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Using the renormalization group framework we classify different extensions of the standard model
according to their degree of naturality. A new relevant class of perturbative models involving elementary
scalars is the one in which the theory simultaneously satisfies the Veltman conditions and is conformal at
the classical level. We term these extensions perturbative natural conformal (PNC) theories. We show that
PNC models are very constrained and thus highly predictive. Among the several PNC examples that we
exhibit, we discover a remarkably simple PNC extension of the standard model in which the Higgs is
predicted to have the experimental value of the mass equal to 126 GeV. This model also predicts the
existence of one more standard model singlet scalar boson with a mass of 541 GeV and the Higgs self-
coupling to emerge radiatively. We study several other PNC examples that generally predict a somewhat
smaller mass of the Higgs to the perturbative order we have investigated them. Our results can be a useful
guide when building extensions of the standard model featuring fundamental scalars.
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I. DEGREES OF (UN)NATURALITY

With the discovery of the Higgs-like particle at CERN it
has become imperative to critically investigate avenues that
can lead to a deeper understanding of the phenomenon of
mass generation in the standard model (SM), and that
simultaneously are able to predict the scale of new physics.
To be as general as possible we use the renormalization

group (RG) language to identify and classify the degree of
naturality of the SM and its extensions. We start by
analyzing the renormalization of the mass parameter of a
simple ϕ4 real scalar field sector embedded in a more
general theory. The Lagrangian terms we wish to discuss
can be expressed via the renormalized mass m, coupling λ
and the renormalized field ϕr

1:
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where the last three terms are counterterms needed to
subtract the divergences plaguing the bare parameters
(ϕB, m0, λ0). The counterterms are defined as follows:

ϕB ≡ ffiffiffiffi
Z

p
ϕr; δZ ≡ Z − 1;

m2 ≡m2
0Z − δm; δλ ≡ λ0Z2 − λ: (2)

The leading divergences to be accounted for by counter-
terms are Z ¼ 1þ f1ðλ; giÞ log Λ2

m2
0

þ � � �, and δm ¼
f2ðλ; giÞΛ2 þ � � �, where gi denotes collectively the other
renormalized dimensionless couplings of the theory. Here
Λ is the cutoff of the theory. The explicit (e.g. leading
order) expressions for the functions f1 and f2 in terms of
the renormalized couplings λ and gi are immaterial for the
following discussion. The only quadratically divergent
parameter of the theory is the renormalized scalar mass
which reads

m2 ¼ m2
0

�
1þ f1ðλ; giÞ log

Λ2

m2
0

�
− f2ðλ; giÞΛ2: (3)

The expression above exemplifies the unnaturality of generic
scalar field theories at the quantum level. The problem being
that even in the absence of an explicit mass term at the bare
Lagrangian level a mass operator reemerges via quantum
corrections, living naturally at the highest energy scale of the
theory Λ. Depending on where the cutoff energy scale is,
compared to the physical value of themassm the couplings λ
and gi must be fine-tuned to achieve the value of m.
Furthermore for the pure ϕ4-theory, λ goes to zero when
Λ=m goes to infinity, i.e. the theory becomes noninteracting.
It is a valid question to ask whether one can consider

partial or delayed solutions to the naturality problem above.
We first categorize different proposals and then consider in
detail a class of models that we define as perturbative
natural conformal (PNC) extensions of the SM.

A. Unnatural and classical conformality

Unnatural models are extensions of the SM (or the SM
itself) where the presence of any UV cutoff Λ beyond the
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1We impose a Z2 symmetry which will be automatic when

requiring the theory to be conformal at the classical level later.
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electroweak scale is dramatically felt because of the
quadratic divergences of the theory. Here as shown in
Eq. (3), a large fine-tuning is required to keep the theory
stable at the electroweak scale. Constraints on these models
will be of experimental nature, however some theoretical
constraints can be enforced requiring, for example, the
ground state of the theory to be stable up to when the
gravitational corrections are relevant [1,2].2

Among the unnatural theories there is a growing popular-
ity in the literature to investigate extensions of the SM,
which are scale invariant at the classical level of the action
[4–17]. In such extensions, the bare Higgs mass m0, which
is the only dimensionful parameter of the SM, must be set
to zero to enforce classical conformality. Of course, from
Eq. (3), it is clear that unless the cutoff dependence is
dropped there is no such thing as conformality in the theory.
Having dropped somewhat arbitrarily Λ, by resorting to e.g.
dimensional regularization, it is clear from Eq. (3) that
requiring m0 ¼ 0 at a given energy scale implies that
m ¼ 0 at any RG scale. Electroweak symmetry can then be
broken, for example, via the Coleman-Weinberg (CW)
mechanism [18]. Here quantum corrections to the classical
action induce the electroweak vacuum. The SM, on its own,
cannot be classically conformal since the associated CW
potential is unable to lead to the observed Higgs mass [18].
Therefore even classical conformality requires presence of
new physics.
Notice, however, that the argument of resorting to dimen-

