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The actual value of the quantum vacuum energy density is generally regarded as irrelevant in
nongravitational physics. However, this paper presents a nongravitational system where this value does
have physical significance. The system is a mirror with an internal degree of freedom that interacts with a
scalar field. We find that the force exerted on the mirror by the field vacuum undergoes wild fluctuations
with a magnitude proportional to the value of the vacuum energy density, which is mathematically infinite.
This infinite fluctuating force gives infinite instantaneous acceleration of the mirror. We show that this
infinite fluctuating force and infinite instantaneous acceleration make sense because they will not result in
infinite fluctuation of the mirror’s position. On the contrary, the mirror’s fluctuating motion will be
confined in a small region due to two special properties of the quantum vacuum: (1) the vacuum friction
that resists the mirror’s motion and (2) the strong anticorrelation of vacuum fluctuations that constantly
changes the direction of the mirror’s infinite instantaneous acceleration and thus cancels the effect of
infinities to make the fluctuation of the mirror’s position finite.
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I. INTRODUCTION

In quantum field theory, the vacuum, which is defined as
the state of lowest possible energy, is not really empty. Its
energy is not zero but infinite since it is associated with the
zero-point fluctuations of an infinite number of quantum
harmonic oscillators. On the one hand, it is generally
accepted that these zero-point fluctuations really exist in
nature [1] since their physical effects can be experimentally
observed in various phenomena such as the spontaneous
emission [2], the Lamb shift [3], and the Casimir effect [4].
On the other hand, the infinite value of the vacuum energy
is generally regarded as irrelevant since experiments
measure only energy differences from the ground state.
For example, the Casimir effect, which is the small
attractive force between two close parallel uncharged
conducting plates, happens because the Casimir vacuum
energy density decreases as the plates are moved closer, or,
in other words, it comes from a difference of vacuum
energies and in practical calculations the infinities cancel.
Nevertheless, the quantum vacuum never stops aston-

ishing us [5]. For example, when it comes to gravity, the
actual value of energy matters, not only the difference.
According to the principle of general relativity, the energy
momentum tensor is the source of the gravitational field.
So it is expected that the nonzero vacuum energy will
contribute to the cosmological constant, which explains the
accelerated expansion of the Universe. Unfortunately, as
we stated before, the vacuum energy is mathematically
infinite without renormalization and thus would cause a
huge cosmological constant for a cutoff at the Planck scale,
which disagrees with the tiny measured cosmological
constant by a factor of 10120 [6]. This discrepancy has

been called “the worst theoretical prediction in the history
of physics” [7]!
It is generally accepted that the actual value of the

vacuum energy matters only when taking gravity into
account; otherwise one can only measure the energy
differences. However, in this paper, we present a non-
gravitational physical system where the infinities like that
of the vacuum energy do matter. The system is a mirror
with an internal harmonic oscillator coupled to a real scalar
field in 1þ 1 dimension. We find that the fluctuations of
the force exerted on the mirror by the field are proportional
to the infinite value of the quantum vacuum energy of the
scalar field. This infinite force fluctuation leads to infinite
instantaneous acceleration of the mirror. However, unlike
the vacuum catastrophe in the cosmological constant
problem, it is shown that this infinite fluctuating force
makes sense because it will not result in infinite fluctuation
of the mirror’s position. On the contrary, the mirror’s
fluctuating motion will be confined in a small region
due to two special properties of the quantum vacuum:
the vacuum friction and the strong anticorrelation of
vacuum fluctuations. More precisely, this comes about
because (1) there exists vacuum friction (also infinite but
with much lower order divergence) to resist the mirror’s
motion and (2) the force is strongly anticorrelated in time
and the time average of the force has finite fluctuations.
Then, although the instantaneous acceleration is infinite, it
also keeps changing direction, which strongly cancels the
effect of infinities and makes the fluctuation of the mirror’s
position finite.
This paper is organized as follows. In Sec. II, we

introduce our special mirror model and explain how it
works in detail. In Sec. III, we calculate the force acting on
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the mirror by the field and its fluctuation. The infinite
fluctuations of this force, which are proportional to the
value of the vacuum energy, are given. In Sec. IV, we
calculate the fluctuation of the time average of the force,
and find a finite result, which is an indication that our
mirror’s fluctuating motion under the infinitely fluctuating
force might be finite. In Sec. V, we examine the frictional
force acting on the mirror due to radiation reaction. In
Sec. VI, we derive the mirror’s equation of motion. In
Sec. VII, we calculate the fluctuating motion of the mirror
and show that it is confined to a small region. In Sec. VIII,
we compare our mirror’s fluctuating motion with Brownian
motion and indicate the intrinsic differences between them.
In Sec. IX, we discuss our results and compare them with
other related works.
Units are chosen throughout such that c ¼ ℏ ¼ 1.

II. OUR MIRROR MODEL

A mirror is an object that reflects light. In classical
electrodynamics, light waves incident on a material induce
small oscillations of the individual particles, for example,
electrons in glass, causing each particle to radiate a small
secondary wave. All these waves add up together to give
reflected and refracted waves. We shall study the case of a
mirror that is interacting with a massless scalar field. One
often uses a perfectly reflecting boundary as a mirror
model, i.e., the mirror reflects all wave modes with
arbitrarily high frequencies, by imposing the boundary
condition that the scalar field vanishes on the surface of the
mirror [Fulling and Davies [8], Eq. (2.3); Berrell and
Davies [9], Eq. (4.43)]:

ϕ½t; XðtÞ� ¼ 0; (1)

where XðtÞ is the trajectory of the mirror. However, a
realistic mirror becomes transparent gradually for high
frequency wave modes. Some authors [10,11] add an
artificial frequency cutoff by assuming that modes of the
quantum field ϕ with frequencies higher than a specific
value are unaffected by the mirror. In this paper, we will not
adopt this model. Instead, we will adopt a mirror model in
which the transparency for high frequency wave modes
appears in a natural way.
In our model, the oscillating particle inside the mirror is

an harmonic oscillator with a natural frequency Ω. We
consider a 1þ 1 dimensional static mirror with an internal
dynamic degree of freedom q coupled to a scalar field ϕ.
The mirror is located at the position x ¼ 0 in the space of
the scalar field. The total action is given by

S¼ 1

2

ZZ ��∂ϕ
∂t

�
2

−
�∂ϕ
∂x

�
2
�
dtdx

þ1

2

Z ��
dq
dt

�
2

−Ω2q2
�
dtþ ϵ

Z
dϕðt;0Þ

dt
qðtÞdt; (2)

where ϵ is the coupling constant. Here it is necessary to
point out that the harmonic oscillator q is not oscillating “in
space”; it is an “internal” degree of freedom, i.e., a zero-
dimensional quantum field inside the mirror.
Varying the action (2) with respect to ϕ and q leads to the

Heisenberg equations of motion for the field ϕ and the
internal degree of freedom q:

ϕ̈ − ϕ00 ¼ −ϵ _qδðxÞ; (3)

q̈þΩ2q ¼ ϵ _ϕðt; 0Þ; (4)

where the dot _ denotes the time derivative and the prime 0
denotes the spatial derivative. The solution of (3) is of the
following form:

ϕðt; xÞ ¼ ϕ0ðt; xÞ −
ϵ

2
qðt − jxjÞ; (5)

where ϕ0ðt; xÞ is the solution of the homogeneous equation

ϕ̈0 − ϕ00
0 ¼ 0: (6)

One can easily check that (5) is the solution by noticing that

q00ðt − jxjÞ ¼ −
d
dx

ð _qðt − jxjÞsgnðxÞÞ
¼ q̈ðt − jxjÞ − 2_qðtÞδðxÞ; (7)

where the sign function sgnðxÞ is defined as

sgnðxÞ ¼
�

−1 if x < 0

1 if x > 0
:

Substituting (5) into the equation of motion for the internal
oscillator (4) gives

q̈þ ϵ2

2
_qþΩ2q ¼ ϵ _ϕ0ðt; 0Þ: (8)

This is exactly an equation of motion for a driven damped
harmonic oscillator with the natural frequency Ω, the
damping coefficient ϵ2

2
, and the driving force ϵ _ϕ0ðt; 0Þ.

In order to give a clear picture about how the mirror
works, we divide the incoming field ϕ0 into the right
moving part and the left moving part:

ϕ0 ¼ ϕR
0 þ ϕL

0 ; (9)

where ϕR
0 is the form of fðt − xÞ and ϕL

0 is the form of
gðtþ xÞ according to d’Alembert’s solution. This solution
has the properties

_ϕR
0 ¼ −ϕ0R

0 ; (10)

_ϕL
0 ¼ ϕ0L

0 ; (11)
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which are useful in our later calculations. Since (3) and (4)
are liner equations, the internal degree of freedom q can
also be divided into two parts correspondingly:

q ¼ qR þ qL; (12)

and the pairs ðϕR
0 ; q

RÞ and ðϕL
0 ; q

LÞ both obey the same
equations, (6) and (8). The solution (5) gives us a picture
about how the mirror reflects waves. As shown in Fig. 1,
the right moving wave ϕR

0 ðt; xÞ is incident on the mirror
from left. The mirror reflects a wave − ϵ

2
qRðtþ xÞ to the

left and lets a wave ϕR
0 − ϵ

2
qRðt − xÞ pass through to the

right. The mirror reflects the left moving wave ϕL
0 in

exactly the same way by just doing a “mirror reflection”
in Fig. 1.
Next, to understand the working mechanism of the

mirror in detail, we analyze the energy flows during the
reflection process by using the following formula for
energy flux:

T01ðt; xÞ ¼ −f _ϕðt; xÞϕ0ðt; xÞg; (13)

where T01 is the time-space component of the type (2,0)
stress-energy tensor of the field ϕ and the curly brackets fg
represent the symmetrization operation, which is defined as

fABg ¼ 1

2
ðABþ BAÞ; (14)

for any two operators A and B. This is irrelevant for
classical quantities but will be important later for quantum
operators. For simplicity, we first consider the case that
only the right moving wave ϕR

