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In the current paper the properties of a birefringent Lorentz-violating extension of quantum
electrodynamics is considered. The theory results from coupling modified Maxwell theory, which is a
CPT-even Lorentz-violating extension of the photon sector, to a Dirac theory of standard spin-1=2
particles. It is then restricted to a special birefringent case with one nonzero Lorentz-violating coefficient.
The modified dispersion laws of electromagnetic waves are obtained plus their phase and group velocities
are considered. After deriving the photon propagator and the polarization vectors for a special momentum
configuration we prove both unitarity at tree level and microcausality for the quantum field theory based on
this Lorentz-violating modification. These analytical proofs are done for a spatial momentum with two
vanishing components and the proof of unitarity is supported by numerical investigations in case all
components are nonvanishing. The upshot is that the theory is well behaved within the framework of our
assumptions where there is a possible issue for negative Lorentz-violating coefficients. The paper shall
provide a basis for the future analysis of alternative birefringent quantum field theories.
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I. INTRODUCTION

An optical medium is called birefringent if it has two
different refraction indices depending on the corresponding
polarization of propagating light. Birefringence has various
sources. There are solids that are birefringent without
external manipulation since they have one or several optical
axes. The most prominent example for such a material is
calcite. However, birefringence can also be caused by
external stress or electric and magnetic fields.
On the one hand, since the publication of the pioneering

work by Klein and Nigam in 1964 it has been known that
under certain circumstances even the vacuum itself may
become birefringent [1]. Quantum field theory teaches us
that the vacuum is not empty but filled with a “soup” of
virtual particles that are created and annihilated again. That
is why the vacuum can be polarized by applying an electric
or magnetic field. Adler pointed out that peculiar effects
occur for a photon traveling in strong magnetic fields such
as dispersion or splitting processes [2]. The underlying
reason for this behavior is that a strong external field results
in a nontrivial refraction index of the vacuum. The latter
depends on the polarization state of the propagating
photon, what can then be interpreted as a birefringent
vacuum [3,4]. Experiments to detect this kind of vacuum
birefringence include pulsed magnetic fields [5,6], optical
cavities with macroscopic magnetic fields [7,8], and short
pulses of conventional laser systems [9]. New ideas even
involve laser wake field acceleration [10] and free electron
lasers [11].

On the other hand, a birefringent vacuum may occur in
the context of quantum gravity. String theory [12–14], loop
quantum gravity [15,16], theories of noncommutative
spacetimes [17], and quantum field theories on spacetimes
with nontrivial topologies [18–20] give good arguments for
a violation of Lorentz symmetry at the Planck scale. Since
there is still no established theory of quantum gravity
available, we have to rely on an effective framework that is
suitable to describe Lorentz violation at energies much
lower than the Planck energy. This framework is called the
standard model extension (SME) [21]. The SME extends
the Lagrange density of the standard model of elementary
particle physics and of general relativity by all Lorentz-
violating terms that respect the corresponding gauge
symmetries but violate particle Lorentz invariance. Each
term is made up of standard model fields and Lorentz-
violating coefficients that determine the amount of Lorentz
violation and that can be interpreted as fixed background
fields. These fields give rise to preferred directions in
spacetime.
Some of the Lorentz-violating terms of the photon

sector lead to a birefringent vacuum. It was observed that
such terms either originate from the breakdown of CPT-
symmetry1 or the dual symmetry of electrodynamics [26].

*mschreck@indiana.edu

1Due to the CPT theorem, Lorentz invariance and CPT
invariance are directly linked to each other. However a violation
of Lorentz invariance does not necessarily imply that CPT
invariance is violated as well. For example, the photon sector
of the SME is made up of a CPT-odd and a CPT-even term.
Recent results even indicate that a violation of CPT invariance
does not inevitably lead to Lorentz violation, e.g., in the context
of noncommutative spacetimes [22–25].
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The first is associated with Maxwell–Chern–Simons
(MCS) theory [27], whose Lagrange density combines
a preferred spacetime direction with the vector potential
and the electromagnetic field strength tensor. The latter
is connected to modified Maxwell theory [21,28,29],
which involves a tensor-valued background field and
a bilinear combination of field strength tensors. The
corresponding Lorentz-violating coefficients can be
bounded, e.g., by investigating the light of various
astrophysical point sources or the cosmic microwave
background itself. This leads to very strict bounds in
the order of 10−43 to ½10−42� GeV for the coefficients of
MCS-theory and 10−37 for the dimensionless coefficients
of modified Maxwell theory (see [30] and references
therein).
Nevertheless, for theoretical reasons it is still interesting

to gain a better understanding for the birefringent sectors of
the SME. This especially concerns the quantum field
theories that are based on such a sector. MCS theory has
already been extensively studied [31–36]. However this is
not the case for birefringent modified Maxwell theory. The
goal of the current article is to extend our knowledge of these
special kinds of Lorentz-violating quantum field theories.
The investigations performed can perhaps be adapted to
other birefringent quantum field theories as well. Recently,
two articles were published where certain issues on the
quantization procedure according to Gupta and Bleuler
were considered for birefringent modified Maxwell
theory [37,38].
Note that birefringent photon dispersion relations also

play a role in gravitational physics. In their seminal work
from 1980, Drummond and Hathrell showed that the
classical trajectory of a photon in a gravitational back-
ground can be modified when quantum effects are taken
into account [39]. This may lead to birefringence for certain
curved spacetimes (see also the review [40] for a discussion
of further questions on this issue).
The paper is organized as follows. In Sec. II the

action of modified Maxwell theory is introduced and
its most important properties are reviewed. The theory
is then restricted to the birefringent sector with one
nonzero coefficient. The photon sector is coupled to a
standard Dirac theory of spin-1=2 fermions to obtain a
birefringent extension of quantum electrodynamics
(QED). Section III is dedicated to investigating the
modified dispersion relations of the classical theory.
Besides, both the phase and group velocities are obtained
and discussed. In Sec. IV the propagator and the
polarization vectors of the corresponding quantum field
theory are calculated that are used to investigate unitarity
in Sec. V and microcausality Sec. VI. Finally the results
are presented in the last section. Calculational details
are relegated to the appendix. Throughout the paper
natural units are used with ℏ ¼ c ¼ 1 unless stated
otherwise.

II. THE BIREFRINGENT SECTOR OF MODIFIED
MAXWELL THEORY

Modified Maxwell theory [21,28,29], which is the CPT-
even modification of the photon sector of the minimal
SME,2 forms the basis of this paper. This theory is
described by the following action:

SmodMax ¼
Z
R4

d4xLmodMaxðxÞ; (2.1a)

LmodMaxðxÞ ¼ −
1

4
ημρηνσFμνðxÞFρσðxÞ

− 1

4
κμνϱσFμνðxÞFϱσðxÞ; (2.1b)

where FμνðxÞ≡ ∂μAνðxÞ − ∂νAμðxÞ is the field strength
tensor of the Uð1Þ gauge field AμðxÞ. All fields are defined
on Minkowski spacetime with coordinates ðxμÞ ¼
ðx0;xÞ ¼ ðct; x1; x2; x3Þ and metric ðgμνðxÞÞ ¼ ðημνÞ≡
diagð1;−1;−1;−1Þ. The first term on the right-hand side
of the Lagrange density of Eq. (2.1b) is the standard
Maxwell term and the second is the modification. The four-
tensor κμνϱσ describes a background field, i.e., it transforms
covariantly with respect to observer Lorentz transforma-
tions but it is fixed with respect to particle Lorentz
transformations. For this reason the second term violates
particle Lorentz invariance.
The background tensor κμνϱσ is antisymmetric under the

interchange of the first two and the last two indices, plus it
is symmetric when interchanging both index pairs:

κμνϱσ ¼ −κνμϱσ; κμνϱσ ¼ −κμνσϱ; κμνϱσ ¼ κϱσμν:

(2.2a)

Furthermore it obeys the Bianchi identityX
ðν;ϱ;σÞ

κμνϱσ ≡ κμνϱσ þ κμϱσν þ κμσνϱ ¼ 0; (2.2b)

where the summation runs over cyclic permutations of the
rightmost three indices of κμνϱσ . A nonvanishing double
trace κμνμν can be absorbed by a redefinition of the gauge
field AμðxÞ and, therefore, it does not describe any physics
[21]. That is why it is usually set to zero: κμνμν ¼ 0. The
above-mentioned conditions reduce the number of inde-
pendent coefficients of the background field to 19. Ten out
of these 19 coefficients lead to birefringent photon
dispersion laws, i.e., there are two physical photon modes
that have different phase velocities.

2Power-counting renormalizable Lorentz-violating terms are
part of the “minimal SME,” whereas higher dimensional terms
form the “nonminimal SME” (see [26,41,42] for the nonminimal
photon, neutrino, and fermion sector).
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The remaining 9 coefficients result in photon dispersion
relations that are nonbirefringent, at least at first order in the
Lorentz-violating coefficients. The nonbirefringent sector
is parametrized by the following ansatz [43,44]:

κμνϱσ ¼ 1

2
ðημϱ ~κνσ − ημσ ~κνϱ − ηνϱ ~κμσ þ ηνσ ~κμϱÞ; (2.3)

where ~κμν is a symmetric and traceless ð4 × 4Þ-matrix. In
special cases the latter matrix is usually constructed with
two four-vectors ξμ and ζμ (see, e.g., [36,45]) according to:

~κμν ¼ 1

2
ðξμζν þ ζμξνÞ − 1

4
ðξ · ζÞημν: (2.4)

The four-vectors ξμ and ζμ are interpreted as preferred
directions in spacetime. Hence, Lorentz violation in the
minimal sector of the SME leading to nonbirefringent
photon dispersion relations is connected to having two
preferred directions at the maximum. For example, for the
isotropic case of modified Maxwell theory one purely
timelike four-vector is sufficient [46], whereas for the
parity-odd sector one purely timelike and one purely
spacelike four-vector is needed [47].
In a series of papers it was demonstrated that a modified

Maxwell type term in the photon sector can arise in the one-
loop effective action of a modified QED [48–50]. The
modification is constructed by a nonminimal Lorentz-
violating coupling between the photon and the fermion
plus an axial Lorentz-violating term in the pure fermion
sector.3 For the nonminimal coupling term in four dimen-
sions the effective action depends on the regularization
procedure. Similar issues arise in the context of the Adler–
Bell–Jackiw anomaly, which is directly connected to the
MCS-term in four dimensions. Hence the papers show
that such ambiguities occur in a wider class of quantum
field theories, i.e., Lorentz-violating theories that lead to
modified Maxwell type terms by radiative corrections.
The quantum-field-theoretic properties of the nonbire-

fringent part of modified Maxwell theory have already
been studied extensively in several papers [45–47,51].
Therefore, the current article aims at the quantum field
theory of the birefringent sector. The experimental sensi-
tivity for the birefringent coefficients lies at 10−37 [30],
which means that they are already tightly bounded.
Nevertheless, a better understanding of the structure of
quantum field theories exhibiting birefringent particle
dispersion laws is still of theoretical interest.

