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The structure of singularities in perturbative massless gauge theories is investigated in coordinate space.
The pinch singularities in coordinate-space integrals occur at configurations of vertices which have a direct
interpretation in terms of the physical scattering of particles in real space-time in the same way as for
the loop momenta in the case of momentum-space singularities. In the analysis of vertex functions in
coordinate space, the well-known factorization into hard, soft, and jet functions is found. By power-
counting arguments, it is found that coordinate-space integrals of vertex functions have logarithmic
divergences at worst.
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I. INTRODUCTION

The structure of singularities in perturbative gauge
theories has long been a subject of study for theoretical
interest and for phenomenological applications [1,2].
There is a vast literature on the subject, and most modern
analyses are carried out in momentum space to calculate
scattering amplitudes [3–6]. Calculations involving
Wilson lines, however, are often simpler in coordinate
space [7,8], and coordinate-space integrals were used for
Wilson lines in the application of dual conformal invari-
ance [9]. It is therefore natural to consider using them for
amplitudes as well. The purpose of this paper is to provide
a new, coordinate-space analysis of singularities in per-
turbation theory applicable to amplitudes for massless
gauge theories.
It is well known that the momentum-space singularities

of Feynman integrals in a generic quantum field theory
occur at configurations of internal loop momenta that have
a direct interpretation in terms of the physical scattering of
on-shell particles in real space-time [10,11]. In this study,
we will analyze the origin and structure of these singular-
ities directly in coordinate space.
Massless gauge theories suffer from infrared (IR) diver-

gences, which characterize the long-distance contributions
to perturbative predictions, in addition to ultraviolet (UV)
divergences, which can be removed by local counterterms.
An analysis of infrared divergences in gauge theories from
the point of pinch singularities of Feynman integrals over
loop momenta was given by Ref. [12]. Following Ref. [13],
which dealt with scalar theories, we will show that the
coordinate-space singularities of massless gauge theories
have the same interpretation in terms of the physical
scattering of particles with conserved momenta. In contrast
to momentum-space examples, however, we will see that
collinear singularities are of ultraviolet nature in coordinate

space and require D < 4 in dimensional regularization.
This analysis can be applied to a variety of field-theory
objects derived from Green functions, including form
factors and vertex functions, Wilson lines, as well as cut
diagrams for cross sections.
In a detailed analysis of vertex functions in coordinate

space, we will find the factorization into hard, soft, and jet
functions familiar from momentum-space analysis [14,15].
In coordinate space, the soft function is finite when the
external points are kept at finite distances from each other.
Therefore, ultraviolet regularization is needed only for the
jets and the hard function. Adapting the power-counting
technique developed for momentum space in Ref. [12], the
residues of the light-cone poles of vertex functions in
coordinate space will be shown to have logarithmic
divergences at worst.
This paper is organized as follows: In Sec. II, a brief,

general review of pinch singularities will be followed by a
derivation of conditions for singularities in coordinate-
space integrals together with their physical interpretations.
We will also comment on the case with massive lines in
Appendix A. In Sec. III, we will analyze the structure of
singularities of vertex functions in coordinate space,
solving the conditions for pinch singularities, first explic-
itly at lowest loop order and then extending the solutions
to arbitrary order in perturbation theory. In Sec. IV, we
will adapt the power-counting technique developed in
Ref. [12] to the coordinate-space vertex functions, and
show that divergences are at worst logarithmic relative to
their lowest-order results at higher orders in perturba-
tion theory. In the last section, we will discuss the
approximations that can be made in the integrand to
obtain the leading singularity. We will describe the “hard-
collinear” and then the “soft-collinear” approximations,
which will lead to factorization of jets from the hard and
soft functions. Lastly, we will show that the fermionic
vertex function can be approximated by a Wilson-line*erdogan@insti.physics.sunysb.edu
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calculation, by imposing the conditions for a pinch

singularity inside the integrands.

II. ANALYSIS OF SINGULARITIES

This section treats the coordinate-space singularities of
Feynman diagrams in gauge theories. The discussion is in
many ways similar to the momentum-space analysis of
Refs. [1,16,17]. The results of this section will be employed
to identify the natural subregions of the corresponding
diagrams in order to study their behavior in coordi-
nate space.
We start our analysis with an arbitrary Feynman integral

with massless lines in coordinate space. We work in D ¼
4 − 2ε dimensions using dimensional regularization. For
gauge theories, we employ Feynman gauge. The integrands
in scalar and gauge theories are similar, except that in the
latter case, gauge field vertices have derivatives that act on
attached lines. These derivatives change the powers of
denominators and produce numerator factors, which may
enhance or suppress the integrals.
In coordinate space, we can represent graphical integrals

schematically as

Iðfxμi gÞ ¼
Y

vertices k

Z
dDyk

Y
lines j

1

½−ðPk0ηjk0Xk0Þ2 þ iϵ�pj

× Fðxi; yk; DÞ; (1)

where the positions of internal vertices yμk are integrated
over all space-time for fixed external points xμi . For each
line, the sum over fXk0g ¼ fyk; xig includes all vertices,
internal and external, where ηjk is an “incidence matrix,”
which takes the values þ1 and −1 when the line j ends or
begins at vertex k, respectively, and is zero otherwise. The
orientation of a line is at this point arbitrary, but we will see
that at singularities it is determined by the time ordering
of the vertices it connects. Before the action of derivatives,
the power of the denominator of line j is pj ¼ 2 − ε for
fermion lines and pj ¼ 1 − ε for scalar and gauge field
lines; however, if a derivative acts on a line, the power of its
denominator is increased by 1. This expression holds for
scalar and gauge theories, for which we sum over terms
with different numbers of derivatives, and the functions
Fðxi; yk; DÞ include remaining constants, group theory
factors, and numerator factors, which do not affect the
locations of the singularities but will matter in power
counting. They are simply numerical constants for scalar
theories. For theories with spin, they also carry the spin
dependence, which we have suppressed here. The integrand
in Eq. (1) becomes singular when a line moves to the
light cone.
After combining the propagators of each line

with Feynman parametrization, the integral will be of
the form

Iðfxμi gÞ¼
Y
linesj

Z
1

0

dαjα
pj−1
j δ

�
1−X

j

αj

�

×
Y

verticesk

Z
dDykDðαj;xi;ykÞ−NðεÞF̄ðxi;yk;DÞ; (2)

where we have absorbed the prefactors of the parametriza-
tion into F̄ðxi; yk; DÞ, and where the common denominator
is given by

Dðαj; xi; ykÞ ¼
X
j

αj½−z2jðxi; ykÞ þ iϵ�: (3)

Here, αj is the Feynman parameter of the jth line, and
zμj denotes the argument of its propagator, which is the
coordinate difference between the vertices it connects. The
overall power of the denominator is NðεÞ ¼ P

jpjðεÞ—in
particular, NðεÞ ¼ Nð1 − εÞ for a diagram with N scalar
lines only. For gauge theories, for a diagram with Ng gauge
field lines, Nf massless fermion lines, and V3g three-
vector vertices, it is given by NðεÞ ¼ Nfð2 − εÞþ
Ngð1 − εÞ þ V3g.
The zeros of the denominator Dðαj; xi; ykÞ in Eq. (3)

determine the positions of the poles of the integrand in
Eq. (2). These poles may produce branch points of Iðfxμi gÞ,
depending on whether or not they may be avoided by
contour deformation in the complex ðα; yÞ space. We recall
here the summary given in Ref. [1]. In general, the
singularities of a function fðzÞ defined by a single integral,

fðzÞ ¼
Z
C
dw

1

gðz; wÞ ; (4)

arise if and only if the poles ~wðzÞ of the integrand, which
are zeros of gðz; wÞ, cannot be avoided by contour
deformation. This follows from a theorem proven by
Hadamard [18] and happens either when one of the poles
migrates to one of the end points of the contour, an end-
point singularity, or when two or more isolated poles
coalesce at a point trapping the contour between them,
resulting in a pinch singularity.
These conditions for the existence of singularities can be

generalized as necessary conditions for functions of several
(external) variables that are defined by multiple integrals,

fðfzigÞ ¼
Z
H

Y
j

dwj
1

gðfzig; fwjgÞ
; (5)

such as Iðfxμi gÞ in our case. Here, the hypercontour H
denotes the multidimensional region of integration. The set
of points S ¼ f ~wð~zÞg on which gðfzig; fwjgÞ ¼ 0 defines
surfaces in the complex ðz; wÞ-space. If gðfzig; fwjgÞ
factors as g ¼ g1ðfzig; fwjgÞ × � � � × grðfzig; fwjgÞ, then
there are r such singular surfaces, which may or may not
intersect with each other. As in the case of an integral over

OZAN ERDOĞAN PHYSICAL REVIEW D 89, 085016 (2014)

085016-2



a single variable, the singularities occur when an inter-
section of these singular surfaces with the hypercontour H
cannot be avoided. Summarizing the arguments presented
in Ref. [1], this again happens either when a singular
surface S overlaps with the boundary of H (end-point
singularity) or when the hypercontour H is trapped
between two or more singular surfaces or between two
different parts of the same singular surface (pinch singu-
larity). At an end point, H cannot be moved in the
directions normal to its boundary, while at a pinch it
cannot be moved away from singular regions in the
direction of the normals to two (or more) singular surfaces,
which are in opposite directions. In both cases, the
vanishing of the gradient of gðfzig; fwjgÞ on S is the
necessary condition:

∂
∂wj

gðfzig; fwjgÞ
����
g¼0

¼ 0: (6)

In the following, we use the terminology of Ref. [17], and
call the variables that parametrize directions out of the
singular surface S normal, and those that lie in the surface
intrinsic. The larger the volume of normal space, the less
singular the integral. References [1,16,17] present peda-
gogical discussions of these concepts.
This reasoning enables us to derive a powerful set of

necessary conditions for singularities of integrals like
Iðfxμi gÞ in Eq. (1) using the representation in Eq. (2),
where a singular surface S in ðα; yÞ space is defined by the
set of points S ¼ f ~α; ~yg on which Dðαj; xi; ykÞ vanishes.
The singularities of Eq. (2) can come only from the end
point αj ¼ 0 of the αj integral, because Dðαj; xi; ykÞ is
linear in the αj’s. Note that αj ¼ 1 is not a different end-
point singularity, as it sets all αi, i ≠ j, to zero because of
the delta function. On the other hand, there are no end-point
singularities in y integrals, since they are unbounded.
However, in y integrals, the contour of integration can
be trapped at a pinch singular point when the two solutions
of the quadratic equation D ¼ 0 are equal, i.e.,