0 exists. Then the energy flux
near the left side of the mirror is

lim
x→0−

�
−
�
ϕR
0 ðt;xÞ−

ϵ

2
qRðtþxÞ

�
·
·

�
ϕR
0 ðt;xÞ−

ϵ

2
qRðtþxÞ

�0�

¼
�
ð− _ϕR

0ϕ
0R
0 ðt;0ÞÞ−

�
ϵ2

4
ð _qRÞ2ðtÞ

��
; (15)

where we have used (10) to eliminate the interference
terms. The energy flux near the right side of the mirror is

lim
x→0þ

�
−
�
ϕR
0 ðt;xÞ−

ϵ

2
qRðt−xÞ

�
·
·

�
ϕR
0 ðt;xÞ−

ϵ

2
qRðt−xÞ

�0�

¼
�
ð− _ϕR

0ϕ
0R
0 ðt;0Þ−ϵ _ϕR

0 ðt;0Þ _qRðtÞÞþ
�
ϵ2

4
ð _qRÞ2ðtÞ

��
;

(16)

where we have again used (10). The first term − _ϕR
0ϕ

0R
0

inside the parentheses of (15) represents energy that
impinges on the mirror from the left per unit of time.
The first term, − _ϕR

0ϕ
0R
0 − ϵ _ϕR

0 _qR, inside the parentheses of
(16) represents energy that directly passed through the
mirror per unit of time. The second term, ϵ

2

4
ð _qRÞ2, inside the

parentheses of (15) represents energy radiated to the left per
unit of time by the internal harmonic oscillator, which
creates the reflective power of the mirror. The same term,
ϵ2

4
ð _qRÞ2, inside the parentheses of (16) represents energy

radiated to the right per unit of time by the internal
harmonic oscillator. The radiated energy to the left and
to the right per unit of time add together to give the total
radiating power ϵ2

2
ð _qRÞ2. This radiating power is pumped

from the incoming wave ϕR
0 with the pumping power

ϵ _ϕR
0 _qR, which is just the difference between the incoming

energy flux − _ϕR
0ϕ

0R
0 and the energy flux directly passed

through the mirror − _ϕR
0ϕ

0R
0 − ϵ _ϕR

0 _qR. This reflection proc-
ess is illustrated in Fig. 2.

FIG. 1. A figure shows how our mirror works for the right
moving wave ϕR

0 . When it is incident on the mirror from left,
it induces oscillations of the internal harmonic oscillator. Then
the oscillator radiated a secondary wave qRðt − jxjÞ in both
direction equally. For the left moving wave ϕL

0 , the mirror works
exactly the same way due to symmetry.

FIG. 2. A figure shows that the incoming filed ϕ0 is impinging
on the mirror. Part of the field energy is absorbed by the internal
harmonic oscillator with absorbing power ϵ _ϕR

0 _qR. At the same
time, it is radiating energy out with the total power ϵ2

2
ð _qRÞ2.
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The reason why the mirror works this way is clear. In
fact, note that the internal harmonic oscillator behaves
according to the driven damped harmonic oscillation
equation (8). From this equation, we notice that the
pumping power ϵ _ϕR

0 _qR, which is the “driving force” ϵ _ϕR
0

times the “internal velocity” _qR, is exactly the absorbing
power from the external driving force. This absorbing
power is dissipating by the damping force due to the
radiation. The dissipated power is the “damping force” ϵ2

2
_qR

times the internal velocity _qR, which is exactly equal to the
total radiating power ϵ

2

2
ð _qRÞ2. So the energy radiated acts as

damping on the internal harmonic oscillator.
In summary, the working mechanism of the mirror is that

when the wave incidents on the mirror, part of its energy is
used to drive the oscillations of the internal harmonic
oscillator; at the same time, the internal harmonic oscillator
radiates the absorbed energy out equally to both directions.
That energy radiated back forms the reflected waves.
The mirror works the same way when considering that

the incoming field ϕ0 contains both the right moving part
ϕR
0 and the left moving part ϕL

0 . Similar calculations show
that the energy flux near the left side of the mirror is

�
ð− _ϕR

0ϕ
0R
0 ðt; 0ÞÞ − ð _ϕL

0ϕ
0L
0 ðt; 0Þ − ϵ _ϕL

0 ðt; 0Þ _qðtÞÞ

−
�
ϵ2

4
_q2ðtÞ

��
: (17)

The energy flux near the right side of the mirror is

�
−ð _ϕL

0ϕ
0L
0 ðt; 0ÞÞ þ ð− _ϕR

0ϕ
0R
0 ðt; 0Þ − ϵ _ϕR

0 ðt; 0Þ _qðtÞÞ

þ
�
ϵ2

4
_q2ðtÞ

��
: (18)

The interpretations of the above expressions are similar.
We illustrate them in Fig. 3.

Next, let us quantize the mirror system. We first go back
to the equation of motion (8) to analyze the motion of the
internal harmonic oscillator q in detail. In our model, the
mirror started to interact with the scalar field since t ¼ −∞.
So q’s initial oscillation has been completely dissipated due
to the friction term ϵ2

2
_q, and the solution of (8) is then fully

determined by the driving force ϵ _ϕ0ðt; 0Þ:

qðtÞ ¼ 1

ω

Z
t

−∞
e−aðt−t0Þ sinðωðt − t0ÞÞϵ _ϕ0ðt0; 0Þdt0; (19)

where a ¼ ϵ2

4
and ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − ϵ4

16

q
is the damped angular

frequency. We can quantize the mirror system by expanding
ϕ0 in terms of the sum of standard annihilation and creation
operators ak and a†k:

ϕ0ðt;xÞ¼
Z þ∞

−∞

dkffiffiffiffiffiffiffiffiffiffi
4πjkjp ðake−iðjkjt−kxÞ þa†ke

iðjkjt−kxÞÞ; (20)

where the integration over k from −∞ to 0 represents the
left moving modes ϕL

0 and from 0 to þ∞ the right moving
modes ϕR

0 . Inserting the above expansion (20) into (19)
gives

qðtÞ ¼ −iϵ
Z þ∞

−∞

ffiffiffiffiffiffi
jkj
4π

r �
ake−ijkjt

−k2 − i
2
ϵ2jkj þ Ω2

−
a†ke

ijkjt

−k2 þ i
2
ϵ2jkj þ Ω2

�
dk: (21)

If we evaluate the average radiating power hϵ2
2
_q2i

between frequencies k and kþ Δk when the system is
in vacuum state, which is defined as

akj0i ¼ 0; (22)

for any k ∈ ð−∞;þ∞Þ, we can see that

hpðkÞiΔk ¼ ϵ4

4π

k3

ðk2 − Ω2Þ2 þ ϵ4

4
k2

Δk → 0; (23)

as k → þ∞. Thus, our mirror becomes transparent for high
frequency modes. To see more clearly how this trans-
parency property appears, we substitute the annihilation
and creation operators ak and a

†
k in (20) by the position and

momentum operators xk and pk:

ak ¼
ffiffiffiffiffi
jkj
2

r �
xkþ i

pk

jkj
�
; a†k ¼

ffiffiffiffiffi
jkj
2

r �
xk− i

pk

jkj
�
: (24)

Then the driving force can be expressed as

FIG. 3. A figure shows that the incoming field ϕ0 is impinging
on the mirror from both directions. Part of the field energy is
absorbed by the internal harmonic oscillator with the total
absorbing power ϵ _ϕ0 _q. At the same time, it is radiating energy
out with the total power ϵ2

2
_q2.
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ϵ _ϕ0ðt;0Þ ¼ ϵ

Z þ∞

−∞

dkffiffiffiffiffiffi
2π

p jkj ·
�
−xk sinðjkjtÞþ

pk

jkjcosðjkjtÞ
�
;

(25)

which is a sum of an infinite number of harmonic
oscillation modes with different angular frequencies jkj.
Plugging (25) into (19) we see that each such mode with a
specific frequency jkj drives the motion of q independently
since there are no correlations between them. Driven by
these independent incoming modes, the damped harmonic
oscillator qwould be excited and eventually settled down to
a steady oscillation state, which is also a sum of an infinite
number of harmonic oscillations with different frequencies
and amplitudes:

qðtÞ ¼ ϵ

Z þ∞

−∞

dkffiffiffiffiffiffi
2π

p 1

½ðΩ2 − k2Þ2 þ ϵ4

4
k2�1=2 jkj

·

�
−xk sinðjkjt − αkÞ þ

pk

jkj cosðjkjt − αkÞ
�
; (26)

where αk ¼ arctanð ϵ2jkj
2ðΩ2−k2ÞÞ is the phase lag. Comparing the

integrands of the driving force (25) and the internal driven
damped harmonic oscillator (26), we observe that except
for the phase lag αk, the only difference is the factor

1

½ðΩ2−k2Þ2þϵ4

4
k2�1=2 in the latter expression. This factor shows

how the mirror becomes transparent for high frequency
wave modes. It is just the amplitude response of a damped
harmonic oscillator with the natural frequency Ω and
damping coefficient ϵ2

2
driven by a unit oscillating force

with the frequency k when it reaches the final steady state.
As shown in Fig. 4, the internal oscillator has almost no

response for high frequency driving modes. It is this
insensitivity that causes the mirror’s transparency for high
frequency wave modes.

III. THE FORCE ON THE MIRROR AND ITS
INFINITE FLUCTUATION

In the last section, we introduced our mirror model,
which is transparent for high frequency wave modes. In this
section we will study the force acting on the mirror and
its fluctuation when the system is in the vacuum state,
which is defined in (22).
Due to quantum fluctuations, there is a net fluctuating

force acting on the mirror by the field. As we see from the
last section, when the left moving field ϕL

0 and the right
moving field ϕR

0 incident on the mirror, part of the field
energy is absorbed by the internal harmonic oscillator and
then the oscillator radiates them out. In this process, the
mirror is receiving and sending momentum. On average,
the momentum received and sent is symmetric for both
sides and thus there is no net force acting on the mirror.
However, due to quantum fluctuations, the symmetry
between left and right sides can be broken. In other words,
sometimes the mirror absorbs more momentum from one
side than the other, which produces a net force on the
mirror.
The standard definition of the force is

FðtÞ ¼ lim
x→0þ

ðT11ðx−Þ − T11ðxþÞÞ; (27)

where xþ ¼ ðt; xÞ and x− ¼ ðt;−xÞ (x ⩾ 0) are two space-
time points that are symmetrically located on the two sides
of the mirror and T11 is the space-space component of
stress-energy tensor of type (2,0) of the field ϕ:

T11ðt; xÞ ¼ 1

2
ð _ϕ2ðt; xÞ þ ϕ02ðt; xÞÞ: (28)

From (5), we can get the time and space derivatives of the
field ϕ,

_ϕðt; xÞ ¼ _ϕ0ðt; xÞ −
ϵ

2
_qðt − jxjÞ; (29)

ϕ0ðt; xÞ ¼ ϕ0
0ðt; xÞ þ

ϵ

2
_qðt − jxjÞsgnðxÞ: (30)

Inserting (28), (29), and (30) into (27) and noticing that
when x approaches 0, terms of _ϕ2ðx−Þ − _ϕ2ðxþÞ go to zero
due to continuity of _ϕ, we have

FðtÞ ¼ f−ϵϕ0
0ðt; 0Þ _qðtÞg; (31)

where the curly brackets fg are the symmetrization
operation defined in (14). This result is easy to understand.