A. Restriction to a particular birefringent theory

The birefringent part of modified Maxwell theory can be
parametrized by the ten coefficients given in Eq. (8) of [29].

In what follows we choose the framework with the nonzero
coefficient κ0123 ∈ R and all others, which are not related to
κ0123 by symmetry arguments, set to zero. This special
setup will be investigated throughout the rest of the paper.
Note that contrary to the nonbirefringent sector [cf.
Eq. (2.3)] the preferred spacetime directions playing a role
for the birefringent case are not evident. To find them we try
to construct our special κμνϱσ solely in terms of fixed four-
vectors. Since the nonbirefringent ansatz of Eq. (2.3)
already respects the symmetries of the background tensor
the following generalized ansatz is used to match the
Lorentz-violating coefficients:

κμνϱσ
���birefringentsector ¼ ~κ

2
ð~κμϱ1 ~κνσ2 − ~κμσ1 ~κνϱ2 − ~κνϱ1 ~κμσ2 þ ~κνσ1 ~κμϱ2 Þ;

(2.5)

with the two symmetric and traceless ð4 × 4Þ-matrices ~κμν1 ,
~κμν2 and the scalar quantity ~κ. The matrices are expressed in
terms of two four-vectors analogously to Eq. (2.4), i.e.,
there is a total number of four such vectors denoted as ξi for
i ∈ f0; 1; 2; 3g. Each matrix can contain only one or two
different vectors. For example the first is given by

~κμν1 ¼ ~κμν1 ðξi; ξjÞ ¼
1

2
ðξμi ξνj þ ξμjξ

ν
i Þ − 1

4
ðξi · ξjÞημν: (2.6)

Here the indices i, j ∈ f0; 1; 2; 3g may but need not
necessarily be equal. We choose the following set of
orthonormal four-vectors:

ξ0 ¼

0BBB@
1

0

0

0

1CCCA; ξ1 ¼

0BBB@
0

1

0

0

1CCCA; ξ2 ¼

0BBB@
0

0

1

0

1CCCA; ξ3 ¼

0BBB@
0

0

0

1

1CCCA;

(2.7)

where the first is purely timelike and the others are purely
spacelike. The aforementioned ansatz is generic enough to
match the particular κμνϱσ considered. This is done for all
combinations of ξi and leads to the following result:

κμνϱσ
����birefringentsector

κ0123≠0
¼ 4κ0123ð~κμϱ1 ~κνσ2 − ~κμσ1 ~κνϱ2 − ~κνϱ1 ~κμσ2 þ ~κνσ1 ~κμϱ2 Þ;

(2.8a)

~κμν1 ¼ ~κμν1 ðξ0; ξ2Þ; ~κμν2 ¼ ~κμν2 ðξ1; ξ3Þ: (2.8b)

Consequently, the particular background tensor considered
can be decomposed into one purely timelike and three
purely spacelike four-vectors according to Eq. (2.8). This
demonstration was made because of two reasons. First, it
was shown that the well-known nonbirefringent ansatz of

3The latter contribution is the same that generates the four-
dimensional CPT-odd MCS-term via radiative corrections.
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Eq. (2.3) can be generalized for the birefringent sector of
modified Maxwell theory. Therefore, the nonbirefringent
and birefringent sector may have a common underlying
structure. Second, with the result obtained it becomes
clear that the special part of the birefringent sector,
which forms the basis of the paper, is characterized by
the single nonvanishing coefficient κ0123 and the orthogonal
set of four preferred spacetime directions given by
Eq. (2.7). This finding will be used frequently throughout
the paper.

B. Coupling to matter: Birefringent extension
of quantum electrodynamics

To construct a QED extension, the photon sector is
coupled to standard spin-1=2 Dirac fermions with electric
charge e and mass m. This is performed by employing the
usual minimal coupling procedure. It leads to a birefringent
modification of QED with the following action:

SbirefringentmodQED ½κ0123; e; m� ¼ SbirefringentmodMax ½κ0123� þ SDirac½e;m�.
(2.9)

The modified Maxwell term for the gauge field AμðxÞ is
given by Eqs. (2.1), (2.8) and the standard Dirac term for
the spinor field ψðxÞ is

SDirac½e;m� ¼
Z
R4

d4xψ̄ðxÞ
�
γμ
�
i
2
∂↔μ − eAμðxÞ

�
−m

�
ψðxÞ;

(2.10a)

A∂↔μB≡ A∂μB − ð∂μAÞB: (2.10b)

Equation (2.10) involves the standard Dirac matrices γμ

obeying the Clifford algebra fγμ; γνg ¼ 2ημν. In the written
form the Lagrange density is granted to be Hermitian.

III. DISPERSION RELATIONS

The field equations [21,29,43] of modified Maxwell
theory in momentum space are given by

MμνAν¼ 0; Mμν≡kρkρημν−kμkν−2κμρσνkρkσ; (3.1)

where kμ is the four-momentum. Choosing a particular
gauge fixing such as Lorenz gauge kμAμ ¼ 0, the
dispersion relations result from the condition detðMÞ ¼ 0
with the matrix M given in Eq. (3.1). The dispersion
relations of the unphysical scalar and longitudinal modes
can be identified using the modified Coulomb and Ampère
law (cf. the procedure in [21]). These are given by

ω0ðkÞ ¼ ω3ðkÞ ¼ jkj; (3.2)

where the scalar mode is marked by the index λ ¼ 0 and the
longitudinal mode by the index λ ¼ 3. This is in concord-
ance with the investigations performed for the nonbire-
fringent sector [46,47]. The unphysical dispersion laws
always correspond to the standard relations, i.e., they are
unaffected by Lorentz violation, which directly follows
from the modified field equations [38]. On the contrary, the
dispersion relations for the two physical degrees of freedom
of electromagnetic waves (labeled by indices λ ¼ 1, 2) are
heavily modified and given by the following result:

ω1;2ðkÞ ¼
1ffiffiffi
3

p

0B@fðC1; C2; C5Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3C5 − fðC1; C2; C5Þ2 − 24

ffiffiffi
3

p
k1k2k3ðκ0123Þ3

fðC1; C2; C5Þ

s 1CA; (3.3a)

fðC1; C2; C5Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1

3
p

þ C2ffiffiffiffiffi
C1

3
p þ C5

s
; (3.3b)

C1 ¼
1

128

�
C3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C23 − 256ðC25 þ 3C4Þ3

q �
; C2 ¼

1

4
ðC25 þ 3C4Þ; (3.3c)

C3 ¼ 16½9C5C4 − C35 þ 1728k21k
2
2k

2
3ðκ0123Þ6�; (3.3d)

C4 ¼ k4 þ 4ðk21k22 þ 4k21k
2
3 þ k22k

2
3Þðκ0123Þ2; C5 ¼ k2 þ 2ðk2 þ 3k22Þðκ0123Þ2; (3.3e)

for a general three-momentum k ¼ ðk1; k2; k3Þ. An expansion for jκ0123j ≪ 1 to linear order yields an approximation,
which coincides with Eq. (16) in [29]:

ω1;2ðkÞ ¼ jkj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk21 þ 2k22 þ k23Þ2 − 4k21k

2
3

p
jkj κ0123 þO½ðκ0123Þ2�: (3.4)
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The radicand is nonnegative for all choices of the three-
momentum components. Hence, the dispersion relations are
real at first-order Lorentz violation.Whether or not this is the
case for theexact expressions is currentlynot clearbecauseof
their complexity. Note that, e.g., for isotropic modified
Maxwell theory or special anisotropic sectors the exact
dispersion relations are not necessarily real for all values
of Lorentz-violating coefficients or three-momentum
components [46]. Besides, for certain three-momenta, for
example k ¼ ðk; 0; kÞ, the first-order term in Eq. (3.4) even
vanishes. For such propagation directions the theory is
birefringent only at higher orders Lorentz violation.
Equation (30) in [26] shows that the off-shell dispersion

relation of modified Maxwell theory (i.e., the equation
whose zeros with respect to k0 correspond to the dispersion
relations) can be written in a very compact form. For this
purpose the first of the following definitions is used and we
add a second convenient definition:� g∧2M

�
μανβ

≡ 1

4
εμαϱγενβσδMϱσMγδ;� g∧2Mκ

�
μανβ

≡ 1

4
εμαϱγενβσδM

ϱσ
κ Mγδ

κ ; (3.5)

Herein, M is given in Eq. (3.1) and Mκ is its Lorentz-
violating part: Mμν

κ ≡−2κμρσνkρkσ . We hereby stick to the
notation that is used in the latter reference. The wedge “∧”
denotes the outer product of two four-vectors, which is
widely employed in [26]. Now the following relationships
hold:

1

k0
κμανβ

� g∧2Mκ

�
μανβ

¼ −96k1k2k3ðκ0123Þ3; (3.6a)

Ξjk0¼0 ¼ 4ðk21k22 þ 4k21k
2
3 þ k22k

2
3Þðκ0123Þ2; (3.6b)

1

2ðk0Þ2 ½Ξjk0¼0 − Ξ� ¼ 2ðk2 þ 3k22Þðκ0123Þ2;

Ξ≡ ημβηνα
� g∧2M

�
μανβ

− 3k4: (3.6c)

Comparing these results to Eq. (3.3), it becomes clear that
the respective terms in the physical dispersion laws depend-
ing on the three-momentum components can, in principle,
be written in a compact form as well. However the explicit
expressions are more suitable for the calculations that
follow.
Both dispersion relations are shown in Fig. 1 as functions

of κ0123. On the one hand, the first dispersion law ω1 seems
to increase monotonically for any three-momentum. On the
other hand, the three-momentum can be chosen such that
ω2 decreases monotonically [see Fig. 1a]. However there
also exist choices for which ω2 decreases until it reaches
some minimum. After reaching the minimum it starts
increasing again (see Fig. 1b).