∂
∂yμk Dðαj; xi; ykÞ

����
Dð ~α;~yÞ¼0

¼ 0: (7)

The momentum-space analogs of these conditions are
summarized as the Landau equations [10] in the literature.
They were also written in coordinate space for scalar
theories in Ref. [13]. In coordinate space, they are given
by Eq. (7) above,

αj ¼ 0 or z2j ¼ 0; (8)

and

X
lines j at vertex k

ηkjαjz
μ
j ¼ 0: (9)

The conditions in the first line come from D ¼ 0, while
those in the second line come from ð∂=∂yμkÞD ¼ 0. The
“or” in the first line is not necessarily exclusive. The
condition ð∂=∂αjÞD ¼ 0 for all j is equivalent to D ¼ 0,
since D is homogenous of degree 1 in the αj’s.
A physical interpretation of the momentum-space

Landau equations was originally given by Coleman and
Norton in Ref. [11]. The momentum-space analog of
Eq. (9) in terms of momenta kμi of lines is

X
lines i in loop l

ηliαik
μ
i ¼ 0: (10)

Then, with the identification of αik
μ
i ≡ Δxμi with a space-

time vector for each on-shell line, these relations can be
thought of as describing on-shell particles propagating
between the end and starting points of line i, which are
separated by interval Δxμi . This way, αi is interpreted as the
ratio of the time of propagation to the energy of particle i;
and thus the analog of Eq. (8) states that there is no
propagation for an off-shell line.
Similarly, in coordinate space, after the rescaling

Δx̄μj ¼ αjz
μ
j , Eq. (9) directly gives the same physical

picture of on-shell particles propagating in space-time.
The interpretation with particles propagating forward in
time fixes the orientation of lines by the time ordering of
vertices. Additionally, we may identify the product αjz

μ
j

with a momentum vector,

pμ
j ≡ αjz

μ
j : (11)

Then Eq. (9) gives momentum conservation for the on-shell
lines with momenta pμ

j flowing in or out of vertex k.
Moreover, with a further identification of αj as the ratio of
the energy of line j to the time component of zj,

αj ≡ p0
j=z

0
j ; (12)

we obtain a relation between the energies and momenta of
the propagating particles associated with the pinch singu-
larities of Eq. (2):

pμ
j ¼ Ejv

μ
j ; with vμj ¼ ð1; ~z=z0jÞ: (13)

This is the relation between energy and momentum of free
massless particles; the magnitude of their velocity is indeed
c ¼ 1, since ðz0Þ2 − j~zj2 ¼ 0. Therefore, to each pinch
singularity we can associate a physical picture in which
massless particles propagate freely on the light cone
between vertices, while their momenta satisfy momentum
conservation at each internal vertex as well [13].
In the physical picture above, only lines on the light cone

“carry” finite momenta. Lines not on the light cone—that
is, lines connecting vertices at finite distances—have
αj ¼ 0, which by Eq. (12) sets their pμ

j ¼ 0. In momentum

COORDINATE-SPACE SINGULARITIES OF MASSLESS … PHYSICAL REVIEW D 89, 085016 (2014)

085016-3



space, because the momenta of lines with αj ¼ 0 do not
show up in the momentum-space analog of Eq. (9), in a
graphical representation, one can contract such off-shell
lines to points. The resulting diagrams are called reduced
diagrams that represent lower-order singularities of a
Feynman diagram, while the diagram with all the lines
on the mass shell (i.e. no lines with α ¼ 0) is said to give
the leading singularity [1,19]. In contrast, in coordinate
space, these “contracted” lines should be compared to “zero
lines,” with zμj ¼ 0, that do not contribute to the sum in
Eq. (9) either. They represent “short-distance” (UV) sin-
gularities, which occur when two connected vertices
coincide at the same point, but are not lower-order
singularities of the coordinate integral. These pinch singu-
larities originate from the denominator of a single propa-
gator, where the contour of integration, the real line, is
pinched between two poles of the same propagator.
Therefore, we will first identify such UV singularities of
an arbitrary integral like Eq. (1), and then combine the rest
of the denominators by Feynman parametrization to find
other types of singularities from groups of lines in the
remaining integrals using the Landau conditions [Eqs. (8)
and (9)]. We should note that not all UV singularities give
UV divergences. Divergences can be identified by the
power-counting procedure below.
As an example of the application of Eq. (7) to coor-

dinate-space integrals, we shall now find the configurations
of lines for pinches in the integration over the position of a
single three-point vertex at a point yμ. For simplicity, let us
consider the following integral in a scalar theory:

Iðx1; x2; x3Þ ¼
Z

dDy
Y3
i¼1

1

½−ðxi − yÞ2 þ iϵ�1−ε : (14)

Apart from the UV singularities when yμ ¼ xμi for i ¼ 1, 2
or 3, the conditions for a pinch between different lines in
the yμ integral are given by Eqs. (8) and (9) after Feynman
parametrization,

α1z
μ
1 þ α2z

μ
2 þ α3z

μ
3 ¼ 0; (15)

with zμi ≡ xμi − yμ. For a pinch singularity, these vectors are
either lightlike, z2i ¼ 0, or have αi ¼ 0. Equation (15)
cannot be satisfied if all three vectors have positive entries.
Thus, at least one external point must have xþi < yþ and
one must have xþj > yþ, so that there is at least one
incoming and one outgoing line. These considerations
naturally provide a time ordering for vertices and a
direction for lines at any singularity. Assuming all αi ≠ 0
and that all lines are on the light cone, z2i ¼ 0 and Eq. (15)
imply that zj · zk ¼ 0 as well. That is, all of these lines are
parallel. If any one of the lines is off the light cone with
αi ¼ 0, then the other two are on the light cone and again
parallel to each other by Eq. (15). These pinch singularities
can be interpreted as a merging or splitting of three particles,

which occurs at point yμ, with the ratios of their momenta
given by the ratios of the αi’s. Note that these results hold
for the three-point vertices of a gauge theory as well, and
can be generalized to n-point vertices. The coordinate-
space singularities of Green functions represent physical
particle scattering and thus can be related naturally to
physical scattering amplitudes.

III. COORDINATE-SPACE SINGULARITIES
AT A VERTEX

We will now study how coordinate-space singularities in
a vertex function in a massless gauge theory emerge from
pinches in Feynman integrals in perturbation theory. For
simplicity, the first example that we consider will be the
correlation of two scalar fields with a color-singlet gauge
current. We also discuss the correlation of fermions with the
same kind of current. The results of Sec. II will be applied
to identify the configurations that can lead to singularities
of such vertex functions in coordinate space.
The scalar vertex function of interest is obtained from the

vacuum expectation value of the time-ordered product of
two charged scalar fields with an incoming color-singlet
current,

Γν
Sðx1; x2Þ ¼ h0jTðΦðx2ÞJνð0ÞΦ�ðx1ÞÞj0i: (16)

Here, we have shifted the position of the current to the
origin using the translation invariance of the vacuum state.
Γν
Sðx1; x2Þ transforms as a vector under Lorentz trans-

formations. Its functional form is well known and is
determined by the Abelian Ward identity,

−ið∂1þ∂2ÞνΓν
Sðx1;x2Þ¼ ½δDðx2Þ−δDðx1Þ�G2ððx2−x1Þ2Þ;

(17)

where G2 is the scalar two-point function, which is only a
function of the invariant distance between the external
points. A general solution to this inhomogenous partial
differential equation can be given by a particular solution
that satisfies Eq. (17) plus the general solution to the
homogenous equation,

ð∂1 þ ∂2ÞμΓμ
S;ðHÞðx1; x2Þ ¼ 0: (18)

A particular solution to the Abelian Ward identity, which
has the structure of the lowest-order result, is given by

Γν
S;ðIÞðx1; x2; μÞ ¼

�
xν2

ð−x22 þ iϵÞ1−ε −
xν1

ð−x21 þ iϵÞ1−ε
�

×
ΣSðμ2ðx2 − x1Þ2Þ

x21x
2
2

; (19)

where the form factor ΣSðμ2ðx2 − x1Þ2Þ is a dimensionless
function, with μ2 the renormalization scale, and it is related
to the renormalized scalar two-point function by
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iG2ðx2; μ2Þ ¼
ΣSðμ2x2Þ

ð−x2 þ iϵÞ1−ε : (20)

Note that at zeroth order, one obtains Σð0Þðx1; x2Þ ¼ 1 from
both equations above.
The general solution to the homogenous equation can be

found easily in momentum space, since one then has an
algebraic equation,

ðpμ
1 − pμ

2Þ ~Γμ
S;ðHÞðp1; p2Þ ¼ 0; (21)

whose solution involves polynomials of momenta times one
independent function.1 Here, momentum p1 flows into the
vertex and p2 out. The general solution in momentum
representation is given by

~Γμ
S;ðHÞðp1; p2Þ ¼ ½ðp2

2 − p1 · p2Þpμ
1

þ ðp2
1 − p1 · p2Þpμ

2� ~fHðp1; p2Þ: (22)

After inverse Fourier transform with pμ
1 → i∂μ

1 and
pμ
2 → −i∂μ

2, the part of the vertex that vanishes in the
Abelian Ward identity [Eq. (17)] is of the form

Γμ
S;ðHÞðx1;x2Þ¼−ið∂1−∂2Þν½∂μ

1∂ν
2−∂ν

1∂μ
2�fHðx1;x2Þ; (23)

where fH is a function of mass dimension 2. In conventional
terms, the inhomogenous solution gives the “longitudinal”
part of the vertex, while the homogenous solution is the
“transverse” part. Note that any fH that is a function of only
ðx1 � x2Þ2 vanishes under the derivatives in Eq. (23). Thus,

fH must depend on x2i separately to contribute to the scalar
vertex. This will allow light-cone singularities to factorize
from the rest of the vertex.
The fermionic counterpart of Eq. (16) is

ðΓFÞνbaðx1; x2Þ ¼ h0jTðψbðx2ÞJνð0Þψ̄aðx1ÞÞj0i; (24)

whose tensor and Dirac structure is determined by the
invariance under the global symmetries of the theory, while
its functional form is similarly constrained by the Ward
identity for fermion fields. Chiral invariance for a massless
theory requires this vertex to have an odd number of
gamma matrices. Skipping the details given for scalars
above, a particular solution for the “longitudinal” part of
the fermionic vertex function is given by

ðΓF;ðIÞÞνbaðx1; x2; μÞ ¼
ðx2γνx1Þba

ð−x22 þ iϵÞ2−εð−x21 þ iϵÞ2−ε
× ΣFðμ2ðx2 − x1Þ2Þ; (25)

where ΣFðx2Þ is related to the renormalized fermion two-
point function SFðx2Þ by

iSFðx2; μ2Þ ¼ x
ΣFðμ2x2Þ

ð−x2 þ iϵÞ2−ε : (26)