FIG. 4. Steady state variation of amplitude with driving
frequency. This graph shows that the internal harmonic oscillator
responds weakly to high frequency driven modes.
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In fact, decomposing ϕ0 in the above expression by the sum
of the left moving modes ϕL

0 and the right moving modes
ϕR
0 (9), and using the properties (10) and (11), the above

expression becomes

FðtÞ ¼ fϵ _ϕR
0 ðt; 0Þ _qðtÞ − ϵ _ϕL

0 ðt; 0Þ _qðtÞg: (32)

From Fig. 3 we know that ϵ _ϕR
0 _q and ϵ _ϕL

0 _q are energies
absorbed per unit of time by the mirror from left and from
right, respectively. Since the field ϕ0 is massless, the energy
and momentum are the same up to a sign. Thus, the above
formula is just a manifestation that the force is a sum of
momenta absorbed but is also a difference between the
energy absorbed from two directions.
From the field expansion (20) and the solution of the

damped oscillator (21), it is easy to get

hϕ0
0ðt; 0Þ _qðtÞi ¼ −i

ϵ

4π

Z þ∞

−∞

kjkj
−k2 þ i

2
ϵ2jkj þ Ω2

dk

¼ 0: (33)

Thus, the expectation value of the force

hFðtÞi≡ 0: (34)

This result is what we expected due to the symmetry of the
scalar field: on average, the mirror absorbs equal amounts
of momentum from both sides. Next, we calculate the
fluctuation of this force in the vacuum state, which is
defined as

σFðtÞ ¼ hF2ðtÞi − hFðtÞi2: (35)

Inserting (31) into the above equation gives

σFðtÞ ¼
ϵ2

4
ðhϕ0

0ðt; 0Þ _qðtÞϕ0
0ðt; 0Þ _qðtÞi þ hϕ0

0ðt; 0Þ _qðtÞ _qðtÞϕ0
0ðt; 0Þi þ h _qðtÞϕ0

0ðt; 0Þϕ0
0ðt; 0Þ _qðtÞi

þ h _qðtÞϕ0
0ðt; 0Þ _qðtÞϕ0

0ðt; 0Þi − hϕ0
0ðt; 0Þ _qðtÞi2 − h _qðtÞϕ0

0ðt; 0Þi2 − 2hϕ0
0ðt; 0Þ _qðtÞih _qðtÞϕ0

0ðt; 0ÞiÞ: (36)

We can use Wick’s theorem to simplify the above equation.
In the case we are considering, for example, the first term in
the above equation can be expanded as

hϕ0
0ðt; 0Þ _qðtÞϕ0

0ðt; 0Þ _qðtÞi ¼ hϕ0
0ðt; 0Þ _qðtÞihϕ0

0ðt; 0Þ _qðtÞi
þ hϕ0

0ðt; 0Þϕ0
0ðt; 0Þih _qðtÞ _qðtÞi

þ hϕ0
0ðt; 0Þ _qðtÞih _qðtÞϕ0

0ðt; 0Þi:
(37)

One might note that the last two lines of (36) can be deleted
because of (33). We keep them there because they can also
be canceled exactly by Wick’s expansion of the first four
lines. After these cancellations we arrive at

σFðtÞ¼ϵ2ðhϕ0
0ðt;0Þ2ih _qðtÞ2iþhϕ0

0ðt;0Þ _qðtÞih _qðtÞϕ0
0ðt;0ÞiÞ:

(38)

The second term of the above equation is just zero [see
Eq. (33)]. Also note that, in the 1þ 1 dimension, the term
hϕ0

0
2i ¼ 1

2
ðh _ϕ0

2i þ hϕ0
0
2iÞ ¼ hT00i ¼ hT11i, where hT00i

is the expectation value of vacuum energy density and
hT11i is the expectation value of vacuum stress. So we
obtain our final result for the fluctuation of force acting on
the mirror:

σFðtÞ ¼ ϵ2h _qðtÞ2ihT00i; (39)

which is proportional to the product of logarithmically
divergent internal kinetic energy,

h _q2i ¼ ϵ2

4π

Z þ∞

−∞
dk

jkj3
ðk2 − Ω2Þ2 þ ϵ4

4
k2

; (40)

and the k2 divergent vacuum energy density,

hT00i ¼
1

4π

Z þ∞

−∞
jkjdk ¼ ∞: (41)

Here we see that the infinite value of the vacuum energy
density does have physical significance. It enters the
expression (39) to characterize the fluctuation of the force
acting on the mirror. Note that there is no gravitational
interaction included in our mirror system. Therefore, this is
an example of a nongravitational system where it is not the
energy difference from the vacuum but the actual value of
the vacuum energy that has physical significance.
As shown in (41), the infinity that appears in the value of

the vacuum energy density is an ultraviolet divergence,
i.e., it comes from the arbitrarily high frequency field modes.
It is interesting that although the mirror is not sensitive to
the high frequency field modes, the infinite value of the
vacuum energy density still enters our expression (39).
Infinite quantities are usually regarded as unphysical and

some regularizations and renormalizations are needed. So it
seems that the infinite value of the vacuum energy density
hT00i in (39) does not make sense, which is similar to what
happened in the cosmological constant problem. However,
it will be shown in the following sections that this infinite
value does make sense because of two special properties of
the quantum vacuum: the vacuum friction and the strong
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anticorrelation of vacuum fluctuations. In other words, the
fluctuation of the force acting on the mirror at an instant of
time is indeed infinite, but the mirror’s position does not
undergo infinite fluctuation. On the contrary, its fluctuating
motion will be confined in a small region.

IV. THE FINITE FLUCTUATION
OF AVERAGE FORCE

Before allowing the mirror to start moving due to
the fluctuating force acting on it, we first calculate the
fluctuation of the time average of the force acting on the
static mirror. The first discussion of the average force
fluctuation was given by Barton [12,13]. The reasons to do
this are (1) the force only determines the instantaneous
acceleration of the mirror while the mirror’s position is
determined by the force integrated over time, i.e., it is
determined by the time accumulation of the force. So we
hope we can get some insight by first studying the
fluctuation of the average force because the average is a
kind of time accumulation; and (2) any apparatus meas-
uring the force cannot respond instantaneously. What the
apparatus really measured was not the force at an instant of
time but the average in a small time interval. If we finally
get a finite result for the fluctuation of the average force,

there is the possibility that the fluctuating motion of the
mirror is finite.
We will use the Gaussian function 1ffiffiffiffiffiffiffi

2πσ2
p e−

ðt0−tÞ2
2σ2 to define

the time average of the force as

F̄ðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
Z þ∞

−∞
Fðt0Þe−ðt0−tÞ2

2σ2 dt0: (42)

Its fluctuation is defined as

σF̄ðtÞ ¼ hF̄ðtÞ2i − hF̄ðtÞi2: (43)

Inserting (42) into the above definition gives

σF̄ðtÞ ¼
1

2πσ2

Z þ∞

−∞

Z þ∞

−∞
e−

ðt1−tÞ2þðt2−tÞ2
2σ2

· CorrðFðt1Þ; Fðt2ÞÞdt1dt2; (44)

where

CorrðFðt1Þ;Fðt2ÞÞ¼ ½hFðt1ÞFðt2Þi− hFðt1ÞihFðt2Þi� (45)

is the correlation function between forces F at times t1 and
t2. Next, let us calculate the correlation function (45).
Plugging (31) into the definition (45) gives

CorrðFðt1Þ; Fðt2ÞÞ ¼
ϵ2

4
ðhϕ0

0ðt1; 0Þ _qðt1Þϕ0
0ðt2; 0Þ _qðt2Þi þ hϕ0

0ðt1; 0Þ _qðt1Þ _qðt2Þϕ0
0ðt2; 0Þi þ h _qðt1Þϕ0

0ðt1; 0Þϕ0
0ðt2; 0Þ _qðt2Þi

þ h _qðt1Þϕ0
0ðt1; 0Þ _qðt2Þϕ0

0ðt2; 0Þi − hϕ0
0ðt1; 0Þ _qðt1Þihϕ0

0ðt2; 0Þ _qðt2Þi − hϕ0
0ðt1; 0Þ _qðt1Þih _qðt2Þϕ0

0ðt2; 0Þi
− h _qðt1Þϕ0

0ðt1; 0Þihϕ0
0ðt2; 0Þ _qðt2Þi − h _qðt1Þϕ0

0ðt1; 0Þih _qðt2Þϕ0
0ðt2; 0ÞiÞ: (46)

Similar to the calculation of fluctuation of the force σF, we
employ Wick’s theorem to reduce the products of four
operators to the sum of products of pairs of operators to
simplify the above equation. For example, the first term can
be expanded as

hϕ0
0ðt1; 0Þ _qðt1Þϕ0

0ðt2; 0Þ _qðt2Þi
¼ hϕ0

0ðt1; 0Þ _qðt1Þihϕ0
0ðt2; 0Þ _qðt2Þi

þ hϕ0
0ðt1; 0Þϕ0

0ðt2; 0Þih _qðt1Þ _qðt2Þi
þ hϕ0

0ðt1; 0Þ _qðt2Þih _qðt1Þϕ0
0ðt2; 0Þi: (47)

Applying Wick’s theorem in (46) gives

CorrðFðt1Þ; Fðt2ÞÞ ¼ ϵ2ðhϕ0
0ðt1; 0Þϕ0

0ðt2; 0Þih _qðt1Þ _qðt2Þi
þ hϕ0

0ðt1; 0Þ _qðt2Þih _qðt1Þϕ0
0ðt2; 0ÞiÞ:

(48)

