaving ei2πqij invariant,

ZðNcÞ∶ qij →

�
qij
qij � 1

; ei2πqij → ei2πqij : (58)
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Therefore, our effective potential is manifestly ZðNcÞ
symmetric and periodic in qij → qij þ 1. Note that in the
confining vacuum the ZðNcÞ transformation corresponds to
cyclic permutations of the eigenvalues of the Wilson line
Lc¼ exp ði2πqcÞ (20) and of the matrix qc (59).

IV. UNIFORM EIGENVALUE ANSATZ

In this section we present the numerical and analytical
solution for the potential using a uniform eigenvalue ansatz
[4], which guarantees that the Polyakov loop is always real.
We are interested in studying the region between the

perturbative and confining vacuum, 0 ≤ l ≤ 1, indicated by
the dashed lines in Fig. 1. In this case, a suitable para-
metrization of the matrix q is given by a straight line from
q0 ¼ 0 to qc (18),

qðsÞ ¼ sqc; 0 ≤ s ≤ 1; (59)

where qðsÞ is a diagonal matrix with the eigenvalues

qjðsÞ ¼
Nc − 2jþ 1

2Nc
s: (60)

For an even number of colors, there are M pairs of
eigenvalues, �qj, j ¼ 1;…;M, where Nc ¼ 2M. For
odd Nc, there are again M pairs of eigenvalues, �qj,
j ¼ 1;…;M, where Nc ¼ 2M þ 1, and the remaining
eigenvalue is zero. All qj’s have the constant spacing

qj − qjþ1 ¼
s
Nc

: (61)

The eigenvalues of the associated Wilson line are distrib-
uted about the unit circle, with a spacing 2πs=Nc,

L ¼ exp ði2πsqcÞ: (62)

In the large-Nc limit, this ansatz generates a uniform
eigenvalue density qj → qðxÞ, where x ¼ j=Nc (see
Sec. IV C).
We stress that in d ¼ 3þ 1 dimensions the uniform

eigenvalue ansatz applies for two or three colors, but is not
an exact solution for four or more colors (see Ref. [4]). It is,
however, rather close to the exact numerical solution. For
Nc ¼ 4 to Nc ¼ 7 in d ¼ 3þ 1 dimensions, for instance,
the difference between the uniform eigenvalue ansatz and
the exact solution is less than ∼1% for all thermodynamic
quantities and for the expectation value of the Polyakov
loop, even at Td where the differences are naturally
greatest. This is our main motivation to employ the uniform
ansatz. A general parametrization of the background A0

field is discussed in Sec. VI.

A. Polyakov loop

Taking the trace of the Wilson line (62) gives the
Polyakov loop for even Nc,

lðsÞ ¼ 1

Nc

XNc=2

j¼1

2 cos ½2πqjðsÞ�

¼ 1

Nc

XNc=2

j¼1

2 cos

�
π
Nc − 2jþ 1

Nc
s

�
; (63)

and for odd Nc,

lðsÞ ¼ 1

Nc

� XðNc−1Þ=2

j¼1

2 cos ½2πqjðsÞ� þ 1

�

¼ 1

Nc

� XðNc−1Þ=2

j¼1

2 cos

�
π
Nc − 2jþ 1

Nc
s

�
þ 1

�
; (64)

where we used Eq. (60) for qj. The perturbative vacuum,
l ¼ 1, is realized for s ¼ 0, while the confining vacuum,
lc ¼ 0, is at sc ¼ 1.
In Fig. 3 we plot the Polyakov loop in the uniform

eigenvalue ansatz as a function of s for different numbers of
colors. The function lðsÞ is periodic in s → sþ 2Nc and
symmetric around s ¼ 0, and s ¼ Nc. For any s, the
Polyakov loop takes values along the real axis within
the solid lines in Fig. 1, and thus represents a possible
physical solution.

B. The potential

1. Perturbative and nonperturbative potential

In the uniform eigenvalue ansatz qðsÞ (60), the potential
becomes a function of s through the dependence of qij on s,

qij ≡ qijðsÞ ¼
i − j
Nc

s: (65)

In Figs. 4, 5, and 6 we plot the perturbative potential VptðsÞ
(38), the Vandermonde term VVdmðsÞ (44), and the linear
term V linðsÞ (49) for different numbers of colors in the
region between the perturbative vacuum, s ¼ 0, and the
confining vacuum, sc ¼ 1. The perturbative potential
exhibits a minimum at s ¼ 0 and a maximum at sc ¼ 1,
while the nonperturbative terms both have a minimum at
the confining vacuum sc.
We note that the Vandermonde term is divergent for

s ¼ 0. However, in the presence of a Vandermonde or a
linear term the condensate for s never identically vanishes.
A nonzero condensate for s will also ensure that the
thermodynamical quantities computed at the minimum
of the effective potential remain finite.

2. Effective potential

Before we discuss the effective potential, it is useful to
make some remarks on the summation over the eigenvalues
qij. The perturbative and nonperturbative terms in
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Eqs. (38), (50), and (51) are even functions in qij of the
form

X
1≤i<j≤Nc

fðjqijjÞ ¼
1

2

X
1≤i;j≤Nc;i≠j

fðjqijjÞ; (66)

In the uniform eigenvalue ansatz, Eq. (65), this sum can be
written as a function of the parameter s,

1

2

X
1≤i;j≤Nc;i≠j

fðjqijjÞ ¼
1

2

X
1≤i;j≤Nc;i≠j

f

�ji − jj
Nc

s

�

¼
XNc−1

j¼1

ðNc − jÞf
�

j
Nc

s

�
: (67)

It is convenient to decompose the effective potential into
two parts,

1 2 3 4 5 6
s

1

0.5

0.5

1
l

1 2 3 4 5 6 7 8
s
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1
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1 2 3 4 5 6 7 8 9 10
s

1

0.5

0.5

1
l

1 2 3 4 5 6 7 8 9 10 11 12
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1

0.5
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1
l

FIG. 3 (color online). The Polyakov loop as a function of s in the uniform eigenvalue ansatz for Nc ¼ 3 (left top), Nc ¼ 4 (right top),
Nc ¼ 5 (left bottom), Nc ¼ 6 (right bottom).
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s

0.2

0.15
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0.