The “transverse” part of the fermionic vertex function that
vanishes in the Abelian Ward identity can be written in
the form

Γμ
F;ðHÞðx1; x2Þ ¼ γμ½ð□1 þ 2∂1 · ∂2 þ□2Þf1ðx1; x2Þ þ ð□1 −□2Þf2ðx1; x2Þ� − ð∂1 þ ∂2Þð∂1 þ ∂2Þμf1ðx1; x2Þ

− ð∂1 þ ∂2Þð∂1 − ∂2Þμf2ðx1; x2Þ þ ð∂1 − ∂2Þð∂1 þ ∂2Þνð∂ν
2∂μ

1 − ∂ν
1∂μ

2Þf3ðx1; x2Þ
þ γ5ϵ

μνρσγνð∂1 − ∂2Þρð∂1 þ ∂2Þσf4ðx1; x2Þ: (27)

Here, all form factors fiðx1; x2Þ have mass dimension 4
except f3ðx1; x2Þ, which has dimension 2. The tensor
decomposition of this vertex and the list of form factors
in momentum space can be found in Ref. [20].
Again, these form factors can have arbitrary dependence
on x2i , which allows factorization of light-cone singu-
larities.
We are interested in singularities that are related to

scattering processes; thus, the limit x1 → x2 will not be
considered in the discussion below, as it gives effectively a
two-point function. We also assume here that xμ1 and xμ2 are

fixed, nonzero vectors that are not lightlike separated
(x1 · x2 ≠ 0). Given these external data, the only power
singularities of the coordinate-space vertex functions will
be in x2i , which correspond to single-particle poles of the
external propagators in momentum space. Furthermore,
both ΣSðx1; x2Þ in Eq. (19) and ΣFðx1; x2Þ in Eq. (25)
remain finite when x2i ¼ 0 with x1 · x2 ≠ 0. Thus, the
leading divergence of the scalar vertex can come from
fHðx1; x2Þ in Eq. (23), while the leading divergence of the
fermionic vertex comes along again from the “transverse”
part of the vertex.
Let us now illustrate how the light-cone singularities of

the vertex functions given above emerge at one loop in
perturbation theory. The integrand of the one-loop diagram
in Fig. 1, the first nontrivial contribution to the scalar vertex
function, is of the form

1Starting from ðp1−p2ÞμðApμ
1þBpμ

2Þ¼0, the homogenous

equation is solved for A
B¼

p2
2
−p1 ·p2

p2
1
−p1 ·p2

. The Ward identity reduces

the number of independent functions by 1.
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Γð1Þμ
S ðx1; x2Þ ¼ Cð1Þ

S

Z
dDy1dDy2gαβ

1

½−ðy2 − y1Þ2 þ iϵ�1−ε
�

1

½−ðx2 − y2Þ2 þ iϵ�1−ε ∂yα
2

↔

�
1

½−ðy2 − zÞ2 þ iϵ�1−ε ∂zμ
↔ 1

½−ðz − y1Þ2 þ iϵ�1−ε
�
z¼0

∂yβ
1

↔ 1

½−ðy1 − x1Þ2 þ iϵ�1−ε
�
; (28)

with Cð1Þ
S a numerical constant. Compare this expression to that of the one-loop diagram for the fermionic vertex function,

Γð1Þμ
F ðx1; x2Þ ¼ Cð1Þ

F

Z
dDy1dDy2

1

½−ðy2 − y1Þ2 þ iϵ�1−ε
�
∂x2

1

½−ðx2 − y2Þ2 þ iϵ�1−ε
�
γα

×

�
∂y2

1

½−y22 þ iϵ�1−ε
�
γμ
�
∂y1

1

½−y21 þ iϵ�1−ε
�
γα

�
∂x1

1

½−ðy1 − x1Þ2 þ iϵ�1−ε
�
: (29)

Clearly, both have the same pole structure—more precisely,
the positions of the poles are the same, although term by
term their degrees may or may not be different. Using
Feynman parametrization either before or after the action of
the derivatives on the lines, both integrals can be put into
the form of Eq. (2) with the same common denominator,
but, of course, with different numerator factors and differ-
ent powers of the resulting denominator in the integrands.
The pinch singularities of Eqs. (28) and (29) can

originate from the two poles of a single denominator or
from poles from different denominators. For the latter case,
we will combine the denominators by Feynman para-
metrization and use Eq. (7), the coordinate-space analog
of Landau equations. In general, at a pinch singularity, one
encounters combinations of these two cases simultane-
ously. After Feynman parametrization, the common
denominator for either diagram is given by

Dð1Þðx1; x2; y1; y2; fαgÞ
¼ −α1ðy1 − x1Þ2 − α2y21

− α3y22 − α4ðx2 − y2Þ2 − α5ðy2 − y1Þ2 þ iϵ: (30)

Using Eq. (7), we get the Landau conditions for pinches in the
integration over the positions of internal vertices y1 and y2,

α1ðy1 − x1Þμ þ α2y
μ
1 − α5ðy2 − y1Þμ ¼ 0; (31)

−α4ðx2 − y2Þμ þ α3y
μ
2 þ α5ðy2 − y1Þμ ¼ 0; (32)

when Dð1Þ vanishes at a singularity.
We shall list the singularities of Eqs. (28) or (29) starting

with pinches without any zero lines. Equations (31) and (32)
make up an underdetermined system of two vector equa-
tions, since the αj’s also are unknowns. We will not list all
solutions to these equations, but only those that give the
leading power singularities of the vertex functions, which
are physically relevant. By leading power singularities of
the vertex functions, we mean the terms in

Γ̂μ
S;Fðx1; x2Þ ¼ x21x

2
2Γ

μ
S;Fðx1; x2Þ (33)

that do not vanishwhen x21 ¼ x22 ¼ 0. The simplest solution
is when only α5 ¼ 0 while others are nonzero, where
one gets

yμ1 ¼
α1

α1 þ α2
xμ1; (34)

yμ2 ¼
α4

α3 þ α4
xμ2; (35)

such that yμ1 becomes “parallel” to xμ1 while y
μ
2 is parallel to

xμ2. The necessary condition for a singularity, Dð1Þ ¼ 0, is
then satisfied only if x21 ¼ x22 ¼ 0. This solution can be
interpreted as a “soft” gauge particle, say a gluon, propa-
gating over a finite (invariant) distance between y1 and y2,
such that the directions of the external particles have not
changed after the emission or absorbtion of the gluon. In
momentumspace, lineswith negligiblemomenta are called
soft, while in coordinate space, soft lines are those which
connect two points at a finite (invariant) distance. In this
case, the scalar/fermion lines are on the light cone for
a pinch.
If α5 were not equal to zero, the general solution to

Eqs. (31) and (32) is such that yμ1, and similarly yμ2, are given
FIG. 1. One-loop diagrams for the vertex functions in Eqs. (16)
and (24).
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as linear combinations of xμ1 and xμ2. Assuming no other αj
vanishes either, Dð1Þ ¼ 0 requires then not only x2i ¼ 0 but
also xμ1 · x

μ
2 ¼ 0. These solutions, however, imply that x1

and x2 are lightlike separated. Likewise, when only α2 ¼ 0
or α3 ¼ 0, the condition Dð1Þ ¼ 0 is only satisfied with x1
and x2 lightlike separated. On the other hand, if α1 ¼ 0, the
solution to Eq. (31) is such that yμ1 ∝ yμ2, and by Eq. (32),
both y1 and y2 are then parallel to x2, with Dð1Þ ¼ 0 being
satisfied for x22 ¼ 0. However, now the external line
ðx1 − y1Þ2 cannot be on the light cone, so that this solution
does not correspond to a leading power singularity of the
vertex. Similarly, when α4 ¼ 0, y1 and y2 will be parallel to
x1, and Dð1Þ ¼ 0 is satisfied for x21 ¼ 0, so that the external
line ðx2 − y2Þ2 cannot be on the light cone either. The
solutions with two or more αj’s vanishing are either ruled
out because of the reasons given above or because they are
equivalent to singularities from zero lines with zμj ðyiÞ ¼ 0,
which we now consider below.
Let us first consider the UV-type singularity of the internal

line connecting the vertex at y1 to the origin, yμ1 ¼ 0, and
look at the conditions for pinches in the remaining integral
over yμ2. Equation (32) is now satisfied for

yμ2 ¼
α4

α3 þ α4 þ α5
xμ2: (36)

Similarly, when yμ2 ¼ 0, Eq. (32) gives

yμ1 ¼
α1

α1 þ α2 þ α5
xμ1: (37)

These solutions satisfy the conditionDð1Þ ¼ 0 if x22 ¼ 0 and
x21 ¼ 0, separately. According to the physical interpretation
of pinch singularities given in the previous section, these
solutions give “collinear” gauge particles that propagate on
the light cone parallel to one of the external scalars/fermions.
We will refer to such lightlike lines with finite energies and
momenta in the physical interpretation as “jet lines.”
Next, consider the case when both internal vertices move

to the origin, yμ1 ¼ yμ2 ¼ 0, which makes three lines become
zero lines simultaneously. Again, the vanishing ofDð1Þ for a
singularity requires x21 ¼ x22 ¼ 0 with all lines on the light
cone; otherwise α1 ¼ α4 ¼ 0. This solution represents an
ultraviolet (short-distance) divergence, and we call it a
“hard” solution by analogy to hard scattering.
Among the remaining cases with zero vectors, first

consider yμ2 ¼ xμ2 and yμ1 ¼ xμ1. The solution to Eq. (31)
for the former, and to Eq. (32) for the latter, is such that yμ1,
and similarly yμ2, is given as a linear combination of xμ1 and
xμ2, so thatD

ð1Þ ¼ 0 is not satisfied for these (unless α5 ¼ 0)
because xμ1 · x

μ
2 ≠ 0. For yμ1 ¼ yμ2 ¼ yμ, both of the external

lines cannot be on the light cone simultaneously. Among
the cases when two propagators have zero arguments at the
same time, yμ1 ¼ xμ1 together with y

