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In the present work, we discuss certain characteristic features encoded in some of the fundamental QCD
Green’s functions, for which the origin can be traced back to the nonperturbative masslessness of the ghost
field, in the Landau gauge. Specifically, the ghost loops that contribute to these Green’s functions display
infrared divergences, akin to those encountered in the perturbative treatment, in contradistinction to the
gluonic loops, for which perturbative divergences are tamed by the dynamical generation of an effective
gluon mass. In d ¼ 4, the aforementioned divergences are logarithmic, thus causing a relatively mild
impact, whereas in d ¼ 3 they are linear, giving rise to enhanced effects. In the case of the gluon
propagator, these effects do not interfere with its finiteness, but make its first derivative diverge at the
origin, and introduce a maximum in the region of infrared momenta. The three-gluon vertex is also affected,
and the induced divergent behavior is clearly exposed in certain special kinematic configurations, usually
considered in lattice simulations; the sign of the corresponding divergence is unambiguously determined.
The main underlying concepts are developed in the context of a simple toy model, which demonstrates
clearly the interconnected nature of the various effects. The picture that emerges is subsequently
corroborated by a detailed nonperturbative analysis, combining lattice results with the dynamical integral
equations governing the relevant ingredients, such as the nonperturbative ghost loop and the momentum-
dependent gluon mass.
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I. INTRODUCTION

In recent years our understanding of the IR sector of
QCD has advanced considerably, due to a detailed and
systematic scrutiny of the fundamental Green’s functions of
the theory. In particular, high-quality lattice simulations of
propagators [1–7] and vertices [8–10] have furnished new
insights on the subtle underlying mechanisms and have
spurred an intense parallel activity within the various
nonperturbative approaches in the continuum [11–31].
At this point, the plethora of available information needs

to be interpreted carefully and be used in the construction of
a reliable picture of the fundamental dynamics, with
increasingly stronger predictive power. To that end, in
the present work, we elaborate on what appears to be a
profound connection between the masslessness of the
ghost, the precise form of the gluon propagator in the deep
IR, and the divergences observed in certain kinematic limits
of the three-gluon vertex. This particular connection is valid
in the Landau gauge, both in d ¼ 3, 4; however, in d ¼ 3 the
associated effects are considerably more enhanced, for
reasons that will become clear in what follows.
As is well known by now, the infrared finiteness of the

gluon propagator and the ghost dressing function, observed
in a variety of (Landau gauge) lattice simulations, may be
explained in a rather natural way by invoking the concept of

a dynamically generated mass [32–35]. In particular, the
(Euclidean) gluon propagator Δðq2Þ assumes the form
Δ−1ðq2Þ ¼ q2Jðq2Þ þm2ðq2Þ, where the first term corre-
sponds to the “kinetic term,” or “wave function” contri-
bution, while the second denotes the momentum-dependent
mass function [36,37]. Within the framework of the
Schwinger–Dyson equations (SDEs), both Jðq2Þ and
m2ðq2Þ satisfy two independent but coupled integral
equations, which, at least in principle, determine their
dynamical evolution.
In d ¼ 4 the main observation underlying the present

work may be described as follows. The fact that the ghost
propagator, Dðq2Þ, remains massless, has as consequence
that the contribution to Jðq2Þ stemming from the ghost-
loop diagram [ða3Þ in Fig. 1] contains a pure logarithm,
ln q2, which is “unprotected,” in the sense that there is no
mass term in its argument that could tame its divergence in
the IR. This is to be contrasted with the corresponding
logarithms originating from the gluonic loops [ða1Þ in
Fig. 1], of the type lnðq2 þm2Þ, which, due to the presence
of the dynamical gluon massm2ðq2Þ, are finite for arbitrary
Euclidean momenta. Of course, the massless logarithm
does not interfere with the overall finiteness of Δðq2Þ,
simply because it is multiplied by q2; its presence, however,
makes the first derivative of Δðq2Þ diverge at the origin. In
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addition, it induces a subtle effect on the precise shape of
the gluon propagator in the deep IR. Specifically, Δðq2Þ is
not a monotonic function of q2, displaying a (numerically
small) maximum, precisely due to the q2 ln q2 term. The
size and location of this effect is largely controlled by the
relative weight with which the two types of logarithm
contribute to Jðq2Þ; in particular, the weight of the massless
logarithm is about 1 order of magnitude less than that of the
massive, a fact that pushes the appearance of the effect in
the deep IR, reducing at the same time its size.
It turns out that the quantity that accounts for the

divergent behavior of the three-gluon vertex (for recent
studies of this vertex, see also Refs. [38,39]) in some
special kinematic limits studied on the lattice, is precisely
the Jðq2Þ considered above. In particular, in the “orthogo-
nal” configuration with one momentum vanishing, the
usual quantity employed in the lattice studies, to be denoted
by R, satisfies Rðq2Þ ∼ ½q2Jðq2Þ�0, where the “prime”
denotes the derivative with respect to q2. Thus, the
dominant contribution as q2 → 0 is Rðq2Þ∼Jðq2Þ∼ lnq2;
evidently, for sufficiently small q2, Rðq2Þ becomes negative
and diverges as a logarithm.
In d ¼ 3, the situation is qualitatively similar to the one

described above, but the divergences induced due to the
masslessness of the ghost are stronger. Specifically, as may
be already established at the level of a simple one-loop
calculation [40], the part of Jðq2Þ coming from the ghost
loop behaves like 1=q. As a result the corresponding effects
are significantly enhanced: the maximum of the gluon
propagator is clearly visible on the lattice [2], and so is the
abrupt negative divergence seen in the corresponding
Rðq2Þ [8].
Note that our theoretical prediction for the signs of the

divergence both at d ¼ 3, 4 is unequivocal: they are fixed
by the sign of the logarithm obtained from graph ða3Þ in
Fig. 1 (for earlier related works, see, e.g. Refs. [41,42]). In
addition, it is interesting to note that the observed diver-
gences occur within a theory with a finite gluon propagator
and a nonenhanced ghost dressing function. In fact, the

origin of the divergences encountered in the three-gluon
vertex is not associated in any way with the (intrinsically
divergent) “scaling” solutions [17,20] but rather with the
loop effects of massless (but nonenhanced) ghosts.
At this point it is useful to establish a sharp distinction

between the notions of “gauge invariance” and “gauge
independence.” The term gauge invariance is used through-
out this work for indicating that a Green’s function satisfies
the Ward identity (WI) or Slavnov–Taylor identity (STI),
imposed by the gauge or Becchi-Rouet-Stora-Tyutin
(BRST) symmetry of the theory. On the other hand, the
gauge (in)dependence of a Green’s function is related with
the (independence of) dependence on the gauge fixing
parameter (e.g., ξ) used to quantize the theory. Evidently, an
off-shell Green’s function may be gauge invariant but
gauge dependent: for example, the QED photon-electron
vertex, Γμðp; pþ qÞ, depends explicitly on ξ but satisfies
(for every value of ξ) the classic WI qμΓμðp; pþ qÞ ¼
S−1ðpþ qÞ − S−1ðpÞ. A textbook example of a Green’s
function that is both gauge invariant and gauge independent
is the photon self-energy (vacuum polarization), which is
both transverse and ξ independent. As far as the present
work is concerned, it should be clear that all statements and
results are particular to the Landau gauge, so they are
manifestly gauge dependent. In fact, the very notion of the
“ghost-loop” contributions to the gluon propagator is gauge
dependent; in noncovariant gauge fixing schemes, for
example, the ghost fields decouple from the gluon
Green’s functions.1 So, in general, by gauge invariant we
mean “STI preserving,” or in the specific case of the gluon
propagator, we mean the arrangement of graphs into
“individually transverse” subsets.
The reader should be aware of the fact that the present

analysis, as practically any other based on SDEs, suffers

FIG. 1 (color online). The SDE obeyed by theQB gluon propagator. Each of the three different boxes (continuous, dashed, and dotted
line) encloses a set of diagrams forming an individually transverse subgroup, namely, qμ½ða1Þ þ ða2Þ�μν ¼ 0, qμ½ða3Þ þ ða4Þ�μν ¼ 0, and
qμ½ða5Þ þ ða6Þ�μν ¼ 0. Black (white) blobs represent fully dressed one-particle-irreducible (connected) Green’s functions; finally, small
gray circles appearing on the external legs indicate background gluons.

1Notice, however, that Green’s functions involving external
ghost fields might be nontrivial even in such gauges; for example
in the Coulomb gauge, the ghost propagator has been simulated
on the lattice, see e.g., [43] and references therein.
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from the perennial limitations inherent to this particular
formalism, namely, the lack of an expansion parameter, or a
rigorous criterion for estimating the truncation errors. What
we have tried to accomplish throughout this work is to
truncate in a way that maintains the gauge symmetry intact,
in an attempt to minimize the contamination of the results
from gauge artifacts. However, the nonlinear propagation
of effects originating from the (omitted) higher-order
Green’s functions cannot be a priori discarded, and their
possible numerical impact may not be reliably estimated;
instead, they may be only a posteriori determined, e.g.,
through the detailed comparison of the SDE results with
those obtained through systematic nonperturbative meth-
ods, such as the lattice.
The article is organized as follows. In Sec. II we present a

simple description of the gluon propagator, which captures
quite faithfully all qualitative features mentioned above.
This section serves as a reference for fixing the main ideas
and can guide the reader through the more complex
analysis that follows. In Sec. III we venture into the full
nonperturbative analysis of the divergent ghost loop and the
implication for the gluon propagator and the three-gluon
vertex. Throughout this study we make extensive use of the
full nonperturbative equation governing the momentum
evolution of the gluon mass, derived in Ref. [37]. Finally, in
Sec. IV we discuss our main results and present our
conclusions. The article ends with four Appendices. In
Appendix A we discuss the R projector in a technically
simplified but qualitatively accurate setting. In Appendix B
the subleading nature of the transverse part of the ghost-
gluon vertex is established. In Appendix C we discuss the
background field method (BFM) Green’s functions as an
alternative for resolving the peak structure of the gluon
propagator. Finally, in Appendix D we present a brief
discussion of the scaling solutions and contrast their main
features to the massive scenario considered here.

II. MASSIVE VS MASSLESS LOOPS:
A QUALITATIVE DESCRIPTION

In this section we discuss the general ideas that underly
the present work and introduce a simple, one-loop inspired
model, which explains, with little calculational effort, the
main effects.

A. General considerations

In what follows we will work in the Landau gauge,
where the full gluon propagator takes the form

iΔμνðqÞ ¼ −iPμνðqÞΔðq2Þ; PμνðqÞ ¼ gμν − qμqν=q2:

(2.1)

In addition, the ghost propagator Dðq2Þ and its dressing
function, Fðq2Þ, are related by

Dðq2Þ ¼ Fðq2Þ
q2

: (2.2)

We will now consider the SDE obtained through the
combination of the pinch technique (PT) [32,44–47] with
the BFM [48], known as the PT-BFM scheme [23,24,49].
Specifically, the SDE for the conventional gluon propagator
reads

Δ−1ðq2ÞPμνðqÞ ¼
q2PμνðqÞ þ i

P
6
i¼1ðaiÞμν

1þ Gðq2Þ ; (2.3)

where the diagrams ðaiÞ are shown in Fig. 1. Note that these
diagrams give rise to the self-energy of ~Δðq2Þ, namely, the
propagator formed by a quantum gluon (Q) and a back-
ground one (B). Thus, Eq. (2.3) is the nonperturbative
diagrammatic representation of the formal relation

½1þGðq2Þ�Δ−1ðq2Þ ¼ ~Δ−1ðq2Þ; (2.4)

known in the literature [50,51] as a background-quantum
identity (BQI). A SDE similar to that of Eq. (2.3), but with
more diagrams, relates Δðq2Þ with the propagator Δ̂ðq2Þ,
formed by two background gluons (B2) [49]; the corre-
sponding BQI reads

½1þGðq2Þ�2Δ−1ðq2Þ ¼ Δ̂−1ðq2Þ: (2.5)

The auxiliary function Gðq2Þ has been studied in detail in
Ref. [52]; here it should suffice to mention that, for
practical purposes, throughout the present work, we will
use the approximate relation