sional regularization to offset the cutoff is not a physical one.
Conformality requires, as explained above, that all the
directions in the parameter space of the theory to be
(quasi)stable against quantum corrections. This means that
unless there is no physical UV scale, quadratic divergences
will be present. In other words one can set to zero the Λ
contribution only if the conformal model is free from any
new scale; i.e. it is isolated.Once for instance gravity is taken
into consideration it is hard to imagine how to avoid the
reinstatement of the quadratic divergences. This class of
models is, however, interesting to investigate on pure
theoretical grounds. For instance in Refs. [19–22] it was
shown under controlled dynamics that these theories have a
very rich structure and that a light scalar can emerge as a
dilaton state at the quantum level. These ideas have since
found phenomenological applications in e.g. Refs. [23,24].

B. Delayed naturality

Naturality of a scalar field theory can be delayed by
requiring, when possible, that the function f2 in Eq. (3)

vanishes; i.e. the quadratic divergences are offset in
perturbation theory as it was suggested long ago by
Veltman [25]. This simply postpones the energy scale at
which the unnaturality of the theory reemerges in RG time
(see e.g. Refs. [26,27] for a recent analysis). Delayed
naturality does not automatically imply or require
conformality.
It is well known that the SM again cannot delay its own

naturality scale because, as we review later, the Veltman
condition is not satisfied, and therefore the SM must be
amended even in this case.

C. Perturbative natural conformality (PNC)

Perturbative natural conformality (PNC) extensions of
the SM combine classical conformality and delayed nat-
urality. PNC has the beneficial effect to move the classi-
cally conformal extensions towards naturality while
strongly restricting the parameter space of the four-
dimensional extensions of the SM. This is the class of
theories we wish to investigate here and for which we
provide explicit examples.

D. Natural

A special status still beholds extensions which are free
from quadratic divergencies such as electroweak scale
supersymmetry [28] and technicolor (see [29,30] for recent
reviews). For supersymmetry the function f2 vanishes to all
orders, while for technicolor models the cutoff of the theory
is identified with the scale of compositeness.

II. PNC CONDITIONS

It is useful to set the stage by reviewing the Coleman-
Weinberg (CW) phenomenon of spontaneous symmetry
breaking [18] following the more general analysis of
Gildener and Weinberg [31].
Consider a theory with a number of weakly coupled real

scalar fields ϕi, with i counting the scalars. It is convenient
to renormalize their masses at the origin of the scalar-field
space to be zero. The renormalized, scale-invariant,
tree-level scalar potential then reads

V0ðϕiÞ ¼
λijkl
24

ϕiϕjϕkϕl

þ fermionic and vectorial contributionsþ c:t:

(4)

where c:t. stands for counterterms and λijkl are renormal-
ized quartic couplings. The scalar fields are renormalized at
the scale μ0 such that here they are elementary; i.e. have
zero anomalous dimensions. In general the theory will also
contain gauge and Yukawa couplings. We denote these
globally by g and y, respectively. Consistent perturbation
theory requires

2In [2,3] it was shown that the quantum corrections need to
satisfy the Weyl consistency conditions. According to Refs. [1,2]
the SM is in a metastable state and can therefore tunnel to the true
ground state located at much higher values of the Higgs field. The
stability of the potential, per se, is lost at around 1010 GeV
reinforcing the idea that one needs to go beyond the SM to have a
more complete theory of nature.
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λijkl ∼ g2 ∼ y2 ≪ 1; (5)

for any nonzero λijkl. Thus the effective potential is, in
general, dominated by the tree-level potential. The way in
which loop corrections can shift the global minimum to a
nonzero point in scalar field space is if the tree-level
potential has flat directions in field space, ni, within the
perturbative regime of Eq. (5). The renormalization con-
dition (i.e. here the starting point of perturbation theory) we
must therefore impose on the set of quartic couplings to
make a viable CW analysis, is to constrain the parameter
space of the couplings to a subspace, where the renormal-
ized tree-level potential does have flat directions. This fixes
the renormalization scale μ to a specific value μ0, given by
the renormalization condition on the quartic couplings.
Taking ui to be a unit vector in field space, the flat
directions can be found by solving the problem:

minðλijkluiujukulÞjuiui¼1 ¼ 0: (6)