μ
2 ¼ 0, as well as yμ1 ¼ 0

together with yμ2 ¼ xμ2, are limiting cases of collinear

solutions in Eqs. (37) and (36), respectively, while any
other combination is ruled out because they require x2i ¼ 0
and x1 · x2 ¼ 0. The only possible solution with three zero
lines is the hard solution we found, and there cannot be any
other with more zero lines, because xμ1 ≠ xμ2 ≠ 0. We have
finished the list of solutions to Landau conditions for the
leading power singularities of the vertex functions at
one loop.
From the solutions to Landau conditions at one loop, one

can draw the conclusion that the divergences of the vertex
functions in coordinate space come from configurations
where, whether the gluons are soft or collinear, the external
particles move along rigid, classical trajectories along the
directions of external points that are located on the light
cone. For the singular configurations at higher orders, we
will not need to solve the Landau equations explicitly.
Instead, we will make use of the physical interpretation
of the necessary conditions for a pinch singularity given in
the previous section, and confirmed above for the one-
loop case.
In the case of the pinch singularities of the vertex

function, to identify an arbitrary pinch surface, we can
use the necessary condition in Eq. (9) that the lightlike lines
of the corresponding diagram must describe a physical
process, where the two external lines start from the same
point, say the origin, moving in different directions, toward
xμ1 and xμ2. For the sake of the argument, suppose the
external particles are fermions. Any gauge field lines that
connect them by vertices at finite distances have to be soft,
because they cannot be parallel to both. They may still have
a hard interaction at the origin reflecting a short-distance
singularity. The integrals over the positions of the fermion-
gluon vertices will be pinched either when the gluon and
the fermion lines get mutually collinear, or when the two
collinear fermions are connected by the emission of a soft
gluon as described in the example given at the end of
Sec. II. Likewise, the integrations over the positions of
vertices to which these collinear gluons are connected will
be pinched if the other lines connected to these vertices also
become parallel to them, such that all collinear lines make
up a “jet” moving in the direction of the external fermions.
The Landau conditions allow these collinear gluons to emit
soft gluon lines that can connect to the other jet as well.
Therefore, the two jets can have hard interactions at very
short distances, and they can only interact by the exchange
of soft partons at long distances at later times. Eventually,
the fermion lines end at the external points xμi , which have
to be on the light cone, x2i ¼ 0, in order for DðnÞ ¼ 0 to be
satisfied.
To sum up, the pinch singularities of the integrals for

vertex functions in coordinate space come from configu-
rations where the (time-ordered) vertices, at which either
soft or collinear gluons are emitted or absorbed, are aligned
along straight lines going through the “origin” and the
external points. These two lines also determine the classical
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trajectories of the external particles in the Coleman-Norton
interpretation. The behavior of the integrals for arbitrary
diagrams at higher orders near the corresponding pinch
surfaces will be covered by general power-counting argu-
ments in the next section.

IV. POWER COUNTING

In this section, we will apply a power-counting technique
similar to the one developed for momentum-space integrals
in Ref. [12] to study the behavior of the divergences of
vertex functions in coordinate space. We have studied in the
previous section the pinch singularities in the integrals
when the external points are on the light cone. As the
external propagators are not truncated, even the zeroth-
order results are very singular in coordinate space when the
external points are on the light cone; for instance, the
fermionic vertex diverges as 1=ðx21x22Þ2. Therefore, we will
now only consider the external points set on the light cone
and look for the degree of divergence of vertex functions
with respect to their lowest-order results. In a sense, we are
looking for any possible divergences in the residues of the
light-cone poles, by analogy to the residues of single-
particle poles in external momenta of Green functions in
momentum space for S-matrix elements. We will show at
the end of this section by power-counting arguments that
vertex functions in coordinate space have at worst loga-
rithmic divergences with respect to their lowest-order
results at higher orders in perturbation theory.
Since x2 ¼ 0 does not imply xμ ¼ 0 in Minkowski space,

naïve dimensional counting does not neccessarily bound
the true behavior of the integrals. As we already mentioned
in Sec. II, the divergences of the integrals are related to both
the volume of the space of normal variables and the
singularities of the integrand. Therefore, we will do the
power counting by combining the size of the volume
element of normal variables with that of the integrand,
which depends on both normal and intrinsic variables. In
order to estimate the size of the integrand, we will first
approximate the integrals near the pinch surfaces by
keeping in each factor (numerator or denominator) only
the terms of lowest order in normal coordinates, as their
scale goes to zero. Then the resultant integrand is a
homogenous function of normal variables, and the powers
of the normal variables in the homogenous integrals
combined with the normal volume element will give us
the bounds on the original integrals.
Suppose z1;…; zn and w1;…; wm denote the normal and

intrinsic variables for a pinch surface S of an integral I. The
zi’s vanish on S with a scale λ, while the wj’s remain finite
(as λ → 0) on S. For our discussion for vertex functions, we
can choose a single scale λ for properly chosen normal
coordinates in our integrals to do the power counting,
although we should stress that this does not need to be the
case in general. The scale λ bounds the size of each normal
variable and measures the “distance” of the hypercontourH

from the pinch surface S. The homogenous integral Ī near
the pinch surface S will have the form2

Ī ∼
Z

dλ2
Z
H

�Yn
i¼1

dzi

�
δ

�
λ2 −X

i

jzij2
�

×
Z �Ym

j¼1

dwj

�
f̄ðzi; wjÞ; (38)

where the homogenous integrand f̄ðzi; wjÞ is obtained by
keeping only terms of lowest order in λ in each factor of the
original integrand such that

fðzi; wjÞ ¼ λ−dH f̄ðz0i; wjÞð1þOðλÞÞ (39)

for each normal variable zi ¼ λz0i, with dH the degree of
homogeneity of f̄ðzi; wjÞ. More specifically, as we will do
the analysis for integrals of the form of Eq. (1), dH equals
the sum of the lowest powers of λ in the denominator
factors minus that in the numerator factors in fðzi; wjÞ. The
idea is then to scale out λ from each factor in the
homogenous integral, to count the overall power, and find
the behavior of the integral as λ → 0,

Ī∼
Z

dλλγ−1
Z
H

Yn
i¼1

dz0iδ
�
1−X

i

jz0ij2
�Z Ym

j¼1

dwjf̄ðz0i;wjÞ;

(40)

where the overall degree of divergence γ is given by

γ ¼ n − dH: (41)

By overall degree of divergence, we mean the power of
scale parameter λ in the overall integral when all normal
variables have the same scale. For γ ¼ 0, the divergences
are logarithmic, while for γ < 0 there will be power
divergences.
If some set of normal coordinates vanished faster than

others on S, say as λ2, that would only increase the power of
λ in the volume element of the normal space, giving a
nonleading contribution, unless there are new pinches in
the homogenous integral after dropping terms that are
higher order in the normal variables. These pinches, which
could occur between poles that were separated by non-
leading terms before they were dropped, could enhance the
integrals in principle. However, we will argue that, for our
choice of variables, only pinches of the hard/jet/soft type
occur in the homogenous integrals. Notice also that, if
every normal variable in a subregion vanishes faster than

2This form, with a delta function having the sum of the squares
of the absolute values of the normal variables in its argument,
corresponds to bounding the normal space with an n-dimensional
sphere with radius λ.
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those of other regions, the power counting will still be the
same for each subregion. Before two lines can produce a
pinch singularity, they must approach the hypercontour to
the same scale. Therefore, one can choose a single scale for
all normal variables for the power counting for a particular
vertex function near a pinch surface. We shall now apply
this power-counting technique for the fermionic vertex
given by Eq. (24), which we will refer to as the vertex
function in the following. As we shall see, power counting
for the scalar vertex is essentially equivalent.
As we are dealing with lightlike lines, we will use light-

cone coordinates, because the Landau equations for light-
cone singularities can be solved more simply in these
coordinates. By a combination of rotations and boosts,
one can put one of the external points at xμ2 ¼ X2δ

μþ and
the other one at xμ1 ¼ X1δ

μ−, giving x21 ¼ x22 ¼ 0 with
x1 · x2 ≠ 0. This will set our coordinate system.
For a particular pinch surface S, i.e. a particular solution

to the Landau equations, one has to identify the intrinsic
and normal variables that parametrize the surface and its
normal space, respectively. For instance, let us take the
solution with a soft gluon at one loop from Sec. III. There,
yþ2 and y−1 are the intrinsic variables that remain finite,
while y−2 , yþ1 , y22;⊥, and y21;⊥ are the normal variables that
vanish on the pinch surface. Such lines connecting vertices
at finite distances are part of the soft function. On the other
hand, for the hard solution at one loop, all components of yμ1
and yμ2 are vanishing, and one has only normal variables for
this solution. We will refer to the set of lines connecting a
set of vertices all of whose coordinates vanish as the “hard”
function. Lastly, in the one-loop example, there were
collinear lines. At one loop, for a line in the plus direction,
yþ2 is the intrinsic variable, while the rest of the components
are normal variables. The set of collinear gluons, together
with the external lines to which they are parallel, define
the jet function and its direction. Note that the limits of

integration of yþ2 here go from zero up to X2 on this pinch
surface. For yþ2 > X2, the Landau equations cannot be
solved. Indeed, yþ2 > X2 does not correspond to a physical
process where all lines move forward in time. In general, in
a jet, the limits of integration over the intrinsic variables
for a given pinch surface are not unbounded, but are set
according to the time ordering of vertices along the jet
direction.
In homogenous integrals, the denominators of the jet

lines will be linear, and those of the hard lines will be
quadratic in normal variables, while the soft lines are of
zeroth order. The lines connecting the hard function with
the jets are linear in normal variables, and we thus count
them as part of the jets. Any line connecting the jets or the
hard part to the soft function is zeroth order in normal
variables, and hence they are counted in the soft function.
The only approximation in writing the homogenous

integrand is dropping terms that are of higher order in
the normal variables. In fact, such terms occur only in lines
connecting two different subdiagrams, namely, in lines con-
necting the jets to the hard and soft function or those
connecting the hard and soft functions. In order for our
power-counting arguments to be valid, there must not be
new pinches introduced in the homogenous integrals
because of this approximation. In other words, the
Landau conditions for the homogenous integral to be
pinched must have the same solutions as those of the
original integral (up to trivial shifts or rescalings in some of
the variables). We mean by “the same solutions” that the
pinch singularities of both have the same physical picture.
Note that soft lines are never pinched in coordinate space,
and thus we only need to consider the pinches of the lines
connecting a jet to the hard part in the original and
homogenous integrals. To this end, one may consider,
for instance, the following integral over two jet lines, which
is a part of a jet function:

I ¼
Z

d4y
1

−ðx − yÞ2 þ iϵ
1

−ðy − zÞ2 þ iϵ
; (42)

where xμ, yμ are jet vertices and zμ is a hard vertex.3 The
Landau conditions for a pinch from these two lines after
Feynman parametrization are given by

−α1ðx − yÞμ þ α2ðy − zÞμ ¼ 0; (43)

with ðx − yÞ2 ¼ ðy − zÞ2 ¼ 0. The only solution to these
conditions is that all three vertices are aligned along the jet
direction, say the plus direction, and are parallel to each
other. The vertex zμ is allowed to be hard by these
conditions, i.e. zþ can also vanish in Eq. (43) at the same
rate as the other components. If one approximates the

FIG. 2. Illustration of the soft (S), hard (H), and jet (Jð�Þ)
regions.