1þ Gðq2Þ ≈ F−1ðq2Þ; (2.6)

which becomes exact in the deep IR, in d ¼ 3, 4, [52–55].
As was already mentioned in the introduction, in the case

of an IR finite gluon propagator, the scalar function Δðq2Þ
can be decomposed as (Euclidean space)

Δ−1ðq2Þ ¼ q2Jðq2Þ þm2ðq2Þ; (2.7)

where Jðq2Þ is the inverse of the gluon dressing function
and m2ðq2Þ is the dynamically generated (momentum-
dependent) gluon mass, with the characteristic property that
m2ð0Þ > 0. We emphasize that the above decomposition is
not mathematically unique, in contradistinction to the case
of the quark self-energy, where the corresponding separa-
tion is realized unambiguously, due to the distinct Dirac
properties of the two quantities appearing in it, namely, a
Dirac vector (quark wave function) and a Dirac scalar
(quark mass). The main guiding principle in implementing
this separation at the level of the gluon SDE has been
explained in detail in Refs. [36,37].
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Note that Eq. (2.4) is satisfied separately by the kinetic
and the mass terms [36]; thus, using the approximation
(2.6), we have

Jðq2Þ ¼ Fðq2Þ~Jðq2Þ; m2ðq2Þ ¼ Fðq2Þ ~m2ðq2Þ: (2.8)

A completely analogous relation, obtained from Eq. (2.5),
relates Jðq2Þ with Ĵðq2Þ [see Eq. (A3)], as well as the
corresponding gluon masses.
Given that the function Fðq2Þ has been simulated

accurately on the lattice, Eq. (2.8) allows one to obtain
Jðq2Þ from ~Jðq2Þ; the latter is easier to calculate, due to the
special properties of its diagrammatic expansion, imple-
mented by the PT-BFM Feynman rules. In particular, since
all subsets of graphs enclosed within each box Fig. 1 give
rise to a transverse contribution [24,49], their individual
treatment (or the total omission of the “two-loop dressed”
subset) does not compromise the transversality of the gluon
self-energy.
Even though the dynamical equation governing ~Jðq2Þ

[or, equivalently, Jðq2Þ] is not fully known, mainly due to
the poor knowledge of the four-gluon vertex appearing in
the two-loop dressed diagram of ða5Þ, the main effect that
we want to study here originates from the two sets of “one-
loop” dressed graphs, namely, ða1Þ þ ða2Þ and ða3Þ þ ða4Þ.
It turns out that there is a profound qualitative difference

between these two sets of graphs, which manifests itself in
the behavior of the resulting Jðq2Þ. Specifically, the
corresponding contributions to Jðq2Þ reflect the fact that
the virtual particles forming these loops (gluons and ghosts,
respectively) have completely different behavior in the IR:
while the gluons are effectively massive, the ghosts behave
as massless particles, Dðq2Þ ∼ 1=q2. As a result, in d ¼ 4,
whereas the perturbative logarithm emerging from the first
set of graphs is tamed by the presence of the gluon mass,
and is therefore finite for all momenta, the corresponding
logarithm coming from the ghost loop remains massless,
and, as a consequence, it vanishes at a finite value of q2,
then reverses its sign, becoming finally divergent at q2 ¼ 0.
A similar situation occurs in the d ¼ 3 case, but the
corresponding divergences are linear in q instead of
logarithmic.

B. Toy model

The picture described above may be concisely captured
by setting

Ja1ðq2Þ ∼
�
ln ½ðq2 þm2Þ=μ2�; d ¼ 4;

ð1=qÞ arctanðq=2mÞ; d ¼ 3;
(2.9)

and

Ja3ðq2Þ ∼
�
ln ðq2=μ2Þ; d ¼ 4;

1=q; d ¼ 3.
(2.10)

The corresponding gluon propagator then becomes

Δ−1ðq2Þ ¼ q2Jðq2Þ þm2

¼ q2½1þ c1Ja1ðq2Þ þ c3Ja3ðq2Þ� þm2; (2.11)

with c1 and c3 two real constants, for which the values will
be fixed according to arguments given below.
In the case of d ¼ 4, the form proposed for Ja3ðq2Þ

corresponds simply to the one-loop integral
R

1
k2ðkþqÞ2,

reflecting the fact that the internal ghost propagators are
massless. On the other hand, Ja1ðq2Þ simulates an integral
for which the internal propagators are massive.2 As a result,
the subset of logarithmic contributions originating from
gluon loops [practically ða1Þ in Fig. 1] undergoes the
replacement3 ln ðq2=μ2Þ → ln ½ðq2 þm2Þ=μ2�. The pres-
ence of the mass prevents this logarithm from diverging;
depending on the ratio m=μ, the logarithm may turn
negative past a certain value of q2 but remains finite,
reaching the final value ln ðm2=μ2Þ.
On the other hand, in the d ¼ 3 case, the corresponding

transition from massless to massive loops is implemented
through the substitution (Minkowski space)

Z
k

1

k2ðkþ qÞ2 ¼
�
i
8

�
1

q
⟶

Z
k

1

ðk2 −m2Þ½ðkþ qÞ2 −m2�

¼
�

i
4π

�
1

q
arctan

�
q
2m

�
: (2.12)

Returning to the values of c1 and c3, let us first focus on
the d ¼ 4 case. Given that the proposed toy model is clearly
one-loop inspired, it is natural to expect that the values of c1
and c3 would be determined by the prefactors multiplying
the corresponding one-loop diagrams. Specifically, one has

c1 ¼ 2

�
αCA

4π

�
; c3 ¼

1

6

�
αCA

4π

�
; (2.13)

where CA is the Casimir eigenvalue in the adjoint repre-
sentation [CA ¼ N for SUðNÞ], and αs ¼ g2=4π. Note that
c1 þ c3 ¼ 13

6
ðαCA
4π Þ, which is precisely the total coefficient

appearing in the well-known one-loop result [56],
Δ−1ðq2Þ ¼ 1þ 13

6
q2ðαCA

4π Þ ln ðq2=μ2Þ. In obtaining these
values, we have used the asymptotic (ultraviolet) one-loop
result Fðq2Þ ¼ 1 − 3

4
ðαCA
4π Þ ln ðq2=μ2Þ and have replaced the

perturbative logarithm by a massive one, since, as

2We hasten to emphasize that we do not advocate the use of
naive massive gluons inside loops as a self-consistent theoretical
option. In fact, such an approach would clash with a number of
field-theoretic principles that the PT-BFM formalism is designed to
preserve, such as the transversality of the gluon self-energy.

3A loop with hard masses gives rise to the textbook integralR
1
0 dx ln; however, the resulting expression does not provide any
further insights to the question at hand than the simple massive
logarithm employed here.
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mentioned already, nonperturbatively the function Fðq2Þ
saturates at a finite value.
The corresponding values for c1 and c3 in d ¼ 3 may be

determined following a completely analogous procedure,
using certain auxiliary results presented in Ref. [40]; they
are given by

c1 ¼ −
�
25g2CA

32π

�
; c3 ¼ −

�
g2CA

32

�
(2.14)

(notice that there is no π in c3). In addition, since in d ¼ 3 the
gauge coupling g2 has dimensions of mass, so do c1 and c3.
In the analysis that follows, we will depart from these

particular values of c1 and c3 in order to expose better the
underlying effects. The main lessons that we will retain
from the one-loop discussion given above are as follows:
(i) in d ¼ 4, both c1 and c3 are positive; (ii) in d ¼ 3, both
c1 and c3 are negative; and (iii) in both cases, the modulus
of c3 is significantly smaller than that of c1.

C. Main implications

The model presented above leads to important conse-
quences for the gluon propagator and for the three-gluon
vertex.

1. Maximum of the gluon propagators

The gluon propagator, Δðq2Þ, of this toy model displays
a maximum, both in d ¼ 3, 4, or, equivalently, the inverse
propagator, Δ−1ðq2Þ, displays a minimum. This can be
easily established by taking the first derivative of
Eq. (2.11); specifically, in d ¼ 4 (and with m2 constant),

½Δ−1ðq2Þ�0 ¼ ½q2Jðq2Þ�0

¼ c3 ln ðq2=μ2Þ þ
�
1þ c1 ln ½ðq2 þm2Þ=μ2�

þ c1q2

q2 þm2
þ c3

�
: (2.15)

The quantity in curly brackets is finite, but in general of
indefinite sign, due to thepresence of the logarithm.However,
it is clear that for q2 > μ2 it is positive definite, and so is the
massless logarithm; in fact, for q2 ≫ m2 the two logarithms
combine to give the asymptotic result 13

6
ðαCA
4π Þ ln ðq2=μ2Þ. On

the other hand, in the oppositemomentum limit, since the first
term can become arbitrarily large and negative as q2

approaches zero (remember, c1;2 > 0), there exists a value
0 < q2Δ < μ2 such that ½Δ−1ðq2ΔÞ�0 ¼ 0, no matter how small
c3 may be; of course, as c3 assumes smaller values, q2Δ is
pushed closer to zero. It is then elementary to show that the
above zero of the derivative corresponds to a minimum of
Δ−1ðq2Þ, since the second derivative is positive,

½Δ−1ðq2Þ�00 ¼ c1
q2 þm2

þ c1m2

ðq2 þm2Þ2 þ
c3
q2

> 0: (2.16)

Thus, one reaches the conclusion that the IRdivergence of the
first term, caused by the masslessness of the ghost, and the
positivity of the ultraviolet logarithms, reflecting the asymp-
totically free nature of the theory, force Δðq2Þ to have a
maximum. In what follows wewill denote the location of this
maximum by qΔ.
Let usemphasize that theaboveconditions are sufficientbut

not necessary for the existence of such a maximum. Indeed,
one can easily imagine eliminating the divergent logarithm,
by setting c3 ¼ 0 or saturating it (artificially)with somemass.
Then, even though everything is finite in the IR, depending
on the relative values of parameters and masses, onemay still
get the rhs of Eq. (2.15) to vanish. But if the massless
logarithm is there, Eq. (2.15) will always have a solution.
It is of course obvious that the quantity ½q2Jðq2Þ�0 displays

a minimum located exactly at the same point where the
maximum ofΔðq2Þ is and that the reason for this coincidence
is simply the constancy of the gluon mass. However, in
anticipation of the full nonperturbative analysis of the next
section,where thegluonmasswill be a function ofq2, wewill
already at this level distinguish these two points by intro-
ducing a different symbol for the location of the minimum of
thekinetic term, namely,qJ. So,whereaswithin the toymodel
we have trivially qΔ ¼ qJ, in the complete nonperturbative
treatment, we will have qΔ ≠ qJ.
An analogous proof may be constructed for the d ¼ 3

case, where the corresponding differentiation yields

½Δ−1ðq2Þ�0 ¼ ½q2Jðq2Þ�0

¼ 1þ c1
2q

arctanðq=2mÞ þ c3
2q

þ c1m
q2 þ 4m2

:

(2.17)

To find the approximate qΔ for which the rhs vanishes,
assume that q < m, expand, and keep only first-order terms
in q=m. Then, one arrives at the simple solution

qΔ=m ¼ −
c3=m

2þ c1=m
: (2.18)

For this solution to be consistent, we must have
0 < qΔ=m < 1, or (remember that c1;3 < 0) jc1jþ
jc3j < 2m. This, in turn, restricts the allowed values of
the (dimensionless) ratio m=2g2; in particular, at the one-
loop level, our toy model provides the lower bound

m
2g2

≳ 0.14; (2.19)

in agreement with a plethora of independent studies based on
a variety of approaches in the continuum [57–60] and on the
lattice4 [62–65].