Vpt

FIG. 4 (color online). The perturbative potential VptðsÞ as a
function of s in the uniform eigenvalue ansatz. The plots are
shown for Nc ¼ 2 (dashed line), Nc ¼ 3 (dashed-dotted line),
Nc ¼ 4 (dotted line), and in the large-Nc limit (solid line).
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s
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VVdm

FIG. 5 (color online). The Vandermonde term VVdmðsÞ as
a function of s for Nc ¼ 2 (dashed line), Nc ¼ 3 (dashed-
dotted line), Nc ¼ 4 (dotted line), and in the large-Nc limit
(solid line).
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VeffðsÞ ¼ −ðNc
2 − 1ÞT3

�
ζð3Þ
2π

�
1 −

Td

T
C3

�

−
�
1 −

Td

T
C2

�
Vðs; aÞ

�
; (68)

where Vðs; aÞ denotes the s-dependent terms.
Using Eq. (67), in the presence of the Vandermonde

determinant we derive

Vðs; aÞ ¼
XNc−1

j¼1

−
Nc − j
Nc

2 − 1

1

2π
½Li3ðei2π

j
Nc
sÞ

þ Li3ðe−i2π
j
Nc
sÞ − 2ζð3Þ�

þ aðTÞ
XNc−1

j¼1

Nc − j
Nc

2 − 1

1

2π
½Li1ðei2π

j
Nc
sÞ

þLi1ðe−i2π
j
Nc
sÞ�; (69)

where

aðTÞ ¼ C1

T
Td
− C2

(70)

is a temperature-dependent parameter.
For the linear nonperturbative term (49), in the relevant

region between s ¼ 0 and sc ¼ 1, the effective potential is
obtained by replacing the term ∼aðTÞ in Vðs; aÞ as

1

2π
½Li1ðei2π

j
Nc
sÞ þ Li1ðe−i2π

j
Nc
sÞ�

→ −
ln 2

π
þ π

2

�
j
Nc

s −
1

2

�
2

: (71)

C. Large-Nc limit

In order to study the large-Nc limit, we introduce the
variable

x ¼ j=Nc: (72)

Then, the eigenvalues become a function of x,

qj → qðxÞ; (73)

and the sum over j can be written as an integral over x,

XNc−1

j¼1

Nc − j
Nc

2 − 1
f

�
j
Nc

s

�
¼

Nc→∞

Z
1

0

dxð1 − xÞfðxsÞ: (74)

Using this integral, the s-dependent part of the effective
potential with the Vandermonde term in Eq. (69) takes the
form

Vðs;aÞ¼−
Z

1

0

dx
ð1−xÞ
2π

½Li3ðei2πxsÞþLi3ðe−i2πxsÞ−2ζð3Þ�

þaðTÞ
Z

1

0

dx
ð1−xÞ
2π

½Li1ðei2πxsÞþLi1ðe−i2πxsÞ�

¼−
1

2π

�
Li5ðei2πxsÞþLi5ðe−i2πxsÞ−2ζð5Þ

4π2s2
−ζð3Þ

�

þaðTÞ
2π

�
Li3ðei2πxsÞþLi3ðe−i2πxsÞ−2ζð3Þ

4π2s2

�
:

(75)

For the linear nonperturbative term (49), the large-Nc
limit of effective potential in the relevant region between
s ¼ 0 and sc ¼ 1 is given by replacing the term ∼aðTÞ in
Eq. (75) as

1

2π

Li3ðei2πxsÞ þ Li3ðe−i2πxsÞ − 2ζð3Þ
4π2s2

→ −
ln 2

2π
þ π

48
½3 − 2sð2 − sÞ�: (76)

D. The order of the phase transition

Lattice results of Ref. [13] indicate that in d ¼ 2þ 1
dimensions the phase transition is of second order for
Nc ≤ 3, of very weak first order forNc ¼ 4, and of stronger
first order for Nc ≥ 5. In our matrix model the phase
transition is of second order for Nc ¼ 2, while for Nc ≥ 3
the transition is of first order. The reason for the discrep-
ancy between our model and numerical simulations on the
lattice is due to infrared fluctuations [52] not included in
our effective theory, which render the transition second
order for three colors in d ¼ 2þ 1 dimensions.
In order to illustrate the behavior of the effective

potential (68) near Td, in Fig. 7 we show VeffðsÞ, and
dVeffðsÞ=ds as a function of s for Nc ¼ 6. Depending on
the value of the temperature-dependent parameter aðTÞ
defined in Eq. (70), we can describe the transition from
deconfinement to confinement.
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FIG. 6 (color online). The linear term V linðsÞ as a function of s
for Nc ¼ 2 (dashed line), Nc ¼ 3 (dashed-dotted line), Nc ¼ 4
(dotted line), and in the large-Nc limit (solid line).
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(i) At aðTÞ ¼ 0 the system is in the complete QGP
phase, with a global minimum at the perturbative
vacuum s ¼ 0, and a maximum at the confining
vacuum sc ¼ 1.

(ii) In the semi-QGP region, 0 < aðTÞ < ad, there is a
global minimum at 0 < s < 1, and a second ex-
tremum at s > 1, which corresponds to a second
degenerate minimum for Nc ¼ 2, or to a local
minimum for Nc ≥ 3.

(iii) At aðTÞ ¼ ad the transition to confinement
takes place. For a first-order phase transition, the
global minimum jumps at Td from a critical
value sðTdÞ ¼ s−d < 1 to the confining vacuum at
sc ¼ 1.

The first-order phase transition becomes stronger
with increasing Nc. This is supported by universality
class arguments [58,59] and numerical simulations on
the lattice, where the first order of the transition
becomes more pronounced for larger Nc [13].
Accordingly, the value for s−d decreases with increasing
number of colors, and approaches a constant value in
the large-Nc limit,

lim
Nc→∞

s−d → 0.63: (77)

In Table I we list the values for s−d ¼ sðTdÞ, and
ad ¼ aðTdÞ for different Nc.

E. The minimum of the effective potential

In order to compute the thermodynamic quantities, like
pressure and interaction measure, we first have to deter-
mine the minimum of the effective potential (68) as a
function of the temperature. The minimum is obtained by
solving numerically the equation

∂Vðs; aÞ
∂s

����
s¼smin

¼ 0 (78)

in the region between the perturbative and confining
vacuum, 0 ≤ a ≤ ad. This defines the minimum sminðaÞ
as a function of the parameter a.
Using the solution for sminðaÞ, we can obtain an

expression for the potential at the minimum which depends
only on a,

VminðaÞ≡ V½sminðaÞ; a�; (79)

where Vðs; aÞ is given by Eq. (75). This will become useful
when we compute the pressure. In Figs. 8, 9, and 10 we plot
the solutions for sminðaÞ and VminðaÞ as a function of a for
Nc ¼ 2, 3, 4, 5, 6, and in the large-Nc limit.
In order to determine the temperature dependence of the

minimum, we apply the definition for the parameter aðTÞ in
Eq. (70),

sminðTÞ ¼ smin½aðTÞ� ¼ smin

�
C1

T
Td
− C2

�
; (80)

VminðTÞ ¼ Vmin½aðTÞ� ¼ Vmin

�
C1

T
Td
− C2

�
: (81)
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FIG. 7 (color online). The effective potential VeffðsÞ for Nc ¼ 6, and its derivative V 0
effðsÞ as a function of the variable s. The plots are

obtained by using the Vandermonde term for three different values of a∶a < ad (dashed line) represents the semi-QGP, at a ¼ ad (solid
line) the phase transition to confinement takes place, and for a > ad (dotted line) the system is in the confined phase.