If a solution ui ¼ ni exists, then ϕi ¼ niϕ is a flat direction
of the tree-level potential, along which the CWanalysis can
consistently be made. Thus the renormalization condition
on the quartic couplings reads

λijklðμ0Þninjnknl ≈ 0: (7)

By using≈ it is implied that the condition has to be satisfied
at least to the order g4 in the quartic couplings, that is, the
renormalization condition can be relaxed to the level

λijklðμ0Þninjnknl ∼Oðg4Þ: (8)

Anything beyond this is not a viable setup to study the CW
mechanism.3

Now, consider the one-loop correction to the effective
potential in the Landau gauge on some classical
background ϕc ¼ uiϕi, with ui a unit vector:

V1ðϕcÞ ¼
1

2

Z
d4k
ð2πÞ4 Str½lnðk

2 þM2ðϕcÞÞ� þ c:t:; (9)

where M2ðϕcÞ is the background dependent mass matrix
and we defined the supertrace

Str≡ X
scalars

− 2
X

Weyl fermions

þ 3
X
vectors

: (10)

We consider the theory to be a low-energy description valid
up to some scale Λ and regularize the integral in the UV
with a hard cutoff at k ¼ Λ. Furthermore one must assume
ϕc ≠ 0 such that the integral does not diverge in the IR. The
one-loop contribution is then straightforwardly computed
and after an expansion in M2ðϕcÞ ≪ Λ2 we find

V1ðϕcÞ ¼
1

64π2
Str

�
Λ4

�
lnΛ2 −

1

2

�
þ 2M2ðϕcÞΛ2

þM4ðϕcÞ
�
ln
M2ðϕcÞ

Λ2
−
1

2

��
þ c:t: (11)

The first term is the cosmological constant term, which
vanishes in a theory with equal number of bosonic and
fermionic degrees of freedom. In this paper we will have
nothing more to say about the cosmological constant term
and therefore subtract it away from the potential.
The scalar masses are computed from the full potential

viam2
i ¼ ∂2V=∂ϕ2

i . It is the second term that is responsible
for the quadratic divergence of the scalar masses. These
divergences can either be removed by appropriate choices
for the counterterms (fine-tuning), making the theory
unnatural, or vanish identically if ∂2StrM2ðϕiÞ=∂ϕ2

i ¼ 0
to all orders due to e.g. symmetry reasons (such as
supersymmetry) and are thus natural theories.
Naturality can be partially achieved, or better said

delayed, by imposing the Veltman conditions defined such
that, to the same perturbative order used by the CW
analysis, the quadratic divergences appearing from
Eq. (11) in the mass of any non-Goldstone scalar must
vanish:

1

2

∂2Str½M2ðϕiÞ�
∂ϕ2

i

����
μ0

¼ 0: (12)

This leads to extra constraints on the dimensionless
couplings of the theory.
Considering now the CW analysis along any tree-level

flat direction ϕ ¼ niϕi, together with the Veltman con-
ditions, at a chosen renormalization scale μ0 yields the
following one-loop effective potential,

VðϕcÞ ¼ V1ðϕcÞ

¼ 1

64π2
Str

�
M4ðϕcÞ ln

M2ðϕcÞ
μ20

�

¼ Aϕ4
c þ Bϕ4

c ln
ϕ2
c

μ20
; (13)

where we set the counterterms to properly renormalize the
couplings,

3In the original paper, Coleman and Weinberg first used scalar
electrodynamics in which there is only one quartic coupling, λ.
The renormalization condition they imposed was λðμ0Þ ∼Oðe4Þ
where e is the electric charge, consistent with Eqs. (7) and (8). In
the case of multiple quartic couplings the renormalization
condition Eq. (7) should first be used [together with (5)]. This
defines the viable parameter space for the CW analysis, and then
perturbations of the order g4 from this hypersurface can be
investigated.
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∂4V
∂ϕ4

c

����
M2ðϕcÞ¼μ2e−25=6

¼ λijklðμÞninjnknl; (14)

and used that λijklðμ0Þninjnknl ¼ 0. The scaling factor
e−25=6 is chosen only to simplify Eq. (13) and corresponds
to the renormalization choice made in [31].
In a classically scale-invariant theory, all masses will be

proportional to ϕc and thus we can write M2ðϕcÞ ¼ W2ϕ2
c,

such that in Eq. (13)

A ¼ 1

64π2
StrW4 lnW2; B ¼ 1

64π2
StrW4: (15)

The nontrivial stationary point of the effective potential is at

log
hϕ2

ci
μ20

¼ −
1

2
−
A
B
; (16)

and since both functions A and B appear at one loop we
have that ϕc ∼ μ0 and therefore perturbation theory is valid,
as expected by construction. If the extremum corresponds
to the ground state of the theory we have for the scalar
fluctuation, along the classical flat direction, a positive
mass squared which reads

m2
CW ¼ 8Bhϕ2

ci: (17)

The masses of the other non-Goldstone scalars arise at tree
level and are positive as well [31].