3Here, we have omitted the derivatives at each vertex in order
to write a simple integrand to illustrate the idea.
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integral in Eq. (42) by a homogenous integrand with
ðy − zÞ2 ∼ y2 − 2yþz−, the condition for a pinch in the
y− integral is then the same as the condition [Eq. (43)] for
the original integral with zþ ¼ 0. The integrals over the
transverse components of yμ can only be pinched at
y2⊥ ¼ x2⊥ ¼ 0. These pinch singularities are present in both
the original and homogenous integrals. They show up as
end-point singularities after the change of variables with y1,
y2 → y2⊥, ϕ, which can always be carried out. In general,
the pinches of the homogenous integral correspond to
pinches of the original integral with some of the variables
moved to their end points.
This approximation can fail if zþ becomes comparable to

yþ and xþ, or if yþ diminishes like zþ, which are actually
different solutions to the Landau conditions corresponding
to different pinch surfaces. Nevertheless, we will see that
the result of power counting will not differ in either case,
whether the vertex zμ is taken as part of the jet, or included
in the hard part. In our analysis, we identify the normal
variables of a pinch surface, group each vertex in a certain
subdiagram depending on the size of the components of its
position, and do the power counting for the divergence on
that particular pinch surface. Generally speaking, the
approximations in the homogenous integrals can change
if two different regions overlap when some vertices escape
to a different subdiagram. However, we will show that the
changes in the powers of the factors of two subdiagrams
due to removal of a vertex from one subdiagram and its
inclusion in the other subdiagram cancel each other, leading
to the same conclusion for the overall degree of divergence.

A. Power counting for a single jet

Before we do the power counting for the full vertex
function in coordinate space, we begin with the power
counting for a single jet, with the topology of a self-energy
diagram, as depicted in Fig. 2. Let us take a “dressed”
ultrarelativistic fermion moving in the plus direction, so
that the plus coordinates of all vertices inside the jet are
the intrinsic variables, while their minus coordinates and
squares of transverse positions are the normal variables.
With these choices, all normal variables appear linearly in
jet-line denominators. The condition that the vertices have
to be on the light cone for pinches leaves us with three
variables for each vertex. The azimuthal symmetry around
the jet axis allows us to choose the square of the transverse
components as one normal variable. We will compute the
contributions to the overall degree of divergence of the jet,
γJ, from the normal volume element, the denominators, and
the numerators of the jet function as defined in Eq. (41) for
a generic singular integral.
For every integration over the positions of the three- and

four-point vertices inside the jet, one needs to addþ2 to γJ;
that is, þ1 for each normal variable (transverse square and
minus component). In D ¼ 4 − 2ε dimensions, however,
the power for transverse square components isþð1 − εÞ. In

the homogenous jet function, the denominator of each
gauge field line contributes a term −ð1 − εÞ, while that of
each fermion line contributes −ð2 − εÞ to γJ, since the
massless fermion propagator in coordinate space is given,
as in Eq. (29), by

SFðxÞ ¼ ∂ΔFðx2Þ ¼
Γð2 − εÞ
2π2−ε

x
ð−x2 þ iϵÞ2−ε : (44)

We are interested in the degree of divergence with respect to
the lowest-order result, so we will multiply the diagrams
of Fig. 3 by ½x=ð−x2 þ iϵÞ2−ε�−1. Equivalently, we add a
term þð2 − εÞ to γJ to cancel the light-cone divergence of
the lowest-order diagram, which is simply the fermion
propagator.
Now we consider the numerator suppressions. In order to

get the leading divergences, in the numerators we will keep
only the terms of lowest order in normal coordinates, which
therefore give the least suppression. To begin, we note that
there is a factor contributing to the numerator from each
fermion-gluon vertex at a point yμn of the form

ðynþ1−ynÞγμðyn−yn−1Þ¼2ðynþ1−ynÞμðyn−yn−1Þ
−γμðynþ1−ynÞðyn−yn−1Þ: (45)

Here, the first term is unsuppressed as it is, although the
vector with the index μ must form an invariant with some
other vector. At the same time, terms proportional to γμ in
Eq. (45) either vanish by ðγ∓Þ2 ¼ 0 or vanish at least as the
transverse coordinates of one of the vertices, which are at
the order of λ1=2. In the case of scalar, instead of gauge field
lines, with Yukawa couplings to fermions, for each
two-fermion-scalar vertex there would be a factor of
ðynþ1 − ynÞðyn − yn−1Þ in the numerator, giving the same
power-counting suppression of at least λ1=2.
In addition to numerator factors from fermion lines, there

are factors from three-gluon vertex functions. Avertex at zμm
combines with gluon propagators to give terms that
(dropping overall factors) can be written as

v3gðzm; fyigÞ ¼ ϵijkgμiμjΔðzm − yiÞΔðzm − yjÞ
× ∂μk

zmΔðzm − ykÞ; (46)

where the yi’s are the positions of the other ends of the
lines. Acting on the gluon lines, the derivatives bring
vectors from their coordinate arguments to the numerator,
while increasing the power of a denominator by 1. These
vectors also must form invariants in the numerator, either
among themselves or with the Dirac matrices of the

FIG. 3. A single jet with the topology of a self-energy diagram.
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fermion-gluon vertices. Suppose we let zi denote the
position of the ith three-gluon vertex, and yj the position
of the jth fermion-gluon vertex. The numerator is then a
product of linear combinations of invariants of the form zi,
yj, and zi · zi0. Referring to Eq. (45), one could also get
factors with zi · yj. Each such invariant made out of two
vectors is linear in normal variables. One can see then that
each fermion-gluon vertex suppresses the numerator by
λ1=2 at least, while every pair of three-gluon vertices
produces an invariant suppressing the numerator by λ,
while if a three-gluon vertex is contracted with a Dirac
matrix at a fermion-gluon vertex, it also suppresses the
numerator by λ1=2 at least. Hence, the contribution of the
numerators to γJ is given by

γnJ ≥
1

2
ðVf

3 þ Vg
3Þ ¼

1

2
V3; (47)

with Vf
3 the number of fermion-gluon vertices and Vg

3 the
number of three-gluon vertices inside the jet. Adding all
contributions, we obtain a lower bound for the overall
degree of divergence of this fermion jet,

γJ≥2ðV3þV4Þþ2−Ng−2Nf−Vg
3þ

1

2
V3þOðεÞ: (48)

Here, V3 (V4) is the total number of three-point (four-point)
vertices, while Ng (Nf) is the number of gluon (fermion)
lines in the jet. We can use the graphical identity

2N ¼ Eþ
X
i¼3;4

iVi (49)

in Eq. (48), which relates the number of lines of a diagram
to the numbers of its various kinds of vertices, where E is
the number of external lines of the jet. A single jet has two
external lines, E ¼ 2: one connected to the external point
xμ and the other to the origin. Combining the number of
lines N ¼ Nf þ Ng and the number of three-point vertices
V3 ¼ Vf

3 þ Vg
3, we can rearrange the terms in Eq. (48),

γJ ≥
3

2
V3 þ 2V4 − N þ 2þ Vf

3 − Nf; (50)

which, using the graphical identity in Eq. (49), can be
reduced to

γJ ≥ 1þ Vf
3 − Nf: (51)

Here, we note that, because at each fermion-gluon vertex
one fermion line enters and one exits, the number of
fermion lines in the jet is equal to 1 plus the number of
fermion-gluon vertices in the jet. Therefore, our power
counting results in

γJ ≥ 0: (52)

Thus, a fermion jet in coordinate space with the topology
of a self-energy diagram can have at worst logarithmic
divergence. In contrast to the power counting in momentum
space, we did not count the number of loops, nor did we
need to use the Euler identity. Note that the power counting
for a scalar jet gives the same result, because the derivatives
at two-scalar-gluon vertices in a scalar jet correspond to
the derivatives from fermion propagators in a fermion jet.
Similarly, the two-scalar-two-gluon “seagull” couplings
have no numerator factors, and are counted like the
four-point gluon couplings.4

If we had kept the terms atOðεÞ in the power counting of
Eq. (48), we would have derived a bound

γJ ≥
�
1

2
V3 þ V4

�
ε; (53)

which shows that these collinear singularities are regulated
also by ε > 0 in coordinate space. No IR regularization is
necessary after UV renormalization when the external
points are taken to the light cone. However, in the
Fourier transform of the vertex function for S-matrix
elements in momentum space, the divergences in p2 ¼ 0
will require IR regularization with ε < 0 when the external
points are integrated to infinity.
The power counting above and the result in Eq. (52) hold

in the presence of self-energies inside the jet as well. For
instance, cutting a gluon line in the jet and inserting a
fermion loop does not change γJ, because the changes due
to extra fermion denominators are canceled by the terms for
integrations over the positions of these two new vertices,
while the denominator of the extra gluon cancels the
contribution of fermion numerators to γJ, since yð−yÞ ¼
−y2 ∼OðλÞ, with yμ being the difference of the positions of
the two vertices. In the case of inserting a gluon or a ghost
loop, a similar cancellation occurs. The denominators of the
two new lines in the loop each have a lower power by 1
compared to fermion lines, but there are now two deriv-
atives at the new vertices raising those powers. A different
power counting is needed for the case when such self-
energies shrink to a point; that is yþ → 0 in the example
above for a jet in the plus direction. When renormalization
has been carried out, such UV divergences are removed by
local counterterms.