TABLE I. The values for s−d ¼ sðTdÞ and ad ¼ aðTdÞ for
different SUðNcÞ groups. We use the notation “Vdm” for the
Vandermonde determinant, and “lin” for the linear nonperturba-
tive term. At a first-order phase transition the minimum of the
effective potential jumps at the deconfinement temperature Td
from s−d < 1 to the confining vacuum sc ¼ 1.

Nc s−d Vdm s−d lin ad Vdm ad lin

2 1. 1. 2.77259 2.77259
3 0.795883 0.768018 1.84148 2.33328
4 0.735259 0.704746 1.55426 2.20086
5 0.707102 0.677182 1.41634 2.14137
6 0.691139 0.662458 1.33576 2.10918
∞ 0.638659 0.628419 1.0354 2.03424
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F. Pressure and interaction measure

The pressure is defined as minus the effective potential at
the minimum,

pðTÞ ¼ −Veff ½sminðTÞ�: (82)

A more straightforward way to compute the pressure is to
use directly the solution for VminðTÞ (81),

pðTÞ
ðNc

2 − 1ÞT3
¼

�
1 −

Td

T
C3

�
ζð3Þ
2π

−
�
1 −

Td

T
C2

�
VminðTÞ; (83)

From the pressure we can derive the interaction measure,

ΔðTÞ
ðNc

2 − 1ÞT3
¼ T

d
dT

�
pðTÞ

ðNc
2 − 1ÞT3

�
: (84)

At very high temperatures, the pressure approaches a
constant perturbative limit,

lim
T→∞

pðTÞ
ðNc

2 − 1ÞT3
→

ζð3Þ
2π

≡ c; (85)

while the interaction measure vanishes,

lim
T→∞

ΔðTÞ
ðNc

2 − 1ÞT3
→ 0: (86)

Both the pressure and interaction measure in three-dimen-
sional pure SUðNcÞ gauge theory were computed on the
lattice for Nc ¼ 2, 3, 4, 5, 6 in Ref. [1].
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FIG. 8 (color online). Left panel: the minimum of the effective potential as a function of a, sminðaÞ, for the linear term (solid line), and
the Vandermonde determinant (dashed line). Right panel: the potential at the minimum as a function of a, VminðaÞ. In the upper panels
we show the results for Nc ¼ 2, and in the lower panels for Nc ¼ 3.
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1. Susceptibility

In order to study the deconfinement temperature Td, it is
also relevant to compute the susceptibility. The common
way to determine the critical temperature on the lattice in
pure gauge theory is via the susceptibility for the Polyakov
loop, which exhibits a peak at Td. An equivalent method is
to look at the susceptibility for the pressure, which may be
defined as

χpðTÞ
ðNc

2 − 1ÞT3
≡ d2

dT2

�
pðTÞ

ðNc
2 − 1ÞT3

�
: (87)

This quantity also has a peak at the deconfinement
temperature Td (see Fig. 11).

G. Fixing the parameters at Td

1. One-parameter model

The effective potential (68) involves three parameters
C1; C2; C3. Introducing two constraints at the transition
temperature Td leaves only one free parameter, say C1,
which is determined by fitting the lattice data for the
pressure of Ref. [1].

(i) The first condition is that the transition occurs at Td.
From Eq. (70) for the temperature-dependent param-
eter aðTÞ, we then derive C2 as a function of C1,

ad ≡ aðTdÞ ¼
C1

1 − C2

: (88)

In the deconfined phase, the pressure is proportional to
the number of gluons, pðT > TdÞ ∼ Nc

2 − 1. Below the

0 0.5 1. 1.5 2. 2.5 3.
a0

0.2

0.4

0.6

0.8

1.

s m in a

0 0.5 1. 1.5 2. 2.5 3.
a0

0.04

0.08

0.12

0.16

0.2
V m in a

0 0.5 1. 1.5 2. 2.5 3.
a0

0.2

0.4

0.6

0.8

1.

s m in a

0 0.5 1. 1.5 2. 2.5 3.
a0

0.04

0.08

0.12

0.16

0.2
V m in a

FIG. 9 (color online). Left panel: the minimum of the effective potential as a function of a, sminðaÞ, for the linear term (solid line), and
the Vandermonde determinant (dashed line). Right panel: the potential at the minimum as a function of a, VminðaÞ. In the upper panels
we show the results for Nc ¼ 4, and in the lower panels for Nc ¼ 5.
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critical temperature, the gluons are confined in colorless
glueballs which are exponentially suppressed, pðT < TdÞ∼
exp ð−mG=TÞ, where mG represents some glueball mass.
Thus, in the confined phase the pressure is by a factor
∼1=ðNc

2 − 1Þ smaller than above Td.
(ii) Therefore, as a second condition we impose that

the pressure identically vanishes at the critical
temperature,

pðTdÞ ¼ 0: (89)

Using the equation for the pressure (83), the second
condition (89) allows to determine C3 as a function of C1,

C3 ¼ 1 −
C1Vðs−d ; adÞ

ðNc
2 − 1Þ ζð3Þ

2π ad
; (90)

where the values for s−d and ad are listed in Table I. Note
that the constraint we impose in Eq. (89) is just an
approximation. Ideally, we should fit the pressure to some
sort of hadronic, i.e., glueball resonance gas in the
confined phase.

2. Two-parameter model

The effective potential in Eq. (68) can be generalized to
include terms ∼T0. In the two-parameter model the con-
stants C1 and C2 remain unchanged, while C3 is replaced
by a temperature-dependent parameter,

C3ðTÞ ¼ C3ð∞Þ þ C3ðTdÞ − C3ð∞Þ
T2=Td

2
; (91)

which is equivalent to adding a bag constant B to the
effective potential. The two-parameter model is the most
general case studied nowadays.