III. PNC MODELS

Having set up the stage for PNC we move on to examine
specific models.

A. Standard model

In the SM the renormalized tree-level potential, includ-
ing the gauge and Yukawa terms, reads

VSM
0 ¼ λðH†HÞ2 − 1

2

�
g2Wþ

μ W−μ þ g2 þ g02

2
ZμZμ

�
H†H

þ ytðt̄L; 0Þðiσ2H�ÞtR þ H:c:þ c:t:; (18)

where we have set the renormalized mass to zero and
neglected the Yukawa couplings to the leptons and light
quarks (with respect to the top quark).
To compute the Veltman condition for the Higgs mass,

we expand the Higgs doublet around the electroweak
background: H ¼ 1ffiffi

2
p ðπ2 þ iπ1; vþ h − iπ3Þ, and compute

the mass matrix, keeping only the h-dependent part, which
is what will remain in the Veltman condition for h:

M2ðhÞ
h2

¼ diag

�
3λ;λ; λ;λ;

1

4
g2;

1

4
g2;

1

4
ðg2 þ g02Þ;1

2
y2t ;

1

2
y2t

�
;

(19)

where the entries correspond respectively to the mass of the
Higgs boson, the three (would be) Goldstone bosons, the
Wþ, W− and Z vector bosons and two top quark color
multiplets in the Weyl basis. Then from Eq. (12) follows
Veltman’s condition for the Higgs mass:

1

2

∂2Str½M2ðhÞ�
∂h2

����
μ0

¼ 6λðμ0Þ þ
9

4
g2ðμ0Þ þ

3

4
g02ðμ0Þ − 6y2t ðμ0Þ ¼ 0: (20)

Note that this condition is independent of the vev and that
once the vacuum is generated, the Veltman conditions for
the Goldstone directions disappear.
To generate the vev through the CW mechanism, we

must assume the tree-level potential to be flat at the same
scale μ0 at which the Veltman condition is imposed:

λðμ0Þ ≈ 0: (21)

The Veltman condition under this constraint reduces to

3g2ðμ0Þ þ g02ðμ0Þ − 8y2t ðμ0Þ ¼ 0: (22)

Requiring this relation to hold, while using μ0 ∼ v ≈
246 GeV and keeping m2

W ¼ v2g2ðμ0Þ=4 and m2
Z ¼

v2ðg2ðμ0Þ þ g02ðμ0ÞÞ=4 at their physical value, leads to a
too light top quark mass [32]:

4m2
t ¼ m2

Z þ 2m2
W ⇒ mt ≈ 73 GeV: (23)

The Higgs mass is induced at one loop, which is given by
(17) and reads

m2
h ¼

3

8π2

�
1

16
ð3g4 þ 2g2g02 þ g04Þ þ 4λ2 − y4t

�
v2

¼μ¼μ0 3

512π2
ð3g4 þ 2g2g02 þ 3g04Þv2 ⇒ mh ≈ 5 GeV:

(24)

This example shows that the PNC conditions are quite
constraining. In fact, as it is well known, working with only
one of the conditions, either Veltman’s condition or the CW
condition, one would in the first case find a too large Higgs
mass and the second case a too low Higgs mass. The
example also shows the predictive power of a PNC-like
model, which here predicts (wrongly) both the top and
Higgs mass.
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B. SMþ singlet scalar

We next consider the simplest conformal extension of the
SM, where a real scalar singlet S is added. The CW
phenomenon in this model has been studied in Refs. [4,5].
Here, we review and extend the analysis by considering the
additional constraints imposed by the Veltman condition.
The requirement of classical conformality together with
renormalizability leads to the following Z2 symmetric
potential:

V0 ¼ VSM
0 þ λHSH†HS2 þ λS

4
S4 þ c:t: (25)

The constraint from requiring the potential to be bounded
from below is found by completing the square and reads

λ ≥ 0; λS ≥ 0; and if λHS < 0∶ λλS ≥ λ2HS: (26)

Before proceeding to the one-loop CW analysis, we
impose the Veltman conditions on the couplings to
cancel the quadratic divergences at one loop. The Veltman
condition for S is simple to compute and reads

1

2

∂2Str½M2ðSÞ�
∂S2

����
μ0

¼ 3λSðμ0Þ þ 4λHSðμ0Þ ¼ 0: (27)

