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Noncommutative (NC) quantum field theory is the subject of many analyses on formal and general
aspects looking for deviations and, therefore, potential noncommutative spacetime effects. Within of this
large class, we may now pay some attention to the quantization of NC field theory on lower dimensions and
look closely at the issue of dynamical mass generation to the gauge field. This work encompasses the
quantization of the two-dimensional massive quantum electrodynamics and three-dimensional topologi-
cally massive quantum electrodynamics. We begin by addressing the problem on a general dimensionality
making use of the perturbative Seiberg-Witten map to, thus, construct a general action, to only then specify
the problem to two and three dimensions. The quantization takes place through the Källén-Lehmann
spectral representation and Yang-Feldman-Källén formulation, where we calculate the respective spectral
density function to the gauge field. Furthermore, regarding the photon two-point function, we discuss
how its infrared behavior is related to the term generated by quantum corrections in two dimensions,
and, moreover, in three dimensions, we study the issue of nontrivial θ-dependent corrections to the
dynamical mass generation.
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I. INTRODUCTION

The quantization of spacetime, in particular, a quantum
fuzzy spacetime, comes as a natural consequence to support
the coexistence of quantum field theory and gravity de-
manding, thus, a radical change in our concepts of
geometry [1]. Noncommutative (NC) spacetime character-
ized by canonical Heisenberg-like (commutation relations)
Moyal brackets

½xμ; xν�⋆ ≡ xμ⋆xν − xν⋆xμ ¼ iθμν (1)

and its associated ⋆ product (Weyl symbols)

ϕðxÞ⋆ϕðxÞ ¼ ϕðxÞ exp
�
i
2
⃖∂μθμν~∂ν

�
ϕðxÞ (2)

have received much attention over the course of the last two
decades. Moreover, since θμν is a constant antisymmetric
object, theories defined on such noncommutative spacetime
are considered to violate Lorentz invariance, a subtle but
highly important issue that has been richly debated [2,3].
Actually, noncommutative spatial coordinates have a well-
known realization in physics: the quantized confined
motion of particles in a constant magnetic field, sufficiently
strong so that the projection on the lowest Landau level can
be justified, is described by noncommutative coordinates.

Within the context of field theory, it was only after the work
of Seiberg and Witten [4] that the NC gauge theories have
acquired a prominent place in several discussions. Many of
the intriguing fundamental phenomena regarding NC
gauge theories are results from the nonlocality of their
interactions, for instance, UV/IR mixing problem [5], loss
of unitarity [6], and violation of Lorentz symmetry [7].
Nevertheless, investigation on these features has pointed
out, for instance, that a suitable definition of time-ordering
operation restores the unitarity in a NC field theory [8] and
many other interesting issues [9].
A successful and extensively studied approach to a

perturbative analysis of (nonlocal) NC field theory is
obtained if one exploits the Seiberg-Witten (SW) map
[4,10]. Namely, they have shown that a NC ⋆-gauge theory
should be a gauge equivalent to an ordinary counterpart
defined on a commutative spacetime, i.e., the SW trans-
formation maps a ⋆-gauge invariant NC expression into a
gauge invariant ordinary expression. In such approach, one
can study systematically in a perturbative way the effects of
noncommutativity in a local quantum field framework.
Furthermore, a different route may be taken in obtaining the
aforementioned SW map without referring to string theory.
This consists of letting the theory be an enveloping algebra
valued one that one, thus, can write the SW map of NC
fields for arbitrary non-Abelian gauge groups, such as
SUðNÞ [11]. Therefore, it is clear that the SW map of NC
fields presents itself as an interesting tool in the under-
standing of the physical predictions and also to check the
behavior of the NC theory itself, such as renormalizability.
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Basedon the abovediscussion, it is interesting toknowhow
the noncommutativity affects established properties of con-
ventional theories, i.e., the study of NC extensions of well-
studied quantum field theories and to look then for NC effects
on its deviations, since it is generally found that such
extensions behave in interesting and nontrivial ways.
Therefore, for this purpose, we will investigate here the NC
effects first on the celebrated massive Schwinger model
[12,13] [quantumelectrodynamics (QED) in twodimensions]
and next on the QED in three dimensions, Abelian gauge
theory, Maxwell-Chern-Simons, or simply Maxwell electro-
dynamics coupled to fermions [14–19]. Onemay say that the
main goal of physics is to explain phenomena in nature and
perhaps even to explain why physical nature dwells in four
dimensions; however, themeans thatwehave come to employ
in reaching this goal so far are sufficiently intricate that it has
proven useful towander into lower-dimensional worlds, with
thewishful thought that in a simpler settingwecan learnuseful
things about thewell-recognized four-dimensional problems.
Both classes of field theoryhavebeen extensively investigated
along the years and have long been recognized as laboratories
where important theoretical ideas, such as infrared problems,
dynamical mass generation, and confinement, to name few,
were tested in a simple setting, especially on condensedmatter
systems, e.g., the quantum Hall effect. Actually, some NC
properties of themwere discussed previously in Refs. [20,21]
on massless QED2 and in Refs. [22,23] on QED3.
To analyze the quantized theory, we will make use of a

general framework possessing a solid physical basis which
is the spectral representation of Källén-Lehmann [24].
Furthermore, in order to accomplish that, we will make
use of the Yang-Feldman-Källén formalism [25] which is
based on the Heisenberg operators equations of motion and
asymptotic conditions. Also, extensions of these formal-
isms were proposed and studied in different scenarios:
a noncommutative spacetime [26] and also for a Lorentz-
violating field theory [27].
In this paper, we revisit QED2 and QED3 embedded in