3. Four-parameter fit

We also study a four-parameter fit by extending the two-
parameter model by two additional free parameters: one for
the critical temperature Td, and one for the perturbative
limit of the pressure c defined in Eq. (85). The parameter
for c is introduced in order to take into account higher-order
loop contributions to the perturbative potential. In addition,
the parameter for Td accounts for possible glueball effects
near the transition, which are not included in the matrix
model. In our model, we fix the parameters by imposing the
constraint that the pressure vanishes at Td. Ideally, how-
ever, we should match the pressure to some hadronic
resonance gas below the critical temperature. This gas is
made of massive glueballs, and thus can be described by a
series of Boltzmann factors. If there are many massive
glueballs, as in a Hagedorn spectrum, the temperature
dependence of the glueball contribution may become more
complicated, including powers of TH − T, where TH is
the Hagedorn temperature [60]. The emergence of a
Hagedorn-like spectrum (i.e., an exponential growth in
the number of hadronic states, as a function of their mass)
has been studied in d ¼ 3þ 1 and d ¼ 2þ 1 in a recent
work [61].
In d ¼ 3þ 1 the condition pðTdÞ ¼ 0 provides a good

approximation even for two colors [4]. In d ¼ 2þ 1 we
find that this simplified constraint works well for larger Nc.
For small Nc, however, we need to relax the condition
pðTdÞ ¼ 0, because the glueball contribution to the pres-
sure in the confined phase is not negligible.
Figure 11 shows the lattice data for the pressure and the

corresponding susceptibility χp, defined in Eq. (87) for
Nc ¼ 2. Near the transition at Td, we find three different
temperatures:
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FIG. 10 (color online). Left panel: the minimum of the effective potential for Nc ¼ 6 as a function of a, sminðaÞ, for the linear term
(solid line), and the Vandermonde determinant (dashed line). Right panel: the potential at the minimum as a function of a, VminðaÞ.
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(i) First, the critical temperature Td can be determined
from the susceptibility χp which has a maximum
at Td.

(ii) The inflection point Tp corresponds to the temper-
ature where the derivative of the pressure is maxi-
mal. This coincides with the peak of the interaction
measure, and with the point at which the suscep-
tibility vanishes.

(iii) The best estimate for the temperature Ti, at which
the pressure vanishes, is found by the intercept of the
tangent to the inflection point Tp of the pressure and
the T=Td axis.

For Nc ¼ 2 we get Tp ≡ 1.2Td > Td for the inflection
point, and Ti ≡ 0.94Td < Td for the intercept temperature.
We find that for small Nc, the critical temperature Td
determined from the lattice data via the susceptibility does
not coincide with the estimated value for the intercept
temperature Ti, at which the pressure vanishes. This is the
main motivation to allow for a shift in Td introduced in the
four-parameter fit. We stress, however, that our four-
parameter fit should be regarded just as an approximation
to a more complete model including an effective theory for
the confined phase.
Note that the beauty and simplicity of these three models

including one, two, and four free parameters is that, as a
common denominator, the constraints on C1; C2; C3 are
maintained. In the two-parameter model, the constraint on
the pressure (89) is now used to determine C3ðTdÞ, and
C3ð∞Þ is the new free parameter. In the four-parameter fit,
the constraint is applied to C3ðTiÞ, and Ti is introduced
as a new free parameter, together with the perturbative
constant c.

V. RESULTS

In this section we present the numerical results for the
pressure and interaction measure in Figs. 12, 13, 14, 15,
and 16 for Nc ¼ 2, 3, 4, 5, 6 and compare to the lattice data
of Ref. [1]. Moreover, we also numerically compute the
Polyakov loop (see Figs. 17, 18, and 19). For the renor-
malized Polyakov loop in d ¼ 2þ 1 dimensions there is no
lattice data available so far. All results are obtained within
the uniform eigenvalue ansatz using the one-parameter
model, the two-parameter model, and the four-parameter
fit. In addition, we present the plots for two different
nonperturbative terms, the Vandermonde determinant (44)
and the linear term (49).
The free parameters of the model are adjusted by fitting

the lattice pressure of Ref. [1] for T ≥ 1.0Td for all Nc.
Table II lists the parameters for all cases studied in this
work, where we introduce the following notation: “1 par”
for the one-parameter model, “2 par” for the two-parameter
model, and “4 par” for the four-parameter fit. Furthermore,
“lin” denotes the linear term and “Vdm” the Vandermonde
determinant. The parameters C2 and C3 are not free, they
are functions of C1. In “1 par” we use C1 as the single free
parameter to fit the lattice data. In “2 par” we add a second
free parameter,

δC3 ¼ C3ðTdÞ − C3ðT ¼ ∞Þ; (92)

to include the effects of the bag constant B (see Sec. IV G).
In “4 par” we further allow for small shifts in Td, and in the
perturbative constant c (85), in order to encompass other
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FIG. 11 (color online). Lattice data of Ref. [1] for SUð2Þc close to the critical temperature. Left panel: the pressure with the tangent to
the inflection point. Right panel: the susceptibility χp obtained from the lattice pressure. The critical temperature Td is denoted by a
square, the intercept temperature Ti by a circle, and the inflection point Tp by a diamond.
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possible nonperturbative effects not included in our
matrix model.
Overall, the change in C1 and C2 with the number of

colors becomes weaker with increasing number of param-
eters. Moreover, for the Vandermonde determinant the
variation of C1 and C2 with Nc is milder than for the
linear nonperturbative term. In the one-parameter model C1

and C2 change significantly with increasing Nc and/or
when switching between the linear and the Vandermonde
term. For the two-parameter model, we find that as Nc
increases, C1 and C2 approach the same values as in the
four-parameter fit which gives quantitatively the best fits to
the lattice data.
In the four-parameter fit C1 tends to decrease with

increasing number of colors. Moreover, the value of C1

in the four-parameter fit is significantly smaller than for the
one-parameter model. Typically, C1 drops by an order of
magnitude as one goes from one to four parameters.
Notably, for the Vandermonde determinant C2 assumes
approximately the same value for all Nc in the four-
parameter fit, C2 ≃ 0.93. Finally, we notice that for all
scenarios studied in this work, C3 is approximately con-
stant, C3 ≃ 1, presumably because it is fixed by the high-T
behavior.

A. Pressure and interaction measure

1. One- and two-parameter model

The one- and two-parameter matrix models reproduce
the lattice data remarkably well within the considered

0 1 2 3 4 5 6 7 8
T Td0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

p

3 T3

0 1 2 3 4 5 6 7 8
T Td0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

p

3 T3

0 1 2 3 4 5 6 7 8
T Td0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

3 T3

0 1 2 3 4 5 6 7 8
T Td0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

3 T3

FIG. 12 (color online). Pressure (upper panels) and interaction measure (lower panels) scaled by Nc
2 − 1 ¼ 3 for SUðNc ¼ 2Þ. Lattice

data, taken from Ref. [1], are denoted by dots. For the interaction measure we also show the lattice error bars, while for the pressure the
error bars are smaller than the symbols. The results of the matrix model are obtained by using the Vandermonde determinant (left panel),
and the linear term (right panel) within the one-parameter model (dashed line), two-parameter model (solid line), and four-parameter fit
(dotted line). The horizontal lines represent the perturbative limit of the pressure c ¼ ζð3Þ=2π.
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temperature region Td ≤ T ≤ 8Td. An important result is
that with only one free parameter, we can already describe
the deviation from an ideal gluon gas observed on the
lattice at 1.2Td ≲ T ≲ 10 Td. Regarding the dependence on
the number of colors, we confirm the general trend
observed on the lattice: when scaled by the number of
gluons, Nc

2 − 1, the pressure and the interaction measure
only marginally change with varying Nc. For all Nc, we
find that including the effects of the bag constant B allows
for a better agreement with the lattice data than the one-
parameter model.
Despite the overall good correspondence, we notice that

at high temperatures the deviation between our results and
the lattice pressure slightly increases. In addition, we are
not able to reproduce the correct shape for the peak of the

interaction measure residing near Td. Therefore, we also
present the results using the four-parameter fit.
An interesting observation is that the two-parameter

model can be seen as an interpolation between the one-
parameter model for Nc ¼ 2; 3 and the four-parameter fit
for larger values of Nc.