We observe immediately that this condition can only be
satisfied if λHS < 0. The Veltman condition for the Higgs
doublet is derived as described in the previous section. The
mass matrix in Eq. (19) now has an additional entry from
the field S, which is simply λHS. The Veltman condition for
the Higgs field h thus reads

1

2

∂2Str½M2ðhÞ�
∂h2

����
μ0

¼ 6λðμ0Þ þ
9

4
g2ðμ0Þ þ

3

4
g02ðμ0Þ

− 6y2t ðμ0Þ þ λHSðμ0Þ ¼ 0: (28)

We note that there are no further one-loop Veltman
conditions once the electroweak vacuum is generated,
since the remaining three scalar degrees of freedom will
turn into Goldstone fields. Moreover, in the H and S basis
there are no off-diagonal quadratic divergences at one loop.
We next consider the one-loop CW analysis under the

above two constraints as a mechanism to generate the
electroweak vacuum radiatively. To study the possible
classical moduli of the scalar potential, it is sufficient to
consider the Higgs doublet in a unitary gauge, where it
reduces to one degree of freedom. It is then useful
to reparametrize the scalar fields in terms of polar coor-
dinates:

H ¼ rffiffiffi
2

p
�

0

cosω

�
; S ¼ r sinω; (29)

such that the tree-level potential of the scalar sector
simplifies to

V0¼
r4

4
ðλcos4ωþλSsin4ωþ2λHSsin2ωcos2ωÞþc:t: (30)

The minima of this potential will be along the ray r in some
unit direction n ¼ ðcoshωi; sinhωiÞ. These are found by
studying the first and second derivatives of the tree-level
potential. The results are

0 ≤ λ < minfλS; λHSg∶ hωi ¼ 0; (31)

0 ≤ λS < minfλ; λHSg∶ hωi ¼ π

2
; (32)

−
ffiffiffiffiffiffiffi
λλS

p
≤ λHS < minfλ; λSg∶ tan2hωi ¼ λ − λHS

λS − λHS
: (33)

Considering the CW analysis one can, for the cases
λHS > maxfλ; λSg, also study metastable flat directions
along either ω ¼ π=2 or ω ¼ 0. For hωi ¼ 0 it is clear that
only h gets a vev and the CWanalysis follows the SM case.
The hωi ¼ π=2 case is similar to that analysis, but does not
lead to electroweak symmetry breaking. In neither case,
however, the Veltman conditions can be satisfied, since
Eq. (27) requires λHS < 0. We conclude that in these two
cases we cannot satisfy the PNC conditions.
We analyze now to the third possibility, i.e. Eq. (33) to

investigate whether the PNC requirements can be satisfied.
First, we find the renormalization condition from Eq. (7),
which sets the tree-level potential to zero along the hωi
direction. It is given by λλS − λ2HS ¼ 0 and can also be
expressed as

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðμ0ÞλSðμ0Þ

p
− λHSðμ0ÞÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðμ0ÞλSðμ0Þ

p
þ λHSðμ0ÞÞ

¼ 0þOðλ4Þ: (34)

From the Veltman condition Eq. (27) we need λHS < 0, and
thus setting the first parenthesis to zero is not viable. We
must therefore require the second parenthesis to vanish at
the renormalization scale μ0:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðμ0ÞλSðμ0Þ

p
þ λHSðμ0Þ ¼ 0þOðλ2Þ: (35)

This relation saturates the stability bound of the potential,
given in Eq. (26), and the tree-level potential at the scale μ0
simplifies to

V0ðμ0Þ ¼ λ

�
H†H −

jλHSj
2λ

S2
�

2

þ c:t: (36)

Thus the PNC requirement has lead to an SOð4; 1Þ
symmetric tree-level potential for the scalar sector.
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Now, it follows from the CW analysis that the one-loop
contribution along the tree-level flat direction hωi will give
a nontrivial vev at some value hri, for parameter values that
give a positive curvature. The electroweak vev fixes the
value of hri through

hri coshωi ¼ v≈ 246 GeV; and we take v≈ μ0: (37)

Rewriting r coshωi as ðvþ hÞ and r sinhωi as v tanhωi þ s,
we parametrize the light and heavy mass eigenstates by

ϕ¼ hcoshωiþ ssinhωi; Φ¼ scoshωi−hsinhωi; (38)

which have the tree-level masses:

m2
0;ϕ ¼ 0; m2

0;Φ ¼ 2ðλ − λHSÞv2: (39)