4A review on the subject of d ¼ 3 Yang–Mills theories can be
found in Ref. [61].
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2. Negative divergence of the three-gluon vertex

To understand how the (negative) IR divergences that
appear in the studies of special kinematic configurations of
the conventional three-gluon vertex (Q3) are related to the
properties of the Jðq2Þ, it is convenient to consider a model
inspired by the PT-BFM three-gluon vertex (B3) [44,66,67],
described in detail in Appendix A. The treatment of the
conventional three-gluon vertex will be addressed in the
next section; it basically boils down to a technically more
involved realization of the main idea presented here.
The usual quantity employed in the lattice studies of the

three-gluon vertex is denoted by R (R̂ in the B3 case) and
will be referred to as the “R projector” [for its exact
definition, see Eq. (3.30)]; it receives contributions from the
various form factors of the three-gluon vertex, both
“longitudinal” and “transverse” (see Appendix A).
Because of the QED-like WI satisfied by the B3 vertex,
as opposed to the STI satisfied by theQ3 vertex, the former
can be expressed exclusively in terms of the B2 gluon
kinetic term Ĵðq2Þ [with Jðq2Þ ¼ F2ðq2ÞĴðq2Þ], while the
latter remain undetermined (they satisfy the WI automati-
cally). From the kinematic point of view, R depends on
the modulo of two independent momenta (q2 and r2) and
the angle φ formed between them. It turns out that for the
special case φ ¼ π=2 and r2 ¼ 0, any contribution from the
transverse form factors of the three-gluon vertex drops out,
and one finds that, quite remarkably, R̂ðq2Þ ¼ ½q2Ĵðq2Þ�0.
It is now relatively straightforward to recognize that

Ĵðq2Þ and Jðq2Þ display the same type of logarithmic
divergence in the IR, due to the masslessness of the
corresponding ghost loop. Thus, even though the precise
prefactors between each ghost loop do not coincide, due to
the difference in the form of the ghost-gluon vertex in the
linear covariant (Rξ) gauges and in the BFM (see discussion
in Sec. III), the qualitative behavior in the limit of interest is
common. Furthermore, one may recover Rðq2Þ from R̂ðq2Þ
by assigning tree-level values to the ghost dressing function
F and the gluon-ghost kernelH [see Eq. (3.35)]. Therefore,
if we use the fact that H does not introduce additional IR
divergences [see the discussion after Eq. (3.40)], then
Rðq2Þ may be qualitatively modeled by

Rðq2Þ ∼ ½q2Jðq2Þ�0: (2.20)

If we now employ the toy model of the previous
subsection to evaluate the rhs of Eq. (2.20), then Rðq2Þ
is given precisely by the expression obtained in Eqs. (2.15)
and (2.17). Specifically, in either case,

Rðq2Þ ∼
q2→0

c3Ja3ðq2Þ; (2.21)

which gives a negative logarithmic divergence in d ¼ 4
[c3 > 0, but ln ðq2=μ2Þ < 0], and a negative linear diver-
gence in d ¼ 3 (1=q > 0, but c3 < 0). Summarizing,

Rðq2Þ ∼
q2→0

�
ln ðq2=μ2Þ; d ¼ 4;

−1=q; d ¼ 3.
(2.22)

Note that the value qΔ, which determines the location of
the maximum of Δðq2Þ corresponds now precisely to the
“crossing point,” q0, namely, the point where R passes from
positive to negative values. Thus, within this toy model, the
location of the maximum of the gluon propagator coincides
with the crossing point5 of Rðq2Þ, i.e., qΔ ¼ q0. Of course,
the reason for this coincidence is directly related to the fact
that we use a constant gluon mass, m2. If instead we had
employed a momentum-dependent mass, m2ðq2Þ, the
location of these special points would differ, qΔ ≠ q0, as
will happen in the full analysis of the next section.
Finally, the ultraviolet behavior of the form factor Rðq2Þ

is given by

Rðq2Þ ∼
q2→∞

�
1þðc1þc3Þ½1þ lnðq2=μ2Þ�; d¼ 4;

1; d¼ 3.
(2.23)

Thus, in the three-dimensional case Rðq2Þ saturates at its
tree-level value, while in four dimensions, it increases as a
positive logarithm, Rðq2Þ → þ∞.

3. Numerics

In Fig. 2 we plot the propagator Δðq2Þ, its kinetic part
q2Jðq2Þ, and finally the quantity Rðq2Þ ∼ ½q2Jðq2Þ�0 for
some values of the ci constants (in the four-dimensional
case, we have additionally fixed6 μ at 4.3 GeV, and,
accordingly, m2 ¼ 0.14 GeV2).
As one can see from the top panels of this figure

(continuous curves), the propagator Δðq2Þ of Eq. (2.11)
displays an IR peak. In d ¼ 3, this particular feature is well
established, both at the level of the lattice [2,68] as well as
from various treatments in the continuum (see, e.g.,
Ref. [40]). On the other hand, in d ¼ 4, the lattice evidence
for the appearance of such a peak is certainly inconclusive,
while in the continuum, to the best of our knowledge, this
possibility has not even been contemplated. Of course, we
hasten to emphasize that there are regions in the parameter
space of our toy model where the “peak” flattens out
completely and escapes detection due to numerical errors.

5If the conditions for having a maximum in the gluon
propagator were not fulfilled, R would still diverge at the origin,
but there would be no crossing point; R would be negative for all
values of momenta.

6The choice μ ¼ 4.3 GeV is lattice motivated, in the sense that
it corresponds to the last available point in the ultraviolet tail of
the gluon propagator obtained from the simulation of Ref. [3];
therefore, in the full nonperturbative treatment, one usually
renormalizes the gluon propagator such that Δ−1ðμ2Þ ¼ μ2, at
that particular point. Then, the IR saturation point acquires the
value Δ−1ð0Þ ¼ m2 ¼ 0.14 GeV2. At the level of the toy model,
these choices simply help us maintain a close analogy with the
full treatment presented in the next section.
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The kinetic part of the propagator, q2Jðq2Þ ¼
Δ−1ðq2Þ −m2, is plotted in the middle panels of Fig. 2.
Clearly, as mentioned earlier, due to the fact that m2 is a
constant, this quantity will display a (negative) minimum at
exactly the same point where the peak of the propagator is
located, qΔ ¼ qJ. In the d ¼ 4 case, the inset shows with
more accuracy the extremely shallow minimum that is

obtained for precisely those values of the ci that cause the
maximum ofΔðq2Þ to flatten in the corresponding top panel.
Finally, in the bottom panels of Fig. 2, we plot Rðq2Þ.

Again, the constancy of the gluon mass implies that this
quantity will cross zero exactly at the location of the
propagator’s peak, displaying afterward the expected
divergence as q → 0. Notice that when d ¼ 4 the zero
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FIG. 2 (color online). The propagator Δðq2Þ, its kinetic part q2Jðq2Þ, and the quantity Rðq2Þ calculated in d ¼ 3, 4 for various values
of the constants c1 and c3. In d ¼ 4 we have μ ¼ 4.3 GeV, m2 ¼ 0.14 GeV2, whereas in d ¼ 3 we chose m ¼ 0.84 GeV. Open up/
down triangles and circles mark the position of the qΔ, qJ , and q0, respectively. Notice that, in this model, the locations of these three
points coincide.
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crossing is clearly detectable even in the region of param-
eters where the peak of the propagator (or the minimum of
the kinetic part) is barely visible.
Summarizing, the fact that the ghost remains nonper-

turbatively massless has far-reaching consequences, which
can be captured and studied at the qualitative level by the
simple model (2.11). As we will see in what follows, the
conclusions reached in this section are robust and will
persist even in a fully nonperturbative setting.

III. FULL NONPERTURBATIVE ANALYSIS

In this section we proceed to corroborate by means of a
genuine nonperturbative analysis the qualitative picture
derived from the toy model of the previous section.
The material is organized in five interconnected

subsections:
(i) First, some general issues are discussed, which

facilitate the perusal of what follows.
(ii) Then, the detailed study of the ghost-loop contri-

bution Jcðq2Þ follows, establishing its divergent
behavior in the IR.

(iii) By employing the gluon mass equation and the
lattice data for the gluon propagator, the full kinetic
part, q2Jðq2Þ is determined, or, equivalently [by
“subtracting” q2Jcðq2Þ] the gluonic contribu-
tion q2Jgðq2Þ.

(iv) The R projector of the three-gluon vertex is then
studied in the relevant kinematic limit, revealing the
announced divergence.

(v) Finally, a detailed numerical analysis is carried out.

A. Supplementary considerations

Before entering into the technical parts of this section, let
us briefly go over certain conceptual subtleties related to
the PT-BFM and its propagators [24,49].
Within the conventional formulation [69] of the SDE of

the gluon propagatorΔ (Q2), while the full Jðq2Þ comes out
multiplied by the transverse projector PμνðqÞ, thus reflect-
ing the transversality of the full self-energy, no particular
subset of the diagrams defining Jðq2Þ displays this special
property. Indeed, there is a nontrivial conspiracy of terms,
stemming from each graph, which finally gives rise to a
totally transverse self-energy. This fact is already captured
at the level of the textbook one-loop calculation of the
gluon self-energy [56]: it is only when the ghost-loop is
added that one obtains the required transversality. Within
this framework, therefore, the separation of “gluonic” and
“ghost” contributions to Jðq2Þ (say “Jg” and “Jc”) using
Feynman graphs as a criterion is ambiguous.
On the other hand, within the PT-BFM formalism, the

SDE for the QB gluon propagator ~Δ possesses special
transversality properties [see the discussion following
Eq. (2.8) and the caption of Fig. 1]. As a result, one can
meaningfully distinguish between two kinds of individually

transverse contributions to ~Jðq2Þ—one stemming from the
ghost graphs ða3Þ þ ða4Þ, to be denoted by ~Jcðq2Þ, and the
rest stemming from gluonic graphs, to be denoted by
~Jgðq2Þ. Thus,

q2 ~Jgðq2ÞPμνðqÞ ¼ ½ða1Þ þ ða2Þ�μν þ ½ða5Þ þ ða6Þ�μν;
q2 ~Jcðq2ÞPμνðqÞ ¼ ½ða3Þ þ ða4Þ�μν: (3.1)

Evidently,

~Jðq2Þ ¼ 1þ ~Jgðq2Þ þ ~Jcðq2Þ; (3.2)

where the “1” on the rhs comes from the tree-level graph.
As far as ~Jgðq2Þ is concerned, it is natural to expect that it
will be IR finite, since it originates from the gluonic graphs
shown in Fig. 1, namely, (single and double) integrals
containing fully dressed (and IR-finite) gluon propagators.
At this point, one may use the fundamental relation of

Eq. (2.8), which is valid for the full Jðq2Þ and ~Jðq2Þ, in order
to define the corresponding Jgðq2Þ and Jcðq2Þ, namely,

Jg;cðq2Þ ¼ Fðq2Þ ~Jg;cðq2Þ: (3.3)

As before,

Jðq2Þ ¼ 1þ Jgðq2Þ þ Jcðq2Þ: (3.4)

Finally, to establish a formal analogy with the toy model
of the previous section, note that the correspondence
with the terms appearing in Eq. (2.11) is Jg↔c1Ja1
and Jc↔c3Ja3 .
We next comment briefly on the renormalization pro-

cedure that we follow when dealing with the ultraviolet
divergences of the d ¼ 4 case. Specifically, we adopt the
momentum subtraction (MOM) scheme, mainly because it
is employed when renormalizing the lattice results that we
use as inputs in our analysis.
Within the MOM scheme, the renormalized gluon

propagator is required to assume its tree-level value at
the subtraction point, i.e., must satisfy the condition
Δ−1

R ðμ2Þ ¼ μ2, for μ2 ≫ m2. The (quantum) kinetic terms
JRg ðq2Þ and JRc ðq2Þ are then obtained from their unrenor-
malized counterparts through simple subtraction,

JRg;cðq2Þ ¼ Jg;cðq2Þ − Jg;cðμ2Þ: (3.5)

Evidently, JRg;cðμ2Þ ¼ 0. Thus, the full renormalized kinetic
term is given by

JRðq2Þ ¼ 1þ JRg ðq2Þ þ JRc ðq2Þ; (3.6)

with JRðμ2Þ ¼ 1, consistent with the condition for Δ−1
R ðμ2Þ

mentioned above.
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Finally, to keep this section as self-contained as possible,
we list explicitly the three special values of the momentum
q, first introduced in the context of the toy model:

(i) The location of the maximum of the gluon propa-
gator, Δðq2Þ, is denoted by qΔ.

(ii) The location of the minimum of the kinetic term,
q2Jðq2Þ, is denoted by qJ.

(iii) The location of the zero crossing of theR projector is
denoted by q0.

B. Nonperturbative ghost loops and the minimum
of the kinetic term

Our starting point are the two fully dressed diagrams
ða3Þ and ða4Þ of Fig. 1, which, according to the above
discussion, define Jcðq2Þ through

q2Jcðq2ÞPμνðqÞ ¼ Fðq2Þ½ða3Þ þ ða4Þ�μν: (3.7)

Since the ghost remains massless nonperturbatively, the
resulting contribution will be IR divergent, as happens in
the one-loop perturbative case.
To see this in detail, let us focus on the rhs of Eq. (3.7).