In Fig. 2 two-dimensional slices of the physical
dispersion relations are shown. The upper panels,
Figs. 2a–2c, are obtained by setting one particular momen-
tum component to zero for each of the figures. The
respective surfaces are distortions of the standard null
cones in momentum space. First, due to Lorentz violation
their opening angles change; and second, intersections with
planes parallel to the ki-kj-plane (where ki, kj are the
remaining momentum components not set to a particular
value) are not circles anymore.
In the lower panels, Figs. 2d–2f, the respective compo-

nents are set to a nonzero value. These surfaces are
modifications of the standard hyperbola in momentum
space. Looking at the figures it becomes evident that the
surfaces shown do not intersect each other. Hence there are
no degeneracies in the range of momenta that is presented.
Whether or not this holds in general is an open problem,
which will not be considered further.
As a next step we are interested in the phase and group

velocities of classical electromagnetic waves. These are
given as follows:

vph;1;2 ¼
ω1;2ðkÞ
jkj ; vgr;1;2 ¼

���� ∂ω1;2ðkÞ
∂k

����: (3.7)

Our interest especially concerns the values of the phase
velocity for infinite three-momentum. They are connected
to the front velocity being defined as [52]

vfr;1;2 ≡ lim
jkj↦∞

vph;1;2; (3.8)

and correspond to the propagation velocity of a δ-function
shaped signal. Hence the front velocity is associated with
information transport of a wave. The exact expressions are
involved and there is not much insight to be gained from
them. Therefore, we give expansions in the Lorentz-
violating coefficient κ0123. Since the theory is anisotropic,

(a) (b)

FIG. 1 (color online). The current figures show the dispersion
relations ω1;2 of Eq. (3.3) as a function of κ0123 for different
values of the three-momentum components. The red (dashed)
curves represent ω1 and the blue (plain) curves correspond
to ω2. The values k1 ¼ k2 ¼ 0, k3 ¼ 1=m were chosen in (a)
and k1 ¼ k2 ¼ k3 ¼ 1=ð ffiffiffi

3
p

mÞ was used in (b).
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the results depend on the propagation direction considered.
As examples we choose the x-, y-, and z-direction. For the
first physical photon mode the results are

lim
k1↦∞

vph;1 ¼ lim
k3↦∞

vph;1

¼ 1þ κ0123 þ 1

2
ðκ0123Þ2 − 1

8
ðκ0123Þ4 � � � � ;

(3.9a)

lim
k2↦∞

vph;1 ¼ 1þ 2κ0123 þ 2ðκ0123Þ2 − 2ðκ0123Þ4 � � � � :
(3.9b)

For the second photon mode we obtain

lim
k1↦∞

vph;2 ¼ lim
k3↦∞

vph;2

¼ 1 − κ0123 þ 1

2
ðκ0123Þ2 − 1

8
ðκ0123Þ4 � � � � ;

(3.10a)

lim
k2↦∞

vph;2 ¼ 1 − 2κ0123 þ 2ðκ0123Þ2 − 2ðκ0123Þ4 � � � � :
(3.10b)

In the limit considered, the group velocities correspond to
the phase velocities. It is evident that for jκ0123j ≪ 1 the
first photon mode is superluminal whereas the second is
subluminal.4 The respective expansions of ω1 und ω2

correspond to each other except the linear term in κ0123,
which comes with a different sign. Hence this linear term is
what determines whether the wave travels faster or slower
than the maximum attainable velocity c of standard Dirac
particles. This also reflects the birefringent properties of the
theory considered. See Fig. 3 for a plot of the phase and
group velocities for a special three-momentum chosen.
In the literature it is sometimes conjectured that super-

luminal modes lead to problems with (micro)causality.
However, various studies have shown that this is not an
issue at all for a wide range of Lorentz-violating frame-
works (see, e.g., [31,46,47,53,54]).5 The important point in

(a) (b) (c)

(f)(e)(d)

FIG. 2 (color online). Two-dimensional slices of the modified photon dispersion relations given by Eq. (3.3). The surface
corresponding to ω1 always lies in the interior of the surface that corresponds to ω2. To visualize the distortion of the surfaces by Lorentz
violation, the rather large value κ0123 ¼ 1=2 was chosen. Furthermore, the fixed components of the spatial momentum are chosen as
follows: k3 ¼ 0 (a), k2 ¼ 0 (b), k1 ¼ 0 (c), k3 ¼ 1=m (d), k2 ¼ 1=m (e), and k1 ¼ 1=m (f).

4Note that the maximum attainable velocity of standard Dirac
particles is given by c, which we set equal to 1 throughout the
paper. By “subluminal” we mean that a wave propagates with a
velocity smaller than c. If we use the term “superluminal” it
travels faster than c.

5Note that superluminal modes also appear in certain cosmo-
logical frameworks. For example, in [55] it was proven that
superluminal front velocities do not lead to problems in k-essence
models.
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this context can be summarized with a few sentences.
Microcausality for an electromagnetic theory is guaranteed
as long as information propagates along or inside null cones
[56]. Whether or not these null cones are modified by
Lorentz violation does not change this argument.

A. Special limit of the dispersion relations

For a photon propagating with the three-momentum
k ¼ ð0; k2; k3Þwhere k3 > 0 an interesting observation can
be made. Its (squared) dispersion relations, which follow
from Eq. (3.1), are given by

ω1;2ð0; k2; k3Þ2
¼ k22 þ k23 þ 2ð4k22 þ k23Þðκ0123Þ2

� 2jκ0123j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k22 þ k23Þ2 þ ð4k22 þ k23Þ2ðκ0123Þ2

q
:

(3.11)

The result was squared just for the matter of conveniently
writing the formulas. In the limit k2↦0 the physical
dispersion laws result in

ω1;2ð0;0;k3Þ¼ k3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2ðκ0123Þ2�2jκ0123j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðκ0123Þ2

qr
:

(3.12)

This can be rewritten as follows:

ω1;2ð0; 0; k3Þ ¼ k3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ0123Þ2

q
� jκ0123j�2

r
¼ k3½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ0123Þ2

q
� jκ0123j�: (3.13)

Now this result should correspond to the modified photon
dispersion relations that can be obtained directly from
Eq. (3.1) by setting k1 ¼ k2 ¼ 0 and assuming k3 > 0 at
the beginning:

ω1;2ðk3Þ ¼ k3½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ0123Þ2

q
� κ0123�: (3.14)

Note that the sign of a nonzero κ0123 is not determined by
the theory but the decision is taken by nature. Hence κ0123

can be positive, zero, or negative. In the second term on the
far right-hand side of Eq. (3.13) there appears the absolute
value of κ0123, which is not the case in Eq. (3.14). Hence for
nonnegative κ0123 the limit obtained from the general
dispersion laws corresponds to the actual dispersion
laws of a photon traveling with a three-momentum
k ¼ ð0; 0; jkjÞ ¼ ð0; 0; k3Þ, which is given by Eq. (3.14).
However this is not the case for negative κ0123.
This behavior originates from the general form of the

dispersion laws of Eq. (3.3) being characterized by the
square root of expressions including further square roots.
Note that within certain Finsler structures double square
roots appear as well (see, e.g., Eq. (17) in [57]). They are
connected to degeneracies of the corresponding dispersion
relations [58]. From a mathematical point of view energy-
momentum space is then not a manifold anymore but an
algebraic variety [57]. Contrary to a manifold, a variety is
allowed to have singularities, i.e., points where no tangent
vectors exist. If dispersion relations of different modes are,
indeed, degenerate in certain regions these may be singular
in this sense. In 1964 it was proven by Hironaka that such
singularities can be removed in principle [59] where the
detailed procedure depends on the variety to be studied.
A better understanding of this issue in the context of the
Lorentz-violating photon theory considered is an interest-
ing open problem to investigate further.