The mass of ϕ emerges at one loop, since it is the field
along the tree-level flat direction. Its one-loop mass is given
by Eq. (17) and reads

m2
1;ϕ ¼ 1

8π2
StrMðhriÞ4

hri4 hri2

¼ cos2hωi
8π2v2

½6m4
W þ 3m4

Z þm4
Φ − 12m4

t �

¼ cos2hωi v2

8π2

�
6

16
g4 þ 3

16
ðg2 þ g02Þ2

þ 4ðλ − λHSÞ2 −
12

4
y4t

�
: (40)

Imposing now the Veltman conditions at the scale μ0,
where λ2HS ¼ λλS, we get that

λHSðμ0Þ ¼ −
3

4
λSðμ0Þ; λSðμ0Þ ¼

16

9
λðμ0Þ;

cos2hωi ¼ 4

7
; (41)

λðμ0Þ ¼
9

56
ð8y2t ðμ0Þ − 3g2ðμ0Þ − g02ðμ0ÞÞ: (42)

Thus, all parameters of the model are fixed from the
experimental values of the top-quark mass and the W
and Z boson masses. The renormalization scale is approx-
imately μ0 ≈ v ¼ 246 GeV. Using the experimental values
for the mass of the top, W and Z at this scale, we get

mϕ ≈ 95 GeV; mΦ ≈ 541 GeV: (43)

The state ϕ is to be identified with the Higgs boson and is a
mixed state of h and S with mixing angle hωi ≈ 0.2π,
making it mostly h-like. This result implies that the PNC
extensions of the SM with just one real scalar can lead to
spectra close to the observed particle masses. In addition it

requires the existence of yet another heavier scalar. It would
be interesting to go beyond the one-loop analysis to
investigate whether one can recover the observed value
of the Higgs mass. One should simultaneously also inves-
tigate the effects of the mixing angle which will partially
modify the Higgs phenomenology.
This example also shows that quadratic divergences can

cancel in a purely scalar sector, due to an approximate
SOð4; 1Þ symmetry.

C. SĒχy extension of the SM

We investigate next a model containing, besides a
complex scalar, also two Dirac fermions. The model was
introduced in Ref. [33] to provide an explicit calculable
example of a magnetic dark matter extension of the SM. It
consists of a vectorlike heavy electron, E, a complex scalar
electron, S, and a SM singlet Dirac fermion, χ, playing the
role of the dark matter. The tree-level potential of the
model, including Yukawa interactions, reads

V0¼VSM
0 þλSðS†SÞ2þλHSH†HS†SþðSĒχyþH:c:Þþc:t:

(44)

The interactions among the χ and the SM particles occur
via loop-induced processes involving the Yukawa coupling
y. The heavy electron E and the scalar electron S both carry
SM hypercharge which is equal to their electric charge
QE ¼ QS ¼ 1. This is a microscopic realization of the
effective model introduced in [34] to accommodate several
direct dark matter search experiments.
We require the potential to be bounded from below

which leads to the constraints: λ ≥ 0, λS ≥ 0 and if λHS < 0
then λ2HS ≤ 4λλS, which is a modification of Eq. (26), due to
a different normalization of λHS. We further demand that
hSi ¼ 0, so that we do not break the Uð1Þ symmetry of
electromagnetism. This implies to use Eq. (33):
0 ≤ λ < minfλS; λHS=2g. Furthermore, to have a flat direc-
tion in the Higgs potential we require Eq. (21), i.e. that
λðμ0Þ ¼ 0. The tree-level mass matrix on the h background
reads

M2ðhÞ
h2

¼ diag

�
3λ;λ;λ;λ;

1

4
g2;

1

4
ðg2þg02Þ;1

2
y2t ;

1

2
y2t ;

1

2
λHS;

1

2
λHS

�
;

(45)

where the last two entries are the tree-level masses of the
real components of the scalar electron and the first part is
equivalent to the SM case Eq. (19). The Veltman condition
for the Higgs mass reads
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1

2

∂2Str½M2ðhÞ�
∂h2

����
μ0

¼ 9

4
g2ðμ0Þ þ

3

4
g02ðμ0Þ − 6y2t ðμ0Þ þ λHSðμ0Þ ¼ 0; (46)

while for S it reads

1

2

∂2Str½M2ðSÞ�
∂S†∂S

����
μ0

¼ 4λSðμ0Þ þ 2λHSðμ0Þ þ 3g02ðμ0Þ − 2y2ðμ0Þ ¼ 0: (47)

Here the Veltman condition for S can be satisfied due to the
SĒχy operator. There is a unique family of solutions to the
Veltman conditions under the flatness constraint λðμ0Þ ≈ 0:

λHSðμ0Þ ¼
3

4
ð8y2t ðμ0Þ − 3g2ðμ0Þ − g02ðμ0ÞÞ ≈

μ0≈v
4.84; (48)