a noncommutative spacetime from the point of view of
Källén-Lehmann formalism, in particular, their radiative
corrections at one loop and the possible higher-order term
[21] and dynamic mass generation, respectively. We start
by discussing the general properties and symmetries of
NCQED in a generic dimension ω in Sec. II. Next, we
discuss and make use of the Seiberg-Witten map to
determine the action. Next, we present the expressions
for the Lagrangian functions where we will perform the
analysis; both expressions are obtained by taking into
account the dimensionality of spacetime. From that, we
derive the Euler-Lagrange equations of motion, and from
the Yang-Feldman-Källén formalism, we construct the
solution for these equations. Moreover, another important
feature of Yang-Feldman-Källén formalism is that one
works exclusively with the free asymptotic fields so that
all quantities are mathematically well defined. In Sec. III,

we review and discuss, in general terms, the Källén-
Lehmann representation and obtain the spectral density
function for the gauge field. In Sec. IV, we present the
calculation and results at two-particle contribution to the
spectral density function of the gauge field, both calculated
on two and three dimensions. In particular, based on
a previous result [21], we discuss in detail the correct
expression for the self-interaction contribution of the gauge
field spectral function in the two-dimensional case, which
originates from the infrared sector. In Sec. V, we summarize
the results and present our final remarks and prospects.

II. SEIBERG-WITTEN MAP ON NCQED

Before addressing our problem, per se, we start this
section by reviewing the quantum electrodynamics of
massive fermions in an ω-dimensional noncommutative
Minkowski spacetime. As a consequence of the nontri-
viality of the star product, the ordinary theory acquires
a non-Abelian-like structure, namely, the NCQED model
action is defined in the following way1:

A ¼
Z

dωx

�
−
1

4
F̂μν⋆F̂μν þ ˆ̄ψ⋆ðiγμD̂μψ̂ −mψ̂Þ�; (3)

where the field strength and covariant derivative are defined as

F̂μν ¼ ∂μÂν − ∂νÂμ − ig½Âμ; Âν�⋆;
D̂μψ̂ ¼ ∂μψ̂ − igÂμ⋆ψ̂ : (4)

The action is invariant under the finite noncommutativeUð1Þ
⋆-gauge transformations:

ψ̂ 0ðxÞ ¼ UðxÞ⋆ψ̂ðxÞ;
Â0
μðxÞ ¼

i
g
UðxÞ⋆D̂μU−1ðxÞ; (5)

or, rather, in its infinitesimal form,

δ̂σ̂ψ̂ ¼ iσ̂ðxÞ⋆ψ̂ðxÞ;
δ̂σ̂Âμ ¼

1

g
∂μσ̂ðxÞ − i½Âμ; σ̂�⋆; (6)

where UðxÞ ¼ ðeiσðxÞÞ⋆ is defined by an infinite series of
multiple star products of scalar function σ̂ðxÞ.
Given the properties of the Moyal product, the product of

two functions (distributions) is integrated, giving the same
result as the ordinary product of functions. This implies that
in this framework, the free propagator expressions do not
change; i.e., they have the same expression as in the
commutative (ordinary) theory. Therefore, in the case of

1According to our notation, “hatted” quantities represent
objects in noncommutative spacetime, and “unhatted” ones are
objects in ordinary spacetime.
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covariant perturbative analysis, the signal of noncommu-
tativity is encompassed on the theory’s vertices. However,
we are interested in studying effects of noncommutativity
in a perturbative way by making use of the SW map [4],
which allows one to write a NC ⋆-gauge theory as a gauge
theory in ordinary spacetime.
The SWmap of NC fields in a gauge invariant theory can

be derived from a gauge equivalence relation as it stands for
the gauge field and parameter

δ̂σ̂ÂμðA; θÞ ¼ ÂμðAþ δσA; θÞ − ÂμðA; θÞ
¼ δσÂμðA; θÞ; (7)

δ̂σ̂ σ̂ðσ; A; θÞ ¼ δσσ̂ðσ; A; θÞ; (8)

as for the matter field

δ̂σ̂ψ̂ðψ ; A; θÞ ¼ δσψ̂ðψ ; A; θÞ; (9)

in such a way that the NC fields are functionals of the
ordinary fields: Aμ, ψ , and σ are the ordinary gauge field,
fermion field, and gauge transformation parameter, respec-
tively. To the lowest nontrivial order in θ, one finds the
solution to the SW map,2

Âμ ¼ Aμ −
g
2
θλσAλð2∂σAμ − ∂μAσÞ þOðθ2Þ; (10)

ψ̂ ¼ ψ −
g
2
θλσAλ∂σψ þOðθ2Þ; (11)

σ̂ ¼ σ −
g
2
θλσAλ∂σσ þOðθ2Þ: (12)

Consequently, an important feature of this map is that it
preserves gauge orbits, and so ⋆-gauge invariance is,
therefore, rendered into an ordinary gauge invariance as
contained in Eqs. (7)–(9). Utilizing this map, in terms of the
ordinary quantities, we arrive at the following OðθÞ modi-
fied form for the NC quantum electrodynamics action [28]:

A ¼
Z

dωx

�
−
1

4

�
1 −

g
2
ðθ:FÞ

�
FμνFμν

−
g
2
θλσFμλFνσFμν þ

�
1 −

g
4
ðθ:FÞ

�
ψ̄iγ:Dψ

þ g
2
θλσψ̄iγμFλμDσψ −m

�
1 −

g
4
ðθ:FÞ

�
ψ̄ψ

�
: (13)

An interesting modification seen on the gauge sector at
leading order in θ is the presence of self-interaction terms.