IV. PROPAGATOR AND
POLARIZATION VECTORS

The previous sections were dedicated to investigating the
properties of the classical theory, especially the modified
photon dispersion laws. The most important result was that
there are two propagation modes whose propagation veloc-
ities differ at first order Lorentz violation, clearly indicating
birefringence. For infinite momentum and jκ0123j ≪ 1 one
of these modes travels slower than the maximum velocity of
standard Dirac particles and the other travels faster.
In the following sections we are interested in under-

standing the corresponding quantum theory. For this
purpose we will obtain the gauge propagator and the
polarization vectors of the physical modes. The propagator
is the Green’s function of the free field equations (3.1) in
momentum space. It results from inverting the matrix M of
the latter equation and expressing it in a covariant form. To
do so, the gauge must be fixed because otherwise M does

FIG. 3 (color online). Phase and group velocities as a function
of κ0123 for a special three-momentum with k1 ¼ k2 ¼ k3 ¼
1=ð ffiffiffi

3
p

mÞ. The phase velocities of the first/second mode are
shown as a red/orange (dashed/dashed-dotted) curve. The re-
spective group velocities are drawn in blue (plain) and green
(dotted), respectively.
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not have an inverse due to the infinite number of gauge
degrees of freedom. The calculation will be performed
using Feynman gauge [60–62], i.e., by adding the follow-
ing gauge-fixing term to the Lagrange density:

LgfðxÞ ¼ − 1

2
ð∂μAμðxÞÞ2: (4.1)

Now we need a covariant ansatz for the propagator Ĝμν. It
is set up by using all two-rank tensors that play a role in
this theory. This is the metric and additional tensors
that are constructed with the four-momentum and
the preferred directions given by Eq. (2.7). So it is
given by

ĜμνjFeynman ¼ −ifþâημν þ b̂ξμ0ξ
ν
0 þ ĉξμ1ξ

ν
1 þ d̂ξμ2ξ

ν
2 þ êξμ3ξ

ν
3 þ f̂ðξμ0ξν1 þ ξμ1ξ

ν
0Þ þ ĝðξμ0ξν2 þ ξμ2ξ

ν
0Þ þ ĥðξμ0ξν3 þ ξμ3ξ

ν
0Þ

þ îðξμ1ξν2 þ ξμ2ξ
ν
1Þ þ ĵðξμ1ξν3 þ ξμ3ξ

ν
1Þ þ k̂ðξμ2ξν3 þ ξμ3ξ

ν
2Þ þ l̂kμkν þ m̂ðkμξν0 þ ξμ0k

νÞ þ n̂ðkμξν1 þ ξμ1k
νÞ

þ ôðkμξν2 þ ξμ2k
νÞ þ p̂ðkμξν3 þ ξμ3k

νÞgK̂: (4.2)

The propagator coefficients are functions of the four-
momentum components, i.e., â ¼ âðk0;kÞ;…; p̂ ¼
p̂ðk0;kÞ. Moreover, there is a scalar part K̂ ¼ K̂ðk0;kÞ
that can be factored out. The coefficients l̂;…; p̂ depend on
the gauge and the associated terms vanish when the
propagator is contracted with a gauge-invariant quantity.
This is due to the Ward identity, which is still valid, since
the QED extension is gauge-invariant and no anomalies are
expected to occur.
All coefficients follow from the inversion of the matrix

M of Eq. (3.1). Hence the system ðG−1ÞμνGνλ ¼ iδμλ has to
be solved. Herein, ðĜ−1Þμν corresponds to the differential
operator

ðG−1Þμν ¼ ημν∂2 − 2κμϱσν∂ϱ∂σ; (4.3)

appearing in the free-field equations that is transformed to
momentum space. Equation (4.3) is given in Feynman
gauge. In principle the propagator can be obtained for a
general three-momentum, i.e., for a generic propagation
direction. However the mathematical expressions are again
quite involved and no underlying structure has been found
to express them in a compact way. Therefore the result is
restricted to the special three-momentum k ¼ ð0; 0; kÞ,
which was the particular case considered in Sec. III A
(but now generalized to k ∈ R). We obtain the following
nonzero propagator coefficients:

K̂ ¼ 1

k40 − 2k20k
2½1þ 2ðκ0123Þ2� þ k4

; (4.4a)

â ¼ k20 − k2; b̂ ¼ 4ðκ0123Þ2k20; î ¼ −2κ0123k0k;
(4.4b)

l̂ ¼ 4ðκ0123Þ2k20
k20 − k2

; m̂ ¼ − 4ðκ0123Þ2k30
k20 − k2

: (4.4c)

The remaining coefficients vanish. Three remarks of this
result are in order. First, for κ0123 ¼ 0 it reduces to the
standard photon propagator where â K̂ ¼ 1=ðk20 − k2Þ.

Second, the poles of the scalar propagator part correspond
to the modified physical dispersion relations that are
obtained from Eq. (3.1) by setting k1 ¼ k2 ¼ 0 and k3 ¼ k:

ω1;2ðkÞ ¼ jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ0123Þ2

q
� kκ0123: (4.5)

Third, the pole of the unphysical coefficients l̂ and m̂
corresponds to the unphysical dispersion relation ω0;3ðkÞ ¼
k of the scalar and the longitudinal mode. This pole does
not occur in the physical coefficients â, b̂, and î.
The polarization vector for a special mode follows as a

solution of the free field equations (3.1) in momentum
space. To obtain such a solution, k0 has to be replaced by
the respective mode frequency and a gauge has to be
chosen. Working in Lorenz gauge ∂μAμ ¼ 0, one obtains
the following polarization vectors for the two physical
photon modes:

εð1Þμ ¼ 1ffiffiffiffiffiffiffiffi
2N0p

0BB@
0

1

1

0

1CCA; εð2Þμ ¼ 1ffiffiffiffiffiffiffiffiffi
2N00p

0BB@
0

1

−1
0

1CCA: (4.6)

The normalizations N0 and N00 have to be chosen such that
the 00-component of the energy-momentum tensor (see,
e.g., Eq. (36) in [21]) corresponds to ω1 for the first mode
and to ω2 for the second mode. Details of this approach
applied to the isotropic sector of modified Maxwell theory
can be found in [63]. For the birefringent case considered
the normalizations are given by

N0 ¼ jkj
ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðκ0123Þ2

q
; N00 ¼ jkj

ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðκ0123Þ2

q
: (4.7)

For vanishing Lorentz violation they correspond to the
standard results N0 ¼ N00 ¼ 1. The polarization vectors of
Eq. (4.6) are purely spacelike and orthogonal to each other.
They provide the physical basis vectors for the Fourier
decomposition of the vector potential in terms of creation
and annihilation operators.
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The next step is to construct the polarization tensors of the
theory. The purpose of doing this is to relate them to the
propagator in a later part of the paper. A polarization tensor is
a two-rank tensor that results from combining the polariza-
tion vectors, i.e., it is given by ε̄ð1Þμεð1Þν for the first
polarization mode and by ε̄ð2Þμεð2Þν for the second mode.
The bar above the first polarization vector in these expres-
sions indicates complex conjugation. This does not play a
role here, though, as the polarization vectors can be chosen
to be purely real. The intention is to write the polarization
tensors in a covariant form such as the propagator. This
means that we make an ansatz similar to Eq. (4.2) producing
the following results for the first polarization tensor:

Πμνjλ¼1≡ ε̄ð1Þμεð1Þν¼ 1

2N0 f−ημνþ b̂1ξ
μ
0ξ

ν
0þ î1ðξμ1ξν2þξμ2ξ

ν
1Þ

þ l̂1kμkνþ m̂1ðkμξν0þξμ0k
νÞgjk0¼ω1

; (4.8a)

b̂1 ¼ 1 − ω2
1

k2
; î1 ¼ 1; l̂1 ¼ − 1

k2
; m̂1 ¼

ω1

k2
:

(4.8b)

The second polarization tensor is given by

Πμνjλ¼2≡ ε̄ð2Þμεð2Þν¼ 1

2N00 f−ημνþ b̂2ξ
μ
0ξ

ν
0þ î2ðξμ1ξν2þξμ2ξ

ν
1Þ

þ l̂2kμkνþ m̂2ðkμξν0þξμ0k
νÞgjk0¼ω2

; (4.9a)

b̂2 ¼ 1− ω2
2

k2
; î2 ¼ −1; l̂2 ¼ − 1

k2
; m̂2 ¼

ω2

k2
:

(4.9b)

Here the normalizations N0 and N00 are those of Eq. (4.7).
Four comments are in order. First, note that each polarization
tensor can be written in a covariant form, which is not
possible in standard QED when Feynman gauge is used.
This behavior bears resemblance to the parity-odd non-
birefringent case of modified Maxwell theory that was
studied in [47]. Possibly it occurs for all theories with
birefringent photon dispersion laws where it does not matter
whether birefringence appears at first or at higher orders
Lorentz violation. Second, the sum of both polarization
tensors reduces to the standard result6 (see, e.g., [62]) for
κ0123 ¼ 0:

lim
κ0123↦0

X
λ¼1;2

Πμνjλjtruncated ¼ −ημν; (4.10)

where “truncated” means that all terms proportional to the
momentum four-vector kμ have been dropped. Third, each
polarization tensor does not have a standard counterpart for

κ0123 ¼ 0. Observe that the coefficients b̂1=2 are equal to zero
for a vanishing Lorentz-violating parameter. This does not
hold for l̂1=2 and m̂1=2, in fact, but these are unphysical and
the related terms do not play a role for physical (i.e. gauge-
invariant) quantities. However l̂1=2 neither go to zero for
κ0123 ¼ 0 nor do they disappear when contracted with a
gauge-invariant quantity. This is not surprising, though,
since there is no covariant expression for each tensor in
standard QED as mentioned previously. Furthermore, these
terms are not assumed to lead to any problems. For the
parity-odd nonbirefringent modified Maxwell theory similar
terms remain in the limit of zero Lorentz violation. However,
they were shown to have no importance for physics [47] due
to the validness of the Ward identity. Fourth, the functional
expressions for both polarization tensors are very similar in
contrast to the parity-odd case. For the latter sector the first
polarization tensor had a completely different structure
compared to the second.
As a final remark in this section, the polarization vectors

of the unphysical modes of Eq. (3.2) can be obtained from
the field equations as well. They are chosen as follows:

εð0Þμ ¼

0BB@
1

0

0

0

1CCA; εð3Þμ ¼

0BB@
0

0

0

1

1CCA: (4.11)

The polarization vector of the scalar mode ω0 is a purely
timelike four-vector whereas the polarization vector of the
longitudinal mode ω3 points along the propagation direc-
tion of the wave. These properties mirror the characteristics
of standard QED.