Factoring out the trivial color structure δab, one has

ða3Þμν¼−g2CA

Z
k
ðkþqÞμDðkÞDðkþqÞ ~Γνðkþq;−q;−kÞ;

ða4Þμν¼ g2CAgμν

Z
k
DðkÞ: (3.8)

In the above equations, ~Γμðr; q; pÞ is the PT-BFM
vertex describing the interaction of a background gluon
with a ghost and an antighost; unlike the conventional
ghost-gluon vertex, its tree-level expression is symmetric
in the ghost momenta, ~Γð0Þ

μ ðr; q; pÞ ¼ ðr − pÞμ. In addition,
we have introduced the d-dimensional measureR
k ≡μϵ=ð2πÞd R ddk, where μ is the ’t Hooft mass
and ϵ ¼ 4 − d.
Since, due to the PT-BFM properties, ~Γμ satisfies the WI

[24,49]

qμ ~Γμðr; q; pÞ ¼ D−1ðpÞ −D−1ðrÞ; (3.9)

one may establish immediately the transversality of this
subset of diagrams, as anticipated by the presence of the
projector PμνðqÞ on the lhs of Eq. (3.7).
One may now introduce an ansatz for ~Γμ, that satisfies

automatically the above WI, namely,

~Γμðr; q; pÞ ¼
ðr − pÞμ
r2 − p2

½D−1ðr2Þ −D−1ðp2Þ�: (3.10)

A corresponding construction for the conventional ghost-
gluon vertex would be less forthcoming, given the type of
STI that the latter satisfies [56].

This procedure fixes completely the longitudinal part of
the vertex but leaves its transverse component, ~Γt

μ ¼
Aðr; pÞ½ðr · qÞpμ − ðp · qÞrμ�, undetermined. However,
under rather mild assumptions on the behavior of
Aðr; pÞ, this latter term is subleading in the IR (see
Appendix B), and its effects may be neglected at this stage.7

Before proceeding with the actual calculation, let us
clarify a potentially confusing point. The terminology we
use to characterize the two distinct Lorentz structures of the
ghost vertex goes back to the pioneering work of Ball and
Chiu [72]: the automatically conserved part of the vertex
(i.e., the one annihilated when contracted by qμ) is referred
to as the transverse part, in exact analogy to what happens
with the photon (or gluon) propagator. By the same logic,
the part that contributes to the WI is denominated longi-
tudinal. Clearly, in the case of the photon propagator, given
that there is only one momentum available (q), the
longitudinal part qμqν vanishes when contracted with the
transverse PμνðqÞ. However, in the case of the vertex, this
last property is no longer true: the contraction of its
longitudinal part by PμνðqÞ does not vanish. We will
therefore use this terminology under the proviso just
mentioned. The above comment applies also to the case
of the three-gluon vertex or any other vertex with a
nontrivial Lorentz structure (see, e.g., Ref. [73]).
Substituting the vertex (3.10) into the first equation of

Eq. (3.8), and taking the trace of both sides, one obtains

q2Jcðq2Þ ¼ CdFðq2Þ½4Tðq2Þ þ q2Sðq2Þ�; (3.11)

where we have defined

Cd ¼
g2CA

2ðd − 1Þ ; (3.12)

and

Tðq2Þ ¼
Z
k

Fðkþ qÞ − FðkÞ
ðkþ qÞ2 − k2

þ
�
d
2
− 1

�Z
k

FðkÞ
k2

;

Sðq2Þ ¼
Z
k

FðkÞ
k2ðkþ qÞ2 −

Z
k

Fðkþ qÞ − FðkÞ
k2½ðkþ qÞ2 − k2� : (3.13)

Let us now study at the IR behavior of these quantities.
For the term S, one finds

Sðq2Þ→
q2→0

Z
k

FðkÞ
k4

−
Z
k

1

k2
∂FðkÞ
∂k2 þOðq2Þ

∼
Z
k

FðkÞ
k4

−
Z

∞

0

dyyd=2−2F0ðyÞ þOðq2Þ; (3.14)

7Of course, in d ¼ 4 the omission of the transverse term affects
the ultraviolet properties of the resulting SDE, forcing subtractive
instead of multiplicative renormalization [70,71].
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where in the last step we have passed to spherical
coordinates, with y ¼ k2 [see Eq. (B4)].
The first integral on the rhs contains the divergence

discussed in the previous section. This can be seen by
simply setting FðyÞ ¼ 1, in which case one finds a loga-
rithmic (d ¼ 4) or a linear (d ¼ 3) divergence. Given that
the full FðyÞ saturates at a constant value in the IR, its
presence does not qualitatively modify the behavior of the
integral with respect to the case when FðyÞ ¼ 1; roughly
speaking, it simply changes its prefactor from 1 to Fð0Þ.
It is now relatively straightforward to establish that the

second integral in Eq. (3.14) is subleading compared to the
first one, as a result of the fact that FðyÞ is a finite function
in the entire range of momenta. Indeed, in d ¼ 4, integra-
tion by parts shows that it is simply equal to Fð0Þ, and,
therefore, it contributes a finite constant.
In d ¼ 3, let us assume that F0 ∼ y−a; then one may

naturally distinguish three cases, depending on the value of
the exponent a:

(i) If a < 1=2, it is clear that the integral is finite, and
evidently subleading.

(ii) If 1=2 ≤ a < 1, the integral diverges, but with a
degree of divergence inferior to 1=q (or y−1=2).

(iii) If a ≥ 1, the second integral diverges faster than
the first.

Now, given that from F0 ∼ y−a one deduces that
FðyÞ ∼ ð1 − aÞ−1y1−a þ C, if a ≠ 1, and FðyÞ ∼ Cþ ln y,
if a ¼ 1, the finiteness of FðyÞ imposes the restriction
a < 1. Therefore, one is driven to the case (i) or (ii), and,
consequently, the second integral may be finite or divergent
in the IR but is certainly subleading compared to the first.
Next, consider the term Tðq2Þ; following a similar

procedure, we obtain

Tðq2Þ →
q2→0

Tð0Þ ¼
Z
k

∂Fðk2Þ
∂k2 þ

�
d
2
− 1

�Z
k

FðkÞ
k2

: (3.15)

It is now immediate to recognize that Tð0Þ vanishes, since
Eq. (3.15) is a particular case of the so-called “seagull
identity” [74],Z

k
k2

∂fðk2Þ
∂k2 þ d

2

Z
k
fðk2Þ ¼ 0; (3.16)

valid in dimensional regularization.8

Then, employing that Tð0Þ ¼ 0, and after repeated use of
Eq. (3.16), one finds that

Tðq2Þ →
q2→0

−
1

12
ðd − 2Þq2

Z
k

1

k2
∂FðkÞ
∂k2 þOðq4Þ; (3.17)

that is, we end up with the first integral on the rhs of
Eq. (3.14), which is subleading.
Thus, if we split Jc in a part that contains the leading

contribution in the IR, Jlcðq2Þ, and the rest that is
subleading, Jslc ðq2Þ,

Jcðq2Þ ¼ Jlcðq2Þ þ Jslc ðq2Þ; (3.18)

we conclude that the leading divergent contribution is that
contained in the first term of Sðq2Þ, namely,

Jlcðq2Þ ¼ CdFðq2Þ
Z
k

FðkÞ
k2ðkþ qÞ2 : (3.19)

On the other hand, Jslc ðq2Þ consists of all those terms that
have been discarded throughout the procedure described
above. It may be computed numerically, but its detailed
form is of no immediate interest, and it will be simply
included in the full curve describing Jcðq2Þ.
The divergent nature of Jcðq2Þ causes the kinetic term

q2Jðq2Þ to acquire a minimum in the IR region, as can be
demonstrated by following basically the arguments related
with Eq. (2.15). In particular, using Eqs. (3.4) and (3.18),
one has

½q2Jðq2Þ�0 ¼ Jlcðq2Þ þ f1þ q2J0ðq2Þ þ Jslc ðq2Þg: (3.20)

Now, as happens in the case of the toy model, (i) the
quantity in curly brackets is subleading in the IR, and
(ii) the above derivative is positive in the ultraviolet, since
q2Jðq2Þ increases [and so, Δðq2Þ decreases]. Thus, the
derivative reverses its sign, becoming zero at the point qJ,
namely,

½q2Jðq2Þ�0q¼qJ
¼ 0: (3.21)

We must emphasize at this point that even though the
existence of the minimum is established by means of the
above argument, its location cannot be accurately deter-
mined because we do not know all terms appearing in the
curly bracket of Eq. (3.20). Therefore, qJ cannot be
computed directly; however, in the next subsection, we
will determine its value indirectly, from the (better known)
combination Δ−1ðq2Þ −m2ðq2Þ.

C. Maximum of Δðq2Þ and indirect
determination of Jgðq2Þ

Let us now examine whether the maximum of the gluon
propagator established in Sec. II in the context of the toy
model persists in the full nonperturbative treatment.
Evidently, the main qualitative difference between the

two situations is that now the gluon mass is not a constant
but a function of the momentum, m2ðq2Þ. Specifically, the
corresponding ½Δ−1ðq2Þ�0 reads

8The origin of Eq. (3.16) is simple integration by parts, where
the surface term is dropped by appealing to the analyticity
properties of dimensional regularization. Its main function in
the context of gluon mass generation is to enforce the complete
cancellation of all quadratic (seagull-type) divergences.
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½Δ−1ðq2Þ�0 ¼ ½q2Jðq2Þ�0 þ ½m2ðq2Þ�0: (3.22)

Now, if the quantity ½m2ðq2Þ�0 is a “well-behaved” function,
then the arguments following Eq. (3.20) would again go
through here. In particular, the existence of a zero is
guaranteed, provided that the IR divergence of Jlcðq2Þ is
not cancelled exactly by a similar divergence (with opposite
sign) contained in ½m2ðq2Þ�0.
To discard this remote possibility, we turn to the

dynamical equation that governs m2ðq2Þ, which, in its
exact form, reads [37]

m2ðq2Þ¼−g2CADðq2Þ
Z
k
m2ðk2ÞΔμ

ρðkÞΔνρðkþqÞKμνðk;qÞ;

(3.23)

with the kernel given by

Kμνðk; qÞ ¼ ½ðkþ qÞ2 − k2�f1 − ½Yðkþ qÞ þ YðkÞ�ggμν
þ ½Yðkþ qÞ − YðkÞ�ðq2gμν − 2qμqνÞ (3.24)

and Y defined through

Yðk2Þ ¼ g2CA

4k2
kα

Z
r
ΔαρðrÞΔβσðrþ kÞΓσρβð−r − k; r; kÞ;

(3.25)

where Γσρβ is the full three-gluon vertex.
This equation has been studied in d ¼ 4, under certain

simplifying assumptions regarding the structure of the
function Yðk2Þ. In particular, Y was replaced by its lowest
perturbative approximation, given by

YRðk2Þ ¼ −
αsCA

4π

15

16
log

k2

μ2
; (3.26)

with αs the value of the strong coupling at the subtraction
point chosen. In practice, this simple approximation is

improved by letting Y → CY, where C is an arbitrary
constant, modeling further corrections that may be added to
the “skeleton” result of Eq. (3.26).
From Eq. (3.23) one obtains positive-definite solutions

for the gluon mass function, at least within a reasonable
range of physical momenta. In particular, we fix μ ¼
4.3 GeV and use for αsðμÞ the MOM value obtained from
the corresponding formulas of Ref. [75], namely,
αsðμÞ ¼ 0.22. Then, for C ¼ 9.2, the function m2ðq2Þ is
positive and monotonically decreasing in the range of
momenta between9 0 and 5.5 GeV.
Evidently, this behavior (seeFig. 3) excludes the possibility

of m2ðq2Þ having a divergent (and positive) derivative at the
origin. Therefore, we conclude that the rhs of Eq. (3.22) must
reverse its sign at some point (qΔ), where the corresponding
gluon propagator will display a maximum. Of course, the
presence of the term ½m2ðq2Þ�0 in Eq. (3.22) prevents the
coincidence between qΔ and qJ, unless ½m2ðq2Þ�0q¼qJ

¼ 0;
but this possibility is discarded, due to the monotonic nature
of m2ðq2Þ. Thus, we conclude that qΔ ≠ qJ.
One may go one step further and demonstrate that, in

fact, qJ < qΔ. Indeed, evaluating both sides of Eq. (3.22) at
the point qJ, where the first term on the rhs vanishes, one
has

½Δ−1ðq2JÞ�0 ¼ ½m2ðq2JÞ�0 < 0; (3.27)

since m2ðq2Þ is monotonically decreasing. Thus, at qJ the
derivative of Δ−1ðq2Þ is still negative and has yet to reach
its point of zero crossing, a fact that places qΔ to the right of
qJ on the axis of momenta. As will be shown in Fig. 7, this
particular inequality is in complete agreement with the
numerical analysis presented in the last subsection.
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FIG. 3 (color online). Solutions of the mass equation for the SU(2) (left) and SU(3) (right) gauge groups. In the insets we show the
deep IR region of the same curves.