Although the NC gauge sector resembles the Yang-Mills
theories, it is the noncommutative structure of spacetime
which causes the nonlinearity of the field strength in the
gauge connection. Furthermore, for ω > 2, the action (13)
provides a suitable framework on the investigation of a
Lorentz-violating extension of QED once all the θ-dependent
terms violate Lorentz symmetry [2].
It should be emphasized that the only needed ingredient

in our development in the Källén-Lehmann representation
is the translational invariance,3 which is always satisfied in
the noncommutative theory. Nevertheless, the Lorentz
symmetry (rotations and boosts) is preserved only if θμν

transforms as a tensor [3], taking different constant values
in different frames. Moreover, it also follows that the
Seiberg-Witten map has an explicit Lorentz-invariant form
provided that θ transforms like a Lorentz tensor, in
accordance with the previous discussion [3].

A. (1þ 1) and (2þ 1) NCQED

At this point, we have considered a field theory defined
on an ω-dimensional spacetime. Looking for simplifica-
tions of the θ terms of action (13), we shall consider
separately two particular cases: (1þ 1)- and (2þ 1)-
dimensional spacetime. Thus, taking into account the
dimensionality of spacetime, one arrives at

L1þ1 ¼ ψ̄ðiγ:D −mÞψ þmg
4

ðθ:FÞψ̄ψ

−
1

4

�
1þ g

2
ðθ:FÞ

�
FμνFμν −

1

2ξ
ð∂μAμÞ2; (14)

for a two-dimensional spacetime, whereas, for three
dimensions, one gets

L2þ1 ¼ ψ̄ðiγ:D −mÞψ þmg
4

ðθ:FÞψ̄ψ −
μ

4
ϵσνλAσFνλ

−
1

4

�
1þ g

2
ðθ:FÞ

�
FμνFμν −

1

2ξ
ð∂μAμÞ2; (15)

where in both Lagrangian functions, a gauge-fixing term on
the Lorenz condition was inserted. Moreover, on the three-
dimensional Lagrangian (15), ϵμνλ is the totally antisymmetric
Levi-Cività tensor, μ denotes the coupling of the topological
term, and we have also made use of the NC extension of the
Chern-Simons actionderived inRef. [23],where itwas shown
that under the SWmap, theNCChern-Simons theory reduces
to its commutative counterpart to all orders of θ.
Once we have developed the models of interest, i.e.,

obtained the Lagrangian functions for (1þ 1) and (2þ 1)
dimensions, Eqs. (14) and (15), respectively, we are ready
to proceed with our development. Since we aim to discuss
both theories on the framework of Källén-Lehmann2Because of the freedom in the solutions, ambiguities are

present on different solutions of the maps and are reflected in
different coefficients obtained in each of the solutions con-
structed. For the interested reader, we refer to Ref. [10] for a
complete disclosure of the general features of the SW map.

3The Lorentz invariance is only required in a way in deriving
the dependence and tensor structure of the spectral function with
the momentum p as it will be shown next.
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representation [24], we have to calculate next the equations
of motion of the fields and subsequently find their solution
in terms of the Yang-Feldman-Källén equations for
Heisenberg operators [25].
On the fermion sector, we obtain the same equation of

motion for both cases,

ðiγμDμ −mÞψ ¼ −
mg
4

ðθ:FÞψ ; (16)

whereas for the gauge sector, we obtain from Eq. (14),

∂αFαβ þ 1

ξ
∂β∂λAλ þ gψ̄γβψ

þ g
4
∂α½θαβFμνFμν þ 2ðθ:FÞFαβ − 2mθαβψ̄ψ � ¼ 0; (17)

and from Eq. (15), it yields

∂αFαβ þ 1

ξ
∂β∂λAλ −

μ

2
ϵαμβFαμ þ gψ̄γβψ

þ g
4
∂α½θαβFμνFμν þ 2ðθ:FÞFαβ − 2mθαβψ̄ψ � ¼ 0: (18)

In accordance with the general statement of the Yang-
Feldman-Källén formulation, with suitable boundary con-
ditions at t ¼ �∞, we find from Eq. (16) that the
Heisenberg operators ψ and ψ̄ satisfy the equations [29]

ψAðxÞ ¼ ψ in
A ðxÞ −

Z
dωySretABðx − yÞηBðyÞ;

ψ̄AðxÞ ¼ ψ̄ in
A ðxÞ −

Z
dωyζBðyÞSadvAB ðy − xÞ; (19)

where the currents are given by

η¼ gγ:Aψ −
mg
4
ðθ:FÞψ ; ζ¼ gψ̄γ:A−

mg
4
ðθ:FÞψ̄ : (20)

The retarded (advanced) fermionic Green’s function is

SretðadvÞðxÞ ¼ 1

ð2πÞω
Z

dωp
1

γ:p −m∓iϵp0

e−ipx: (21)

In such formulation the asymptotic in- and outfields
(operator-valued fields) satisfy free-field equations and,
thus, can be decomposed into positive and negative
frequency parts [29]. Furthermore, the Yang-Feldman-
Källén equation for the gauge field solution of Eqs. (17)
and (18) takes the form

AμðxÞ ¼ Ain
μ ðxÞ −

Z
dωyΔret

μσðx − yÞjσðyÞ; (22)

where

jβ¼gψ̄γβψþg
4
∂α½θαβFμνFμνþ2ðθ:FÞFαβ

−2mθαβψ̄ψ �: (23)

The first term in the current Eq. (23) is the usual Uð1Þ
gauge interaction term, the second and third terms are
related with the photon self-interaction, whereas the fourth
term is a Yukawa interaction type. Aside from the integral
dimensionality, the difference between the two- and three-
dimensional solutions are the Green’s functions. That for
(1þ 1) dimensions reads

ΔretðadvÞ
μσ ðxÞ ¼

Z
d2h
ð2πÞ2

�
ημσ −

hμhσ
h2

�
e−ihx

h2∓iϵh0
; (24)

whereas for (2þ 1) dimensions, it reads

ΔretðadvÞ
λν ðxÞ ¼

Z
d3h
ð2πÞ3

�
ηλν −

hλhν
h2

−
iμ
h2

ϵλναhα
�

×
e−ihx

h2 − μ2∓iϵh0
: (25)

As we have succeeded in deriving the Lagrangian densities
for two- and three-dimensional spacetime, and from them
found the equations of motion and, subsequently, the Yang-
Feldman-Källén solution for the (operator-valued) fields
Aμ, ψ , and ψ̄ , we are now in position to calculate the
spectral density functions for the contributions of one and
two particles for the gauge field. But before such calcu-
lation, we will briefly review the Källén-Lehmann spectral
representation.