V. VALIDITY OF UNITARITY

Every well-behaved quantum field theory ought to have
the property of unitarity. This guarantees that no probability
is lost in physical processes, e.g., the scattering of particles.
So far, a bunch of examples for Lorentz-violating theories
have gathered for which unitarity was proven to hold. On
the one hand, MCS-theory was shown to be unitary as long
as the preferred spacetime direction is spacelike [31]. The
isotropic and the parity-odd nonbirefringent sector of
modified Maxwell theory were proven to be unitary at
tree level within some range of the Lorentz-violating
coefficients [46,47]. Furthermore, there are recent results
on the unitarity of special Pais–Uhlenbeck models [64–66].
On the other hand, it was shown that unitarity breaks

down for timelike MCS-theory [31]. These examples shall
demonstrate that unitarity is likely to still be valid in a
Lorentz-violating quantum field theory. Nevertheless it is
not something that should be taken for granted and,
therefore, it will be investigated in what follows.
There are two methods that can be used to analyze

unitarity. The first is testing the property of reflection
6when contracted with a gauge-invariant expression, i.e.,

dropping all terms that depend on the momentum four-vector kμ

QUANTUM FIELD THEORY BASED ON BIREFRINGENT … PHYSICAL REVIEW D 89, 085013 (2014)

085013-9



positivity (see, e.g., [67] for an introduction of this concept
within the framework of lattice gauge theory) and the
second is proving the validness of the optical theorem.
Reflection positivity is a condition that has to hold for the
two-point function of a quantum field theory in Euclidian
space to ensure unitarity at tree level. It was used in [31,46]
to prove unitarity for certain regimes of the theories
considered in these papers.
The optical theorem relates the imaginary part of a

forward scattering amplitude to the total cross section of the
particle physics process that results from performing all
possible cuts of the respective amplitude. It is a conse-
quence of unitarity of the S-matrix of the underlying
quantum field theory. We write the latter as S ¼ 1þ iT
with the identity 1 and the transfer matrix T describing the
scattering of particles. If S is not unitary it holds that

1 ≠ SS† ¼ 1þ iðT − T†Þ þ TT†; (5.1)

which results in 2ImðTÞ ≠ TT†. For this reason a violation
of unitarity is supposed to be revealed in the optical
theorem. Hence it can serve as a tool to show unitarity
at each order of perturbation theory. Furthermore, the
optical theorem can be used as a cross check for the
polarization vectors and the photon propagator which will
become clear below.
To analyze unitarity, the optical theorem will be used in

this paper where the considerations are restricted to tree
level. As an ingredient a suitable particle physics process is
needed. In accordance with [47] the choice is the annihi-
lation of a left-handed electron e−L and a right-handed
positron eþR to a modified photon ~γ. Massless fermions are
considered so that their helicity is physically well defined.
We choose this process for a number of reasons. First, it is a
relatively simple tree-level process including a modified
photon propagator. Second, it has no threshold, i.e., its

kinematics are not that complicated. Third, it involves
fields that are not parity-invariant. This makes sense to
reveal possible issues that may occur in the context of
parity violation as the particular birefringent theory con-
sidered violates parity. We neglect the axial anomaly, which
is of higher order with respect to the electromagnetic
coupling constant.
If the optical theorem is valid, the imaginary part of the

forward scattering amplitude M≡Mðe−LeþR → e−LeþR Þ is
related to the production cross section of a modified photon
from a left-handed electron and a right-handed positron.
The matrix element of the latter process will be denoted as
M̂≡Mðe−LeþR → ~γÞ. The forward scattering amplitude
reads as follows:

M ¼
Z

d4k
ð2πÞ4 δ

ð4Þðk1 þ k2 − kÞe2ūðk1Þγλ
1 − γ5

2

× vðk2Þv̄ðk2Þγν
1 − γ5

2
uðk1Þ

×
1

K̂−1 þ iϵ
½þâηνλ þ b̂ξ0;νξ0;λ þ îðξ1;νξ2;λ þ ξ2;νξ1;λÞ

þ l̂kνkλ þ m̂ðkνξ0;λ þ ξ0;νkλÞ�; (5.2)

where e is the elementary charge, u, v, ū, and v̄ are the
respective Dirac spinors, γ5 ¼ iγ0γ1γ2γ3 with the standard
Dirac matrices γμ (for μ ∈ f0; 1; 2; 3g), and 1 is the unit
matrix in spinor space. The kinematical variables are shown
in Fig. 4. The four-dimensional δ-function ensures total
four-momentum conservation. The photon propagator with
the respective propagator coefficients is taken from
Eq. (4.4). Note that for a proper treatment of the propagator
poles in Minkowski spacetime the usual iϵ-procedure is
applied for the physical poles. The scalar part K̂ of the
propagator is written in the following form:

1

K̂−1 þ iϵ
¼ 1

k40 − 2k20k
2½1þ 2ðκ0123Þ2� þ k4 þ iϵ

¼ 1

ðk0 − ωþ þ iϵÞðk0 þ ωþ − iϵÞðk0 − ω− þ iϵÞðk0 þ ω− − iϵÞ ; (5.3)

where the factorization is done with respect to the
propagator poles. Terms of quadratic and higher order in
the infinitesimal parameter ϵ are dropped. Contrary to the
standard photon propagator there appear four poles, where
the positive ones are given by

ωþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ0123Þ2

q
jkj þ κ0123k;

ω− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ0123Þ2

q
jkj − κ0123k:

(5.4)

This is characteristic for a birefringent quantum field theory
and it is also the case for the parity-odd nonbirefringent

sector [47] since in the latter birefringence still occurs
at quadratic order in the Lorentz-violating coefficients.
However in the parity-odd case the propagator structure
was more involved than for the birefringent case considered
here. Now, ωþ, ω− are the physical poles and −ωþ, −ω−
are their negative counterparts. From the mathematical
point of view propagators are distributions. Due to the iϵ-
prescription the following relations then hold for the
physical poles:

1

k0 − ωþ þ iϵ
¼ P

1

k0 − ωþ − iπδðk0 − ωþÞ; (5.5a)
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1

k0 − ω− þ iϵ
¼ P

1

k0 − ω− − iπδðk0 − ω−Þ; (5.5b)

where P denotes the principal value. The first part of
Eqs. (5.5a) and (5.5b), respectively, is purely real. The
second part is imaginary and due to the δ-function it forces
the zeroth four-momentum component to be equal to the
respective physical photon frequencies. The negative coun-
terparts of the poles will not play any role in the calculation
below because of total four-momentum conservation.
Using these results, the k0-integration in Eq. (5.2) can be

performed. According to Eq. (5.5) each physical pole
delivers a contribution. If we are only interested in the

imaginary part, we can drop terms involving the principal
values and replace k0 by the photon frequency for each term.
In doing so, the following intermediate results are useful:

ðωþÞ2 − k2

2ωþ½ðωþÞ2 − ðω−Þ2� ¼
1

4jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ0123Þ2

p ¼ 1

4ωþN0 ;

(5.6a)

ðω−Þ2 − k2

2ω−½ðω−Þ2 − ðωþÞ2� ¼
1

4jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ0123Þ2

p ¼ 1

4ω−N00 :

(5.6b)

Finally we obtain for the first photon mode

2ImðMÞjλ¼1 ¼
Z

d3k
ð2πÞ32ωþ δð4Þðk1 þ k2 − kÞe2ūðk1Þγν

1 − γ5
2

vðk2Þv̄ðk2Þγμ
1 − γ5

2
uðk1Þ

×
1

2N0 f−ημν þ b̂1ξ0;μξ0;ν þ î1ðξ1;μξ2;ν þ ξ2;μξ1;νÞg

¼
Z

d3k
ð2πÞ32ωþ δð4Þðk1 þ k2 − kÞðM̂†ÞνðM̂ÞμðΠμνjλ¼1Þ

¼
Z

d3k
ð2πÞ32ωþ δð4Þðk1 þ k2 − kÞjM̂j2jλ¼1; (5.7a)

with

M̂jλ¼1 ≡ εð1Þμ ðkÞðM̂ÞμðkÞ: (5.7b)

Terms that involve at least one four-momentum in the tensor structure of the propagator can be dropped if the Ward identity
is taken into account. The calculation for the second mode is completely analogous:

2ImðMÞjλ¼2 ¼
Z

d3k
ð2πÞ32ω− δð4Þðk1 þ k2 − kÞe2ūðk1Þγν

1 − γ5
2

vðk2Þv̄ðk2Þγμ
1 − γ5

2
uðk1Þ

×
1

2N00 f−ημν þ b̂2ξ0;μξ0;ν þ î2ðξ1;μξ2;ν þ ξ2;μξ1;νÞg

¼
Z

d3k
ð2πÞ32ω− δð4Þðk1 þ k2 − kÞjM̂j2jλ¼2; (5.8a)

where

M̂jλ¼2 ≡ εð2Þμ ðkÞðM̂ÞμðkÞ: (5.8b)

FIG. 4. Optical theorem tested for the process e−LeþR → e−LeþR within the birefringent QED extension considered. The respective
kinematic variables are stated next to the particle symbols. The infinitesimal one-particle phase space element for the process on the
right-hand side of the equation is denoted as dΠ1.

QUANTUM FIELD THEORY BASED ON BIREFRINGENT … PHYSICAL REVIEW D 89, 085013 (2014)

085013-11



To summarize, the validity of the optical theorem for the
birefringent modified Maxwell theory considered was
shown at tree level for a particular scattering process.
This process was very generic and the formal proof did
not rely on equations and kinematical relations that are
specific to this case only. The input was themodified photon
propagator, the photon polarization vectors, the treatment of
the propagator poles via the usual iϵ-prescription, and the
Ward identity. Therefore we conjecture that the modified
QED is unitary at tree level—at least for the choice k ¼
ð0; 0; kÞ of the three-momentum. An analytical proof of
unitarity for a general four-momentum is difficult due to the
complicated structure of the dispersion law, the polarization
vectors, and the propagator and it is an interesting open
problem for future studies. However, in Appendix B a
numerical check of the optical theorem is presented for a
spatial momentum with nonvanishing components. In this
context the propagator and the polarization tensors are
obtained for a general spatial momentum k ¼ ðk1; k2; k3Þ.
A curiosity is that each power of κ0123, which appears in the
tensor coefficients of Eqs. (B.6)–(B.15), the normalization
of Eq. (B16), and the propagator coefficients given by
Eqs. (B.18)–(B.27), is multiplied with a number that is a
power of two. This may indicate that the modified theory is
based on a mathematical structure, which is not understood
at present.