4By the arguments given in the main text, the overall degree of
divergence of a scalar jet is bounded from below by

γSJ ≥ 2ðV3 þ V4 þ V2g2s
4 Þ þ 1 − Ns − Ng − Vg

3 − Vsg
3

þ 1

2
ðVg

3 þ Vsg
3 Þ þOðεÞ;

with Ns the number of scalar lines, V2g2s
4 the number of two-

scalar-two-gluon vertices, and Vsg
3 the number of two-scalar-

gluon vertices. Each term on the right-hand side cancels by
Eq. (49), such that γSJ ≥ 0 in this case as well.
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B. Overall power counting for the vertex function

We are now ready to continue with the overall power
counting for the vertex function including two jets, a soft
subdiagram, and a hard subdiagram as in Fig. 2. We will do
the analysis for the fermionic vertex function. As in the
previous subsection, the counting is the same for the scalar
vertex. It also straightforwardly extends to any amplitude
for wide-angle scattering.
The homogenous soft function is independent of normal

variables, and by dimensional counting it is finite for fixed
external points. We introduce the notation JHð�Þg and JHð�Þf
to denote the numbers of vector and fermion lines,
respectively, that connect the hard subdiagram to the
jets in the � direction. In these terms, we also define

JHg;f ¼ JHðþÞg;f þ JHð−Þg;f; (54)

JH ¼ JHg þ JHf ; (55)

where JH is the total number of lines attaching both jets
to the hard subdiagram. Similarly, we define, for the lines
connecting the jets to the soft subdiagram,

SJg;f ¼ SJðþÞg;f þ SJð−Þg;f; (56)

SJ ¼ SJg þ SJf; (57)

and lastly, for the lines connecting the soft and hard
subdiagrams,

SH ¼ SHg þ SHf : (58)

Recall that all components of the vertices in the hard
function vanish together, so that hard lines are quadratic
in normal variables. Similar to Eq. (48) for a single jet,
the overall degree of divergence for the vertex function
relative to the lowest-order diagram can be written as

γΓ≥4ðVH
3 þVH

4 Þ−2NH
g −3NH

f −VH
3g

þ
X
i¼þ;−

½2ðVJðiÞ
3 þV

JðiÞ
4 Þþ2−N

JðiÞ
g −2N

JðiÞ
f −V

JðiÞ
3g þnJðiÞ �

þOðεÞ; (59)

where nJð�Þ denotes the numerator contributions from
the jet in the � direction. The terms labeled H are
contributions from the hard part, followed by contributions
from the two jets. Note that there are no contributions
from integrations over the positions of soft vertices here,
because all of their components are intrinsic variables.
In the hard part, every three-gluon vertex produces a

vector that must be proportional to a linear combination of
the position vectors zμi of vertices in the hard subdiagram.
These are all normal variables, and are hence order λ. These

vectors may form invariants with a jet or a soft vertex
suppressing the numerator by λ, or two of them may form
an invariant at Oðλ2Þ. Thus, each hard three-gluon vertex
contributes þ1 to scaling of the numerator, while their
derivatives increase the power of a gluon denominator that
is quadratic in λ. In total, they contribute −VH

3g to γΓ.
The numerator contributions of jets are somewhat different

compared to Eq. (48), because the vectors arising from the
derivatives of three-gluon vertices inside the jets can now form
invariants with vectors from three-gluon vertices in the hard or
soft part, or from the opposite-moving jet. At lowest order in
normal variables, the invariants resulting from contracting a
jet vertex with a soft vertex are zeroth order in normal
variables, while those from a jet and a hard vertex are linear—
which, however, we have already counted in Eq. (59) among
the contributions from the hard part. There can be at most JHg
such vectors to form out-of-jet invariants, as many as the
number of lines connecting jets to the hard part. The
polarization of any of the SJg soft gluons connecting the
jets to the soft function does not produce an invariant that
contributes to nJ ¼ nJ

ðþÞ þ nJ
ð−Þ
, and the fermion-gluon

vertices in the jets where a soft fermion line attaches do
not always give a suppression in the numerator. For the
minimum numerator suppressions, we can thus subtract JHg þ
SJg þ SJf from the total number of three-point vertices in nJ,

nJ ≥
1

2
ðVJ

3 − JHg − SJÞ; (60)

where we use the notation of Eqs. (55) and (57).
We can again apply the graphical identity in Eq. (49) to

the terms in Eq. (59) for the jets and the hard subdiagram
separately. The EH external lines of the hard function are
either jet or soft lines,

EH ¼ SH þ JH; (61)

where we assume for this discussion that the minimum
of the fermion lines connecting the jets to the hard part is
two, JHf ≥ 2, one from each jet. Pinch surfaces where only
gluons attach the hard part to the jets in the reduced
diagram are also possible and may be treated similarly, with
equivalent results. These external lines must be added to the
number of hard lines, NH ¼ NH

g þ NH
f , in the identity for

the total number of lines connected to the hard part,

2NH þ EH ¼ 2VH
2 þ 3VH

3 þ 4VH
4 : (62)

Here, we consider the vertex of the external current as a
two-point-vertex, so that VH

2 ¼ 1. The total number of jet
lines is related to the number of vertices in both jets by

2NJ þ SJ ¼ 2þ JH þ 3VJ
3 þ 4VJ

4; (63)

where the number of (soft) lines, SJ, connecting the jets to
the soft part is added to the number of jet lines. Removing
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the contributions from the gluon lines and vertices they
attach in Eq. (62), one can find a relation between the
number of fermion vertices and the number of fermion lines
in the hard subdiagram,

VH
3f ¼ NH

f þ 1

2
ðSHf þ JHf − 2Þ; (64)

while a similar relation can be found from Eq. (63) for jets,

VJ
3f ¼ NJ

f þ
1

2
ðSJf − JHf − 2Þ: (65)

To derive a lower bound for γΓ in Eq. (59), it is
convenient to begin by applying Eq. (62) to the H terms
of γΓ, and Eq. (63) to the jet terms. Then, we can readily use
the relations of fermion lines to vertices, Eqs. (64) and (65)
for the hard subdiagram and for the jets, respectively, and
the numerator inequality [Eq. (60)] to derive a lower bound
for the overall degree of divergence of the vertex function:

γΓ ≥ SHg þ 3

2
SHf þ 1

2
ðSJf þ JHf − 2Þ: (66)

The condition for a (logarithmic) divergence is then that no
line can connect the hard subdiagram directly to the soft
subdiagram and that only a single fermion attaches each jet
to the hard subdiagram. This corresponds to similar results
found for pinch surfaces in momentum space [12,15]. The
soft and hard subdiagrams can only interact through jets.
Moreover, when the lower bound is saturated, using the
same relations above, the leftover terms in γΓ that are at the
order of ε can be shown to be equal to

γOðεÞ
Γ ¼

�
1

2
VJ
3 þ VH

3 þ VJ
4 þ 2VH

4 − 1

2
½SJg þ JHg �

�
ε: (67)

For each line connecting the soft part to a jet, there is a
vertex in the jet, while for each line connecting a jet to the
hard part, there is a hard vertex. Thus, there will be enough
vertices left over to make the coefficient of ε positive.
Therefore, the logarithmic divergence of the vertex function
is regulated by ε > 0 in coordinate space.
We shall now consider the changes in the power counting

due to the removal of a vertex from one subdiagram and its
inclusion in the other subdiagram. This will happen at the
boundary of integration in intrinsic variables. Suppose that
one of the jet vertices connected to the hard part gets
captured by the hard part and becomes part of it, or a vertex
in the jet escapes to the soft part, as depicted in Fig. 4. In the
first case, the line, which used to connect the hard part to
one of the jets, has become a hard line, while the other jet
lines attached to that vertex now connect the hard part and
the jet. Thus, if the vertex that gets captured is a three-gluon
vertex, NH

g , VH
3g, and JH each change by þ1, while NJ

g and
VJ
3g change by −1. Likewise, if a four-point vertex gets

captured, NH
g and VH

4 increase byþ1, but JH now increases

by þ2, while NJ
g and VJ

4 change by −1. These changes,
however, cancel exactly in Eq. (59) using the bound for the
jet numerator contributions nJ in Eq. (60) for the most
divergent configurations. Similarly, if a three-gluon vertex
in the jet escapes to the soft part, it pulls two lines out of the
jet, making them soft; hence NJ

g and VJ
3g change by −2 and−1, respectively, while SJ increases byþ1. For a four-point

vertex that escapes the jet and joins the soft part, NJ
g and VJ

4

decrease by −3 and −1, respectively, while SJ increases by
þ2. These changes also cancel in Eq. (59) for the most
divergent configurations. Note also that when a hard vertex
escapes to the soft part, the leftover changes in Eq. (59) are
equal to ΔSH, the change in the number of lines connecting
the hard and soft parts. Therefore, the leading behavior
does not change, even if two different subdiagrams do
overlap, as was asserted at the beginning of this section.
To conclude, we have shown by power-counting argu-

ments that the vertex function in coordinate space can
diverge at worst logarithmically times overall lowest-order
behavior. This logarithmic divergence requires D < 4 in
dimensional regularization.

V. APPROXIMATIONS AND FACTORIZATION

A fundamental consequence of the structure of pinch
surfaces is the factorization of soft gluons from jets and jet
gluons from the hard part. This is shown in momentum
space by the use of Ward identities [14,17,21]. In this
section, we show how the same Ward identities, as they
appear in coordinate space, result in the factorization of
soft, jet, and hard functions.

A. Hard-collinear approximation

Having identified the jet and hard regions that can give
divergences in coordinate-space integrals in the previous
section, we now construct a coordinate-space hard-collinear
approximation to the integral, which enables factorization of

FIG. 4. A jet vertex A gets captured by the hard part, while
another vertex B escapes to the soft part. Power counting for this
pinch surface gives the same result as when the vertices A and B
were inside the jet. The other jet in the opposite direction is
suppressed here.
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the jet and hard functions at the leading singularities. Recall
that the only approximation made for writing a homogenous
integrand to do the power counting for these two regions
was dropping the terms of higher order in normal variables
in lines connecting the jets to the hard part. Thus, the
approximation one needs is made on the propagators of these
jet lines attached to the hard part. We shall explain this hard-
collinear approximation with the example of the following
integral:

IðyÞ ¼
Z

d4zJνðyÞgνρDρμðy − zÞHμðzÞ; (68)

where Jν denotes a jet function with a direction βν,
Dρμðy − zÞ is the propagator of the line that connects a
jet vertex at y to a hard vertex at z, and HμðzÞ is a hard
function. We raise and lower the indices by the Minkowski
metric. Here, we have suppressed the dependence on other
vertices, which are also integrated over. The integral in
Eq. (68) will have divergences when the jet moves in the
plus or minus light-cone direction and all coordinates of the
hard function vanish. In this limit, we can approximate this
integral by picking out the large component of the jet, by
replacing gνρ → β0νβρ where βμ ¼ δμþ and β0ν ¼ δν−:

IðyÞ ∼
Z

d4zJνðyÞβ0νβρD̄ρμðy − zÞHμðzÞ: (69)

In the gluon propagator, D̄, we neglect the smaller terms
coming from the hard vertex. Let us take the jet to be in
the plus direction; then the dependence on zμ in the
argument of the propagator will be largely through z−,
the component of the hard vertex in the opposite
direction, because

ðy − zÞ2 ¼ 2yþðy− − z−Þ − y2⊥ þOðλ3=2Þ (70)

for yþ ≫ zþ and y2⊥ ≫ z2⊥. We then write the propa-
gator as

βρDρμðy − zÞ ¼ D−þðy − zÞβμ;