III. KÄLLÉN-LEHMANN REPRESENTATION:
EXACT PROPAGATORS

Once we have obtained the Yang-Feldman-Källén equa-
tions on the ordinary spacetime, Eqs. (19) and (22), the next
step consists (different from the dispersion relations
approach to noncommutative models [26]) of the inves-
tigation of the spectral functions following the ordinary
Källén-Lehmann representation [24,29]. However, before
that calculation, let us write some lines and describe the
general prescription of the Källén-Lehmann representation.
Let AμðxÞ be a vector field on the Heisenberg representa-
tion.4 The vacuum expectation value of the product of two
fields at different points can be expressed as

hΩjAμðxÞAνðyÞjΩi ¼
X
n

hΩjAμðxÞjnihnjAνðyÞjΩi; (26)

where the completeness relation of the physical spectrum
has been used fjnig, i.e., pμjni ¼ pðnÞ

μ jni, and n represents
all quantum numbers specifying a state. Based only on
general arguments about invariance and the spectrum of
pμ, we will be able to determine the general expression of
the exact photon propagator. Furthermore, we use the

4Here we will maintain a discussion of the vector fields
embedded in a four-dimensional spacetime, but the derivation
for other fields and dimensionality is rather direct.
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translational invariance [3] of the theory
½AμðxÞ; pα� ¼ i∂αAμðxÞ, i.e., write AμðxÞ ¼ eipðx−x0Þ×
Aμðx0Þe−ipðx−x0Þ, to obtain the following expression of
the Wightman’s function:

hΩjAμðxÞAνðyÞjΩi ¼
Z

∞

0

dχρμνðχÞΔðþÞðx − y; χÞ; (27)

where ΔðþÞ is the positive frequency part of the Pauli-
Jordan function. The theory’s content, perturbative or
nonperturbative, is fully encoded on the spectral density
function ρμν. According to the Lorentz invariance, the
dependence of ρ on p is only through p2, in a such way
that allows one to write5

ρμνðq2Þτðq0Þ ¼ ð2πÞ3
X
n

δð4ÞðpðnÞ − qÞ

× hΩjAμð0ÞjnihnjAνð0ÞjΩi: (28)

This quantity is null for q2 < 0, and it is real and non-
negative for q2 ≥ 0. In possess of the Wightman’s function
(27), one can construct any propagator of its interest. For
instance, it follows that the exact Feynman propagator for
the gauge field in the Källén-Lehmann spectral represen-
tation (27) is given by

iDμνðk2Þ ¼
Z

∞

0

dχρμνðχÞ
1

k2 − χ − iϵ
: (29)

IV. SPECTRAL DENSITY FUNCTION:
PERTURBATIVE EXAMPLE

After having obtained the Yang-Feldman-Källén equa-
tions of the dynamical fields of theory at two and three
dimensions, and subsequently, as a brief review, derived the
main points of the spectral density function for the gauge
field and its relation with the Feynman propagator as well,
we are in position to perform an explicit calculation for the

one- and two-particle contributions. Moreover, we will
make no distinction between the usual and noncommuta-
tive contribution along our calculation, although it will be
rather transparent in our resulting expressions, in such a
way that the reader can follow how the noncommutative
contribution accounts for the usual one. In order for
unitarity to hold in the three-dimensional case, we will
assume that only θij ≠ 0 [6], while the time coordinate
commutes with the space coordinates.6

A. (1þ 1)-dimensional case

On the Källén-Lehmann formulation, the quantity to be
initially evaluated is the spectral density function (28).
Moreover, because of its tensor structure and Lorentz
invariance, ρμν can be written as

ρμνðk2Þ ¼
�
ημν −

kμkν

k2

�
ρðk2Þ; (30)

where we have introduced the scalar spectral function ρ.
The first example here lies in evaluating the one-particle
contribution,

ρμνðk2Þτðk0Þ
2π

¼
Z

dp1δ
ð2Þðp1 − kÞ

×
X
j

hΩjAμð0Þjp1; jihp1; jjAνð0ÞjΩi; (31)

in which the one-particle state, a photon carrying momen-
tum p1 and polarization j, is constructed such as
jp1; ji ¼ a†jðp1ÞjΩi. After some straightforward calcula-
tion, it follows that the scalar function ρ has the expression
ρð0Þðk2Þ ¼ 2δðk2Þ. Now, for the two-particle contribution,
we have to be cautious and pay attention to the theory’s
interaction structure. The general expression for such
contribution is given by

ρð1Þðk2Þτðk0Þ
2π

¼
Z

dp1dp2δ
ð2Þðk − p1 − p2Þ

X
n;m

hΩjAμð0Þjp1; n;p2; mihp1; n;p2; mjAμð0ÞjΩi;

¼
Z

dp1dp2

Z
d2zd2wδð2Þðk − p1 − p2ÞημνΔμσðretÞð−zÞΔνρðretÞð−wÞ

×
X
n;m

hΩjjinσ ðzÞjp1; n;p2; mihp1; n;p2; mjjinρ ðwÞjΩi: (32)

From the first to the second equality, we have made use
of the Yang-Feldman-Källén equation (22), where ðjinÞ
stands for the current (23) written in terms of the infields
and Δret

μσ is given by Eq. (24). Now, by analyzing the
interaction structure of the current (23), we see that it

contains, besides the usual QED term, a Yukawa kind
of term and a photon self-interaction as well, information
that leads us to construct the two-particle state taking
into account all the intermediate interaction in the

5Here, τ stands for the step function.