2. Four-parameter fit

The four-parameter fit quantitatively improves the agree-
ment with lattice data for the pressure and interaction
measure. The shift in Td is introduced to account for
possible glueballs effects not included in our model, while
the shift in c is motivated by possible higher-order loop
corrections to the perturbative potential. Furthermore,
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FIG. 13 (color online). Pressure (upper panels) and interaction measure (lower panels) scaled by Nc
2 − 1 ¼ 8 for SUðNc ¼ 3Þ. Lattice

data are denoted by dots. The results of the matrix model are obtained by using the Vandermonde determinant (left panel), and the linear
term (right panel) within the one-parameter model (dashed line), two-parameter model (solid line), and four-parameter fit (dotted line).
The horizontal lines represent the Stefan-Boltzmann limit of the pressure c ¼ ζð3Þ=2π.
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finite-volume effects present on the lattice close to Td and
at high temperatures may also slightly shift the values of Td

and c.

3. Shift in Td

In Fig. 20 we plot the shift in the critical temperature,
Td − Ti, as a function ofNc, together with three different fit
functions, 1=ðNc − 1Þ, 1=ðNc

2 − 1Þ, and 1=ðNc
3 − 1Þ. The

intercept temperature Ti corresponds to the best estimate
for the temperature where the pressure vanishes. Notably,
the values for Td − Ti are rather small and rapidly decrease
with Nc, approximately as 1=ðNc

2 − 1Þ, indicating that any
possible glueball contribution becomes less important for
larger Nc. This is in accordance with general expectations
that glueballs become suppressed by a factor ∼1=ðNc

2 − 1Þ
above Td.

4. Shift in c

Concerning the shift in the perturbative constant c, it is
interesting to note that it remains approximately constant
when varying the numbers of colors, ≃3%, supporting the
expectation that including higher-order loop perturbative
corrections may account for the small deviation from lattice
data in the perturbative limit.

B. Polyakov loop

Using the parameters determined by fitting the lattice
pressure, we also plot the Polyakov loop.

1. Nc ¼ 2

In the one- and two-parameter model, the best fits to the
lattice pressure for Nc ¼ 2 are obtained in the cases, where
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FIG. 14 (color online). Pressure (upper panels) and interaction measure (lower panels) scaled by Nc
2 − 1 ¼ 15 for SUðNc ¼ 4Þ.

Lattice data [1] are denoted by dots. The results of the matrix model are obtained by using the Vandermonde determinant (left panel), and
the linear term (right panel) within the one-parameter model (dashed line), two-parameter model (solid line), and four-parameter fit
(dotted line). The horizontal lines represent the perturbative limit of the pressure c ¼ ζð3Þ=2π.
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the system instantly merges from the confining vacuum,
sc ¼ 1, to the perturbative vacuum, s ¼ 0, above Td.
Consequently, for two colors the Polyakov loop rises
abruptly from lc ¼ 0 to l ¼ 1 (see Fig. 17). This is because
in our model the Polyakov loop differs from unity only for
nonzero values of the condensate sminðTÞ [see Eqs. (63) and
(64)]. Strictly speaking, in the presence of a linear or a
Vandermonde term the condensate never identically van-
ishes. Still, the region where sminðTÞ is numerically large, is
very narrow. As explained in Sec. IVG, the reason for the
shortcoming of the one- and two-parameter model may be
that for Nc ¼ 2 the glueball contribution to the free energy
is not negligible at the phase transition. Therefore, we need
to allow for a nonzero pressure at Td, which is equivalent to
shifting the critical temperature, the way it is done in the
four-parameter fit.

2. Nc ≥ 3

For Nc ≥ 3 the phase transition is of first order. Thus, the
expectation value of the Polyakov loop jumps from zero to
a nonzero value at the critical temperature, and then
approaches unity at asymptotically high temperatures.
In the one-parameter model, the region where the

Polyakov loop notably differs from unity increases with
Nc. In the four-parameter fit, on the other hand, the plots for
the Polyakov loop only slightly change when varying
Nc, similar to other thermodynamical observables.
Interestingly, the two-parameter plots for the Polyakov
loop essentially coincide with the one-parameter model for
Nc ¼ 2, 3, while for Nc ¼ 5, 6 they are very close to the
results of the four-parameter fit. Note that for Nc ≥ 3 any
possible glueball contribution near the phase transition is
already sufficiently suppressed by the factor 1=ðNc

2 − 1Þ.

0 1 2 3 4 5 6 7 8
T Td0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

p

24 T3

0 1 2 3 4 5 6 7 8
T Td0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

p

24 T3

0 1 2 3 4 5 6 7 8
T Td0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

24 T3

0 1 2 3 4 5 6 7 8
T Td0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

24 T3

FIG. 15 (color online). Pressure (upper panels) and interaction measure (lower panels) scaled by Nc
2 − 1 ¼ 24 for SUðNc ¼ 5Þ.

Lattice data [1] are denoted by dots. The results of the matrix model are obtained by using the Vandermonde determinant (left panel), and
the linear term (right panel) within the one-parameter model (dashed line), two-parameter model (solid line), and four-parameter fit
(dotted line). The horizontal lines represent the perturbative limit of the pressure c ¼ ζð3Þ=2π.
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As a consequence, forNc ≥ 3, all models considered in this
work provide plausible plots for the Polyakov loop, while
for Nc ¼ 2 only the four-parameter fit allows for reason-
able results.

3. Transition region

From the Polyakov loop, we can directly determine the
transition range where the condensate sminðTÞ is non-
vanishing. This is the region where the s-dependent non-
perturbative terms enter the thermodynamical quantities. In
the one-parameter model, the transition range is practically
zero for Nc ¼ 2. It becomes broader with increasing
number of colors, and ends up approximately at 4Td for
Nc ¼ 6. In the four-parameter fit, the transition region is
broadly independent of Nc and extends up to ∼1.25Td.