From (20) and (21) we can easily obtain

hϕ0
0ðt1; 0Þϕ0

0ðt2; 0Þi ¼
1

4π

Z þ∞

−∞
jkje−ijkjðt1−t2Þdk; (49)

h _qðt1Þ _qðt2Þi ¼
ϵ2

4π

Z þ∞

−∞

jkj3
ðk2 −Ω2Þ2 þ ϵ4

4
k2

e−ijkjðt1−t2Þdk;

(50)

hϕ0
0ðt1; 0Þ _qðt2Þi ¼ −i

ϵ

4π

Z þ∞

−∞

kjkj
−k2 þ i

2
ϵ2jkj þ Ω2

× e−ijkjðt1−t2Þdk: (51)

Thus, we reach an expression for the correlation function,
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CorrðFðt1Þ; Fðt2ÞÞ ¼
ϵ4

16π2

�Z þ∞

−∞
jkje−ijkjðt1−t2Þdk ·

Z þ∞

−∞

jk0j3
ðk02 − Ω2Þ2 þ ϵ4

4
k02

e−ijk0jðt1−t2Þdk0

þ
Z þ∞

−∞

kjkj
−k2 þ i

2
ϵ2jkj þ Ω2

e−ijkjðt1−t2Þdk ·
Z þ∞

−∞

k0jk0j
−k02 − i

2
ϵ2jk0j þ Ω2

e−ijk0jðt1−t2Þdk0
�
: (52)

Plugging (52) into (44) and changing the order of integration gives

σF̄ðtÞ ¼
ϵ4

16π2
·

1

2πσ2

Z þ∞

−∞

Z þ∞

−∞
jkj · jk0j3

ðk02 − Ω2Þ2 þ ϵ4

4
k02

dkdk0
Z þ∞

−∞
e−

ðt1−tÞ2
2σ2

−iðjkjþjk0jÞt1dt1

Z þ∞

−∞
e−

ðt2−tÞ2
2σ2

þiðjkjþjk0jÞt2dt2

¼ ϵ4

16π2

Z þ∞

−∞

Z þ∞

−∞

jkjjk0j3
ðk02 −Ω2Þ2 þ ϵ4

4
k02

· e−σ
2ðjkjþjk0jÞ2dkdk0

≤
ϵ4

16π2

Z þ∞

−∞
jkje−σ2k2dk ·

Z þ∞

−∞

jk0j3
ðk02 −Ω2Þ2 þ ϵ4

4
k02

e−σ
2k02dk0 < þ∞: (53)

Thus, we get a finite result for the fluctuation of the time-
averaged force. The finiteness of the fluctuation of the force
average is closely related to the strong anticorrelation
property of the vacuum fluctuations. Detailed analysis of
this property will be given in Sec. VIII.

V. THE VACUUM FRICTION: DAMPING FORCE
WHEN THE MIRROR STARTS TO MOVE

In this section we allow the mirror to begin to move. We
are interested in the question of how the mirror will move if
we release it at time t ¼ 0. One might naively think that the
mirror’s position will fluctuate infinitely under the infinite
fluctuating force, although such a result must be unphys-
ical. However, as we stated in the beginning of the last
section, the force can only determine the instantaneous
acceleration of the mirror, while the position of the mirror is
determined by the time integration of the force. We see
from the last section that the fluctuation of average force is
finite. This gives a hope that the fluctuation of the position
of the mirror, which is driven by the force exerted on it,
might be finite. To calculate this position fluctuation,
i.e., the mean-squared displacement, we need to figure
out the equation of motion of the mirror.
P. C.W. Davies has suggested that the quantum vacuum

may in certain circumstances be regarded as a type of fluid
medium exhibiting friction [14]. We expect that when our
mirror starts to move, it will experience a frictional force
damping its motion. This force is important in constructing
the equation of motion. This section will give the detailed
analysis about this force, and the construction of the
equation of motion will be given in the next section.
Unlike in the previous sections where we held the mirror

fixed at the location x ¼ 0, in this section we specify the
mirror move along a generic trajectory and investigate the
damping force acting on it by the field.

Now let us calculate the damping force in detail.
Consider the mirror is moving along a generic trajectory
x ¼ XðtðτÞÞ, where τ is the proper time associated with this
trajectory:

tðτÞ ¼
Z

τ

0

γðtðτ0ÞÞdτ0; (54)

where γðtÞ ¼ 1ffiffiffiffiffiffiffiffi
1− _X2

p is the Lorentz factor and _ denotes the

derivative with respect to the coordinate time t as before,

i.e., _XðtÞ ¼ dXðtÞ
dt . The action of the moving mirror is

S ¼ 1

2

ZZ ��∂ϕ
∂t

�
2

−
�∂ϕ
∂x

�
2
�
dtdx

þ 1

2

Z ��
dq
dτ

�
2

−Ω2q2
�
dτ

þ ϵ

Z
dϕ
dτ

ðtðτÞ; XðtðτÞÞÞqðtðτÞÞdτ: (55)

Note that X and q are different things. X is the mirror’s
position, which is moving “in space,”while q is the mirror’s
“internal” degree of freedom, which is not oscillating
“in space.”
The equations of motion for the field ϕ and the internal

harmonic oscillator q now become

ϕ̈ − ϕ00 ¼ −ϵ _qδðx − XðtÞÞ; (56)

d2q
dτ2

þ Ω2q2 ¼ ϵ
dϕ
dτ

ðtðτÞ; XðtðτÞÞÞ: (57)

Similar to the static mirror case, the solution of (56) is of the
following form:
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ϕðt; xÞ ¼ ϕ0ðt; xÞ −
ϵ

2
qðt0Þ; (58)

where the retarded time t0 is determined by the following
equation:

t − t0 ¼ jx − Xðt0Þj: (59)

Substituting (58) into the equation of motion for the
internal harmonic oscillator (57) gives

d2q
dτ2

þ ϵ2

2

dq
dτ

þ Ω2q ¼ ϵ
dϕ0

dτ
ðtðτÞ; XðtðτÞÞÞ: (60)

Similar to solution (19) for the static mirror, the solution of
the above equation of motion (60) of the internal driven
damped harmonic oscillator is

qðtðτÞÞ ¼ 1

ω

Z
τ

−∞
e−aðτ−τ0Þ sinðωðτ − τ0ÞÞ

· ϵ
dϕ0

dτ0
ðtðτ0Þ; Xðtðτ0ÞÞÞdτ0; (61)

where a ¼ ϵ2

4
and ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − ϵ4

16

q
are the same as those in

(19). One key difference of the solution (61) from the static
case (19) is that when the mirror moves, the driving force
changes, which could result in the deviation of the q’s
motion from its steady oscillation state (21) or (26).
Here we consider the force in the mirror’s instantaneous

rest frame. In this frame, the force acting on each side of the
mirror by the field is in the form of Tμνxμxν, where xμ ¼
γð _X; 1Þ is a unit space-like vector that is orthogonal to the
four velocity of the mirror. Thus, the force in the moving
mirror’s instantaneous rest frame is defined as

FðtÞ ¼ lim
x→0þ

ðTμνðx−Þxμxν − TμνðxþÞxμxνÞ

¼ γ2 lim
x→0þ

ððT00ðx−Þ− T00ðxþÞÞ _X2

þ 2ðT01ðx−Þ− T01ðxþÞÞ _Xþ ðT11ðx−Þ− T11ðxþÞÞÞ;
(62)

where x− ¼ ðt; XðtÞ − xÞ and xþ ¼ ðt; XðtÞ þ xÞ (x ⩾ 0)
are two spacetime points that are symmetrically located on
the two sides of the mirror. T00, T01, and T11 are
components of the stress-energy tensor of the type (0,2),
which in ðt; xÞ coordinates are defined as

T00 ¼
1

2
ð _ϕ2ðt; xÞ þ ϕ02ðt; xÞÞ; (63)

T01 ¼
1

2
ð _ϕðt; xÞϕ0ðt; xÞ þ ϕ0ðt; xÞ _ϕðt; xÞÞ; (64)

T11 ¼
1

2
ð _ϕ2ðt; xÞ þ ϕ02ðt; xÞÞ: (65)

From (58) and (59) we can get the time and space
derivatives of the field ϕ:

_ϕðt; xÞ ¼
� _ϕ0ðt; xÞ − ϵ

2
ð _qðt0Þ
1þ _Xðt0ÞÞ; if x < Xðt0Þ

_ϕ0ðt; xÞ − ϵ
2
ð _qðt0Þ
1− _Xðt0ÞÞ; if x > Xðt0Þ (66)

ϕ0ðt; xÞ ¼
�ϕ0

0ðt; xÞ − ϵ
2
ð _qðt0Þ
1þ _Xðt0ÞÞ; if x < Xðt0Þ

ϕ0
0ðt; xÞ þ ϵ

2
ð _qðt0Þ
1− _Xðt0ÞÞ; if x > Xðt0Þ: (67)

Similar to the static mirror case, we can first insert (66) and
(67) into (63), (64), and (65) to express the stress-energy
tensor components in terms of ϕ0 and q, then plug these
expressions into (62) to get the force. The result is

FðtÞ ¼ −ϵγ2f _qðtÞðϕ0
0ðt; XðtÞÞ þ _X _ϕ0ðt; XðtÞÞÞg; (68)

where the curly brackets fg represents the symmetrization
operation (14) as before. This formula can be understood as
the following: remember that the force we are calculating is
evaluated in the mirror’s instantaneous rest frame, which
should have the same form as the static mirror case (31)
when expressed in terms of its own instantaneous rest frame
coordinates ðt0; x0Þ (see Fig. 6):

Fðt0Þ ¼ −ϵ
�∂ϕ0ðt0; 0Þ

∂x0 ·
dqðt0Þ
dt0

�
: (69)

Changing the above expression (69) from the ðt0; x0Þ
coordinate system to the laboratory coordinate system
ðt; xÞ leads to exactly the force expression (68), which is
expressed in terms of laboratory frame coordinates.
Next, we can insert the expression (20) for the incident

wave ϕ0 and the expression (61) for the internal degree of
freedom q into (68) to get the mean motional force exerted
on the mirror by the field when the mirror is moving along a
generic trajectory x ¼ XðtðτÞÞ. The result is

hFðtðτÞÞi¼−
1

2

ϵ2

4π
γðtðτÞÞ 1

ω

Z þ∞

−∞
dk

Z
τ

−∞
dτ0γðtðτ0ÞÞ½−kð1þ _XðtðτÞÞ _Xðtðτ0ÞÞÞþ jkjð _XðtðτÞÞþ _Xðtðτ0ÞÞÞ�

× ½−asinðωðτ− τ0ÞÞþωcosðωðτ− τ0ÞÞ�exp
�
−aðτ− τ0Þþ i

�
jkj

Z
τ

τ0
γðtðτ00ÞÞdτ00−kðXðtðτÞÞ−Xðtðτ0ÞÞÞ

��
þ c:c:

(70)
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The above expression for the force is quite complicated.
However, remember that what we are interested in is the
damping force when the mirror starts to move due to the
quantum fluctuations of the field after we release it. So let
us consider a motion in which the mirror initially stays at
the origin for a long time and then starts to move with
constant acceleration α along the following trajectory when
t ≥ 0 (as shown in Fig. 5):

�
t ¼ 1

α sinhðατÞ;
x ¼ 1

α ½coshðατÞ − 1�; (71)

where τ is the proper time of the trajectory as before.
Plugging this trajectory into (70), we obtain that, when the
velocity changes from 0 to v ≈ ατ ≪ 1, the mean motional
force is

hFi ¼
�
−
ϵ4

4π

Z þ∞

0

k3dk

ðk2 −Ω2Þ2 þ ϵ4

4
k2

�
v: (72)

The above formula shows that the quantum vacuum does
serve as a fluid medium in the sense that our mirror, if it
initially stays at rest, would experience a friction force
when it starts to move.
Here, we emphasize that the v in the above formula (72)

should be understood as the velocity change due to the
acceleration from the mirror’s original rest frame in which
the internal harmonic oscillator was in a steady state
equilibrium. For the constantly moving mirror trajectory
XðtÞ≡ vt, the formula (72) dose not apply and the general

motional force expression (70) gives zero force. This zero
force is just the requirement of Lorentz invariance.
In fact, the friction force (72) arises from theDoppler shift

of the vacuum modes due to the changing velocity of the
mirror. Referring back to Fig. 3, the mirror absorbs both the
left moving field modes (wave number k < 0) and the right
moving fieldmodes (wave number k > 0). The rate at which
the mirror absorbs energy from a mode depends on the
internal velocity of the internal oscillator _q. Because of the
linearity of the system and the lack of any correlations
between these modes, the only component of the oscillator
motion that is important is the motion in q induced by that
same mode earlier in time. If the mirror starts to move, any
mode now will be Doppler shifted with respected to that
same mode earlier—modes from the trailing side are
redshifted and the other blueshifted. Because only the
internal motion caused by that mode earlier is connected
with themodenow,only thatmodewill feedor extract energy
from that component of its motion. Thus, different amounts
of energy (and thus of momentum) will be absorbed from
the two directions. The emitted momenta, on the other hand,
are always balanced between the two sides and supply no
force to the mirror (see the top line in Fig. 3).
For example, if the mirror moves to the right with

velocity v, the right moving modes with frequency jkj will
be redshifted to the frequency ð1−v

1þvÞ1=2jkj and the left
moving modes with the same frequency will be blueshifted
to the frequency ð1þv

1−vÞ1=2jkj. So the symmetry between the
left moving modes and right moving modes is broken. This
asymmetry will result in the force imbalance since the
mirror will absorb more momentum from left moving
modes than from right moving modes, which gives a net
force to the left to resist the mirror’s motion. To understand
this in detail, let us investigate the following trajectory (as
shown in Fig. 6):

XðtÞ ¼
�
0; if t < 0

vt; if t ≥ 0.
(73)

For this trajectory, the mirror is initially static until it starts
to move with constant velocity at time t ¼ 0. Direct
calculation using the general mean motional force formula
(70) shows that when t ≥ 0, the friction force is

hFðtðτÞÞi ¼ −
1

2

ϵ2

4π

1

ω
e−aτ

Z þ∞

0

k

��
1þ v
1− v

�1
2

eikð
1þv
1−vÞ

1
2τ

−
�
1− v
1þ v

�1
2

eikð
1−v
1þvÞ

1
2τ

�

·
−ikω cosðωτÞ− ðΩ2 − i

4
ϵ2kÞ sinðωτÞ

Ω2 − k2 − i
2
ϵ2k

dkþ c:c:

(74)

Note that the exponential factor e−aτ appearing in the above
expression implies that after a long time the force would

FIG. 5. Trajectory for a mirror that initially stays at rest and then
starts to move with constant acceleration α at t ¼ 0.
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decrease to zero. This is just the requirement of Lorentz
invariance, since after long times the mirror’s memory
would fade away and it would not remember what it did
long before and thus can be regarded as a moving mirror
with constant velocity v, which should experience zero
friction force.
What is interesting is that the force at the time t ¼ 0 is

hFð0Þi ¼ −
ϵ4

8π

��
1þ v
1 − v

�1
2

−
�
1 − v
1þ v

�1
2

�

·
Z þ∞

0

k3dk
ðΩ2 − k2Þ2 þ 1

4
ϵ4k2

; (75)

which is in agreement with our previous result (72) at the
small velocity approximation. Here, the two factors ð1þv

1−vÞ
1
2

and ð1−v
1þvÞ

1
2 are exactly relativistic Doppler shift factors for

an observer moving toward or away from a light source
with velocity v.
Next, we reproduce the above result (75) by a different

method to reveal the role played by the Doppler effect.
We will consider everything in the mirror’s instantaneous
rest frame.
For the trajectory (73), when t < 0, the mirror’s rest

frame is the ðt; xÞ coordinate system and the field ϕ0 is
expanded as the sum of positive frequency modes e−iðjkjt−kxÞffiffiffiffiffiffiffi

4πjkj
p

with coefficients ak and negative frequency modes eþiðjkjt−kxÞffiffiffiffiffiffiffi
4πjkj

p
with coefficients a†k [see (20)]. When t ≥ 0, the mirror’s rest
frame is the ðt0; x0Þ coordinate system [see Fig. (6)] and the
same field ϕ0 is expanded as

ϕ0ðt0;x0Þ ¼
Z þ∞

−∞

dk0ffiffiffiffiffiffiffiffiffiffiffiffi
4πjk0jp ðbk0e−iðjk0jt0−k0x0Þ þb†k0e

iðjk0jt0−k0x0ÞÞ;
(76)

where the wave numbers k0 in the ðt0; x0Þ coordinate system
are Doppler shifted from the wave numbers k in the ðt; xÞ
system to

k0 ¼
� ð1þv

1−vÞ1=2k; when k < 0

ð1−v
1þvÞ1=2k; when k > 0;

(77)

and correspondingly, the operator coefficients bk0 and ak
are related by

bk0 ¼
� ð1−v

1þvÞ1=4ak; when k < 0

ð1þv
1−vÞ1=4ak; when k > 0.

(78)

Now expand the solution of the internal harmonic oscillator
(61) in terms of the new operators bk0 and b†k0 . For the
trajectory (73) we are considering, the oscillation pattern
right before τ ¼ 0 is

qðτÞ ¼ qLðτÞ þ qRðτÞ; (79)

where

qLðτÞ ¼ −iϵ
Z

0

−∞
dk0

�
1 − v
1þ v

�
1=2

ffiffiffiffiffiffiffi
jk0j
4π

r

·

�
bk0e

−ið1−v
1þvÞ1=2jk0jτ

−ð1−v
1þvÞk02 − i

2
ϵ2ð1−v

1þvÞ1=2jk0j þΩ2

−
b†k0e

ið1−v
1þvÞ1=2jk0jτ

−ð1−v
1þvÞk02 þ i

2
ϵ2ð1−v

1þvÞ1=2jk0j þ Ω2

�
(80)

and

qRðτÞ ¼ −iϵ
Z þ∞

0

dk0
�
1þ v
1 − v

�
1=2

ffiffiffiffiffiffiffi
jk0j
4π

r

·

�
bk0e−ið

1þv
1−vÞ1=2jk0jτ

−ð1þv
1−vÞk02 − i

2
ϵ2ð1þv

1−vÞ1=2jk0j þ Ω2

−
b†k0e

ið1þv
1−vÞ1=2jk0jτ

−ð1þv
1−vÞk02 þ i

2
ϵ2ð1þv

1−vÞ1=2jk0j þΩ2

�
: (81)

Unlike the oscillation (21), after the mirror did an instant
jump in velocity at τ ¼ 0, the mirror sees that the field
modes are Doppler shifted and the oscillation of q above is
no longer a steady state relative to the field in the new
ðt0; x0Þ frame. Driven by these Doppler shifted modes, the
oscillation will change and eventually settle down to a new
steady state, with the same frequencies as the driving field
modes. Once it reached the final steady state again, the
frictional force would again become zero, as predicted in

FIG. 6. Trajectory for a mirror that initially stays at rest and then
jumps to move with a constant velocity v at time t ¼ 0.

MOTION OF A MIRROR UNDER INFINITELY … PHYSICAL REVIEW D 89, 085009 (2014)

085009-11



(74). However, during this process, there will be imbalance
between the absorbed momentum from the left and the
right, which gives the nonzero friction force. In fact, in the
mirror’s frame, the force (68) would reduce to (31) or (32).
And the average momentum absorbed per unit of time from
right and from left at the jumping point τ ¼ 0 is

��
ϵ
dϕL

0

dτ
dqL

dτ

�	
¼ ϵ4

8π

�
1þ v
1−v

�1
2

Z þ∞

0

k3dk
ðΩ2 − k2Þ2þ 1

4
ϵ4k2

;

(82)

and

��
ϵ
dϕR

0

dτ
dqR

dτ

�	
¼ ϵ4

8π

�
1−v
1þv

�1
2

Z þ∞

0

k3dk
ðΩ2− k2Þ2þ 1

4
ϵ4k2

;

(83)

where the curly brackets fg denote the symmetrization
operation as defined in (14) and we have dropped the terms

hϵ dϕL
0

dτ
dqR

dτ i and hϵ dϕR
0

dτ
dqL

dτ i since they are zero. Note that the
force (75) is exactly the difference [15] of (82) and (83).
Thus, we can come to the conclusion that if the mirror starts
to move from zero velocity and has already acquired a
velocity, for example, to the right, it would absorb more
momentum from the right per unit of time than from the
left. The difference is determined by the Doppler shift
factors. It is this imbalance in the absorbed momentum
from different directions that leads to the nonzero fric-
tional force.
An important lesson we learn from the above analyses is

that the nonzero frictional force happens only when the
oscillation of the internal harmonic oscillator has deviated
from the steady state. That’s why we emphasized after the
formula (72) that the v should be understood as the velocity
change due to the acceleration from the mirror’s original
rest frame in which the internal harmonic oscillator was in a
steady state equilibrium.
One might also worry about the logarithmically diver-

gent proportional constant in the force expression (72) for
the damping force. It does not matter because the damping
force is not an observable quantity. The physically observ-
able quantity is the motion of the mirror that depends on the
time average of the force, which is proved to be finite in
the last section, or the movement of the mirror under the
influence of this divergent force. It turns out in the
following sections that the effective mass of the mirror
is also logarithmically divergent, which exactly cancels the
divergence of the damping force to give a finite value of the
damping ratio.