6Therefore, noncommutative quantum field theories in two-
dimensional spacetime are not unitary.
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following form:X
n;m

jp1; n;p2; mi ¼
X
i;j

a†i ðp1Þa†jðp2ÞjΩi

þ
X
r;s

d†rðp1Þb†sðp2ÞjΩi: (33)

The first term is characterized by two photons carrying
momenta and polarization as ðp1; iÞ and ðp2; jÞ, whereas the
second term corresponds to a fermion and antifermion pair
characterized by their momenta and spin ðp1; rÞ and ðp2; sÞ,
respectively. Therefore, from the above discussion, we find
the following expression for the sum of the matrix elements:X
n;m

hΩjjinσ ðzÞjp1; n;p2; mihp1; n;p2; mjjinρ ðwÞjΩi

¼
X
r;s

hΩjjinσ ðzÞjp1; r;p2; sihp1; r;p2; sjjinρ ðwÞjΩi

þ
X
i;j

hΩjjinσ ðzÞjp1; i;p2; jihp1; i;p2; jjjinρ ðwÞjΩi:

(34)

From the last result, we clearly see that we are left to
calculate four matrix elements: two of them are the usual
contribution while the others are related to the

noncommutative contribution. As an example, we shall
evaluate the matrix elements related with the fermionic
interaction. Making use of the explicit expression for the
current, for instance, we have

hΩjjinσ ðzÞjp1; r;p2; si ¼ ghΩjψ̄ inðzÞγσψ inðzÞjp1; r;p2; si
−
mg
2

hΩj ~∂σ½ψ̄ inψ in�ðzÞjp1; r;p2; si;
(35)

where we have introduced the notation ~aα ¼ aμθμα. Now,
using the free solutions of the (operator-valued) fields [29],
one obtains

hΩjjinσ ðzÞjp1; r;p2; si ¼ −
mg
ð2πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ep1
Ep2

s
e−izðp1þp2Þ

× v̄ðp1; rÞ
h
γσ þ

im
2
ð ~p1 þ ~p2Þσ

i
× uðp2; sÞ; (36)

with pk ¼ ðEpk
; ~pkÞ and Epk

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2
k þm2

q
. The remaining

matrix elements can be evaluated in a similar fashion. It
follows from the second term of Eq. (34), the matrix
elements from the photon self-interaction contribution,

ρð1Þself−intðk2Þτðk0Þ ¼
Z

dp1dp2

Z
d2zd2wδð2Þðk − p1 − p2ÞημνΔμσðretÞð−zÞΔνρðretÞð−wÞ

×
X
i;j

hΩjjinσ ðzÞjp1; i;p2; jihp1; i;p2; jjjinρ ðwÞjΩi;

¼ g2

4π

1

ðk2Þ2
Z

d2pτðp0Þδðp2Þτðk0 − p0Þδððk − pÞ2Þ
�
ðp∘pÞ − ðk∘kÞ − ðk∘pÞ þ 6

k2
ðk × pÞ2

�
; (37)

where ða∘bÞ ¼ aαθαλθλσbσ and ða × bÞ ¼ aαθαλbλ. Nevertheless, from a straightforward computation of the remaining
matrix elements, Eq. (34) is, thus, written as

ρð1Þðk2Þτðk0Þ ¼
g2

4πðk2Þ2
�
8m2

�
1þ ðk∘kÞ

16
ðk2 − 4m2Þ

� Z
d2pτðp0Þτðk0 − p0Þδðp2 −m2Þδððk − pÞ2 −m2Þ

þ
Z

d2pτðp0Þδðp2Þτðk0 − p0Þδððk − pÞ2Þ
�
ðp∘pÞ − ðk∘kÞ − ðk∘pÞ þ 6

k2
ðk × pÞ2

��
: (38)

Evaluating the momentum integral, we find the result for the propagator

iDðk2Þ ¼ 2

k2
þ g2m2

πk2

Z
∞

4m2

dχ
χ2ðk2 − χ − iϵÞ

½1þ ðk∘kÞ
16

ðχ − 4m2Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

χ

q þ g2θ2

4πk2

Z
∞

λ2

dχ
χðk2 − χ − iϵÞ ; (39)

finally yielding the expression

iDðk2Þ ¼ 2

k2
þ g2

8πk4

�
ð4þ k2θ2m2Þ −m2ð16 − k2θ2ðk2 − 4m2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ð4m2 − k2Þ
p csc−1

�
2mffiffiffiffiffi
k2

p
��

þ g2

4π

θ2

k4
ln

�
1 −

k2

λ2

�
: (40)
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It is the first term inside the brackets of Eq. (40) that,
when the limit m → 0 is taken and the vacuum polarization
bubbles are summed, gives rise to the well-known
Schwinger mass m2

A ¼ g2

π of the photon [12]. In order to
obtain a simplified expression of Eq. (40) and to compare
with a previous result [21], we have made use of the fact
that in a two-dimensional spacetime, the noncommutative
matrix θμν can be expressed as θμν ¼ θϵμν, where ϵμν is the
two-dimensional Levi-Civitá tensor. Therefore, with this
particular choice, we have obtained that the self-interaction
contribution is

iDð1Þ
self−intðk2Þ ¼

g2

4π

θ2

k4
ln

�
1 −

k2

λ2

�
: (41)