VI. MICROCAUSALITY

In Sec. III we analyzed the phase and group velocities of
the physical photon modes. The upshot was that within the
classical theory at least one mode always propagates with a
superluminal velocity. For this reason we are interested in
studying causality at the quantum level. This is done by
evaluating the commutator of two vector potentials at
distinct spacetime points x and y. Such a procedure helps
us to understand how x and y are causally related to each
other. If the commutator vanishes the points are causally
disconnected. This means that a quantum mechanical
measurement of physical fields at x does not have any
influence on the measurement of an observable at y. In
other words, between the two points, information cannot be
exchanged via a (modified) light signal. If the commutator

does not vanish, x and y are causally connected, i.e.,
information can be transported from one to the other point.
By evaluating this commutator, spacetime regions can be
determined that are causally connected, which will give
us insight on the issue of microcausality. For standard
QED, such calculations were performed by Pauli and
Jordan [68,69].
Due to translational invariance the commutator can be

written such that it only depends on the spacetime coor-
dinates of a single point x:

½AμðyÞ; AνðzÞ� ¼ ½Aμðy − zÞ; Aνð0Þ�≡ ½AμðxÞ; Aνð0Þ�
¼ iθμνDðxÞ: (6.1)

Its result is made up of a two-rank tensor θμν, respecting the
tensor structure of the commutator, and a scalar commu-
tator function DðxÞ. The causal structure of the theory is
determined by the latter scalar function that will be
computed in what follows. To make the calculation
feasible, the photon modes with the dispersion relations

ωþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ0123Þ2

q
jkj þ κ0123k;

ω− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ0123Þ2

q
jkj − κ0123k; (6.2)

which were also considered in the previous section, will be
examined. The scalar commutator function is the Fourier
transform of the scalar propagator function [31]. Note that
contrary to the latter reference we will compute the Fourier
transform of the product â K̂ of Eq. (4.4) and not only of K̂,
which will allow a comparison to the standard result. What
matters for the causal properties of the theory is, indeed, the
pole structure of K̂, which corresponds to the pole structure
of â K̂. The integration runs over both k0 and the spatial
momentum component. The integral over k0 is performed
in the complex k0-k-plane where all poles are encircled
along a closed contour C in counterclockwise direction.
After that the resulting expression is integrated over the
spatial momentum component along the real axis. Hence
we have to compute the following:

Dðx0; x3Þ ¼ 1

ð2πÞ2
I
C
dk0

Z
∞

−∞
dk

k20 − k2

k40 − 2k20k
2½1þ 2ðκ0123Þ2� þ k4

expð−ikxÞ

¼ 1

ð2πÞ2
I
C
dk0

Z
∞

−∞
dk

½ðk0Þ2 − k2� expð−ik0x0 þ ikx3Þ
ðk0 − ωþÞðk0 þ ωþÞðk0 − ω−Þðk0 þ ω−Þ : (6.3)

Note that the commutator function is defined in two rather than four dimensions in contrast to the investigations performed
in [31,46,47]. Furthermore the sign convention in the complex exponential function is chosen differently from the latter two
references. The detailed steps of the calculation are relegated to Appendix A. Its result then reads as follows:

Dðx0; x3Þ ¼ 1

4A
sgnðx0Þfθ½ðBx0Þ2 − ðx3Þ2� þ θ½ð ~Bx0Þ2 − ðx3Þ2�g; (6.4a)

M. SCHRECK PHYSICAL REVIEW D 89, 085013 (2014)

085013-12



B ¼Aþ κ0123; ~B ¼A− κ0123; A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ0123Þ2

q
;

(6.4b)

with the sign function and the Heaviside step function:

sgnðxÞ ¼

8><>:
1 for x > 0;

0 for x ¼ 0;

−1 for x < 0;

θðxÞ ¼

8><>:
1 for x > 0;

1=2 for x ¼ 0;

0 for x < 0.

(6.4c)

The standard result for the commutator function of a scalar
field with mass m in two dimensions can be found, e.g., in
[70,71]. For κ0123↦0 Eq. (6.4a) corresponds to the result
given in the latter two references for m ¼ 0. The only
difference is a global minus sign, which comes from the
different convention that is used here. The structure of the
commutator function is completely different compared to
the standard result in four dimensions, which involves δ-
functions rather than θ-functions. The arguments of the θ-
functions can be interpreted as the modified null cones of
the two physical photon modes in configuration space:

ðx0Þ2 − ðx3Þ2
~c21

¼ 0; ~c1 ¼ Aþ κ0123; (6.5a)

ðx0Þ2 − ðx3Þ2
~c22

¼ 0; ~c2 ¼ A − κ0123; (6.5b)

where the constants ~c1 and ~c2 have the dimension of
velocities. Note that the phase velocities of the modes are
given by

vph;1 ¼
ω1

k
¼ AsgnðkÞ þ κ0123;

vph;2 ¼
ω2

k
¼ AsgnðkÞ − κ0123: (6.6)

Hence what appears as ~c1 and ~c2 in Eq. (6.5) are the values
of the phase velocities given in Eq. (6.6) for k > 0. Due to
birefringence there appear two modified null cones, which
merge to the standard one for κ0123 ¼ 0. The scalar
commutator function of Eq. (6.4a) tells us that the com-
mutator vanishes outside the modified null cones. For this
reason, measurements of quantum mechanical observables
at two spacetime points can only influence each other if the
respective points can be connected by a world line lying on
or within one of the two null cones.7 Hence information can
only propagate along or inside these cones, which is the
crucial property for a microcausal theory. The birefringent
sector considered is, therefore, microcausal, at least in the
x0-x3-plane. The proof for the total configuration space,
which would involve the general dispersion relations of
Eq. (3.3), is a challenge and an interesting open problem.

A. Effective metrics and bimetric theories

Some final comments shall be made on effective metrics
that appear in this framework. In certain Lorentz-violating
theories suchmetrics can be constructed so that themodified
photon four-momentum squared (or the null cone coordinate
vector squared) is zero with respect to the suitable metric.
For example, in [72] effective metrics were introduced for
certain nonbirefringent cases of modified Maxwell theory
that were coupled to a gravitational background.
First of all, for the birefringent case restricted to the

particular three-momentum k ¼ ð0; 0; kÞ we define effec-
tive metrics ~gμνi (i ¼ 1, 2) in momentum space with
~gμνi kμkν ¼ 0 for the two physical photon modes. These
metrics are given by

ð~gμνÞ ¼

8>><>>:
diagð1;−1;−1;−½Aþ κ0123�2Þ≡ ð~gμν1 Þ for k0 ¼ ω1; k ≥ 0 or

k0 ¼ ω2; k < 0;
diagð1;−1;−1;−½A − κ0123�2Þ≡ ð~gμν2 Þ for k0 ¼ ω1; k < 0 or

k0 ¼ ω2; k ≥ 0:

(6.7)

Note that the index i of the effective metric does not
necessarily correspond to the index λ ¼ 1, 2 of the
physical mode. Moreover, analogue effective metrics

gðiÞμν can be introduced in configuration space such that

gðiÞμνxμxν ¼ 0 for both physical modes. These are often
called null-cone metrics. According to the final discus-
sion of the previous section, for x3 ≥ 0 the following
results are obtained:

ðgð1Þμν Þ ¼ diag

�
1;−1;−1;− 1

½Aþ κ0123�2
�
; (6.8a)

for the first modified null cone and

7General modified null cones can intersect each other (see the
discussion at the end of Sec. III A on the degeneracy of dispersion
laws in momentum space). So, in principle, points can as well be
connected by a world line lying within such an intersection of
both null cones.
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ðgð2Þμν Þ ¼ diag

�
1;−1;−1;− 1

½A − κ0123�2
�
; (6.8b)

for the second null cone. It is evident that each null-cone
metric is the inverse of the corresponding effective metric in
momentum space. Hence, in principle, the theory consid-
ered in this paper is a bimetric quantum field theory in a flat
spacetime. Theories characterized by even multiple null-
cone metrics were studied in, e.g., [73]. For a bimetric

theory with the metrics gð1Þμν and gð2Þμν an additional metric ĝμν
can be introduced interpolating between them:

ĝμν ≡ ð1 − uÞgð1Þμν þ ugð2Þμν ; 0 ≤ u ≤ 1: (6.9)

Under certain circumstances this interpolating metric
becomes singular indicating problems with causality.
However, such a behavior does not occur as long as there
are vectors that are timelike with respect to the two metrics

gðiÞμν , which is the case when both null cones overlap [see
Fig. 1(i) and (ii) in the latter reference]. This criterium is
fulfilled here as the second null cone characterized by the
metric (6.8b) lies inside of the first null cone with the metric
(6.8a) for κ0123 > 0 and vice versa for κ0123 < 0.