VI. THE MIRROR’S EQUATION OF MOTION

Unlike in the last section, where we specified the
trajectory the mirror moved along, in this section we

release the mirror and let it move freely under the
fluctuating force exerting on it by the field. To do this,
we add an extra term (the first one) in the action (55)
such that

S ¼ −M
Z

dτ þ 1

2

ZZ ��∂ϕ
∂t

�
2

−
�∂ϕ
∂x

�
2
�
dtdx

þ 1

2

Z ��
dq
dτ

�
2

− Ω2q2
�
dτ

þ ϵ

Z
dϕ
dτ

ðtðτÞ; XðtðτÞÞÞqðtðτÞÞdτ; (84)

where M is the mirror’s bare mass. One can derive the
mirror’s equation of motion directly from this action (see
Appendix A). However, to express the equation of motion
in terms of the force in the mirror’s instantaneous rest frame
we derived in the last section, we choose another way—
first deriving the stress-energy tensor of the whole system
and applying the continuity equation ∂νTμν ¼ 0 to obtain
the equation of motion.
The stress-energy tensor of the whole system is [see (B9)

in Appendix B]

T00 ¼ 1

2
ð _ϕ2 þ ϕ02Þ þ γMeffδðx − XðtÞÞ; (85)

T01 ¼ T10 ¼ −f _ϕϕ0g þ γMeff
_Xδðx − XðtÞÞ; (86)

T11 ¼ 1

2
ð _ϕ2 þ ϕ02Þ þ γMeff

_X2δðx − XðtÞÞ; (87)

where the effective mass includes the mirror’s bare massM
and the energy of the internal harmonic oscillator [see
(B10) in Appendix B]:

Meff ¼ M þ 1

2

�
dq
dτ

�
2

þ 1

2
Ω2q2: (88)

Next, we apply the continuity equation ∂νTμν ¼ 0 to the
above stress-energy tensor. Also using the equation of
motion of the field (56), we obtain the equation of energy
conservation (for the case μ ¼ 0),

d
dt

ðγMeffÞ ¼ ϵf _qðtÞ _ϕðt; XðtÞÞg; (89)

and the equation of momentum conservation (for the
case μ ¼ 1),

d
dt

ðγMeff
_XÞ ¼ −ϵf _qðtÞϕ0ðt; XðtÞÞg: (90)

Note that the term −ϵf _qðtÞϕ0ðt; XðtÞÞg in the above
equation (90) represents the force exerted on the mirror
in laboratory frame, which is different from the force in the
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mirror’s instantaneous rest frame (68). We can derive the
equation of motion in the mirror’s instantaneous rest frame
from (89) and (90) by performing a Lorentz boost and thus
prove that (68) does serve as the force in the mirror’s
instantaneous rest frame. First, we let

�
E
P

�
¼

�
γMeff

γMeff
_X

�
(91)

be the energy momentum vector of the mirror in the
laboratory frame ðt; xÞ (as shown in Fig. 6). Assuming
that at some moment the mirror’s instantaneous rest frame
is ðt0; x0Þ (as shown in Fig. 6), i.e., that the frame ðt0; x0Þ is
moving with velocity _X with respect to the frame ðt; xÞ, the
energy momentum vector


E0

P0
�

in the ðt0; x0Þ frame is

related to the energy momentum vector

E
P

�
in the ðt; xÞ

frame by the Lorentz boost:

�
E0

P0

�
¼

�
γ −γ _X

−γ _X γ

��
E
P

�
: (92)

Differentiating P0 in (92) with respect to the mirror’s proper
time t0 and using (89), (90), and (91) yields

dP0

dt0
¼ γ

dP0

dt

¼ γ

�
−γ _X

dE
dt

þ γ
dP
dt

�

¼ −ϵγ2f _qðtÞðϕ0ðt; XðtÞÞ þ _X _ϕðt; XðtÞÞÞg: (93)

Note that in the usual mathematical sense the field ϕ is
not differentiable on the mirror’s path ðt; XðtÞÞ since _ϕ and
ϕ0 have jump discontinuities there [see (66) and (67)]. For
this type of discontinuity, the values of _ϕ and ϕ0 at ðt; XðtÞÞ
are not defined and may have any value. However, it is
natural to define the derivative as the average of the left
derivative and right derivative, i.e.,

_ϕðt;XðtÞÞ ¼ lim
x→0þ

_ϕðt;XðtÞþ xÞþ _ϕðt;XðtÞ− xÞ
2

; (94)

ϕ0ðt;XðtÞÞ¼ lim
x→0þ

ϕ0ðt;XðtÞþxÞþϕ0ðt;XðtÞ−xÞ
2

: (95)

Applying the above definition to (66) and (67) yields

ϕ0ðt; XðtÞÞ þ _X _ϕðt; XðtÞÞ ¼ ϕ0
0ðt; XðtÞÞ þ _X _ϕ0ðt; XðtÞÞ:

(96)

Thus, we can replace the ϕ in (93) by ϕ0 to obtain the
mirror’s equation of motion in its instantaneous rest frame:

dP0

dt0
¼ −ϵγ2f _qðtÞðϕ0

0ðt; XðtÞÞ þ _X _ϕ0ðt; XðtÞÞÞg: (97)

Note that the right-hand side of the above equation exactly
agree with the force expression (68) that we derived in the
last section by a different method.
To analyze the fluctuating motion of the mirror, we next

express the mirror’s equation of motion in the laboratory
frame in terms of the force in its instantaneous rest frame by
simple manipulations of the energy momentum conserva-
tion equations (89) and (90):

γMeff
d2X
dt2

¼− _X
d
dt
ðγMeffÞ− ϵf _qðtÞϕ0ðt;XðtÞÞg

¼−ϵf _qðtÞðϕ0ðt;XðtÞÞþ _X _ϕðt;XðtÞÞÞg

¼ 1

γ2
ð−ϵγ2f _qðtÞðϕ0

0ðt;XðtÞÞþ _X _ϕ0ðt;XðtÞÞÞgÞ;
(98)

where we have used (96) to replace ϕ by ϕ0 in the last line
of the above equation. Note that the expression inside the
parentheses of the last line is exactly the force F (68) in the
mirror’s instantaneous rest frame that we derived in the last
section; thus, we reach the following equation of motion
that relates the mirror’s acceleration with the force F in the
mirror’s instantaneous rest frame:

γ3Meff
d2X
dt2

¼ F: (99)

We will analyze the fluctuating motion of the mirror using
the above equation (99).

VII. CONFINED FLUCTUATING MOTION
OF THE MIRROR

The situation we are considering is one in which we first
hold the mirror fixed for a long time and then release it at
time t ¼ 0. The mirror’s position will then start to fluctuate
due to the quantum fluctuating force acting on it. We
assume that the time scale of the period of the fluctuating
motion is small enough that the oscillations of the internal
harmonic oscillator would approximately stay in the steady
state relative to the laboratory frame. For simplicity, we also
assume that the velocity of the mirror is small; then we can
neglect the γ3 term in (99) and the equation of motion
becomes

Meff
d2X
dt2

¼ F: (100)

We can rewrite the equation of motion (100) as

d2X
dt2

−
hFi
Meff

¼ F − hFi
Meff

: (101)
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The numerator of the term on the right-hand side of the
above equation is the deviation of the force from its mean
value. We assume that the mirror will fluctuate near the
position x ¼ 0. In this approximation, we can use the static
force expression (31), i.e., the force when the mirror is
staying at the origin, to substitute into the numerator
F − hFi. In the following we will denote the static force
by F0 to avoid confusion with the moving force F.
Also note that the factor h _q2i in the expression (39) for

the fluctuation of the static force F0 is logarithmic
divergence. And from (41) we know that the vacuum
energy density factor hT00i is k2 divergent, so the fluc-
tuation of F0 is k2 ln k divergent, while the fluctuation of
effective mass, which contains the divergent term _q2, is
only ln k divergent. This implies that the fluctuation of the
mirror’s position and velocity is mainly determined by the
fluctuation of force. So we can further use the mean value
of the effective mass hMeffi to substitute Meff to simplify
the above equation (101):

dv
dt

þ βv ¼ F0

hMeffi
; (102)

where v ¼ dX
dt is the mirror’s velocity and

β ¼
�
ϵ4

4π

Z þ∞

0

dk
k3

ðk2 −Ω2Þ2 þ ϵ4

4
k2

�
=hMeffi (103)

is the damping coefficient; and we have substituted for hFi
by equation (72). Both the numerator and denominator of
(103) contain divergent integrals over k. To make the
meaning of ∞

∞ type quantities precise, we first truncate
both the integrals by the same high frequency cutoff k ¼ Λ,
and then take Λ to infinity. Then the logarithmic divergence
of the damping force is magically canceled by the loga-
rithmic divergence of the mirror’s effective mass, and we
get that

β ¼ ϵ2: (104)

Equation (102) is a Langevin-type equation. The solution
for the velocity in this equation with initial condition
vð0Þ ¼ 0 is

vðtÞ ¼ 1

hMeffi
e−βt

Z
t

0

dt0eβt0F0ðt0Þ: (105)

Then the fluctuation of the velocity is

σvðtÞ ¼ hvðtÞ2i − hvðtÞi2

¼ 1

hMeffi2
e−2βt

Z
t

0

Z
t

0

dt1dt2eβðt1þt2Þ

· CorrðF0ðt1Þ; F0ðt2ÞÞ: (106)

Inserting (52) into the above expression, we get

σvðtÞ ¼
ϵ4

16π2hMeffi2
Z þ∞

−∞
dkjkj

·
Z þ∞

−∞
dk0

jk0j3
ðk02 −Ω2Þ2 þ ϵ4

4
k02

·
1

β2 þ ðjkj þ jk0jÞ2
· ð1 − 2e−βt cosðjkj þ jk0jÞtþ e−2βtÞ: (107)

What we are interested is the large time behavior of the
mirror, so now we let t be large enough such that βt ≫ 1;
then in such a limit the mirror would be in equilibrium with
the quantum scalar field. In this limit, the above expression
reduces to

σvðtÞ ¼
ϵ4

16π2hMeffi2
Z þ∞

−∞
dkjkj

Z þ∞

−∞
dk0

·
jk0j3

ðk02 −Ω2Þ2 þ ϵ4

4
k02

·
1

β2 þ ðjkj þ jk0jÞ2 : (108)

The k0 integral in (108) is convergent and is proportional to

Z þ∞

−∞
dk0

jk0j3
ðk02 −Ω2Þ2 þ ϵ4

4
k02

·
1

β2 þ ðjkj þ jk0jÞ2

∼
2 ln k
k2

; as k → þ∞: (109)

Therefore, the whole integral over k, which is divergent, is
proportional to

4

Z
Λ
dk

ln k
k

∼ 2ðln ΛÞ2; as Λ → þ∞: (110)

According to (40), we have the prefactor

ϵ4

16π2hMeffi2
∼ 1=ðln ΛÞ2; as Λ → þ∞: (111)

Therefore, after taking the limit Λ → þ∞, we obtain

σv ¼ 2; (112)

which means that the standard deviation of the velocity isffiffiffi
2

p
times the light speed! This result is clearly unphysical.