Similar results are obtained in the two-parameter model,
except for the case Nc ¼ 2, where the transition range
vanishes. Remarkably, this is very close to the results in
d ¼ 3þ 1 dimensions, where the Polyakov loop notably
differs from unity up to ∼1.2Td.

VI. THE POTENTIAL FOR A GENERAL
PARAMETRIZATION OF THE

BACKGROUND FIELD

In the previous sections IV and V we have presented a
detailed study of the region between the perturbative and
confining vacuum, 0 ≤ s ≤ sc, where the Polyakov loop
varies from zero to unity, using the uniform eigenvalue
ansatz qðsÞ ¼ sqc (60). In this section we extend the
parametrization of the background A0 field to a complete
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FIG. 16 (color online). Pressure (upper panels) and interaction measure (lower panels) scaled by Nc
2 − 1 ¼ 35 for SUðNc ¼ 6Þ.

Lattice data [1] are denoted by dots. The results of the matrix model are obtained by using the Vandermonde determinant (left panel), and
the linear term (right panel) within the one-parameter model (dashed line), two-parameter model (solid line), and four-parameter fit
(dotted line). The horizontal lines represent the perturbative limit of the pressure c ¼ ζð3Þ=2π.
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basis of diagonal generators of the SUðNcÞ Lie algebra.
Thus, the Polyakov loop may take any value within the
solid lines of Fig. 1.
First we look at the potential along the uniform eigen-

value ansatz beyond the confining vacuum, s > sc.
Figure 21 shows the perturbative potential VptðsÞ (38),
the Vandermonde term VVdmðsÞ, and the linear term V linðsÞ
(49) forNc ¼ 3, 4, 5, 6 up to s ¼ Nc. In addition, in Fig. 22
we plot the effective potential in the presence of the
Vandermonde term for Nc ¼ 6. The functions VptðsÞ,
VVdmðsÞ, V linðsÞ, and VeffðsÞ are all periodic in s →
sþ Nc, and symmetric with respect to s ¼ Nc=2.
An interesting observation is that the perturbative

potential exhibits local minima at s > sc. Notably, there
appear also extrema in the nonperturbative contributions
and in the effective potential. For 1 < s ≤ Nc=2, the
Vandermonde term exhibits Nc − 2 local minima and
Nc − 2 divergences which partly coincide with the local
minima in the perturbative potential. The same arguments
apply to the effective potential. For the linear term the
results are qualitatively similar, except that the divergences
disappear. However, it is instructive to focus first only
on the perturbative potential which, in contrast to the

nonperturbative and effective potential, does not depend
on the details of the model.
As demonstrated in Fig. 3, in the uniform eigenvalue

ansatz the Polyakov loop lðsÞ takes always values along the
real axis within the solid lines of Fig. 1. Therefore, the local
minima in the perturbative potential at s > sc represent
possible physical solutions. It is important to point out,
however, that the extremal points present in the potential
beyond the confining vacuum do not affect the results
of our study between the perturbative and confining
vacuum. Nevertheless, an interesting question is if the
local minima are metastable solutions, or just saddle points.
For this purpose, we have to check if they are stable in the
direction transverse to the uniform eigenvalue ansatz qðsÞ
(60), i.e., if they correspond to local minima in the entire
ðNc − 1Þ-dimensional space spanned by the orthogonal
diagonal generators of SUðNcÞ.
This can be done by looking for local minima in the

perturbative potential Vpt½qðs; siÞ� in the presence of a
background field,

A0 ¼
2πT
g

qðs; siÞ; (93)
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FIG. 17 (color online). The Polyakov loop for SUð2Þc (upper panels) and SUð3Þc (lower panels). The results are obtained for the
Vandermonde determinant (left panel), and the linear term (right panel) in the one-parameter model (dashed line), two-parameter model
(solid line), and four-parameter fit (dotted line).
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where qðs; siÞ is a diagonal matrix parametrized as

qðs; siÞ ¼ sqc þ
XNc−2

i¼1

siqi: (94)

The matrices qc and qi form a set of Nc − 1 orthogonal
diagonal generators of the SUðNcÞ Lie algebra, while s and
si are the associated parameters. As elements of the
SUðNcÞ Lie algebra, the diagonal generators must be
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FIG. 18 (color online). The Polyakov loop for SUð4Þc (upper panels) and SUð5Þc (lower panels). The results are obtained for the
Vandermonde determinant (left panel), and the linear term (right panel) in the one-parameter model (dashed line), two-parameter model
(solid line), and four-parameter fit (dotted line).
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FIG. 19 (color online). The Polyakov loop for SUð6Þc obtained for the Vandermonde determinant (left panel), and the linear term
(right panel) in the one-parameter model (dashed line), two-parameter model (solid line), and four-parameter fit (dotted line).
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traceless and real. In order to obtain an orthogonal basis, we
also require that the inner product between two generators
must vanish. Moreover, it is convenient to normalize the
generators qi in such a way that the perturbative potential
exhibits the same periodicity, si → si þ Nc, and symmetry,

Vpt½qðs; siÞ� ¼ Vpt

�
q

�
s; si þ

Nc

2

��
; (95)

along all qi as along qc. Therefore, it is sufficient to restrict
the search for local minima to the range 1 < s; si ≤ Nc=2.

A. Nc ¼ 3

First we consider Nc ¼ 3. The perturbative potential has
a local minimum in the qc direction,

qc ¼
1

3
diagð1; 0;−1Þ; (96)

at s ¼ 1.5, where l ¼ −1=3. For the generator orthogonal
to qc it is convenient to choose

q1 ¼
1

3
diagð1;−2; 1Þ: (97)

In order to check if the local minimum at s ¼ 1.5 is stable
in the direction transverse to qc, we compute the perturba-
tive potential in the plane spanned by qc and q1.

TABLE II. Parameters determined by fitting the lattice pressure for different SUðNcÞ groups.
Nonpert. V C1 C2 C3 δC3 Td rescale c rescale