9Past this point m2ðq2Þ turns negative (but its magnitude is
extremely small), reaching finally zero from negative values [76].
The necessary refinements for rectifying this will be reported
elsewhere.
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In addition to consolidating the above considerations, the
(approximate) knowledge of m2ðq2Þ, when combined with
the lattice information on the full Δðq2Þ [1–5], may furnish
the full q2Jðq2Þ, simply from

q2Jðq2Þ ¼ Δ−1ðq2Þ|fflfflfflffl{zfflfflfflffl}
lattice

− m2ðq2Þ|fflfflffl{zfflfflffl}
Eq. ð3.23Þ

: (3.28)

When coupled with the result (3.11), the procedure
outlined above allows for a gauge-invariant identification
of the two components contributing to the gluon propaga-
tor. Specifically, the gluon kinetic term can be obtained
from [see also Eq. (3.4)]

q2 þ q2Jgðq2Þ ¼ Δ−1ðq2Þ|fflfflfflffl{zfflfflfflffl}
lattice

− m2ðq2Þ|fflfflffl{zfflfflffl}
Eq. ð3.23Þ

− q2Jcðq2Þ|fflfflfflfflffl{zfflfflfflfflffl}
Eq. ð3.11Þ

: (3.29)

The results of these operations will be discussed in the last
subsection.

D. R projector

The final step is to link the gluon kinetic term with lattice
simulations of the three-gluon vertex. To this end, let us
recall that the typical quantity employed on the lattice
projects the full vertex on its tree-level value, dividing out,
at the same time, external leg corrections [8,9]. Specifically,
for the three-gluon vertex in the Landau gauge, one
considers

Rðq; r; pÞ ¼ N ðq; r; pÞ
Dðq; r; pÞ ; (3.30)

where

N ðq; r; pÞ ¼ Γð0Þ
αμνðq; r; pÞPαρðqÞPμσðrÞPντðpÞ

× Γρστðq; r; pÞ;
Dðq; r; pÞ ¼ Γð0Þ

αμνðq; r; pÞPαρðqÞPμσðrÞPντðpÞ
× Γð0Þ

ρστðq; r; pÞ: (3.31)

As already mentioned, the ratio (3.30) can be characterized
by the modulo of two independent momenta and the angle
formed between them, so that one has R ¼ Rðq2; r2;φÞ.
Then, the quantity of interest corresponds to the so-called
“orthogonal configuration,” φ ¼ π=2, where, in addition,
we take the limit r2 → 0, namely, Rðq2; 0; π=2Þ.
In this particular limit, R may be obtained from the

combination [77]

Rðq2; 0; π=2Þ ¼ X7ðq2; 0; π=2Þ þ q2X9ðq2; 0; π=2Þ: (3.32)

In the formula above, X7;9 represent two of the 10
longitudinal form factors which characterize the longi-
tudinal part of the vertex (see Appendix A); their explicit
forms can be determined by solving the STI satisfied by the
vertex and reads [72]

X7ðq; r; pÞ ¼
1

4
f2½Fðq2ÞJðp2Þarqp þ Fðp2ÞJðq2Þarpq� þ r2½Fðp2ÞJðr2Þbqpr þ Fðq2ÞJðr2Þbpqr�

þ ðq2 − p2Þ½Fðr2ÞJðq2Þbprq þ Fðq2ÞJðp2Þbrqp − Fðr2ÞJðp2Þbqrp − Fðp2ÞJðq2Þbrpq�
þ 2ðq · rÞFðp2ÞJðq2Þdrpq þ 2ðr · pÞFðq2ÞJðp2Þdrqpg; (3.33)

X9ðq; r; pÞ ¼
Fðr2Þ
q2 − p2

½Jðq2Þaprq − Jðp2Þaqrp
þ ðr · pÞJðp2Þdqrp − ðq · rÞJðq2Þdprq�;

(3.34)

with a, b, and d representing the form factors appearing
in the tensorial decomposition of the gluon-ghost kernel
H [72],

Hνμðp; r; qÞ ¼ gμνaqrp − rμqνbqrp þ qμpνcqrp þ qνpμdqrp

þ pμpνeqrp; (3.35)

and aqrp a short-hand notation for aðq; r; pÞ, etc. Note
finally that, in this particular kinematic limit, the four
(undetermined) transverse components of the three-gluon
vertex (see Appendix A) drop out completely.

Let us now study the IR behavior of Rðq2; 0; π=2Þ.
Consider first the X7 term; in the orthogonal configuration,
one has

p2¼q2þr2; ðq ·rÞ¼0; ðq ·pÞ¼−q2; ðr ·pÞ¼−r2;
(3.36)

then, taking the limit r2 → 0, Eq. (3.33) gives the result

X7ðq2; 0; π=2Þ ¼ Fðq2ÞJðq2Það0; q;−qÞ: (3.37)

For X9, which in the orthogonal configuration reads

X9ðq2; r2; π=2Þ ¼ Fðr2ÞJðp2Þdqrp

−
Fðr2Þ
r2

½Jðq2Þaprq − Jðp2Þaqrp�;
(3.38)
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the corresponding treatment is slightly more involved. The
first term appearing in Eq. (3.38) can be simplified using
the identity10 [78]

Fðr2Þ½aqrp − ðq · rÞbqrp þ ðq · pÞdqrp�
¼ Fðq2Þ½arqp − ðq · rÞbrqp þ ðp · rÞdrqp�; (3.39)

yielding in the limit of interest

q2Fð0Þdðq; 0;−qÞ ¼ Fð0Þ − Fðq2Það0; q;−qÞ: (3.40)

In arriving at the above result, we used the fact that, in the
Landau gauge, aðq; 0;−qÞ maintains to all orders its tree-
level value [79], i.e., aðq; 0;−qÞ ¼ 1.
For the second term in Eq. (3.38), one needs to perform a

Taylor expansion around r2 ¼ 0 of both aprq and JðpÞaqrp;
using

aprq ¼
r2→0

1þr2
∂
∂r2aprq

���
r2¼0

þOðr4Þ;

JðpÞaqrp ¼
r2→0

JðqÞþr2
∂
∂r2 ½aqrpJðpÞ�

���
r2¼0

þOðr4Þ; (3.41)

we obtain

−
Fðr2Þ
r2

½Jðq2Þaprq − Jðp2Þaqrp�

¼
r2→0

Fð0Þ
h
J0ðq2Þ þ Jðq2Þ ∂

∂r2 ðaqrp − aprqÞj
r2¼0

i
; (3.42)

where the prime denotes, as usual, derivatives with respect
to q2. Thus, inserting Eqs. (3.40) and (3.42) in Eq. (3.38),
one derives the expression

q2X9ðq2; 0; π=2Þ ¼ Jðq2Þ½Fð0Þ − Fðq2Það0; q;−qÞ�
þ Fð0Þq2J0ðq2Þ þOðqÞ; (3.43)

with OðqÞ indicating subleading terms, specifically the
derivative of aqrp − aprq appearing in Eq. (3.42).
Substituting the results (3.37) and (3.43) in Eq. (3.32),

we obtain the final expression (we only indicate q2 in the
argument)

Rðq2Þ ¼ Fð0Þ½q2Jðq2Þ�0 þ Rslðq2Þ; (3.44)

which shows that the behavior of R in the deep IR is
determined solely by J,

Rðq2Þ ∼
q2→0

Fð0ÞJðq2Þ: (3.45)

The term Rslðq2Þ denotes the subleading corrections not
contained in the first term. Therefore, from Eq. (3.19), the
dominant contribution in that limit is

Rðq2Þ ∼
q2→0

CdF2ð0Þ
Z
k

FðkÞ
k2ðkþ qÞ2 : (3.46)

If we now assume that the ultraviolet behavior of Rðq2Þ is
qualitatively described by Eq. (2.23), then the Rðq2Þ of
Eq. (3.44) must vanish at a point q0, Rðq20Þ ¼ 0, and then
eventually diverge in the IR, according to Eq. (3.46).
The location of q0 with respect to the other two special

points, qΔ and qJ, is not possible to determine. Since, from
Eq. (3.22) we have ½q2ΔJðq2ΔÞ�0 ¼ −½m2ðq2ΔÞ�0, the value of
Rðq2Þ at these two points is given by

Rðq2ΔÞ ¼ Rslðq2ΔÞ − Fð0Þ½m2ðq2ΔÞ�0;
Rðq2JÞ ¼ Rslðq2JÞ: (3.47)

For the point q0 to coincide with either qΔ or qJ, the
corresponding rhs in Eq. (3.47) ought to vanish; this
possibility, however, cannot be checked analytically, due
to the lack of knowledge of the function Rsl. Of course, in
the toy model, Rsl is identically zero, and so is the
derivative of the mass, forcing the equality between these
three special points. The available lattice data for SU(2) in
d ¼ 3 [2,8,9] seem to suggest a relative proximity between
q0 and qΔ, with qΔ ≈ q0 ≈ 380 MeV; of course, the lattice
parameters used for computing the two- and three-point
functions are rather different, so this comparison is only
suggestive at this point.

E. Numerical results

We finally carry out a detailed numerical study of all the
quantities introduced in the previous four subsections.
Let us start by evaluating from the the full nonperturba-

tive ghost-loop contribution (3.7) to the gluon kinetic term
q2Jðq2Þ in the four-dimensional case. For evaluating all the
terms appearing in Eqs. (3.11) and (3.13), we used as input
a functional fit to the SU(2) [2] and SU(3) [3] unquenched
lattice data for the ghost dressing function. Specifically, we
set (see also Fig. 4),

F−1ðq2Þ ¼ 1þ 9

4

CAg21
48π2

ln
1

μ2

�
q2 þ ρ1m4

0

q2 þ ρ2m2
0

�
; (3.48)

withm0 ¼ 520 MeV, g21 ¼ 8.65, ρ1 ¼ 0.25, and ρ2 ¼ 0.64
for SU(3) and m0 ¼ 815 MeV, g21 ¼ 14.81, ρ1 ¼ 0.023,
and ρ2 ¼ 0.20 for SU(2). In both cases we
have μ ¼ 4.3 GeV.

10This identity is a direct consequence of the STI satisfied by
the ghost kernel H and constitutes a necessary condition for
obtaining a consistent solution of the STIs of the three-gluon
vertex [78].

EFFECTS OF DIVERGENT GHOST LOOPS ON THE … PHYSICAL REVIEW D 89, 085008 (2014)

085008-13



The results are shown in Fig. 5, where, as anticipated, the
IR logarithmic divergence, clearly identified by the linear
behavior (in log scale) of the S term, persists in both cases
even in a fully nonperturbative setting.
Now, according to the reasoning developed so far, and as

a consequence of this particular divergence, the lattice data
for the gluon propagator ought to display a maximum,
located in the (deep) IR region. Such a maximum appears to
be indeed encoded in the lattice data for the gluon
propagator, which seem to show a suppression of the
deep IR points. This particular feature is displayed in the
insets appearing in the panels of Fig. 6, where, together
with the lattice data, we also plot different fitting curves, in
which the position of the maximum is varied. To be sure,
the maximum is not easy to discern and is located in a
region of momenta where the lattice simulations are
plagued with considerable errors, due to a variety of
technical difficulties. We emphasize that the set of gluon
propagators presented here are not the output of a full SDE

analysis11 but rather a particular fit of the existing lattice
data, which is designed to exhibit the theoretical feature
that we advocate, namely, the (rather flat) maximum. These
propagators will be used as an input below, in order to
deduce or confirm additional aspects of the theoretical
picture put forth in the previous analysis.
We next turn to the indirect determination of q2Jðq2Þ

from Eq. (3.28), using as basic input the family of curves
forΔðq2Þ obtained in the previous step. To that end, we first
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FIG. 4 (color online). The functional fit given in Eq. (3.48) to the ghost dressing functions for SU(2) (left) and SU(3) (right). Lattice
data are taken from Refs. [1,2], and [3], respectively.
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FIG. 5 (color online). The ghost-loop contribution, q2Jcðq2Þ, to the gluon kinetic term q2Jðq2Þ for the SU(2) (left) and SU(3) (right)
gauge groups.