λSðμ0Þ ¼
y2ðμ0Þ

2
−
1

2
λHSðμ0Þ −

3

4
g02ðμ0Þ ≈

μ0≈v y2ðμ0Þ
2

− 2.77;

(49)

where in the last equalities we used the experimental values
for the couplings. Due to the stability bound we
have yðμ0Þ ≥ 2.35.
From these constraints we arrive at a prediction for the

mass of S and the one-loop mass of the Higgs:

m2
h ¼

3

8π2

�
1

16
ð3g4 þ 2g2g02 þ g04Þ þ 1

6
λ2HS − y4t

�
v2

⇒ mh ≈ 83 GeV; (50)

m2
S ¼

1

2
λHSv2 ⇒ mS ≈ 383 GeV: (51)

The mass of S is within LHC reach and coincidently it has
about the same value used as benchmark in [33]. The Higgs
is lighter than the experimentally observed one. However
due to the relatively large value of λHS, higher order
corrections can be relevant. The phenomenological conse-
quences of the model without requiring conformality but
imposing the Veltman conditions are being investigated
in [35].

IV. CONCLUDING WITH AN INTRIGUING
PNC CANDIDATE

From the above it is clear that the PNC models are quite
constrained and therefore highly predictive. We conclude
by presenting an intriguing model where, at the one-loop
level, one finds a Higgs with the observed value of the
mass, while predicting yet another massive scalar around
540 GeV. The model is surprisingly simple, consisting of
just another real scalar S and a Weyl fermion, χ. The

potential of the theory, together with the Yukawa
interaction between S and χ, is

V0 ¼ VSM
0 þ λHSH†HS2 þ λS

4
S4 þ yχSðχχ þ χ̄ χ̄Þ þ c:t:

(52)

Here we are using the Wess-Bagger notation for the Weyl
fermion. The scalar sector is the same as in Eq. (25) and the
stability bound is therefore given by Eq. (26). We study the
case where the vev of S vanishes which implies Eq. (33) to
hold. The Veltman conditions read

1

2

∂2Str½M2ðSÞ�
∂S2

����
μ0

¼ 3λSðμ0Þ þ 4λHSðμ0Þ − 8y2χ ¼ 0; (53)

and

1

2

∂2Str½M2ðhÞ�
∂h2

����
μ0

¼ 6λðμ0Þ þ
9

4
g2ðμ0Þ þ

3

4
g02ðμ0Þ

− 6y2t ðμ0Þ þ λHSðμ0Þ ¼ 0: (54)

The first condition can now be satisfied due to the presence
of the Yukawa coupling yχ while the second condition is
identical to Eq. (28). For the CW analysis to work, we
impose λðμ0Þ ≈ 0 and thus the solution to the Veltman
conditions is

λHSðμ0Þ ¼ 6y2t ðμ0Þ −
9

4
g2ðμ0Þ −

3

4
g02ðμ0Þ ≈

μ0≈v
4.84; (55)

λSðμ0Þ ¼
8

3
y2χðμ0Þ −

4

3
λHSðμ0Þ ≈

μ0≈v 8

3
y2χðμ0Þ − 6.45; (56)

where we have used μ0 ≈ v ¼ 246 GeV and the exper-
imental values for the masses of the top quark and the W
and Z bosons. The second solution sets a lower bound on yχ
from the stability bound on λS, i.e. yχðμ0Þ ≥ 1.55.
From these constraints we arrive at a prediction for the

one-loop induced Higgs mass, and for the tree-level mass
of S:

m2
h ¼

3

8π2

�
1

16
ð3g4 þ 2g2g02 þ g04Þ − y4t þ

λ2HS

3

�
v2

⇒ mh ≈ 126 GeV; (57)

m2
S ¼ λHSv2 ⇒ mS ≈ 541 GeV: (58)

These PNC predictions do not depend on the specific
details of the extra fermionic sector. Given the relatively
large values of the couplings, albeit still in the perturbative
regime, it is relevant to investigate the higher order
corrections.
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To summarize, we classified the degree of naturality of
SM extensions using the renormalization group framework,
and introduced the concept of perturbative natural con-
formality (PNC). To further appreciate the relevance of the
PNC conditions we provide, in the Appendix, one last
example featuring a gauge-Yukawa theory possessing IR
fixed points.
We have shown that the PNC framework can be highly

predictive and can lead to realistic extensions of the SM. In
particular PNC models have the generic feature to predict
new states within LHC reach. Another generic feature of
these models is that the Higgs self-coupling differs from the
SM one.
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APPENDIX: GAUGE-YUKAWA THEORIES WITH
FIXED POINTS AND PNC CONDITIONS