It results from our unphysical approximation scheme,
namely the small velocity assumption we made in the
beginning. In fact, when the velocity of the mirror becomes
large, the damping force βv would not be linear in velocity
and the small velocity approximation is not valid any more.
More precisely, from (75) we know that the damping
coefficient is velocity dependent:
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β ¼ 1

2v

��
1þ v
1 − v

�
1=2

−
�
1 − v
1þ v

�
1=2

�
ϵ2

¼
�
1þ v2

2
þ 3v4

8
þ 5v6

16
þ � � �

�
ϵ2; (113)

which reduces to (104) at a small velocity approximation.
Therefore, when the mirror’s velocity approaches 1, the
damping coefficient would go to infinity to make sure that
the mirror’s velocity never reaches the light speed 1. If we
further fully consider the relativistic effect, the increased
mirror’s “relativistic mass” would just make the result even
smaller [see the γ3 factor in (99)]. Therefore, we can
confidently conclude that

σv < 1; (114)

which means the mirror’s velocity will oscillate wildly due
to the fluctuation of the quantum field vacuum. However,
we will see that this wild oscillation is confined in a small
region, that is, the mirror does not diffuse like a Brownian
particle.
To prove this, let us calculate the mean-squared dis-

placement of the mirror. Strictly speaking, we need to solve
the relativistic equation of motion of the mirror. But the
relativistic calculation is too messy. Fortunately, we can
continue using the nonrelativistic Newtonian equa-
tion (102) to calculate the mean-squared displacement.
The result is not the true answer but an upper bound of the
true answer because when we replace the Newtonian
equation (102) by the relativistic equation of motion
(99), the mirror would become heavier [due to the γ3

factor in (99)] and the damping force would become
stronger [see (113)].
Now let us perform the calculation. Integrating

(105) with time, we obtain the solution of the position
of the mirror for the initial condition Xð0Þ ¼ 0 and
vð0Þ ¼ 0:

XðtÞ ¼ 1

hMeffi
Z

t

0

dt0e−βt0
Z

t0

0

dt00eβt00F0ðt00Þ: (115)

Then the mean-squared displacement of the mirror is
given by

σXðtÞ ¼ hXðtÞ2i − hXðtÞi2

¼ 1

hMeffi2
Z

t

0

dt1e−βt1
Z

t1

0

dt2eβt2

·
Z

t

0

dt3e−βt3
Z

t3

0

dt4eβt4CorrðF0ðt2Þ; F0ðt4ÞÞ:
(116)

Inserting (52) into the above expression, we get

σXðtÞ ¼
ϵ4

16π2hMeffi2
Z þ∞

−∞
dkjkj

Z þ∞

−∞
dk0

·
jk0j3

ðk02 −Ω2Þ2 þ ϵ4

4
k02

·
1

β2 þ ðjkj þ jk0jÞ2

·

�
1

β2
ð1 − e−βtÞ2 þ 4sin2ðjkjþjk0j

2
tÞ

ðjkj þ jk0jÞ2

−
1

β
ð1 − e−βtÞ 2 sinðjkj þ jk0jÞt

jkj þ jk0j
�
: (117)

The double integral of the last two terms over k and k0 is
convergent, but the effective mass in the denominator is
divergent. So the last two terms give no contribution to the
mean-squared displacement when we take the limit, and the
above expression reduces to

σXðtÞ ¼
�

ϵ4

16π2hMeffi2
Z þ∞

−∞
dkjkj

Z þ∞

−∞
dk0

·
jk0j3

ðk02 −Ω2Þ2 þ ϵ4

4
k02

·
1

β2 þ ðjkj þ jk0jÞ2
�

×

�
1

β2
ð1 − e−βtÞ2

�
: (118)

Note that the expression inside the parentheses is just
equation (108), the mean-squared velocity σv, which is less
than 1 as we concluded in (114). Thus, we can further
conclude that the mean-squared displacement

σXðtÞ <
1

β2
ð1 − e−βtÞ2; (119)

or, equivalently, the standard deviation of the mirror’s
position, grows with time as

ΔXðtÞ < 1

β
ð1 − e−βtÞ; (120)

where β is the damping coefficient. When t is small,
we have

ΔXðtÞ < t; (121)

which implies that just after we release the mirror from rest,
it starts to diffuse with almost the speed of light! However,
as time grows, i.e., when t → þ∞, we always have

ΔXðtÞ < 1

β
; (122)

which means that the diffusion of the mirror does not
continue to increase and its fluctuating motion is confined
in the small region ð− 1

β ;
1
βÞ! The length of this region is
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inversely proportional to the damping coefficient, which is
physically reasonable because stronger damping would
resist the mirror’s motion and thus reduce the size of its
fluctuating region.
Note also that the damping coefficient β is related to the

coupling constant ϵ by Eq. (104) or, more precisely, by
Eq. (113), which implies that the stronger the coupling, the
higher the damping and thus the smaller the range of the
fluctuating motion. One might be suspicious of this result
since it means that when the coupling ϵ goes to 0, the
fluctuating range would go to infinity. But if the coupling
constant ϵ ¼ 0, i.e., there is no interaction between the field
and themirror at all, themirror should not do any fluctuating
motion. It should just sit at the location x ¼ 0. However,
this is not a contradiction but a manifestation of the
discontinuity of the expression (117) of the mean-squared
displacement at ϵ ¼ 0. In fact, if ϵ ¼ 0, the effective mass
Meff reduces to the mirror’s finite bare mass M and thus
the prefactor ϵ4

16π2hMeffi2 is just 0, which makes sure that our

whole expression (117) is 0. So our result does satisfy the
“no interaction implies no fluctuation” requirement.

VIII. DIFFERENCE WITH BROWNIAN MOTION:
THE STRONGLY ANTICORRELATION NATURE

OF QUANTUM VACUUM FLUCTUATIONS

We have concluded in the last section that the fluctuating
motion of our mirror would be confined in the small region
ð− 1

β ;
1
βÞ. To better understand the underlying physical

mechanism, we compare the fluctuating motion of our
mirror with a Brownian particle.
Consider a one-dimensional Brownian particle whose

motion is also described by a Langevin-type equation:

dv
dt

þ βv ¼ FB

m
; (123)

where m is the mass of the Brownian particle, β is the
damping coefficient, and FB is the stochastic fluctuating
force. The only nontrivial difference between the above
equation of motion (123) for the Brownian particle and the
equation of motion (102) for our mirror is the different
stochastic property of the driven force FB and F0.
For the Brownian particle, the force FB is usually

assumed to have a Gaussian probability distribution with
a correlation function,

CorrðFBðt1Þ; FBðt2ÞÞ ¼ Cδðt1 − t2Þ; (124)

where C is a constant characterizing the strength of the
force. The δ-function form of the correlation is an approxi-
mation. It means that the force at the time t1 is completely
uncorrelated with the force at any other time t2. For the
motion of a “macroscopic” particle at a much larger time
scale compared with the collision time of the molecules,
the δ correlation becomes exact.

However, the force correlation function (52) for our
mirror is quite different. There are two terms in (52); each
of them is a product of two integrals. The first integral of
the first term

Rþ∞
−∞ jkje−ijkjðt1−t2Þdk does not converge under

the usual definition of the improper integral. However, we
can make it converge by analytic continuation, i.e., redefine
the integral as

f1ðΔtÞ ¼
Z þ∞

−∞
jkje−ijkjðt1−t2Þdk

¼ lim
η→0þ

Z þ∞

−∞
jkje−ijkjðt1−t2−iηÞdk ¼ −

2

Δt2
; (125)

where Δt ¼ t1 − t2. The second integral of the first term

f2ðΔtÞ ¼
Z þ∞

−∞

jk0j3e−ijk0jðt1−t2Þ
ðk02 −Ω2Þ2 þ ϵ4

4
k02

dk0 (126)

conditionally converges to a finite positive value under the
usual definition of the improper integral. Further, when
Δt → 0, f2ðΔtÞ logarithmically diverges to þ∞. Thus, the
first term f1f2 → −∞ when Δt → 0. The second term
contains another two integrals, each of which approaches to
0 when Δt → 0. Therefore, due to continuity, the correla-
tion function is always negative for a small enough Δt, and
its absolute value can be arbitrarily large, i.e., the force has
strong anticorrelation at a small time scale. This strong
anticorrelation implies that if the force at some time t1 is in
the positive x direction, after some very short time Δt, the
force would be in the negative x direction. On average, the
infinite fluctuations of force at different times are strongly
canceled. This is why although the force fluctuation at any
specific instant is infinite, we still obtained the finite
fluctuation of the force average in Sec. IV. Here, it is
necessary to point out that Ford and Roman [16] have also
noted and discussed this kind of anticorrelation property of
the Minkowski vacuum. Unlike our direct calculations
above, they used a sampling function with a characteristic
width a to smear out the singularities. The anticorrelations
we obtained above agree with their result in the limit as a
approaches zero. In addition, Parkinson and Ford inves-
tigated a related anticorrelation effect in [17].
The fluctuating motion of the Brownian particle and of

the motion of our mirror are different under these two
different stochastic fluctuating forces. In particular, the
mean-squared displacement for the Brownian particle
grows linearly with time:

σXðtÞ ∼
C

β2m2
t when t → þ∞; (127)

which is different from the bounded fluctuating motion of
our mirror [see (122)]. In other words, the Brownian
particles would exhibit diffusion while our mirror would
be confined in a small region.
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IX. DISCUSSIONS AND CONCLUSIONS

We have seen that in our nongravitational mirror system,
the value of quantum vacuum energy does have physical
significance in how the fluctuations in the force on the
mirror depend on this value. It provides an infinite
fluctuating force acting on the mirror and gives infinite
instantaneous acceleration of the mirror. Astonishingly,
this infinity makes sense in that, under this fluctuating
force, the mirror’s fluctuating motion would not diverge but
would be confined in a small region due to the special
properties of vacuum friction and the anticorrelation of
quantum vacuum fluctuations.
It is clear from the calculations that our mirror does not

exhibit Brownian motion and thus no diffusion happens.
Gour and Sriramkumar [10] also studied a mirror interact-
ing with the quantum vacuum using the mirror model (1)
with an artificial high frequency cutoff. However, they
concluded that the mirror would experience Brownian
motion and thus exhibit diffusion. This conclusion is based
on the assumption that “The stochastic force is completely
independent of the position of the Brownian particle” (page
20 of [10]). This assumption is intrinsically equivalent to
the Brownian motion correlation condition (124) that we
have discussed in the last section. So it is not surprising that
this assumption leads to their Brownian motion conclusion.
It can be shown by direct calculations that the correlation
between the position and the stochastic force is not zero but
is highly anticorrelated. Following a similar procedure as
we did in this paper, it is not difficult to reproduce the result
of a bounded fluctuating motion of the mirror without
diffusion.
Jaekel and Reynaud [11] also discussed this issue using

an approach based on fluctuation-dissipation theorems.
They concluded that a mirror coupled to the Minkowski
vacuum would exhibit diffusion that is characterized by a
logarithmically increasing behavior at long times. In
addition, Ford etc. [18–20] investigated fluctuating motions
of a particle or a mirror in modified quantum vacuums other
than the Minkowski vacuum, such as in the presence of
boundaries [18,19] and in Robertson-Walker spacetimes
[20]. They also obtained the similar logarithmically
increasing quantum diffusion results.
Let us comment on the differences of our results from the

works of all of the authors above. The differences mainly
come from the fact that (I) we are using different mirror
models and thus (II) different methods of handling infinities
or singularities. Concretely speaking, the above authors are
using the perfectly reflecting mirror model (1), which is
point like without any internal structure, by simply impos-
ing a boundary condition. However, a realistic mirror must
have some internal structures interacting with the photon
field. Our mirror is still point like but with an internal
structure: an internal harmonic oscillator that makes it work
like a real mirror.

This intrinsic difference results in distinct methods of
handling infinities. It is well known that treating par-
ticles as point like can result in divergences even in
classical field theory, so it is not surprising that they
would lead to divergences or singularities. In particular,
the authors of [10] and [11] had to treat the infinities by
introducing an artificial high frequency cutoff and their
results are cutoff dependent; the authors of [18–20]
regularized the singularities in the correlation functions
by an integration by parts procedure. However, it is not
clear what is the correct way to regularize these singular
correlation functions to obtain finite results in the point-
defined limit of ordinary quantum field theory.
Unphysical results such as the “negative” fluctuations
were obtained using covariant point separation regulari-
zation [21]. Similar negative mean-squared velocity and
position fluctuations were also obtained in [18–20] by a
nonrigorous integration by parts procedure, even though
the authors interpreted these results as decreases of
uncertainties in the position and velocity of quantum
particles.
Our mirror model avoids these problems since the

infinities disappear naturally even when we take the high
frequency cutoff Λ to infinity. More precisely, when
calculating the fluctuation of the mirror’s position, the
divergence of the mirror’s instantaneous acceleration,
which comes from the divergent vacuum energy density,
is canceled by vacuum friction and strongly anticorrelated
vacuum fluctuations. We are not directly dealing with the
actual value of the vacuum energy density, but we find that
the infinite value is acceptable in our nongravitational
mirror system in the sense that this infinity only results in a
finite observable effect. Whether or not the infinite naive
expectation value of T00 has direct physical effects or could
be eliminated by renormalization of the cosmological
constant or whether a detailed treatment of the effects of
this infinity on the gravitational field could also disappear
if one concentrated on observable quantities will be the
subject of further work.
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APPENDIX A: DERIVATION OF THE MIRROR’S
EQUATION OF MOTION BY DIRECTLY

VARYING XðtÞ
We first rewrite the action (84) as

S ¼ 1

2

ZZ ��∂ϕ
∂t

�
2

−
�∂ϕ
∂x

�
2
�
dtdx

þ
Z �

−M þ 1

2

_q2

1 − _X2
−
1

2
Ω2q2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _X2

p
dt

þ ϵ

Z
dðqϕÞ − ϵ

Z
_qϕðt; XðtÞÞdt: (A1)

Varying the above action with respect to the mirror’s
position XðtÞ yields

δS ¼
Z _X _δXffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − _X2
p

�
M þ 1

2

�
dq
dτ

�
2

þ 1

2
Ω2q2

�
dt

− ϵ

Z
_qϕ0ðt; XðtÞÞδXdt

¼ −
Z

δX

�
d
dt

ðγMeff
_XÞ þ ϵ _qϕ0ðt; XðtÞÞ

�
dt: (A2)

Letting δS ¼ 0, we obtain exactly the same equation of
motion (90).

APPENDIX B: DERIVATION OF THE
STRESS-ENERGY TENSOR

The stress-energy tensor can be determined by the
functional derivative of the total action S of the system
with respect to the background metric gμν:

Tμν ¼ 2ffiffiffiffiffiffi−gp δS
δgμν

: (B1)

To start, let us rewrite the action (84) in a generic back-
ground metric gμν as follows:

S ¼ −
1

2

ZZ ffiffiffiffiffiffi
−g

p
gμν∂μϕ∂νϕdtdx

−M
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμνðt; XðtÞÞdXμdXν
q

þ 1

2

Z �
dq
dτ

�
2
−Ω2q2

�
dτ

þ ϵ

Z
dϕ
dτ

ðtðτÞ; XðtðτÞÞÞqðtðτÞÞdτ; (B2)

where τ is the proper time along the mirror trajectory that is
related to the global time coordinate t by

dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðt; xÞ

dXμ

dt
dXν

dt

r
dt (B3)

and the last three terms in (B2) are integrated along the
mirror trajectory. Here we are using the sign convention
ð−;þÞ. To obtain the functional derivative, we first change
the variable τ to the global time coordinate t by using (B3)
and then transform the first two single integrals in the
action (B2) into double integrals, i.e., extend the domain of
integration from the line x ¼ XðtÞ to the whole spacetime
by inserting Dirac delta functions:

S ¼ −
1

2

ZZ ffiffiffiffiffiffi
−g

p
gμν∂μϕ∂νϕdtdx

−M
ZZ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμνðt; xÞ
dXμ

dt
dXν

dt

r
δðx − XðtÞÞdtdx

þ 1

2

ZZ 2
64 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμνðt; xÞ dXμ

dt
dXν

dt

q
�
dq
dt

�
2

− Ω2q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðt; xÞ

dXμ

dt
dXν

dt

r 3
75 · δðx − XðtÞÞdtdx

þ ϵ

Z
qðtÞdϕðt; XðtÞÞ: (B4)

Varying the above action with respect to gμν gives

δS ¼ −
1

2

ZZ
δð ffiffiffiffiffiffi

−g
p Þgμν∂μϕ∂νϕdtdx

−
1

2

ZZ ffiffiffiffiffiffi
−g

p ðδgμνÞ∂μϕ∂νϕdtdx

−M
ZZ ðδgμνÞ dXμ

dt
dXν

dt

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðt; xÞ dXμ

dt
dXν

dt

q δðx − XðtÞÞdtdx

þ 1

2

ZZ �
1

−gμνðt; xÞ dXμ

dt
dXν

dt

�
dq
dt

�
2

−Ω2q2
�

·
ðδgμνÞ dXμ

dt
dXν

dt

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðt; xÞ dXμ

dt
dXν

dt

q δðx − XðtÞÞdtdx: (B5)

Also, we have

δð ffiffiffiffiffiffi
−g

p Þ ¼ 1

2

ffiffiffiffiffiffi
−g

p
gμνδgμν; δgμν ¼ −gμλgνρδgλρ: (B6)

Plugging the above two relations into (B5), we get

δS ¼ 1

2

ZZ ffiffiffiffiffiffi
−g

p
0
B@∂μϕ∂νϕ −

1

2
gμνgλρ∂λϕ∂ρϕ

þ 1ffiffiffiffiffiffi−gp
�
M þ 1

2
·

1

−gμν dXμ

dt
dXν

dt

�
dq
dt

�
2

þ 1

2
Ωq2

�

·
dXμ

dt
dXν

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν dXμ

dt
dXν

dt

q δðx − XðtÞÞ

1
CAδgμνdtdx: (B7)
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Therefore, the stress-energy tensor of the whole system is

Tμν ¼ 2ffiffiffiffiffiffi−gp δS
δgμν

¼ ∂μϕ∂νϕ −
1

2
gμνgλρ∂λϕ∂ρϕ

þ 1ffiffiffiffiffiffi−gp
�
M þ 1

2
·

1

−gμν dXμ

dt
dXν

dt

�
dq
dt

�
2

þ 1

2
Ωq2

�

·
dXμ

dt
dXν

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν dXμ

dt
dXν

dt

q δðx − XðtÞÞ: (B8)

For the case we are considering, the background metric is
flat, i.e., gμν ¼ ημν; then the above expression becomes

Tμν ¼ ∂μϕ∂νϕ −
1

2
ημνηλρ∂λϕ∂ρϕ

þMeff

dXμ

dt
dXν

dtffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _X2

p δðx − XðtÞÞ; (B9)

where the effective mass is

Meff ¼ M þ 1

2

�
dq
dτ

�
2

þ 1

2
Ω2q2: (B10)
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