11The reason why a full SDE analysis is beyond our powers
has already been mentioned earlier; it essentially boils down to
the fact that we do not have satisfactory control over some of the
basic ingredients appearing in the integral equation governing
Jðq2Þ. In particular, and contrary to what happens in the case of
the mass equation, the equation for Jðq2Þ (not reported here)
involves the fully dressed four-gluon vertex, for which the
structure is very poorly known. This is why one has to settle
for an “indirect” determination of Jðq2Þ, as opposed to a direct
one, which would amount to solving the full system for m2ðq2Þ
and Jðq2Þ simultaneously.

AGUILAR et al. PHYSICAL REVIEW D 89, 085008 (2014)

085008-14



establish that, when the latter curves are used as input for
the mass equation (3.23), the resulting masses turn out to be
completely independent of the location and the size of the
maximum of the propagator (left panels of Fig. 6). Thus,
while Δðq2Þ is varied on the rhs of Eq. (3.28), the
corresponding m2ðq2Þ remains the same for all cases.
The result of this procedure is shown on the right panels
of Fig. 6; each q2Jðq2Þ so obtained vanishes at the origin,
decreases in the deep IR, and reaches a negative minimum
before crossing zero and turning positive. The location of
the corresponding minimum, qJ, is clearly marked for each
separate case.
Evidently, since every Δðq2Þ has a maximum at a point

qΔ, and since from each such Δðq2Þ we obtain a q2Jðq2Þ
with a minimum at a point qJ, one may plot qJ as a function
of qΔ. The resulting relation is shown in Fig. 7. The shaded
area serves as a reference, corresponding to the case
qJ ≥ qΔ. The plot clearly indicates that all points lie below
this region, demonstrating that, indeed, qJ < qΔ, as pre-
viously anticipated using Eq. (3.27).

Notice that, as an important byproduct of this analysis,
we are able to disentangle gauge invariantly the ghost and
gluon contributions to the kinetic term and the propagator.
This is shown in Fig. 8, where one can appreciate that the
gluon contribution is dominant; however, in the crucial
region below 1 GeV2, there are still sizeable contributions
from ghost terms. It should be also noticed that there is a
substantial difference between the SU(3) and SU(2) gauge
groups, in the sense that the relative size disparity between
the various components is more moderate in the SU(2)
case. Finally, in Fig. 9 we show the tree-level and quantum
part of the gluon kinetic term; notice that in this case, any
structure appearing in the quantum term gets completely
washed out by the tree-level term (obviously absent for the
ghost contributions).
As Eq. (3.44) reveals, the position of the minimum of the

full kinetic term provides an estimate for the momentum q0
where the three-gluon projector Rðq2; 0; π=2Þ crosses zero
and reverses sign. In the SU(2) case, this turns out to be
located quite deep in the IR, as one gets (see Fig. 10)
q0 ≈ 44 MeV, while for SU(3) we obtain q0 ≈ 132 MeV.
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FIG. 6 (color online). The dynamical gluon mass (left panels) and the propagator’s full kinetic part Δ−1ðq2Þ −m2ðq2Þ (right panels)
for the SU(2) (top) and SU(3) (bottom) gauge groups. Whereas the solutions of the mass equation are clearly insensitive to the presence
of a maximum in the propagator, as shown for two representative cases, the full kinetic term develops a negative minimum (qJ), for
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At this point, we can use the relation (see, e.g., Ref. [80])

q ¼ 2

a
sin

πk
L

× 197.3 MeV fm; (3.49)

with a the lattice size (in fermi), L the number of lattice
sites, and k ≤ L an integer locating the different sites in the
corresponding lattice direction, in order to convert the
numbers obtained above into the lattice volumes needed to
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FIG. 7 (color online). The points qJ plotted as a function of the points qΔ for the SU(2) (left) and SU(3) (right) gauge groups. The
shaded area on both panels corresponds to the region qJ ≥ qΔ.
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resolve them. Setting k ¼ 1 (corresponding evidently to
the minimum momentum which can be reached for a given
L) and choosing the most coarse lattices used in the
literature (a ≈ 21 fm at β ¼ 2.5 for the SU(2) case [9]),
one obtains L ∼ 130, which does not seem attainable
with current simulations (which have L ¼ 22 at most).
In the SU(3) case, assuming that simulations can be
performed at β ¼ 5.7 with a ≈ 0.17 fm (that is, in the
same conditions used for simulating the gluon and
ghost two-point sectors in Ref. [3]), one obtains instead
L ∼ 60. Obviously, these numbers are indicative, but they
seem to suggest that resolving the zero crossing of R on the
lattice in four dimensions could represent a challenging
endeavor.
We next turn to the three-dimensional case. In the left

panel of Fig. 11, we plot the full nonperturbative ghost
kinetic term, evaluated using as input the functional fit to
the d ¼ 3 ghost dressing lattice data [2] given in Ref. [81].

 0

 1

 2

 3

 4

 5

 6

 0.001  0.01  0.1  1  10

q2

q2Jg
q2(1+Jg)

-2

 0

 2

 4

 6

 8

 10

 0.001  0.01  0.1  1  10  100

q2

q2Jg
q2(1+Jg)

FIG. 9 (color online). Tree-level and quantum contributions to the gluon kinetic term for SU(2) (left panel) and SU(3) (right panel).
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One easily recognizes the expected linear divergence,
which eventually translates into the well-known peak
structure displayed in the IR by the gluon propagator
(right panel inset) [2]. However, to repeat in d ¼ 3, the
exercise of obtaining the kinetic term q2Jðq2Þ from
Eq. (3.28), an additional assumption is needed.
Specifically, whereas the mass equation (3.23) is valid
also in d ¼ 3, the term Y has not been computed in this
case; as a consequence, no solutions for m2ðq2Þ are
available. We will circumvent this difficulty by simply
assuming that the three-dimensional gluon mass behaves in
a way similar to that of d ¼ 4.
Given the need for this additional assumption, it is

natural to consider the corresponding results for q2Jðq2Þ as
less definite than in the d ¼ 4 case. In fact, to acquire a
quantitative notion of how the running of the mass
influences these results, we carry out the analysis twice,
once for the four-dimensional m2ðq2Þ obtained for SU(2)
and once for the corresponding mass in SU(3). The results
are shown in the right panel of Fig. 11. Depending on the
mass solution used, the position of the minimum of the
kinetic term is located between q0 ≈ 134 [SU(2) mass) and
q0 ≈ 215 MeV (SU(3) mass]; this compares relatively well
with lattice simulations of R (Fig. 12), which locate the zero
crossing at around 380 MeV.
Let us finally point out that before the present work the

appearance and location of the zero crossing has also been
treated in Refs. [16] and [38], for d ¼ 3 and d ¼ 4,
respectively, employing distinct approaches and approx-
imations for the evaluation of the corresponding three-
gluon vertices. In addition, very recent studies [82,83]
appear to be in agreement with the general picture put
forth here.

IV. CONCLUSIONS

In this work we have presented a set of connections that
link the IR behavior of the gluon two- and three-point
sector in quenched QCD. Specifically, we have shown that
the fact that the ghost field remains nonperturbatively
massless, as opposed to the gluon which acquires a
dynamically generated mass, implies unavoidably the
existence of a negative IR divergence in the dimensionless
cofactor Jðq2Þ of the kinetic part of the gluon propagator
(in d ¼ 4, J ∼ ln q2, and in d ¼ 3, J ∼ 1=q). This diver-
gence, originating exclusively from the one-loop dressed
diagrams involving a ghost loop, does not affect the
finiteness of the gluon two-point function, since the full
kinetic term is multiplied by a q2. However, its presence
manifests itself in at least three different ways: first, the
dimensionful kinetic part q2Jðq2Þ has a minimum, located
at qJ; second, the full gluon propagator Δðq2Þ displays a
maximum, at a point denoted by qΔ; third, a (negative)
divergence emerges in certain kinematic limits of the three-
gluon sector, where the standard lattice projector, Rðq2Þ, is
proportional to Jðq2Þ—the point where Rðq2Þ vanishes is
denoted by q0.
The PT-BFM formalism turns out to be particularly

suited for verifying the above picture quantitatively, mainly
because it allows for a gauge-invariant separation of the
ghost and gluon contributions to the gluon propagator.
Consequently, one can identify the divergent ghost term in
a meaningful and unambiguous way. Specifically, the fact
that the special ghost-gluon vertex ~Γμ satisfies the QED-
like WI of Eq. (3.9) furnishes a closed all-order expression
for its longitudinal part, which is not possible to obtain for
the corresponding vertex of the conventional (Rξ) formu-
lation. In addition, when one combines the aforementioned
feature of individual transversality with the gluon mass
equation and the available large-volume lattice data, one is
able to separate gauge invariantly the gluon- and ghost-loop
contributions to the full kinetic term q2Jðq2Þ.
At the level of the SDE the IR-finite solutions (denomi-

nated as “decoupling” or “massive”) have been obtained in
two distinct ways. In the approach of Ref. [13], the Gribov
horizon condition is appropriately implemented, and the
resulting procedure signals a breaking of the global BRST
symmetry. In the approach put forth in Ref. [12], the
emergence of such solutions occurs through the introduc-
tion of massless poles in the corresponding vertices,
following the standard Schwinger mechanism, and no
BRST breaking has been identified, at least not at the
level of the STIs satisfied by the massive Green’s functions.
The way confinement is realized within these two
approaches is also quite distinct. Within the former sce-
nario, it has been argued in Ref. [22] that the decoupling
solutions satisfy a rather concrete confinement criterion
derived from the effective action of the theory. Within the
latter approach, the situation regarding confinement is
considerably more involved, and no simple criterion has
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FIG. 12 (color online). Prediction for the zero-crossing of the
SU(2) form factor Rðq2; 0; π=2Þ, measured on the lattice in three
dimensions [9]. The point shown is the average of the minima of
the kinetic term for the two different runnings of the dynamical
mass, with the error corresponding to the semidifference of these
two points.
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been put forth to date. In particular, the dynamical gluon
mass gives rise to a low energy effective theory, which
supports a type of quantum solitons (“thick” center
vortices), not present in the massless theory, for which
the condensation furnishes an area law to the fundamental
representation Wilson loop, thus confining quarks (for a
detailed exposition, see Ref. [61], Chapter VII).
An important question in this context is whether the main

conclusions of the present work may be affected by the
truncation scheme employed or if they are, in a sense,
“truncation independent.” The main effect is controlled by
the ghost loop, which, in the PT-BFM scheme has the
transversality-preserving property mentioned throughout
the text. Its divergence is a consequence of the masslessness
of the ghost propagators, which seems to be a well-
established fact in this field. In addition, the longitudinal
part of the ghost-gluon vertex is completely fixed from the
WI that it satisfies, and if one accepts the behavior of the
transverse part assumed in Appendix B, then its omission
will not affect the main result. Of course, if the transverse
part did not obey this constraint, one could not entirely
discard the possibility of a perfect cancellation between the
contribution of the longitudinal and transverse parts of the
ghost-gluon vertex; however, it would seem to require a
tremendous degree of fine-tuning. The situation is more or
less similar for the analysis of the three-gluon vertex, and
the corresponding divergence and the associated zero
crossing point. More prone to truncation dependence
may be the secondary result of this work, namely, the
form of the “gluonic” contribution, Jgðq2Þ, which is
indirectly determined, using the lattice data for the full
gluon propagator and the form of the gluon mass obtained
from the corresponding mass equation [see Eq. (3.29)]. As
explained in the corresponding subsection, the kernel of
this latter integral equation has undergone a drastic sim-
plification, mainly due to our imperfect knowledge of the
(conventional) full three-gluon vertex entering in it. Given
the ongoing effort to better determine the structure of this
vertex [83], we hope to be able to return to this issue in the
near future.
An additional interesting result in this context is the