This result is in contrast with the one obtained previously in
Ref. [21], where it was discussed, through one-loop diagram
evaluation, that this contribution gives rise to a higher-order
term (when summed into the complete propagator) dynami-
cally generated by quantum corrections and that it is ultra-
violet finite. Moreover, in Ref. [21], the propagator behavior
in the infrared sector was not clear, which becomes clearly
important and transparent in the framework of dispersion
integrals. Furthermore, in order to make the integral infrared
finite, we had to introduce a finite λ photon mass in Eq. (39),
τðk2Þ → τðk2 − λ2Þ, therefore, showing that this term is, in
fact, a purely infrared effect, as it is the mechanism behind
the photon mass generation and that an analysis on that plays
an important role in the correct interpretation of this term
[19]. However, it is clear from the expression (41) that this
contribution is not actually a higher-order term in any
plausible limit when the smallness of λ is taken into account.

B. (2þ 1)-dimensional case

In the hope of learning useful things about the intriguing
well-recognized four-dimensional problems, a lot of

attention has been paid to the analysis of general properties
of the simple setting of three-dimensional field theories
over the years [30], in particular, QED3. For instance,
Ref. [16] provided an unambiguous answer to the question
about whether the dynamically generated photon mass is
different from zero [14]. Now we revisit this issue in light
of Ref. [16] but for a noncommutative theory looking at
whether a noncommutative contribution is present. The
calculation of the spectral density function on the QED3

follows the same lines as presented above for the two-
dimensional case. However, before starting the calculation,
let us recall important points about the general structure of
ρμν. It follows from the gauge and Lorentz invariance that
ρμν can be expressed as

ρμνðk2Þ ¼
�
ημν −

kμkν

k2

�
ρSðk2Þ þ iϵμνσkσρAðk2Þ; (42)

where it was added the scalar functions ρi to the symmetric
and antisymmetric sectors. Furthermore, these functions are
determined as follows:

ρSðk2Þ ¼
1

2
ρμμðk2Þ; (43)

ρAðk2Þ ¼ −
i

2k2
kλϵμνλρμνðk2Þ: (44)

For instance, for the one-particle contribution, one
obtains from Eqs. (28) and (43) the following result for
the symmetric form factor: ρð0ÞS ðk2Þ ¼ 3

2
δðk2 − μ2Þ. Now,

for the two-particle contribution, we make use again of the
same arguments presented above to construct the inter-
mediate state, which led to the expression (34). Therefore,
by the same arguments, it follows that the spectral density
function is given by

ρð1Þμνðk2Þτðk0Þ
ð2πÞ2 ¼

Z
d2p1d2p2

Z
d3zd3wδð3Þðk−p1−p2ÞΔμσðretÞð−zÞΔνρðretÞð−wÞ

×

�X
r;s

hΩjjinσ ðzÞjp1;r;p2;sihp1;r;p2;sjjinρ ðwÞjΩiþ
X
i;j

hΩjjinσ ðzÞjp1;i;p2;jihp1;i;p2;jjjinρ ðwÞjΩi
�
: (45)

Where j is given by Eq. (23) and the retarded Green’s function by Eq. (25). Next, by a straightforward but rather
lengthy calculation on the matrix elements, one can obtain the following expression for the symmetric two-particle
contribution (43):

ρð1ÞS ðk2Þτðk0Þ ¼
g2

2ð2πÞ2
1

ðk2 − μ2Þ
���

1þ 4m2

k2

�
þm2

4
ðk∘kÞ

�
1 −

4m2

k2

��

×
Z

d3pτðp0Þτðk0 − p0Þδðp2 −m2Þδððk − pÞ2 −m2Þ

−
Z

d3pτðp0Þτðk0 − p0Þδðp2Þδððk − pÞ2Þ½3ðk × pÞ2 − k2ðk∘kÞ�
�
; (46)
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whereas for the antisymmetric contribution (44), one finds

ρð1ÞA ðk2Þτðk0Þ ¼ −
ig2

ð2πÞ2
1

k2k2ðk2 − μ2Þ
Z

d3pτðp0Þτðk0 − p0Þδðp2 −m2Þδððk − pÞ2 −m2Þ

× ½2im2ϵλσπpλ ~kσkπ þmk2ð2i − ðk × pÞÞ�: (47)

Therefore, it follows, by solving the remaining momentum integration, the explicit expressions

ρð1ÞS ðk2Þ ¼ α

4

1ffiffiffiffiffi
k2

p
ðk2 − μ2Þ

�
11k2

8
ðk∘kÞτðk2Þ þ

��
1þ 4m2

k2

�
þm2

4
ðk∘kÞ

�
1 −

4m2

k2

��
τðk2 − 4m2Þ

�
; (48)

and

ρð1ÞA ðk2Þ ¼ α

k2ðk2 − μ2Þ
mffiffiffiffiffi
k2

p τðk2 − 4m2Þ; (49)

where α ¼ g2

4π. As said above, it is a well-known feature that
in three dimensions the photon field acquires a non-null
mass [16]; hence, we are interested in analyzing
here whether this mass of photon is changed due to NC
effects. By means of that, we consider the proper vacuum
polarization insertions,

ðD−1Þμν ¼ ðD−1Þμν − iΠμν; (50)

where the free propagator in a general gauge parameter ξ is

ðD−1Þμν ¼ ik2
�
ημν −

kμkν
k2

þ iμ
k2

ϵμνλkλ þ
1

ξ

kμkν
k2

�
; (51)

whereas the vacuum polarization tensor is

ΠμνðkÞ ¼
�
ημν −

kμkν
k2

�
ΠSðk2Þ þ iϵμνσkσΠAðk2Þ: (52)