SUð2Þc Vdm 1 par 0.000136 0.999951 0.999998 0 1 1
SUð2Þc Vdm 2 par 0.000054 0.99998 0.999999 −0.0141610 1 1
SUð2Þc Vdm 4 par 0.216395 0.921952 0.997463 −0.111553 0.937285 1.03389
SUð2Þc lin 1 par 0.000010 0.999996 1. 0 1 1
SUð2Þc lin 2 par 0.000007 0.999997 1. −0.0124482 1 1
SUð2Þc lin 4 par 0.958075 0.654448 0.988659 -0.0977655 0.933455 1.02394
SUð3Þc Vdm 1 par 0.0134234 0.992711 0.999587 0 1 1
SUð3Þc Vdm 2 par 0.0103609 0.994374 0.999681 −0.0298485 1 1
SUð3Þc Vdm 4 par 0.118785 0.935495 0.996459 −0.107797 0.968308 1.03236
SUð3Þc lin 1 par 0.563232 0.75861 0.991713 0 1 1
SUð3Þc lin 2 par 0.582769 0.750236 0.991426 − 0.000000 1 1
SUð3Þc lin 4 par 0.813344 0.651416 0.988387 −0.104560 0.967003 1.03043
SUð4Þc Vdm 1 par 1.30689 0.159154 0.967712 0 1 1
SUð4Þc Vdm 2 par 0.155114 0.900201 0.996168 −0.0678792 1 1
SUð4Þc Vdm 4 par 0.118808 0.92356 0.997172 −0.159610 0.980361 1.03790
SUð4Þc lin 1 par 3.40505 -0.547142 0.965097 0 1 1
SUð4Þc lin 2 par 1.26641 0.424584 0.987019 −0.0640259 1 1
SUð4Þc lin 4 par 0.595675 0.729345 0.994108 −0.159541 0.980182 1.03626
SUð5Þc Vdm 1 par 2.28362 -0.612346 0.956678 0 1 1
SUð5Þc Vdm 2 par 0.0504081 0.96441 0.999044 −0.0665565 1 1
SUð5Þc Vdm 4 par 0.103883 0.926654 0.998076 −0.114687 0.996903 1.02406
SUð5Þc lin 1 par 9.3767 -3.37883 0.931681 0 1 1
SUð5Þc lin 2 par 0.693992 0.675912 0.994944 −0.0642173 1 1
SUð5Þc lin 4 par 0.689758 0.677889 0.995089 −0.114556 0.996670 1.02339
SUð6Þc Vdm 1 par 3.26897 -1.44726 0.951671 0 1 1
SUð6Þc Vdm 2 par 0.0536514 0.959835 0.999207 −0.0722529 1 1
SUð6Þc Vdm 4 par 0.0927683 0.93055 0.998666 −0.120177 1.00121 1.02807
SUð6Þc lin 1 par 5.54761 -1.63022 0.97006 0 1 1
SUð6Þc lin 2 par 0.634597 0.699126 0.996575 −0.0711707 1 1
SUð6Þc lin 4 par 0.598767 0.716114 0.996855 −0.120282 1.00109 1.02763

2 3 4 5 6
Nc

0.02

0.04

0.06

0.08

Td Ti

FIG. 20 (color online). Shift in the critical temperature,
Td − Ti, as a function of Nc, where Ti is the estimated temper-
ature, at which the pressure vanishes. We also show three
different fits: 1=ðNc − 1Þ (dashed line), 1=ðNc

2 − 1Þ (solid line),
and 1=ðNc

3 − 1Þ (dotted line).
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Figure 23 shows a density plot for Vpt½qðs; s1Þ�, where
qðs; s1Þ is a diagonal matrix for the background A0 field
(93) parametrized as

qðs; s1Þ ¼ sqc þ s1q1: (98)

For s1 ¼ 0, there is one global minimum at s ¼ 0 corre-
sponding to the perturbative vacuum, where l ¼ 1. But
there is no local minimum at s1 ¼ 0 and s ¼ 1.5. Taking
the periodicity of the perturbative potential into account,
the other global minima in Fig. 23 are all degenerate with
the perturbative vacuum at s ¼ s1 ¼ 0.

B. Nc ¼ 4

1. Minima along the uniform eigenvalue ansatz

For Nc ¼ 4, we find two local minima in the region
1 < s ≤ 2 along the uniform eigenvalue ansatz,

1 2 3
s

0.1

0.

0.1

0.2

V

1 2 3 4
s

0.1

0.

0.1

0.2

V

1 2 3 4 5
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0.1

0.

0.1

0.2

V

1 2 3 4 5 6
s

0.1

0.

0.1

0.2

V

FIG. 21 (color online). TheperturbativepotentialVptðsÞ (solid), theVandermonde termVVdmðsÞ (dashed), and the linear termV linðsÞ (dotted)
as a function of s in the uniform eigenvalue ansatz, for Nc ¼ 3 (left top), Nc ¼ 4 (right top), Nc ¼ 5 (left bottom), Nc ¼ 6 (right bottom).
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Veff s

FIG. 22 (color online). The effective potential VeffðsÞ for Nc ¼
6 using the Vandermonde term VVdmðsÞ, in the semi-QGP
(dashed), at the phase transition (solid), and in the confined
phase (dotted).

FIG. 23 (color online). Density plot of the perturbative potential
Vpt½qðs; s1Þ� for Nc ¼ 3. The s axis points in the direction of the
uniform eigenvalue ansatz, while the s1 axis points in the
transverse direction.
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qc ¼
1

8
diagð3; 1;−1;−3Þ; (99)

at s ¼ 1.35 and s ¼ 2. A symmetric diagonal basis for
SUð4Þc is obtained by choosing

q1 ¼
1

8
diagð−1; 3;−3; 1Þ; q2 ¼

1

8
diagð1;−1;−1; 1Þ

(100)

for the remaining two generators orthogonal to qc. In order
to see if the local minima along qc are metastable or saddle
points, we parametrize the matrix q as

qðs; s1; s2Þ ¼ sqc þ s1q1 þ s2q2 (101)

and plot the perturbative potential Vpt½qðs; s1;s2Þ� in the
s1s2 plane perpendicular to qc, at s ¼ 0 [Fig. 24(a)],

s ¼ 1.35 [Fig. 24(b)], and s ¼ 2 [Fig. 24(c)].
Considering the periodicity of the perturbative potential,
our analysis indicates that, except for degenerate global
minima which correspond to the perturbative vacuum at
s ¼ s1 ¼ s2 ¼ 0, there are only saddle points along the
uniform eigenvalue ansatz.

2. Minima in the entire three-dimensional volume

Note that in order to take into account all possible
metastable solutions in the perturbative potential, we
should ideally look for local minima in the entire
ðNc − 1Þ-dimensional space. This can be done by plotting
slices of the perturbative potential in the s; s1 plane along
the perpendicular direction for fixed values of s2 (see
Figs. 25 and 26).
We start with Fig. 25(a) which shows a density plot of

the perturbative potential in the s; s1 plane, spanned by the

FIG. 24 (color online). Density plot of the perturbative potential for Nc ¼ 4. The potential is plotted for different slices in the s1;s2
plane perpendicular to qc, at s ¼ 0 (a), s ¼ 1.35 (b) and s ¼ 2 (c).
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generators qc and q1, for s2 ¼ 0. The global and local
minima reside at intersections of the white lines which
connect the regions where the perturbative potential is
minimized. From the intersections we can therefore
determine the exact positions of the minima.
Within the considered region 0 ≤ s; s1 ≤ 4, there are

eight degenerate global minima at (0,0), (0,4), (4,0), (4,4),
ð8=5; 4=5Þ, ð8=5; 16=5Þ, ð12=5; 16=5Þ, and ð4=5; 12=5Þ.
Each global minimum exhibits an octagonal structure and is
located in the center between eight neighboring maxima
which are all degenerate with the confining vacuum
at (1,0).
We also find five local minima at ð2=5; 6=5Þ, ð14=5; 2=5Þ,

ð10=5; 10=5Þ, ð6=5; 18=5Þ, and ð18=5; 14=5Þ. Their coor-
dinates are offset from the global minima by the vector
2=5qc þ 6=5q1. Each local minimum resides in the center
between four neighboring global minima.