D̄−þðy − zÞ ¼ ∂
∂z−

Z
z−

∞
dσD−þð2yþðy− − σβ0−Þ − y2⊥Þ

≡ ∂z−Dðy; z−Þ: (71)

For this representation, we should take ε < 0 in D̄−þ.
One can now integrate by parts in Eq. (69), so that −∂z−
acts on the hard function HμðzÞ:

IðyÞ ∼
Z

d4zJþðyÞDðy; z−Þð−∂z−H−ðzÞÞ: (72)

There are no boundary terms as a result of integrating
by parts, because in the hard function HμðzÞ there must
be at least one propagator that vanishes at z− ¼ �∞.
Furthermore, we can add to the integrand the derivatives
with respect to other components of zμ, such that we now
have a full gradient ∂μ

z acting on the hard function HμðzÞ.
Because the jet function and Dðy; z−Þ do not depend on
zþ and z⊥, these added terms are total derivatives and
vanish after the integration. The result of our approxi-
mation can then be expressed by

IðyÞ ∼
Z

d4zðJνðyÞβ0νÞDðy; zÞð−∂μHμðzÞÞ: (73)

In other words, we have replaced the propagator of the
gluon escaping from the jet to the hard part with
Dνμðy − zÞ → Dðy; zÞβ0ν∂μ

z , with β0ν being a vector in
the opposite direction of the jet. The momentum-space
analog of such a gluon is called “longitudinally” or “scalar
polarized” and is associated with the scalar operator
∂μAμðxÞ in coordinate space.
For the simplest example illustrated in Fig. 5, this

approximation for the vertex function at one loop results in

Ið1Þ ∼
Z

dDz
x2 − y

ð−ðx2 − yÞ2 þ iϵÞ2−ε β
0 y
ð−y2 þ iϵÞ2−ε

Z
z−

∞
dσ

1

ð−2yþðy− − σβ0Þ þ y2⊥ þ iϵÞ1−ε

×

�
− ∂
∂zμ

�� −z
ð−z2 þ iϵÞ2−ε γ

μ z − x1
ð−ðz − x1Þ2 þ iϵÞ2−ε

�
; (74)

FIG. 5. One-loop example for the hard-collinear approxima-
tion. The arrow represents the action of the derivative on the hard
function HðzÞ, which is just a fermion propagator here.
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where we have omitted the incoming current, integrations over jet vertices, and numerical factors. After acting with ∂z
μ, there

are two terms with a relative sign coming from the action of the derivative on either fermion propagator, canceling them in
turn by the massless Dirac equation ∂SFðxÞ ¼ −δDðxÞ:

Ið1Þ ∼
Z

dDz
x2 − y

ð−ðx2 − yÞ2 þ iϵÞ2−ε β
0 y
ð−y2 þ iϵÞ2−ε

Z
z−

∞
dσ

1

ð−2yþðy− − σβ0Þ þ y2⊥ þ iϵÞ1−ε

×

� −z
ð−z2 þ iϵÞ2−ε δ

Dðz − x1Þ − δDðzÞ z − x1
ð−ðz − x1Þ2 þ iϵÞ2−ε

�
: (75)

After integrating over z, the location of the attachment of the “scalar polarized” gluon, using the delta functions, the two
terms differ only in the upper limits of the σ integrals, which can be combined so that the remaining leading term is given by

Ið1Þ ∼ − x2 − y
ð−ðx2 − yÞ2 þ iϵÞ2−ε β

0 y
ð−y2 þ iϵÞ2−ε

−x1
ð−x21 þ iϵÞ2−ε

�Z
x−
1

0

dσ
1

ð−2yþðy− − σβ0Þ þ y2⊥ þ iϵÞ1−ε
�
: (76)

Therefore, after the hard-collinear approximation, the
“scalar polarized” gluon has been factored onto an eikonal
line in the opposite direction from the jet of which it is a
part, such that the jet is now factorized from the rest of the
diagram. Note that the integration over the eikonal line
is a scaleless integral, which in the limit x−1 → ∞ will be
defined by its ultraviolet pole only.
The hard-collinear approximation also allows us to apply

the basic Ward identities of gauge theories directly to the
leading singularity of the vertex function in order to factor
the “scalar polarized” gluons from the hard function. This
reasoning was used in the proofs of factorization in gauge
theories in momentum space [14,22–24], and the same
reasoning applies here. The Ward identity that we need is
given by

houtjTð∂μ1A
μ1ðx1Þ � � � ∂μnA

μnðxnÞÞjini ¼ 0; (77)

where jini and houtj are physical states involving particles
of fermion and gauge fields with physical polarizations
only. The gauge field AμðxÞ can be Abelian or non-Abelian;
the above matrix element relation involving scalar polar-
ized gauge fields holds at each order in perturbation theory
after the sum over all contributing diagrams [25,26].
At higher orders, the external lines of the hard function

will be two physical fermion lines on the light cone, one
entering and the other exiting the hard function, and some
number of “scalar polarized” gauge field lines with
derivatives acting on the hard function. Consider the case
with one such gluon line connected to the hard part as in

Fig. 6. This diagram is equal to the negative of the diagram
where the scalar-polarized gluon is acting on the fermion
line in the opposite direction by the Ward identity
[Eq. (77)], which gives a factored gluon onto an eikonal
line, as we showed above at lowest order. This summarizes
the argument, which was also extended to arbitrary number
of gluon lines, for the proof of factorization of jets (collinear
singularities) from the hard function in momentum space;
see the review of Ref. [14]. The same factorization can be
shown in coordinate space after the hard-collinear approxi-
mation described above using the Ward identity [Eq. (77)],
in the same way as in momentum space.

B. Soft-collinear approximation

One may also do a soft-collinear approximation for the
lines that connect the jets to the soft function, such that the
collinear singularities of jets will be factored from the finite
soft function. We will follow the same reasoning and repeat
the same steps as we did for the hard-collinear approxi-
mation. To avoid repetition, we will skip those details of
our arguments that were explained in the previous section.
In analogy to the integral in Eq. (68), now consider

IðzÞ ¼
Z

d4ySμðzÞDμνðz − yÞgνρJρðyÞ: (78)

Here, SμðzÞ denotes the soft function, and Jρ denotes a jet
function with a direction βρ.Dμνðz − yÞ is the propagator of
the line that connects a soft vertex at z to a vertex in the jet

FIG. 6. Factorization of one “scalar polarized” gluon from the hard subdiagram.
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at y, which are at a finite distance from each other. We
suppress the dependence of either function on other vertices
as before. In this integral, the only singularities of the
integrand are contained in the jet function. Again, to
approximate this integral, we will drop the small terms
in the argument of the propagator and pick up only the large
numerator component of the jet,

IðzÞ ∼
Z

d4ySμðzÞD̄μνðz − yÞβνβ0ρJρðyÞ; (79)

with β2 ¼ β02 ¼ 0 and β · β0 ¼ 1. Suppose the jet is in
the plus direction; then, following our power counting,
z− ≫ y− and z2⊥ ≫ y2⊥ such that

ðz − yÞ2 ¼ 2ðzþ − yþÞz− − z2⊥ þOðλ1=2Þ: (80)

Thus, this time we write the propagator connecting the soft
part to a jet as

Dμνðy − zÞβν ¼ βμDþ−ðy − zÞ;

D̄þ−ðz − yÞ ¼ ∂
∂yþ

Z
yþ

∞
dσDþ−ðz − σβÞ≡ ∂yþDðz; yþÞ:

(81)

Using the steps above, we integrate by parts in Eq. (79), and
then add to the integrand the derivatives with respect to
other components of yμ as well. In this way, we obtain

IðzÞ ∼
Z

d4ySμðzÞβμDðy; zÞð−∂νJνðyÞÞ: (82)

We see that the jets are connected to the soft part also by
“scalar polarized” gluons, which can be factored from
the jets by using the Ward identity given in Eq. (77). The
formal proof of factorization into hard, soft, and jet
functions in coordinate space now follows the momen-
tum-space procedure and requires only the hard-collinear
and soft-collinear approximations described here.

C. Eikonal approximation

Having described the hard-collinear and soft-collinear
approximations above to factorize the contributions from
different subdiagrams at the leading singularity, we can now
think of another approximation to simplify the computation
of the leading term. One may make an approximation to the
integrals, keeping only the leading contribution on a pinch
surface where the fermion lines are taken on the light cone,
and neglecting the subleading contributions coming away
from that pinch surface by imposing the results of the
Landau conditions inside the integrands.
As an example, let us again take the fermionic vertex

function. The solutions to Landau equations with collinear
fermions set the transverse coordinates and the minus (plus)

coordinates of the positions of the fermion-gluon vertices on
the plus line (minus line) to zero as well as time-ordering
them. These conditions can be imposed inside the integrand
by replacing the fermion propagators along the plus linewith

SFðx2Þ ¼ ∂ΔFðx2Þ → θðxþÞδðx−Þδ2ðx⊥Þγ · β; (83)

with β ¼ δμþ, while for those along the minus line, in the
direction β0 ¼ δμ−, xþ and x− are exchanged. This is
actually the coordinate-space version of the well-known
eikonal approximation, which is based on assuming the
gluons are soft and neglecting their squared momenta in the
fermion propagators. The eikonal approximation originates
from geometrical optics, where it corresponds to the small-
wavelength limit in which the trajectories of light are given
by light rays as in classical theory. One might have derived
the form of the fermion propagators also by taking the
Fourier transform of the eikonal propagator in momentum
space for a massless fermion moving in the direction
βμ ¼ δμþ,

Z
d4k
ð2πÞ4

i
β ·kþ iϵ

e−ik·x¼θðxþÞδðx−Þδ2ðx⊥Þ: (84)

Let us apply this eikonal approximation to the one-loop
vertex diagram as an example:

Γð1Þ
eik ¼

Z
d4y2d4y1θðxþ2 − yþ2 Þθðyþ2 Þθðy−1 Þθðx−1 − y−1 Þ

× δðy−2 Þδ2ðy2;⊥Þδðyþ1 Þδ2ðy1;⊥Þ

×
1

ð−ðy2 − y1Þ2 þ iϵÞ ; (85)

where we have suppressed the numerical factors and
dropped the delta functions of the external lines. The result,
after introducing the parameters λ and σ with β0ν ¼ δν−,

Γð1Þ
eik ¼

Z
xþ
2

0

dλ
Z

x−
1

0

dσ
1

ð−2β · β0λσ þ iϵÞ ; (86)

is exactly equal to a first-order diagram of a Wilson line with
a cusp at the origin, which begins at the point xμ1 pointing in
the direction of β0, then changes its direction to β at the
origin, and later ends at xμ2. The parameters λ, σ are simply
relabelings for yþ2 and y−1 that give the locations where
the gluon is attached to the Wilson line, and, of course, are
integrated over. This equality between the diagrams of a
cusped path-ordered exponential and of the vertex function
after the eikonal approximation also holds at higher orders,
because the theta functions simply order the attachments to
the eikonals, while the integrations over any other vertices
are the same in both cases. Therefore, we may approximate
the vertex function by a Wilson-line calculation at any given
order in perturbation theory [27,28]. The power counting for
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the path-ordered exponentials is not exactly the same as that
for the vertex function with partonic lines, but it is very
similar and gives the same bound for their overall degree of
divergence, which we will present in Appendix B to avoid
repetition.