Furthermore, the scalar polarization functions ΠS and ΠA
are related with the scalar spectral functions ρS and ρA by
means of the relation

ΠμνðkÞ ¼
Z

∞

0

dχσμνðχÞ
1

k2 − χ − iϵ
; (53)

where the spectral function σμν includes contributions of all
loops to ρμν. In order to compute D from Eq. (50), one can
make use of the following set of orthogonal projection
operators,

Pð1Þ
μν ¼ 1

2

�
ημν −

kμkν
k2

þ iϵμνλ
kλffiffiffiffiffi
k2

p
�
;

Pð2Þ
μν ¼ 1

2

�
ημν −

kμkν
k2

− iϵμνλ
kλffiffiffiffiffi
k2

p
�
;

Pð3Þ
μν ¼ kμkν

k2
; (54)

to, therefore, obtain

D−1 ¼ i
�
k2
�
1þ μffiffiffiffiffi

k2
p

�
− ΠS −

ffiffiffiffiffi
k2

p
ΠA

�
Pð1Þ

þ i

�
k2
�
1 −

μffiffiffiffiffi
k2

p
�
− ΠS þ

ffiffiffiffiffi
k2

p
ΠA

�
Pð2Þ

þ i
ξ
k2Pð3Þ: (55)

Finally, after some algebraic manipulation, one can find

iDλν ¼
1

k2 − Πðk2Þ
�
ηλν −

kλkν
k2

−
i
k2

ϵλνσkσ
μ − ΠA

1 − ΠS
k2

�
; (56)

for ξ ¼ 0, where we have defined

Πðk2Þ ¼ ΠS þ
ðμ − ΠAÞ2
1 − ΠS

k2
: (57)

It follows that, in the second-order perturbation theory, we
have the following expression for the photon mass

Πð1Þð0Þ ¼ Πð1Þ
S ð0Þ þ ðμ − Πð1Þ

A ð0ÞÞ2

1 − Πð1Þ
S ð0Þ
k2

: (58)

Now, by calculating the functions Πð1Þ
S and Πð1Þ

A through
Eqs. (53), (48), and (49) evaluating the integration in χ for
the region of interest k2 < 4m2, and, at last, expanding the
expressions to k2 → 0, we find
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lim
k2→0

Πð1Þ
S ðk2Þ
k2

¼ α

8μ3

�
2mμð4 −m2ðk∘kÞÞ

þ ½ðk∘kÞm2ð4m2 − μ2Þ

− 4ðμ2 þ 4m2Þ�coth−1
�
2m
μ

��
; (59)

and

lim
k2→0

Πð1Þ
A ðk2Þ ¼ −

g2

4π

2m
μ

coth−1
�
2m
μ

�
: (60)

In order to trace a parallel with the known result for QED
[16], we take the limit μ → 0 in the above expressions (59)
and (60). It follows, therefore, a non-null mass for the
photon field

Πð0Þ ¼ α2

1þ α
12m ½8þm2ðk∘kÞ� ≠ 0: (61)

Such expression reproduces the known result from QED3

for k2nc ¼ ðk∘kÞ → 0. In QED3 there is a proof in Ref. [31]
where it was shown that all contributions to the mass from
other graphs vanish identically; therefore, it is plausible to
say for QED3 that a nonperturbative mass is dynamically
generated. However, there is no known proof (or discus-
sion) of the noncommutative QED3 counterpart, which
makes it impossible for us to say anything about whether or
not the above result (61) is nonperturbative in nature.

V. CONCLUDING REMARKS

This paper presents a study of the two- and three-
dimensional NC quantum electrodynamics in light of the
Källén-Lehmann spectral representation. Our main interest
here is studying NC extensions of well-known quantum
field theories to look for NC effects on its deviations. These
two models QED2 and QED3 were extensively studied in
several areas of theoretical physics and have long been
recognized as laboratories of testing new ideas on a simpler
setting, especially on condensed matter and statistical
systems, for instance, the quantum Hall effect.
We begin by discussing NC quantum electrodynamics

defined on an ω-dimensional spacetime. After discussing
some of the symmetries present on the action, we make use
of the Seiberg-Witten map to determine an action. Interesting
features are present on that; for instance, it is due to the
noncommutativity of spacetime that there are nonlinear
terms on the field strength. Furthermore, for ω > 2, this
action also provides a suitable framework for studies on
Lorentz-violating extension. Next, restricting our attention to
the cases of two and three dimensions, it is possible to obtain
two Lagrangian functions from which we derive the respec-
tive equations of motion for the gauge and fermionic fields.
Furthermore, based on the Yang-Feldman-Källén formalism,

it is possible to find solutions to the Heisenberg operator
equations of motion— solutions that are an important
ingredient of the Källén-Lehmann representation.
On the Källén-Lehmann representation, we first introduce

the spectral density function for the gauge field followed by
a discussion on its general properties and present, finally, its
relation with the exact Feynman propagators as well. The
main aim of the present paper is to evaluate the one- and
two-particle contribution to the gauge field spectral function
in two and three dimensions. Based on that, for the photon
field, after calculating the two-particle contribution (g2

order), we obtain in two dimensions for the self-interaction
contribution an interesting result which differs from a
previous one [21], where it states that this same contribution
gives rise to a higher-derivative term. The main difference
we show here is that this term depends explicitly on the
infrared parameter, a photon mass λ, and in any plausible
limit taking into account the smallness of λ, this term does
not generate a higher-order term as stated in Ref. [21]. This
consists of an analysis that was not described earlier and
clearly plays an important role in order to obtain a consistent
interpretation and correct expression arising from the infra-
red sector, and it is automatically fulfilled in the dispersion
relation calculation. Furthermore, based on the well-known
result in three dimensions, where a dynamical mass for the
photon is generated from radiative calculation, we derive the
relation between the self-energy function with the propa-
gator pole in order to see whether and how the non-
commutativity affects the value of the photon mass.
For different reasons, much interest is still present in