As we start moving along the s2 direction, the global and
local minima begin to transform into one another: the global
minima become shallower, while the local minima get
deeper [see Fig. 25(b)]. Consequently, at s2 ¼ 1 all minima
become degenerate [see Fig. 25(c)]. Moving further to
s2 ¼ 2, Fig. 26(a), the roles of the minima interchange:
the former global minima are transformed into local minima
and vice versa. Finally, at s2 ¼ 4, we recover the same
pattern as in the initial state at s2 ¼ 0 [see Fig. 25(a)].
Overall, we find that the structure of the perturbative

potential in the entire three-dimensional space spanned by
the diagonal generators qc, q1, and q2 resembles a crystal,
and that the edges of the elementary cell are spanned by the
three vectors v1 ¼ 8=5qc þ 4=5q1, v2 ¼ −4=5qc þ 8=5q1,
and v3 ¼ 2=5qc þ 6=5q1 þ 10=5q2. The periodicity of
these elementary cells is given by the norm of the vectors,
jv1j ¼ jv2j ¼ 4=

ffiffiffi
5

p
, jv3j ¼ 2

ffiffiffiffiffiffiffiffi
7=5

p
.

FIG. 25 (color online). Density plot of the perturbative potential for Nc ¼ 4. The potential is plotted for different s; s1 slices, varying
the distance in the perpendicular direction: s2 ¼ 0 (a), s2 ¼ 0.5 (b), s2 ¼ 1 (c), s2 ¼ 1.5 (d). (To be continued in Fig. 26.)
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Summarizing our study for Nc ¼ 3 and Nc ¼ 4 dem-
onstrates that there are only global minima in the pertur-
bative potential which are all degenerate with the
perturbative vacuum of our uniform eigenvalue ansatz at
s ¼ si ¼ 0, where l ¼ 1. Moreover, all maxima in the
perturbative potential are degenerate with the confining
vacuum at sc ¼ 1 and si ¼ 0, where l ¼ 0. But we find no
indication of metastable solutions.
Thus, we verify that the perturbative potential exhibits no

other stationary points except for the ones at s ¼ 0 and
sc ¼ 1 along the uniform eigenvalue ansatz studied in this
work. Consequently, we confirm that employing any other
parametrization of the backgroundA0 field, which takes us
from the perturbative vacuum (minimum) to the confining
vacuum (neighboring maximum), will not change the
physics.
An interesting outlook for future projects would be to

extend the present analysis to Nc ≥ 5. We can also look for
stationary points by solving the stationary conditions

∂Vpt½qðs;siÞ�
∂s ¼ 0;

∂Vpt½qðs;siÞ�
∂si ¼ 0; i¼ 1;…;Nc−2:

(102)

Furthermore, it would be certainly useful to look for local
minima in the full effective potential. In the present work,
however, we do not further address the question of possible
metastable solutions.

VII. CONCLUSIONS

We have used an effective matrix model to study the
deconfinement phase transition in pure SUðNcÞ gauge
theories in d ¼ 2þ 1 dimensions. The effective potential
was constructed as a sum of a perturbative and a non-
perturbative part. The perturbative potential was computed
toone-looporder in thepresenceofaconstantbackgroundA0

field. In order tomodel the transition to confinement,we then

FIG. 26 (color online). Continuation of Fig. 25 for s2 ¼ 2 (a), s2 ¼ 2.5 (b), s2 ¼ 3 (c), s2 ¼ 3.5 (d).
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constructed appropriateA0-dependent andA0-independent
nonperturbative terms, motivated by lattice results for the
pressure and interaction measure.
The analytical calculations were performed for general

Nc and in the large-Nc limit. We also presented the
numerical solution for the potential using the uniform
eigenvalue ansatz which guarantees that the Polyakov loop
is real. The free parameters of the model were adjusted by
fitting to the lattice pressure of Ref. [1]. We have shown the
pressure and interaction measure for Nc ¼ 2, 3, 4, 5, 6 and
compared to the lattice data of Ref. [1]. Overall, the results
exhibit a mild sensitivity with respect to the details of the
A0-dependent nonperturbative terms.
Using one and two free parameters, we already obtain

good agreement with the lattice data. Notably, with only
one free parameter we reproduce the correct temperature
dependence for the deviation from an ideal gluon gas at
1.2Td ≲ T ≲ 10Td. As observed on the lattice, we also find
a small dependence on the number of colors for the pressure
and the interaction measure, except for the factor Nc

2 − 1.
In order to further improve the agreement with the lattice

close to the deconfinement temperature Td and at high T,
we introduced a four-parameter fit. This fit is constructed
from the two-parameter model by allowing for a shift in Td,
and in the perturbative limit of the pressure, c. The shift in
Td is rather small and rapidly vanishes with increasing
number of colors. This supports the general expectation
that any possible glueball contribution becomes suppressed
by a factor ∼1=ðNc

2 − 1Þ at the phase transition. The shift
in c is approximately constant for all Nc, ≃3%.
The four-parameter fit allows for a very good agreement

with the lattice results at all temperatures. We stress
however, that the four-parameter fit is just an approxima-
tion to a more complete theory properly incorporating the

physics in the confined phase. The general trend we
observe is that the two-parameter model can be regarded
as an interpolation between the one-parameter model for
Nc ¼ 2, 3, and the four-parameter fit for larger Nc.
Using the parameters determined by fitting the lattice

pressure, we have also plotted the Polyakov loop. We find
that the transition region, where the system exhibits a
nonvanishing condensate for A0 is broadly independent of
the number of colors and extends up to ∼1.25Td. This is
very close to the results obtained in d ¼ 3þ 1 [4]. So far,
the renormalized Polyakov loop has not yet been computed
on the lattice in d ¼ 2þ 1 dimensions. The corresponding
lattice data could help to clarify the role of nonperturbative
effects in the deconfined phase.
It would be certainly useful, to extend the matrix model

to a more general effective theory including the physics of
the confined phase. Another interesting project would be to
study the interface tension which gives the tunneling
probability between different vacua of the system.
Finally, we could include dynamical quarks, as was done
in d ¼ 3þ 1 in Ref. [36].
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