VI. DISCUSSION

The coordinate-space singularities of Feynman integrals
in a massless gauge theory have a direct interpretation in
terms of physical processes, in which classical massless
particles propagate freely between points in space-time,
where they scatter by local interactions. The singularities
occur only if these particles move on the light cone. The
condition for pinches in the coordinate integrals is inter-
preted as momentum conservation for these scattered
particles with the identification of their momenta from
their coordinates. This interpretation is the same as the
interpretation given by Coleman and Norton [11] to Landau
equations in momentum space [10].
The pinches in the coordinate integrals for the vertex

function occur when a group of lines get mutually collinear
forming jets as in momentum space. There are also pinches
from “zero” lines when some set of internal vertices move to
the origin x → 0, reflecting a short-distance singularity,
where these zero lines or vertices with vanishing compo-
nents define a hard function in coordinate space. There are
also end-point singularities in the integrals over Feynman
parameters α → 0, which define the soft function in coor-
dinate space. An important difference from the momentum
space is that the soft function is finite in coordinate space
when the external points of the vertex function (x1 and x2
above) are kept at finite distances. The collinear divergences
are of ultraviolet nature in coordinate space and require
D < 4 in dimensional regularization, while no infrared
regulation is needed, since the coordinates of the external
particles provide the natural infrared cutoff.
By the power-counting arguments developed above,

vertex functions in coordinate space are found to be at
worst logarithmically divergent at higher orders, relative
to the lowest-order results. Similarly, after the eikonal
approximation, the path-ordered exponentials have the
same bound for their overall degree of divergence. The
requirement for a divergence in both cases is that the hard
and soft subdiagrams must not be directly connected, and
they can only interact through the jets. Two jets on the light
cone in different directions can only have a hard interaction
at the origin and interact softly at later times. This illustrates
in coordinate space the factorization of short- and long-
distance dynamics in field theories. We have also explained
the hard-collinear and soft-collinear approximations that
are needed for the formal implementation of factorization
in coordinate space.
The results of this study do not hold only for a specific

set of massless gauge theories but are much more general.
The results for vertex functions can be generalized for

fixed-angle scattering at large angles, because there is no
interference between incoming and outgoing jets at large
angles [8,29,30]. For scattering at small angles, a different
power counting for the jets is needed. Furthermore, our
discussion can be extended to S-matrix elements, defining
the reduction from Green functions directly in coordinate
space, and eventually to cut diagrams for infrared-safe
cross sections, topics which we will leave for future work.
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APPENDIX A: MASSIVE LINES

For completeness, we consider the extension of pinch
analysis to massive lines in coordinate space. Massive lines
must be explored separately because the massive propa-
gator in coordinate space has a more complicated form;
it can be written in 4 − 2ε dimensions by

ΔFðx;mÞ ¼
�−i
8π2

�Z
∞

0

dξ

�
2πi
ξ

�
ε

× exp

�
i

�
− x2

2
ξ −m2

2ξ
þ iϵ

��
: (A1)

Since the massive propagator does not have a simple
denominator, we cannot do a Feynman parametrization.
However, using Eq. (1), we can combine the propagators of
each line of an arbitrary Feynman diagram with massive
lines:

~Iðfxμi gÞ ¼
Y
lines j

Z
∞

0

dξj
Y

vertices k

Z
dDyk exp½−i ~Dðξj; xi; ykÞ�

× ~Fðξj; xi; ykÞ; (A2)

where ξj is now the parameter of the jth line with
dimensions of mass squared. The phase ~D of the exponent
is given directly from Eq. (A1) by

~Dðξj; xi; ykÞ ¼
X
j

ξj
z2j
2
þ m2

j

2ξj
; (A3)

with zμj a linear function of the external coordinates fxμi g
and the positions of (internal) vertices fyμkg as before. The
functions ~Fðξj; xi; ykÞ include constants and the “numer-
ators,” which might come from derivatives of three-point
vertices acting on the exponentials.
One can obtain the Landau conditions from the integral

representation in Eq. (A2) for diagrams with massive lines
by the method of stationary phase. The conditions of
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stationary phase with respect to the positions of internal
vertices,

∂
∂yμk

~Dðξj; xi; ykÞ ¼
X

lines j at vertex k

ηjkξjz
μ
j ¼ 0; (A4)

where ηjk ¼ þ1ð−1Þ if the line j ends (begins) at vertex k
and is zero otherwise, give exactly the same result as Eq. (9)
for the massless case because the masses of the lines do not
depend on the positions of the internal vertices. The phase
is stationary with respect to the ξ parameters when

∂
∂ξr

~Dðξj; xi; ykÞ ¼ z2r −m2
r

ξ2r
¼ 0: (A5)

For massive lines, the stationary points are given by

ξr ¼
mrffiffiffiffiffi
z2r

p ; z2r > 0: (A6)

If the mass of the line r is zero, Eq. (A5) is only satisfied
if its coordinates have a lightlike separation, irrespective of
the value of ξr.
Repeating the same reasoning as in the massless case, we

identify the product ξrz
μ
r with a momentum vector pμ

r for
line r, while this time ξr is determined by Eq. (A6). The
time component of this momentum vector,

p0
r ¼ mr

z0rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0rÞ2 − j~zrj2

p ¼ mrffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2r

p ; (A7)

equals the energy of a classical particle with mass mr
propagating with the speed of βr ¼ j~zrj=z0r . Therefore, we
can interpret the stationary phases in the integral repre-
sentation [Eq. (A2)] in the same way as pinch singularities
explained in Sec. II—as a physical process in space-time
where classical particles propagate between vertices with
their momenta conserved at each vertex.

APPENDIX B: POWER COUNTING FOR
PATH-ORDERED EXPONENTIALS

We shall lastly do the power counting for the vacuum
expectation value of path-ordered exponentials with con-
stant lightlike velocities meeting at a cusp. Consider one
Wilson line, which starts from the point xμ1 ¼ x1δμ− in the
βμ1 ¼ δμ− direction and meets the other line at the origin;
the other line moves in the βμ2 ¼ δμþ direction and ends at
the point xμ2 ¼ x2δμþ. Formally, we consider the diagrams
for the vacuum expectation value of the following operator:

Γβ1;β2ðx1; x2Þ ¼ h0jTðΦβ2ðx2; 0ÞΦβ1ð0; x1ÞÞj0i (B1)

with constant-velocity-ordered exponentials,

Φβiðxþλβi;xÞ¼P expð−ig
Z

λ

0

dλ0βi ·Aðxþλ0βiÞÞ: (B2)

As for the vertex function, there may be divergences
when some vector and/or fermion lines get collinear to
the eikonal lines forming two jets, which can interact
softly at large distances and have a hard interaction at
the cusp.
In analogy to Eq. (59) for the vertex function, the overall

degree of divergence of such path-ordered exponentials in
coordinate space can be written with a bound from below,

γeik ≥ wH þ 4ðVH
3 þ VH

4 Þ − 2NH
g − 3NH

f − VH
3g

þ
X
i¼þ;−

½2ðVJðiÞ
3 þ V

JðiÞ
4 Þ − N

JðiÞ
g − 2N

JðiÞ
f − V

JðiÞ
3g

þ 1

2
ðVJðiÞ

3 − SJðiÞ − JHðiÞg þ wJðiÞ Þ�; (B3)

with wH being the total number of hard lines attached to
the Wilson lines and wJð�Þ the number of attachments of
the jet in the � direction to the Wilson line in the
same direction. The lines that connect a jet to the
Wilson line in the opposite direction are soft lines and
are counted together with the connections of the jet to
the soft subdiagram by SJðiÞ.
In Eq. (B3), we have added a term þwH for the

integrations over the locations of the attachments of the
hard subdiagram to the eikonals to the contributions from
the hard part, because these connections have to move to
the cusp so that all components of these hard lines vanish.
Furthermore, the derivatives at each three-gluon vertex will
bring vectors that form invariants in the numerator, which
will be of the form of either ðβi · zÞ or ðz · z0Þ. The number
of vectors βi that can show up in the numerator is equal to
the sum of the number of attachments to each Wilson line.
The net effect from all three-gluon vertices in the hard
subdiagram is given by the term −VH

3g, as for the vertex
function. In a jet, a three-gluon vertex z that is connected to
the Wilson line in the same direction as the jet produces
an invariant ðβi · zÞ linear in λ in the numerator, while one
connected to the opposite Wilson line produces an invariant
zeroth order in λ. Therefore, we add wJ ¼ wJðþÞ þ wJð−Þ to
the number of jet three-point vertices for the term for the
minimum numerator suppressions in γeik and subtract the
connections of the jets to the opposite eikonals with those
to the soft subdiagram.
The relations of the number of lines to the number of the

vertices for the jets and the hard subdiagram are in this case
slightly different from Eqs. (62) and (63) for the vertex
function:

2NH þ JH þ SH ¼ wH þ 3VH
3 þ 4VH

4 ; (B4)

2NJ þ SJ ¼ wJ þ JH þ 3VJ
3 þ 4VJ

4; (B5)
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for the hard part and the jets, respectively. Similarly, the
relation between the number of fermion lines and the
fermion-gluon vertices in the hard part is given by

VH
3f ¼ NH

f þ 1

2
ðSHf þ JHf Þ; (B6)

while for the jets they are related by

VJ
3f ¼ NJ

f þ
1

2
ðSJf − JHf Þ: (B7)

Note also that JHf ≥ 0 in this case. Plugging these graphical
identities for the subdiagrams into Eq. (B3), we find

γeik ≥ SHg þ 3

2
SHf þ 1

2
ðSJf þ JHf Þ: (B8)

Any direct connection between the hard and soft subdia-
grams and fermion lines connecting any two subdiagrams
suppresses the integral as for the vertex function. The
collinear singularities of path-ordered exponentials with
constant lightlike velocities are also at worst logarithmic in
coordinate space [31].
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