VII. CONCLUSIONS AND OUTLOOK

In this article birefringent modified Maxwell theory
coupled to a Dirac theory of standard spin-1=2 particles
was examined. Thereby a special emphasis was put on the
respective quantum field theoretic properties. To keep
calculations feasible the birefringent photon sector was
restricted to one nonzero Lorentz-violating coefficient.
Within this setup, the modified photon dispersion relations,
the propagator, and the polarization vectors were obtained.
For both the propagator and the polarization vectors the
three-momentum was chosen to point along the third axis
of the coordinate system to simplify the complicated
functional structure of the expressions.
With these results both unitarity (at tree level) and

microcausality of the respective birefringent QED were
demonstrated to be valid. Besides, an issue of the theory for
a negative Lorentz-violating coefficient was notified that
also occurs for certain Finsler structures.
To the best knowledge of the author this is one of the first

attempts to understand this special birefringent modified
QED. The articles [37,38], which were published recently,
address certain peculiarities of Gupta-Bleuler quantization
in the context of birefringent modified Maxwell theory. It
was shown that a nonvanishing photon mass has to be
introduced such that quantization is still possible. As
examples in the latter references, frameworks with other
nonvanishing Lorentz-violating coefficients were examined
in comparison to the one considered in the current article. It
is also worth mentioning that in [74] a birefringent theory is

considered that is not only quadratic but cubic in the
electromagnetic field strength tensor.
The current article can provide a basis for future studies of

quantum field theories that are based on a birefringent photon
sector. This is not necessarily restricted to an analysis of
modified Maxwell theory. However, especially for modified
Maxwell theory there are still some problems that may be
investigated in the future. For example, understanding the
fullmathematical structure of the theory consideredmayhelp
towrite the general propagator and the polarizationvectors in
a compact form. Then at least the proof of unitarity at tree
level with the help of the optical theoremmay be possible for
a general three-momentum. Furthermore, there are nine
remaining birefringent Lorentz-violating coefficients whose
corresponding theories await investigation.
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APPENDIX A: CALCULATION OF THE
COMMUTATOR FUNCTION

In this appendix the integral in Eq. (6.3) will be evaluated
in detail. Starting with the latter equation, the residue
theorem leads to

Dðx0; x3Þ ¼ i
2π

Z
∞

−∞
dk expðikx3Þ

×

	 ðωþÞ2 − k2

2ωþ½ðωþÞ2 − ðω−Þ2� expð−iω
þx0Þ

þ ðωþÞ2 − k2

−2ωþ½ðωþÞ2 − ðω−Þ2� expðiω
þx0Þ

þ ðω−Þ2 − k2

2ω−½ðω−Þ2 − ðωþÞ2� expð−iω
−x0Þ

þ ðω−Þ2 − k2

−2ω−½ðω−Þ2 − ðωþÞ2� expðiω
−x0Þ



: (A1)

In two (rather than four) dimensions it is more convenient
to consider the separate complex exponential functions
instead of combining them to real trigonometric functions.
This will become clearer below. The expressions in the
curly brackets can be further evaluated to give

ðω−Þ2 − k2

ω−½ðωþÞ2 − ðω−Þ2� ¼ − 1

2jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ0123Þ2

p ; (A2a)

ðωþÞ2 − k2

ωþ½ðωþÞ2 − ðω−Þ2� ¼
1

2jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ0123Þ2

p : (A2b)
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With Eq. (A2) and the definition A≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ0123Þ2

p
the

result of Eq. (A1) can be simplified:

Dðx0; x3Þ ¼ i
2π

1

4A

Z
∞

−∞
dk

1

jkj expðikx
3Þ

× ½expð−iωþx0Þ − expðiωþx0Þ
þ expð−iω−x0Þ − expðiω−x0Þ�: (A3)

To avoid absolute values of k in the integrand, the
integration domain is divided into the region of positive
k and negative k. For k > 0 one obtains

ωþ ¼ Akþ kκ0123 ¼ ðAþ κ0123Þk≡ Bk; (A4a)

ω− ¼ Ak − kκ0123 ¼ ðA − κ0123Þk≡ ~Bk: (A4b)

The first part of the commutator function associated with
positive k is denoted as D1:

D1ðx0; x3Þ ¼
i
2π

1

4A

Z
∞

0

dk
1

k
fexp½ikðx3 − Bx0Þ�

− exp ½ikðx3 þ Bx0Þ� þ exp ½ikðx3 − ~Bx0Þ�
− exp ½ikðx3 þ ~Bx0Þ�g: (A5)

For k < 0 the modified dispersion laws can be written as
follows:

ωþ ¼ −Akþ kκ0123 ¼ −ðA − κ0123Þk ¼ − ~Bk; (A6a)

ω− ¼ −Ak − kκ0123 ¼ −ðAþ κ0123Þk ¼ −Bk: (A6b)

The second part of the scalar commutator function asso-
ciated with negative values of k is denoted as D2 and reads

D2ðx0; x3Þ ¼
i
2π

1

4A

Z
0

−∞
dk

1

−k fexp½ikðx
3 þ ~Bx0Þ�

− exp ½ikðx3 − ~Bx0Þ� þ exp ½ikðx3 þ Bx0Þ�
− exp ½ikðx3 − Bx0Þ�g: (A7)

The total commutator function follows by adding Eq. (A5)
and Eq. (A7). To avoid the pole at k ¼ 0 the replacement
k↦kþ iϵ with ϵ ¼ 0þ is performed. This sign of ϵ is
chosen according to the usual prescription that is applied to
define the Feynman propagator. One then obtains

Dðx0; x3Þ ¼ D1ðx0; x3Þ þD2ðx0; x3Þ

¼ − 1

2πi
1

4A

Z
∞

−∞
dk

1

kþ iϵ
fexp½ikðx3 − Bx0Þ�

− exp ½ikðx3 þ Bx0Þ� þ exp ½ikðx3 − ~Bx0Þ�
− exp ½ikðx3 þ ~Bx0Þ�g: (A8)

Since the standard commutator function is a distribution,
Dðx0; x3Þ will also be interpreted as a distribution that is
supposed to act on a smooth function fðx0; x3Þ. Each of the
four terms above can bewritten as a Heaviside step function
θðxÞ, which is defined in Eq. (6.4c). The following integral
representations of θðxÞ turn out to be useful in the current
context:

lim
ϵ↦0þ

1

2πi

Z
∞

−∞
dk

expðikxÞ
k − iϵ

¼ θðxÞ;

lim
ϵ↦0þ

1

2πi

Z
∞

−∞
dk

expðikxÞ
kþ iϵ

¼ −θð−xÞ: (A9)

This leads to the final result for the commutator function:

Dðx0; x3Þ ¼ − 1

4A
½−θðBx0 − x3Þ þ θð−Bx0 − x3Þ

− θð ~Bx0 − x3Þ þ θð− ~Bx0 − x3Þ�

¼ 1

4A
sgnðx0Þfθ½ðBx0Þ2 − ðx3Þ2�

þ θ½ð ~Bx0Þ2 − ðx3Þ2�g

¼ 1

8A
½sgnðBx0 þ x3Þ þ sgnðBx0 − x3Þ

þ sgnð ~Bx0 þ x3Þ þ sgnð ~Bx0 − x3Þ�; (A10)

with the sign function defined in Eq. (6.4c).

APPENDIX B: NUMERICAL CHECK
OF THE OPTICAL THEOREM

In Sec. V the validity of the optical theorem was shown
for a particular scattering process. This was done for the
momentum configuration k ¼ ð0; 0; kÞ due to the complex-
ities of the modified photon polarization vectors, the
propagator, and the dispersion laws. In the current section
the respective results are given for a general spatial
momentum k ¼ ðk1; k2; k3Þ. Note that in contrast to
Secs. IV–VI plus Appendix A, k2 ¼ kμkμ in the current
section. First of all, the polarization vector components in
the Lorenz gauge are chosen in the following form:

ε0 ¼ 2κ0123ðk2k2 − 4κ0123ωk1k3Þðk2k1 − 4κ0123ωk2k3Þ
k6 − 4ðκ0123Þ2k2k23ðω2 − 4k21 − k22Þ − 32ðκ0123Þ3ωk1k2k33

; (B1)
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ε1 ¼ 4κ0123½k4ωk2 − κ0123k2k1k3ðω2 − k22Þ þ 8ðκ0123Þ2ωk21k2k23�
k6 − 4ðκ0123Þ2k2k23ðω2 − 4k21 − k22Þ − 32ðκ0123Þ3ωk1k2k33

; (B2)

ε2 ¼ − 2κ0123k2ðk2ωþ 4κ0123k1k2k3Þðk2k1 − 4κ0123ωk2k3Þ
k2½k6 − 4ðκ0123Þ2k2k23ðω2 − 4k21 − k22Þ − 32ðκ0123Þ3ωk1k2k33�

; (B3)

ε3 ¼ −1: (B4)

In these expressions k0 has to be replaced by ω1 to obtain
the polarization vector εð1Þμ of the first propagation mode
and by ω2, respectively, to get the polarization vector εð2Þμ
of the second mode [see Eq. (3.3) for ω1;2]. The general
polarization tensor coefficients will be listed as follows
where

N ¼ k12 þ 8ðκ0123Þ2k8k23ð4k21 þ k22 − ω2Þ
− 64ðκ0123Þ3k6ωk1k2k33
þ 16ðκ0123Þ4k4k43ð4k21 þ k22 − ω2Þ2
− 256ðκ0123Þ5k2ωk1k2k53ð4k21 þ k22 − ω2Þ
þ 1024ðκ0123Þ6ω2k21k

2
2k

6
3; (B5)

appears as a denominator in (almost) all these coefficients:

âi ¼ − 4κ0123k2

k3

α1α2
N

; (B6a)

α1 ¼ k4ωk2 − κ0123k2k1k3ðω2 − k22Þ þ 8ðκ0123Þ2ωk21k2k23;
(B6b)

α2¼ k4k1þ4κ0123k2ωk2k3−8ðκ0123Þ2k1k23ðω2−2k21−k22Þ:
(B6c)

b̂i ¼
4κ0123k2

k1k3

β

N
; (B7a)

β ¼ −k8ωk2ðω2 − k21Þ
þ κ0123k6k1k3½ω4 − ω2ðk21 þ k22Þ þ 2k21k

2
2�

þ 4ðκ0123Þ2k4ωk2k23½ω4 þ ω2ð−4k21 þ 3k22Þ þ 4k41�
þ 4ðκ0123Þ3k2k1k33½−ω6 þ 2ω4ðk21 − 5k22Þ
þ ω2ð12k21k22 þ 7k42Þ þ 2k21k

2
2ð2k21 þ k22Þ�

þ 64ðκ0123Þ4ωk21k2k43ðω2 − k21Þðω2 − 2k21 − k22Þ:
(B7b)

d̂i ¼ − 4κ0123k2

k1k3

δ

N
; (B8a)