inequality between the special points qJ and qΔ, namely,
qJ < qΔ, which constitutes a a clear and definite prediction
of this particular approach based on the gluon mass
generation. Specifically, the aforementioned relation is a
direct result of Eq. (3.22), and in particular of the
monotonically decreasing nature of the gluon mass
m2ðq2Þ, as obtained from the corresponding dynamical
equation. This relation, in conjunction with the indirect
determination of q2Jgðq2Þ may provide valuable guidance
in the effort to obtain the entire kinetic term of the gluon
propagator from a complete treatment of the correspond-
ing SDE.
In the study of the R projector, we have used as reference

the results obtained for the vertex with three incoming

background fields (B3). The main reason for this choice is
the simplifications obtained due to the Abelian-like WI
satisfied by the B3 vertex. This property, in turn, eliminates
all complications related to the ghost-gluon kernel, thus
exposing the essence of the basic effect. For a very
particular kinematic configuration, R is expressed solely
in terms of the kinetic term of the B2 propagator, a fact that
imposes an exact coincidence between q0̂ and qĴ.
Then, the corresponding results for the conventional

vertex (Q3) have been expressed as deviations from this
prototypical case. Even though no exact results may be
derived due to the “contamination” from the ghost-gluon
vertex, the leading IR behavior can be accurately deter-
mined. On the other hand, the location of q0 is not possible
to pin down; however, it is reasonable to expect it to be
relatively close to the corresponding point obtained for B3.
Actually, this value compares rather well with the lattice
data in d ¼ 3; unfortunately, a similar comparison in d ¼ 4
is practically unattainable, since the corresponding lattice
simulations have not as yet firmly evidenced a sign change
in R.
In this respect, it should be noticed that, if taken at face

value, our results predict that the lattice volumes required in
order to observe this zero-crossing point are definitely
large. This is a consequence of the fact that the divergence
in J is only logarithmic in d ¼ 4, something that pushes the
zero crossing further into the IR, when compared to the
d ¼ 3 case (where the divergence in J is linear). Indeed,
even if one assumes a factor of 2 inaccuracy in the
determination of q0, one would still need L ∼ 65 (at β ¼
2.5 and a ≈ 21 fm) for the SU(2) gauge group and L ∼ 30
(at β ¼ 5.7 and a ≈ 17 fm) for SU(3). It would seem,
therefore, that SU(3) lattice simulations would offer better
prospects in identifying the divergence in the R projector.
Our analysis suggests that the sort of IR divergence

considered here is likely to appear in other Green’s
functions that contain a ghost loop at lowest order in
perturbation theory (Fig. 13). In fact, the four-gluon vertex
[84–86], which constitutes one of the important missing
ingredients in the various SDE studies [87], is a prime
candidate for having such a divergence, due to the (one-
loop) boxlike ghost diagram. On the other hand, a Green’s
function containing (at least) one external c̄c pair, (for
example, the ghost-gluon vertex) cannot have such a graph
at one loop; this type of graph appears at higher orders, and
the additional loop integrations are expected to smooth out
the original divergence. It would be interesting to test the
above conjectures by means of detailed calculations.
Returning to the four-gluon vertex, on general grounds

one would expect that the aforementioned divergence will
manifest themselves at the level of individual diagrams,
such as that shown in (Fig. 13). Of course, a simple
perturbative calculation would give us the first indication of
such a divergence; however, similar divergences will also
come from the gluonic graphs, and the real effect might be
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distorted, or hard to discern. Instead, it would seem more
advantageous to introduce a nonperturbative (massive vs
massless) distinction between gluons and ghosts, in the
spirit of the present work. In this way, if there, the
conjectured divergence of the ghost graphs will be cleanly
exposed. This particular approach may be best imple-
mented within the BT-BFM framework, given the unam-
biguous separation between gluonic and ghost
contributions that it provides.
Since the origin of the effects described above is

exclusively related to the presence of massless ghost loops,
the act of “unquenching” is not expected to modify our
results in a significant way. Indeed, large-volume lattice
simulations [5] and the corresponding SDE analysis
[88,89] have explicitly shown that even when dynamical
quarks are present (i) the ghost remains massless and
(ii) the gluon acquires dynamically a (heavier) mass.
As a result, the machinery developed here is directly
applicable to the unquenched case, with the minimal
modification Δ−1

Q ðq2Þ − m2
Qðq2Þ ¼ q2ðJc þ Jg þ JqÞ,

where Δ−1
Q ðq2Þ and m2

Q represent, respectively, the
unquenched inverse propagator and dynamical mass,
while q2Jq is the (IR finite) quark loop evaluated in
Ref. [88,89].
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APPENDIX A: VERTEX B3 AND ITS
R PROJECTOR

The B3 vertex exposes the basic divergent features of the
R projector, without the additional complications of the
conventional vertex. In this Appendix we present some of
the relevant technical points in this context.
At tree-level the B3 and the conventional (Q3) vertices

coincide,

Γ̂ð0Þ
αμνðq; r; pÞ ¼ Γð0Þ

αμνðq; r; pÞ
¼ ðq − rÞνgαμ þ ðr − pÞαgμν þ ðp − qÞμgαν;

(A1)

where all momenta are entering. Beyond tree level the two
vertices differ and are related by a complicated all-order
BQI; in addition, both vertices are completely Bose
symmetric.
More important in the present context is the fact that that

Γ̂ satisfies Abelian WIs; one has

qαΓ̂αμνðq; r; pÞ ¼ p2Ĵðp2ÞPμνðpÞ − r2Ĵðr2ÞPμνðrÞ; (A2)

with

Jðq2Þ ¼ F2ðq2ÞĴðq2Þ; (A3)

cyclic permutations of indices and momenta generate the
remaining WIs.
These identities are to be contrasted with the STIs

satisfied by the conventional vertex

qαΓαμνðq; r; pÞ ¼ Fðq2Þ½p2Jðp2ÞPα
νðpÞHαμðp; q; rÞ

− r2Jðr2ÞPα
μðrÞHανðr; q; pÞ�; (A4)

(and cyclic permutations), which explicitly involve the
ghost kernel H.
The complete closed form of Γ̂ is not known; its

longitudinal part, however, may be reconstructed by “solv-
ing” the identities (A2) [72]. Specifically, one begins by
separating the vertex into the longitudinal and the (totally)
transverse parts,

Γ̂αμνðq; r; pÞ ¼ Γ̂l
αμνðq; r; pÞ þ Γ̂t

αμνðq; r; pÞ; (A5)

where the component Γ̂l satisfies the WIs of Eq. (A2) (and
its permutations), whereas qαΓ̂t

αμν ¼ rμΓ̂t
αμν ¼ pνΓ̂t

αμν ¼ 0.
The longitudinal part is then decomposed into 10 form

factors, X̂i, according to

Γ̂l
αμνðq; r; pÞ ¼

X10
i¼1

X̂iðq; r; pÞli
αμν; (A6)

with the explicit form of the tensors li given by [66]

FIG. 13. The lowest order diagrams displaying a ghost loop in
the case of the three- and four-gluon sector.
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l1
αμν ¼ ðq − rÞνgαμ; l2

αμν ¼ −pνgαμ;

l3
αμν ¼ ðq − rÞν½qμrα − ðq · rÞgαμ�; (A7)

with liþ3
αμν given by cyclic permutations of momenta and

indices and l10
αμν ¼ qνrαpμ þ qμrνpα.

The WIs of Eq. (A2) give rise to an algebraic system for
the X̂i, for which the solution reads [66]

X̂1 ¼
1

2
½Ĵðq2Þ þ Ĵðr2Þ�; X̂2 ¼

1

2
½Ĵðq2Þ − Ĵðr2Þ�;

X̂3 ¼
Ĵðq2Þ − Ĵðr2Þ

q2 − r2
; (A8)

with X̂iþ3 obtained from X̂i as before and with X̂10 ¼ 0.
We thus see that the longitudinal form factors constitut-

ing Γ̂l involve only the quantity Ĵ; instead, as seen in
Eqs. (3.33) and (3.34), the corresponding expressions for
the form factors of the conventional vertex, contain, in
addition, the ghost dressing function F and the various form
factors comprising the gluon-ghost kernel H.

Finally, the (undetermined) transverse part of the vertex
is described by four remaining form factors Ŷi,

Γ̂t
αμνðq; r; pÞ ¼

X4
i¼1

Ŷiðq; r; pÞtiαμν; (A9)

with the completely transverse tensors ti given by

t1αμν ¼ ½ðq · rÞgαμ − qμrα�½ðr · pÞqν − ðq · pÞrν�; (A10)

t2αμν and t3αμν obtained from this expression by cyclic
permutations, and, finally,

t4αμν ¼ gμν½ðp · qÞrα − ðr · qÞpα� þ gαμ½ðr · pÞqν − ðq · pÞrν�
þ gαν½ðr · qÞpμ − ðr · pÞqμ� þ pαqμrν − rαpμqν:

(A11)

Using these decompositions, it is straightforward to
evaluate the R projector defined in Eq. (3.30). In particular,
one obtains (in d dimensions)12 [77]

N lðq; r; pÞ ¼ 4
r2p2 − ðr · pÞ2

q2r2p2
f½ðd − 1Þq2r2 − ðq · pÞðp · rÞ�Â1 þ ½ðd − 1Þr2p2 − ðp · qÞðq · rÞ�Â2

þ ½ðd − 1Þq2p2 − ðq · rÞðr · pÞ�Â3 þ ½ðq · rÞðr · pÞðp · qÞ − q2r2p2�Â4g;
N tðq; r; pÞ ¼ 2½r2p2 − ðr · pÞ2�f½ðd − 1Þðq · rÞ − p2�Ŷ1 þ ½ðd − 1Þðr · pÞ − q2�Ŷ2

þ ½ðd − 1Þðq · pÞ − r2�Ŷ3 þ 3ðd − 2ÞŶ4g (A12)

and

Dðq; r; pÞ ¼ 4
r2p2 − ðr · pÞ2

q2r2p2

× ½ðd − 1Þðq2r2 þ q2p2 þ r2p2Þ
þ ðr · pÞ2 − r2p2�; (A13)

where we have defined N ¼ N l þN t, while the combi-
nations Âi are given by

Â1 ¼ X̂1 − ðq · rÞX̂3; Â2 ¼ X̂4 − ðr · pÞX̂6;

Â3 ¼ X̂7 − ðp · qÞX̂9; Â4 ¼ −X̂3 − X̂6 − X̂9: (A14)

We next consider three particular kinematic configura-
tions of the R̂ projector, which are typically simulated on
the lattice [8,9]. Interestingly enough, as we will see, they
all display the same exact divergent behavior in the IR.

1. Orthogonal configuration with one
momentum vanishing

In this case we take φ ¼ π=2 and r → 0; as in the latter
limit, N t vanishes, and we obtain the simple result [77]

R̂ðq2; 0; π=2Þ ¼ ½q2Ĵðq2Þ�0: (A15)

The above result is exact, and valid for any q2; in particular,
using Eqs. (A3) and (3.19), we find the leading IR behavior
to be

R̂ðq2; 0; π=2Þ ¼
q2→0

CdF−1ð0Þ
Z
k

FðkÞ
k2ðkþ qÞ2 : (A16)

If at this point we set F ¼ 1, and carry out the resulting
(effectively one-loop) integral, we recover Eq. (2.22).
It is interesting to observe that in this case, since

Eq. (A15) is exact, R̂sl vanishes identically, so that the
condition Eq. (3.47) simplifies to

R̂ðq̂2ΔÞ ¼ −½m̂2ðq̂2ΔÞ�0: (A17)

This means that for the equality q̂Δ ¼ q̂0 to hold, the mass
m̂2ðq2Þ ¼ F−2ðq2Þm2ðq2Þ should not be monotonic; while

12Notice that the following expressions are general and apply
also to the conventional vertex case, with the obvious replacements
X̂i → Xi, where the Xi are now determined by the STIs (A4).
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a preliminary study shows that this is indeed what happens,
this issue needs to be thoroughly investigated.
Note, finally, that the ratio between Eq. (3.46) and

Eq. (A16) is finite and given by

Rð0Þ
R̂ð0Þ ¼ F3ð0Þ; (A18)

as was first derived in Ref. [77], following different
considerations.