studying lower-dimensional field theory in the most differ-
ent quantization process, since they always provide a rich
testing ground to study the most diverse ideas of more
realistic systems, especially in the well-recognized four-
dimensional problems. We still have interest in studying
some thermodynamical features of these systems [32], in
particular, three-dimensional NCQED. Moreover, nonrela-
tivistic field theories around Lifshitz points [33] with
anisotropic scaling between space and time have come
to our attention and certainly deserve to be discussed in
lower-dimensional theories carefully and in further detail
[34]. These issues and others will be further elaborated,
investigated, and reported elsewhere.
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APPENDIX A: NOTATION AND IDENTITIES

In this appendix, we fix our notation and review some
useful identities for two- and three-dimensional spacetime.
First, for two dimensions, our convention for the metric
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and the γ-matrices representation are

ημν ¼
�
1 0

0 −1
�
;

and

γ0 ¼ σ1; γ1 ¼ −iσ2; γ5 ¼ γ0γ1 ¼ σ3;

where fσig are the Pauli matrices. We have

½γμ; γν�þ ¼ 2ημν; ½γμ; γν� ¼ −2ϵμνγ5; (A1)

from which it follows γμγ5 ¼ ϵμνγ
ν and ϵμνϵ

αβ ¼
δαμδ

β
ν − δβμδαν . Moreover, for the three-dimensional case,

we have

ημν ¼
0
@ 1 0 0

0 −1 0

0 0 −1

1
A;

and

γ0 ¼ σ3; γ1 ¼ iσ1; γ2 ¼ iσ2:

We also have the algebra

½γμ; γν�þ ¼ 2ημν; ½γμ; γν� ¼ −2iϵμνλγλ; (A2)

and some relevant properties

γμγ
μ ¼ 3; ϵαβλϵ

αβλ ¼ 3!; (A3)

TrðγμÞ ¼ 0; TrðγμγνÞ ¼ 2ημν; TrðγμγνγσÞ ¼ −2iϵμνσ:
(A4)

APPENDIX B: INTEGRAL CALCULATION

In this appendix, we provide a calculation of some
relevant integrals. We have here three types of dispersion
integrals: a scalar, vector, and tensor type. First, the two-
dimensional integrals,

Ið1ÞðkÞ ¼
Z

d2pτðp0Þτðk0 − p0Þ

× δðp2 −m2Þδððk − pÞ2 −m2Þ; (B1)

for a timelike k, we can go to a Lorentz frame where
k ¼ ðk0; 0Þ. In this frame follows

Ið1Þðk0Þ ¼
Z

dp
2Ep

τðk0 − EpÞδðk20 − 2k0EpÞ; (B2)

where

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
¼ k0

2
;

which implies jpj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20=4 −m2

p
. Therefore, returning to

an arbitrary Lorentz frame, it follows that

Ið1ÞðkÞ ¼ 1

4k2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4m2

k2

q τðk2 − 4m2Þτðk0Þ: (B3)

Another relevant two-dimensional integral is

Ið2ÞðpÞ ¼
Z

d2kτðk0Þτðp0 − k0Þδðk2 −m2Þδððp − kÞ2Þ;
(B4)

and

¼
Z

dk
2Ek

τðp0 − EkÞδðp2
0 − 2p0Ek þm2Þ;

where we had taken again a timelike p in the form

p ¼ ðp0; 0Þ, and from the above expression follows jkj ¼
p2
0
−m2

2p0
and for p0 > 0, p2

0 −m2 > 0. Therefore,

¼ 1

4jp0j
τðp2

0 −m2Þτðp0Þ
Z

dEk

δðp2
0
þm2

2p0
− EkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
k −m2

q :

At last,

Ið2ÞðpÞ ¼ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 −m2Þ2

p τðp2 −m2Þτðp0Þ: (B5)

Moreover, for three dimensions, the scalar integrals are
obtained following the same steps as before. We evaluate,
thus, a vector and tensor integral for three dimensions. First,

Ið3Þμ ðkÞ ¼
Z

d3pτðp0Þτðk0 − p0Þ

× δðp2 −m2Þδððk − pÞ2 −m2Þpμ; (B6)

and it follows for μ ≠ 0 that Ið3Þμ ¼ 0 by symmetry. Thus,
we have

Ið3Þμ ðkÞ ¼ πkμ
4

ffiffiffiffiffi
k2

p τðk2 − 4m2Þτðk0Þ: (B7)

It also follows, without further complication, that

Ið4Þμ ðpÞ ¼
Z

d3kτðk0Þτðp0 − k0Þ

× δðk2 −m2Þδððp − kÞ2Þkμ;

¼ πpμ

4
ffiffiffiffiffi
p2

p �
1þm2

p2

�
τðp2 −m2Þτðp0Þ: (B8)

Now, the tensor integral,
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Ið5Þμν ðpÞ ¼
Z

d3qτðq0Þτðp0 − q0Þδðq2Þδððp − qÞ2Þqμqν

¼
�
−ημν þ 3

pμpν

p2

�
π

ffiffiffiffiffi
p2

p
16

τðp2Þτðp0Þ: (B9)

As remarked in the beginning of this appendix, we listed
and evaluated explicitly here some relevant dispersion
integrals. Moreover, it is worth of saying that the remaining
integrals are simpler and follow the same lines.
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