δ ¼ k8ωk2ðk21 þ k22Þ
þ κ0123k6k1k3½−ω2ð2k21 þ k22Þ þ k22ðk21 þ k22Þ�
þ 4ðκ0123Þ2k4ωk2k23½3ω2k22 þ ð2k21 þ k22Þ2�
− 4ðκ0123Þ3k2k1k33½ω4ð−2k21 þ 7k22Þ
þ 2ω2ð2k41 − 6k21k

2
2 − 5k42Þ − k42ð2k21 þ k22Þ�

− 64ðκ0123Þ4ωk21k2k43ðk21 þ k22Þðω2 − 2k21 − k22Þ: (B8b)

êi ¼ − k2

k1k3

ϵ1ϵ2
N

; (B9a)

ϵ1 ¼ k4k1 þ 4κ0123k2ωk2k3

− 8ðκ0123Þ2k1k23ðω2 − 2k21 − k22Þ; (B9b)

ϵ2¼−k6k3þ4κ0123k4ωk1k2þ32ðκ0123Þ3ωk1k2k23ðk21þk23Þ
−4ðκ0123Þ2k2k3½ω2ðk21−k23Þ−k21k

2
2þ4k21k

2
3þk22k

2
3�:

(B9c)

ĝi ¼
4κ0123k2

k1k3

γ

N
; (B10a)

γ¼−k8ω2k22−κ0123k6ωk1k2k3½k21þ3ðk22−ω2Þ�
−2ðκ0123Þ2k4k23ðω2−k22Þ½ω2ðk21þ2k22Þ−k21ð2k21þk22Þ�
þ4ðκ0123Þ3k2ωk1k2k33½ω4−2ω2ð2k21þ7k22Þþð2k21þk22Þ2�
þ64ðκ0123Þ4ω2k21k

2
2k

4
3ðω2−2k21−k22Þ: (B10b)

ĥi ¼ − 2κ0123k2

k1

θ1θ2θ3
N

; (B11a)

θ1 ¼ −k2k2 þ 4κ0123ωk1k3; (B11b)

θ2 ¼ −k2k1 þ 4κ0123ωk2k3; (B11c)

θ3¼ k4k1þ4κ0123k2ωk2k3−8ðκ0123Þ2k1k23ðω2−2k21−k22Þ:
(B11d)

k̂i ¼
2κ0123k2

k1

κ1κ2κ3
N

; (B12a)
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κ1 ¼ ω3 − ωk2 þ 4κ0123k1k2k3; (B12b)

κ2 ¼ k2k1 − 4κ0123ωk2k3; (B12c)

κ3 ¼ k4k1þ4κ0123k2ωk2k3−8ðκ0123Þ2k1k23ðω2−2k21−k22Þ:
(B12d)

l̂i ¼
4κ0123

k1k3

λ1
λ2

; (B13a)

λ1 ¼ k4ωk2 − κ0123k2k1k3ðω2 − k22Þ þ 8ðκ0123Þ2ωk21k2k23;
(B13b)

λ2 ¼ −k6 þ 4ðκ0123Þ2k2k23ðω2 − 4k21 − k22Þ
þ 32ðκ0123Þ3ωk1k2k33: (B13c)

m̂i ¼
4κ0123k2

k1k3

μ1μ2
N

; (B14a)

μ1 ¼ k4ωk2 − κ0123k2k1k3ðω2 − k22Þ þ 8ðκ0123Þ2ωk21k2k23;
(B14b)

μ2 ¼ k4ωþ 2κ0123k2k1k2k3

− 4ðκ0123Þ2ωk23ðω2 − 2k21 þ k22Þ. (B14c)

ôi ¼
4κ0123k2

k1k3

ρ1ρ2
N

; (B15a)

ρ1 ¼ k4ωk2 − κ0123k2k1k3ðω2 − k22Þ þ 8ðκ0123Þ2ωk21k2k23;
(B15b)

ρ2 ¼ k4k2 − 2κ0123k2ωk1k3

þ 4ðκ0123Þ2k2k23ðω2 þ 2k21 þ k22Þ: (B15c)

The index i ¼ 1, 2 indicates the coefficients of the first
and the second propagation mode, respectively. The nor-
malization of the polarization vectors can be cast in the
following form:

N ¼ k4

2ω2
ð8κ0123k6ωk1k2k3 þ k8½ω2 þ k21 þ k22�

þ 4ðκ0123Þ2k4fω4ðk21 þ 4k22 − 2k23Þ þ ω2½k41 þ 4k22ðk22 þ k23Þ þ k21ð2k22 þ k23Þ�
þ k41ðk22 þ 8k23Þ þ k21k

2
2ðk22 þ 9k23Þ þ 2k42k

2
3g

þ 32ðκ0123Þ3k2ωk1k2k3½−2ω4 þ ω2ðk21 − 2k22 − 3k23Þ þ ðk21k22 þ 4k21k
2
3 þ k22k

2
3Þ�

þ 16ðκ0123Þ4k23f4k61ðω2 þ k22 þ 4k23Þ þ 4k41½k42 þ 5k22k
2
3 − ω2ðω2 þ 3k23Þ�

þ k21½ω6 þ ω2k22ð3ω2 − 8k23Þ þ k42ð3ω2 þ 8k23Þ þ k62�
þ ðω2 þ k22Þ2½ω2k23 þ k22ð4ω2 þ k23Þ�gÞN −1: (B16)

For each mode k0 is again understood to be replaced
by ω1 and ω2, respectively, where N0 ≡ Njk0¼ω1

and
N00 ≡ Njk0¼ω2

. The coefficients of the general propagator
in Feynman gauge are multiplied by the denominator

K̂−1 ¼ k4 − 4ðκ0123Þ2½k20ðk21 þ 4k22 þ k23Þ
− ðk21k22 þ 4k21k

2
3 þ k22k

2
3Þ�

þ 32ðκ0123Þ3k0k1k2k3; (B17)

and they are given by

â ¼ 1

k2k3
~α; (B18a)

~α ¼ k4k3 þ 4κ0123k2k0k1k2

− 8ðκ0123Þ2k21k3ðk20 − k22 − 2k23Þ: (B18b)

b̂ ¼ − 4κ0123

k2k1k3
~β; (B19a)

~β ¼ −k2k0k2ðk20 − k21 − k23Þ
þ κ0123k1k3½k40 − k20ðk21 þ k22 þ 3k23Þ þ 2k21ðk22 þ 2k23Þ�:

(B19b)

d̂ ¼ − 4κ0123

k2k1k3
~δ; (B20a)
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~δ ¼ −k2k2k0k2 þ κ0123k1k3½k20ð2k21 þ k22Þ
− k21ðk22 þ 4k23Þ − k22ðk22 þ 3k23Þ�: (B20b)

ê ¼ 4κ0123ðk23 − k21Þ
k2k1k3

~ϵ; (B21a)

~ϵ ¼ −k2k0k2 þ 2κ0123k1k3ðk20 − k22Þ: (B21b)

ĝ ¼ 2κ0123

k2k1k3
~γ; (B22a)

~γ ¼ k2½k20ð2k22 þ k23Þ − k23ð2k21 þ k22Þ�
− 2κ0123k0k1k2k3ð3k20 − k21 − 3k22 − 5k23Þ: (B22b)

ĥ ¼ 2κ0123ðk23 − k21Þ
k2k1

~θ; (B23a)

~θ ¼ −k2k2 þ 4κ0123k0k1k3: (B23b)

k̂ ¼ 2κ0123ðk21 − k23Þ
k2k1

~κ; (B24a)

~κ ¼ −k2k0 − 4κ0123k1k2k3: (B24b)

l̂ ¼ 4κ0123

k4k1k3
~λ; (B25a)

~λ ¼ k4k0k2 − κ0123k2k1k3ðk20 − k22Þ þ 8ðκ0123Þ2k0k21k2k23:
(B25b)

m̂ ¼ − 2κ0123

k2k1k3
~μ; (B26a)

~μ ¼ k2k2ð2k20 − k23Þ − 2κ0123k0k1k3ðk20 − 3k22 − 2k23Þ:
(B26b)

ô ¼ 2κ0123

k2k1k3
~ρ; (B27a)

~ρ ¼ −k2k0ð2k22 þ k23Þ þ 2κ0123k1k2k3ð3k20 − k22 − 2k23Þ:
(B27b)

All polarization tensor coefficients and propagator coef-
ficients that are not listed vanish. For a set of randomly
chosen momentum components and Lorentz-violating
parameter κ0123 such as k ¼ ð3; 5; 7Þ=m plus κ0123 ¼ 2
the following relationships can be shown numerically for
the results above:

fâ1; b̂1; d̂1; ê1; ĝ1; ĥ1; k̂1; l̂1; m̂1; ô1g
N0

¼ −2ω fâ; b̂; d̂; ê; ĝ; ĥ; k̂; l̂; m̂; ôg
ðω − ω2Þðω − ~ω1Þðω − ~ω2Þ

�����
k0¼ω1
ω¼ω1

; (B28a)

fâ2; b̂2; d̂2; ê2; ĝ2; ĥ2; k̂2; l̂2; m̂2; ô2g
N00

¼ −2ω fâ; b̂; d̂; ê; ĝ; ĥ; k̂; l̂; m̂; ôg
ðω − ω1Þðω − ~ω1Þðω − ~ω2Þ

�����
k0¼ω2
ω¼ω2

; (B28b)

where ~ω1;2 correspond to the negative counterparts of the
physical propagator poles. According to the lines of Sec. V,
the optical theorem is then checked to be valid numerically.
Two remarks are in order. First, the propagator with the
coefficients of Eqs. (B.18)–(B.27) reduces to the standard
one in Feynman gauge for the limit κ0123↦0. Second, only
two out of three preferred spacelike vectors of Eq. (2.7) are
needed to write the propagator plus the polarization tensors
covariantly. If the vector ξ1 ¼ ð0; 1; 0; 0ÞT is not used,
which was done here, the respective expressions are much
simpler. This is the reason why for k1↦0 and k2↦0 the
results of Sec. IVare not recovered since in the latter section
the background vector ξ1 is, indeed, employed.
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