2. Orthogonal configuration with equal momenta

In this case one has

q2¼ r2; q ·r¼0; p2¼2q2;

q ·p¼ r ·p¼−q2; φ¼π=2: (A19)

Clearly, in this configuration, the transverse part of the
vertex survives,

N tðq2; q2; π=2Þ
Dðq2; q2; π=2Þ ¼ q2

5d − 6
½2q2Ŷ1 þ dq2ðŶ2 þ Ŷ3Þ

− 3ðd − 2ÞŶ4�; (A20)

where Ŷi ¼ Ŷiðq2; q2; π=2Þ. However, if we assume that
the form factors Ŷi do not contain poles in q2, it is clear that
this term vanishes in the IR. Then, from N l we obtain

R̂ðq2; q2; π=2Þ ¼ 1

5d − 6
½2q2Ĵ0ðq2Þ − ðdþ 4ÞĴðq2Þ

þ 2ð3d − 1ÞĴð2q2Þ� þ � � � ; (A21)

where the omitted terms are subleading in the IR. This
result may be easily rearranged to read

R̂ðq2; q2; π=2Þ ¼ Ĵðq2Þ þ 1

5d − 6
f2q2Ĵ0ðq2Þ

þ 2ð3d − 1Þ½Ĵð2q2Þ − Ĵðq2Þ�g; (A22)

where the first term is leading and coincides with that of
Eq. (A16), while the second is subleading.

3. All momenta equal

Setting

q2 ¼ r2 ¼ p2; q · r ¼ q · p ¼ p · r ¼ −
q2

2
;

φ ¼ 2π=3; (A23)

we find for the transverse part

N tðq2; q2; 2π=3Þ
Dðq2; q2; 2π=3Þ ¼ q2

12d − 15
½ðdþ 1Þq2ðŶ1 þ Ŷ2 þ Ŷ3Þ

− 6ðd − 2ÞŶ4�; (A24)

where Ŷi ¼ Ŷiðq2; q2; 2π=3Þ. Again, this term may be
neglected under the same assumptions stated above.
Then, one finds

R̂ðq2; q2; 2π=3Þ ¼ Ĵðq2Þ þ 2ðd − 1Þ
4d − 5

q2Ĵ0ðq2Þ; (A25)

thus obtaining exactly the same leading IR behavior as in
the previous two cases.

APPENDIX B: TRANSVERSE PART OF THE
VERTEX ~Γμ

The contribution of the transverse part ~Γt
μ to Jcðq2Þ, to be

denoted by Jtcðq2Þ, is given, up to irrelevant constants and
the finite ghost dressing function FðqÞ, by

q2Jtcðq2Þ ∼
Z
k
kμDðkÞDðkþ qÞfðk · qÞðkþ qÞμ

− ½ðkþ qÞ · qÞ�kμgAðk; kþ qÞ

∼
Z
k
DðkÞDðkþ qÞAðk; kþ qÞ½ðk · qÞ2 − q2k2�:

(B1)

So, after passing to spherical coordinates, and using that
ðk · qÞ2 ¼ q2k2 cos2 θ, we obtain

Jtcðq2Þ ∼
Z
k
DðkÞDðkþ qÞAðk; kþ qÞk2 sin2 θ: (B2)

Now, at q ¼ 0, we have (setting k2 ¼ y)

Jtcð0Þ ∼
Z
k
D2ðyÞAðyÞy sin2 θ; (B3)

with

Z
k
¼ 1

ð2πÞd
π

d−1
2

Γðd−1
2
Þ
Z

π

0

dθ sind−2 θ
Z

∞

0

dyy
d
2
−1: (B4)

The integration over the angle θ furnishes an additional
irrelevant constant, and so, after using Eq. (2.2),

Jtcð0Þ ∼
Z

∞

0

dyy
d
2
−2F2ðyÞAðyÞ: (B5)

Thus, if we assume that, in the deep IR, AðyÞ ∼ ya, then
the lower limit of this integral is finite provided that
a > 1 − d=2 [remember that FðyÞ saturates to a constant
in the IR]. Thus, for d ¼ 4, one gets a finite (and,
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therefore, subleading) contribution to Jcðq2Þ, provided that
AðyÞ diverges more weakly than a simple pole. In d ¼ 3,
the corresponding limiting case is a square root of a pole.
To analyze the situation a bit further, let us concentrate

on the d ¼ 4 case and consider the limiting case a ¼ −1. It
is interesting to observe that at the level of ~Γt

μ this does not
necessarily correspond to a constant (nonvanishing) con-
tribution in the IR. In particular, let us suppose that
~Γt
μ ¼ ½qμðk · qÞ − kμq2�=k2; then, if the limit q → 0 is taken

first, both components of ~Γt
μ vanish. However, since in

order to isolate the contribution to Jtcðq2Þ one has to factor
out a q2, the remainder will force Jtcð0Þ to diverge stronger
than a logarithm.
In general terms, what one expects in this context is that

A will not diverge, due to the infrared finiteness of the
gluon propagator, which, in an effective way, acts as a mass
scale in the diagrams defining ~Γμ. Within this scenario, the
additional scale that will saturate the dimensionality of ~Γt

μ

will be related to some effective mass; in qualitative terms,
one would expect a ~Γt

μ of the form ~Γt
μ ¼ ½qμðk · qÞ − kμq2�=

ðk2 þm2Þ, which would correspond to a ¼ 0. Of course, a
more subtle interplay between momenta and masses may
occur, giving rise to other values of the parameter a.
However, a more concrete statement requires a detailed
analysis that is beyond our present powers.
Let us finally point out that there is no known way that

would permit one, at a practical level, to deduce the behavior
of ~Γμ (or ~Γt

μ) from the fact that the conventional ghost-gluon
vertex, Γμ, reaches a finite value in the kinematic limit
considered above. The main reason for this can be traced
back to the exact, but rather complicated, relation between
~Γμ and Γμ, derived in Eq. (E.26) of Ref. [24]. This relation is
a BQI, in the sense of Eq. (2.4), but, unlike Eq. (2.4), it
receives additional contributions involving auxiliary fields
and sources, characteristic of the Batalin–Vilkovisky

formalism [90,91]. These latter terms have a definite dia-
grammatic vertexlike structure, but their contributions have
not been worked out to date.

APPENDIX C: BFM GREEN’S FUNCTIONS:
A PROMISING ALTERNATIVE

It is clear from the main analysis that the mildness of the
ghost-loop divergence in d ¼ 4 makes the main effects
rather difficult to discern. In the case of the gluon
propagator, the available lattice data are at most indicative
of the presence of the (expected) maximum, for which the
existence and location has been essentially assumed (and
then appropriately modelled). In fact, its general location
happens to be in the region where statistical as well as
systematic uncertainties are (currently) relatively large. A
similar difficulty occurs with the zero crossing and the
subsequent negative divergence in the R projector.
It would be clearly desirable to consider alternative

quantities, which might better capture and expose the
aforementioned effect. To that end, we propose that the
BFM Green’s functions could be better suited for this
particular study. In particular, the direct simulation of these
quantities would help one to unambiguously settle several
related questions.
The hope that the BFM Green’s function might furnish

certain advantages in this context, is based on the study of
the the gluon propagator, Δ̂ðq2Þ. The latter has a precise
field theoretic defintion, corresponding to the correlator of
two background gluons B, i.e., h0jT½Bμð0ÞBνðxÞ�j0i.
The expected result of a direct simulation of this quantity

may be obtained by means of the BQI (2.5) together with
the approximation (2.6). The general idea is that Δ̂ðq2Þ will
be enhanced with respect to the conventional (Q2) propa-
gator Δðq2Þ by the function F2ðq2Þ, which is quite sizable
in the IR [remember, for μ ¼ 4.3 GeV, Fð0Þ ¼ 2.7]. In the
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FIG. 14 (color online). Left panel: Comparison between the family of SU(3) propagators Δðq2Þ obtained in the numerical analysis of
Sec. III E and the corresponding family Δ̂ðq2Þ derived by applying the BQI (2.5); the color code is the same as in Fig. 6. Right panel:
Sensitivity to the presence of an IR peak for the B2 propagator (δ̂) vs the same quantity for the conventional propagator (δ). The shaded
area corresponds to the region δ̂ ≤ δ.
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left panel of Fig. 14, we present the family of SU(3)
propagators Δðq2Þ with variable (barely visible) maxima
studied in Sec. III E and the corresponding family of Δ̂ðq2Þ,
obtained from the application of Eq. (2.5). It is clear that the
corresponding maxima of the resulting Δ̂ðq2Þ are consid-
erably easier to discern.
To be more quantitative, let us define the quantities

δðq2ΔÞ ¼ Δðq2ΔÞ − Δð0Þ; δ̂ðq2Δ̂Þ ¼ Δ̂ðq2Δ̂Þ − Δ̂ð0Þ;
(C1)

which give a measure of the corresponding propagator’s
“sensitivity” to the presence of a peak in the IR [as δ (δ̂)
increases the resolution of the maximum becomes easier].
Then, in the right panel of Fig. 14, we plot δ̂ vs δ; as one can
clearly see, one has δ̂ > δ and the enhancement factor in the
sensitivity is between 2 and 7; the price one has to pay is a
modest shift toward the IR of the peak location.
One may find analogous advantages in the case of the

BFM three-point function, h0jT½Bμð0ÞBνðxÞBνðyÞ�j0i and
the corresponding R̂, considered in Appendix A. In
particular, in this case the location of the zero crossing
coincides exactly with that of the maximum of Δ̂, since
there is no contamination from the ghost sector of the
theory [e.g., the relation (A15) is exact]. This clearly
furnishes a rather powerful test of the self-consistency of
the entire approach.
Similarly, one may envisage the study of the correspond-

ing four-point function, especially in view of the expect-
ation that it displays divergences for some kinematic
configurations. Thus, it might be worth considering a
lattice quantity analogous to R̂ for the case of the four-
gluon vertex. Of course, a detailed study is required in order
to identify the kinematic choices that will best expose the
underlying divergence, be it in the form of a zero crossing
or some other distinctive feature.
Let us finally point out that recently the procedure for

fixing the minimal Landau background gauge within a
nonperturbative lattice formulation has been identified in
Ref. [92,93]; this development puts the prospects of lattice
simulation of background quantities, such as those pro-
posed here, on a much firmer theoretical ground.

APPENDIX D: COMPARISON WITH THE
SCALING SOLUTIONS

It is well known that the coupled system of SDEs for the
gluon and ghost propagators admits a particular solution
displaying an IR behavior which is qualitatively different to

those considered here. Specifically, this so-called “scaling
solution” [17] exhibits a power-law IR behavior for both
the gluon propagator as well as the ghost dressing function,
with Δ ∼ ðq2Þ2κ−1, F ∼ ðq2Þ−κ, and κ ≈ 0.595. Therefore,
one has an IR-suppressed gluon propagator, Δð0Þ ¼ 0, and
an enhanced ghost dressing function, since Fð0Þ → ∞.
According to our analysis, such an enhanced ghost sector

would imply a power-law divergent ghost loop, even in the
d ¼ 4 case (similar to what happens for the d ¼ 3 “mas-
sive” case). As a consequence, the scaling gluon propagator
is expected to show a well-resolved peak structure, with a
maximum located at a relatively large momentum value.
The precise comparison shown in Fig. 15 confirms this

expectation. Specifically, in Fig. 15 we contrast the set of
massive (decoupling) SU(3) propagators used in our
analysis (shown in Fig. 6) with the set of data correspond-
ing to the scaling solution of Ref. [17]; to ease the
comparison, all propagators have been normalized such
that they match in the UV. For the scaling solution, one
finds qΔ ≈ 330 MeV, to be compared with the average
value qΔ ∼ 100 MeV for the massive case. The enhanced
ghost sector, together with the associated shift in the
propagator peak, should then suffice to explain the some-
what higher results quoted in Ref. [83] for the zero-crossing
location q0.
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FIG. 15 (color online). Comparison between the Landau gauge
propagators obtained through our analysis, and the so-called
scaling solution [17] (black, dashed-dotted line). The inset
represents a zoom on the deep IR region in the linear scale,
which makes manifest that, in the scaling case, the gluon
propagator vanishes.
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