In the main text we focused on PNC extensions of the
SM which did not feature any IR or UV fixed points.
However, theories with fundamental scalars can possess
both infrared and ultraviolet fixed points. Because of the
presence of fundamental scalars, and in absence of super-
symmetry, these fixed points are all unstable with respect to
the addition of a scalar mass operator, at least within
perturbation theory. It is therefore valuable to soften the
effects of an UV cutoff by requiring the models to abide the
PNC conditions. We will show here that imposing the PNC
conditions leads to relevant constraints for the phase
diagram of the theory. Our analysis can be extended to
any scalar field theory featuring fixed points.
We use the model studied in [20] in which we inves-

tigated the infrared dynamics of a nonsupersymmetric SU
(X) gauge theory featuring an adjoint fermion, λm,Nf Dirac
flavors ψ gauged under the fundamental representation of
the gauge group and a Higgs-like gauge-singlet Nf × Nf
complex scalar, H:

L ¼ LKðGμ; λm;ψ ; HÞ þ yHψ̄Hψ þ H:c:

− u1ðTr½HH†�Þ2 − u2Tr½ðHH†Þ2�; (A1)

where LK summarizes the kinetic terms of the canonically
normalized fields. We consider this theory in the Veneziano
limit:

X;Nf → ∞ while Nf=X ≡ x is kept fixed; (A2)

and, in order to define a finite theory in this limit, we
rescale the couplings accordingly:

ag ¼
g2X
ð4πÞ2 ; aH ¼ y2HX

ð4πÞ2 ;

z1 ¼
u1N2

f

ð4πÞ2 ; z2 ¼
u2Nf

ð4πÞ2 : (A3)

We have shown in [20] that the model features Banks-Zaks
fixed points perturbative in ϵ with x ¼ 9

2
ð1 − ϵÞ and 9

2
the

value of x abovewhich asymptotic freedom is lost. We have
also shown that depending on the boundary conditions in
the UV for the bare scalar couplings the model can trigger
spontaneous symmetry breaking via the CW mechanism.
We refer to our original work for the details of the
computation. Here we simply add the further constraint
of the one-loop Veltman condition to examine the fate of
the PNC improved model.
Consider the classical background field that can break

chiral symmetry to the diagonal subgroup4 Hc ¼ ϕcffiffiffiffiffiffi
2Nf

p 1.

On this background the tree-level mass matrix is

M2ðϕcÞ
ϕ2
c

¼ ð4πÞ2
N2

f

× diag

�
3ðz1 þ z2Þ; z1 þ z2; z1 þ 3z2;

x
2
aH

�
;

(A4)

for the masses of respectively the background scalar field,
the N2

f Goldstone bosons, the N2
f − 1 scalar bosons

orthogonal to the background direction, and the Nf

Dirac fermions. Along the background (and soon to be
flat) direction the potential collapses to

V0 ¼
ð4πÞ2
N2

f

ðz1 þ z2Þϕ4
c; (A5)

and therefore the flatness condition for the renormalized
couplings reads z1ðμ0Þ þ z2ðμ0Þ ¼ 0.
Now we impose the Veltman condition Eq. (12) leading

to

z1ðμ0Þ þ 2z2ðμ0Þ − aHðμ0Þ ¼ z2ðμ0Þ − aHðμ0Þ ¼ 0; (A6)

where in the second equality we applied the renormaliza-
tion condition. The one-loop CW mass of the scalar along
the flat direction and in the Veneziano limit reads

4This choice is the only one giving the global minimum of the
tree-level potential in the Veneziano limit [20,31,36].
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m2
l ¼

32π2ϕ2
c

N2
f

½ðz1 þ z2Þ2 þ ðz1 þ 3z2Þ2 − xa2H�

¼z1¼−z2 32π
2ϕ2

c

N2
f

½4z22 − xa2H�

¼z2¼aH 32π
2ϕ2

c

N2
f

z22½4 − x�: (A7)

In the second equality we imposed the flatness condition.
Here, as noted in [20], one observes that it is possible to
enact a CW mechanism even for small ϵ which selects a
region of spontaneous chiral (and henceforth conformal)

symmetry breaking near the IR fixed point, also controlled
by ϵ. However, as soon as we impose the full PNC
conditions (i.e. also the Veltman) we arrive at the last
expression on the right-hand side. This condition states that
the PNC extremum is a local maximum along the flat
direction for the theory controlled by the nearby Banks-
Zaks IR fixed point (i.e. ϵ ≪ 1, i.e. x very close to 4.5). We
can therefore conclude that either the theory remains
conformal in the IR or a nonperturbative stable ground
state is reached away from the CW perturbative regime.
In any case the PNC improved model does not lead
automatically to a perturbative CW mechanism.
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