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In this paper, the main properties of (3þ 1)-dimensional Uð1Þ gauged Q balls are examined. In
particular, it is shown that the relation dE

dQ ¼ ω holds for such gauged Q balls in the general case. As a
consequence, it is shown that the well-known estimate for the maximal charge of stable gaugedQ balls was
derived by means of an inconsistent procedure and cannot be considered as correct. A simple method for
obtaining the main characteristics of gaugedQ balls using only the nongauged background solution for the
scalar field in the case, when the backreaction of the gauge field on the scalar field is small and the
linearized theory can be used, is proposed. The criteria of applicability of the linearized theory, which do
not reduce to the demand of the smallness of the coupling constant, are established. Some interesting
properties of gauged Q balls, as well as the advantages of the proposed method, are demonstrated by the
example of two models, admitting, in the linear approximation in the perturbations, exact analytic solutions
for gauged Q balls.
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I. INTRODUCTION

Nontopological solitons in a theory of a complex scalar
field with global Uð1Þ symmetry, proposed in Ref. [1]
and known as Q balls [2], are widely discussed in
the literature. A simplest generalization of Q balls to the
gauged case, i.e., from the global Uð1Þ symmetry to the
gauge Uð1Þ symmetry, is straightforward. Although the ex-
istence of gauged Q balls was put in question in the well-
known paper of Ref. [2], there are some papers devoted to
this subject. The most known paper is Ref. [3], in which
gauged Q balls were examined analytically and numeri-
cally (for simplicity, from here on, we call Uð1Þ gauged Q
balls “gauged Q balls,” unless otherwise stated). To our
knowledge, for the first time, an analysis of what is now
called gauged Q balls was made in Ref. [4]. In this
remarkable paper, not only were the conditions for the
existence of such Q balls derived, but also the case of
small coupling of the gauge field to the scalar field was
discussed, the corresponding linearized equations of
motion were obtained, and even an approximate solution
to these equations was found. One can also recall Ref. [5],
in which gauged nontopological soliton solutions were
obtained numerically. The scalar field part of the model of
Ref. [5] coincides with the two-fields model proposed in
Ref. [6]; that is why the gauged nontopological soliton
solution found in Ref. [5] is not a gauged Q ball in the
sense of Coleman’s definition of Q balls [2], although it
is of the same kind. Another interesting paper is Ref. [7],
in which not only numerical but also approximate
analytic solutions for gauged Q balls and Q shells were

obtained. For a certain class of scalar field potentials and
for a sufficiently weak interaction between the scalar
field and the Uð1Þ gauge field, the existence of gauged Q
balls was proven in Refs. [8,9] in a mathematically
rigorous way. A solution for a gauged Q ball in such a
case of a weak coupling of the Uð1Þ gauge field to the
scalar field (i.e., an exact solution in the linear approxi-
mation above the background solution) was recently
found in Ref. [10] in the gauged version of the model
proposed in Ref. [11]; the solution for the case in which
the coupling in this model is not weak was studied in
Ref. [10] numerically.
Meanwhile, we think that there is a lack of under-

standing of the physical properties of Uð1Þ gaugedQ balls,
so in this paper, we present some results concerning both
the general properties of gauged Q balls and the particular
case of the small backreaction of the gauge field. The
paper is organized as follows. In Sec. II, we present the
general setup and introduce the notations that will be used
throughout the paper. In Sec. III, we study the main
properties of gauged Q balls; in particular, we prove that
the relation dE

dQ ¼ ω holds for any gauged Q ball. We also
discuss different issues concerning the stability of such Q
balls and show that the well-known statement about the
existence of a maximal charge of stable gauged Q balls,
which was made in Ref. [3], is incorrect. In Sec. IV, we
thoroughly examine the case in which the backreaction of
the gauge field on the scalar field is small. We propose a
very useful method for studying the gauged Q ball
properties without solving the whole system of linearized
equations of motion for the fields. The resulting compact
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formulas allow us to simplify the calculations consider-
ably. We show that the small parameter of the theory does
not coincide with e2 in the general case (here, e is the
coupling constant of the gauge field to the scalar field),
which implies that the fulfillment of the condition e2 ≪ 1
does not guarantee that the linearized theory can be used
for calculations. These results are illustrated by examples
of two models providing, in the linear approximation in
the perturbations, exact analytic solutions for gauged
Q balls.

II. SETUP

We consider the action, describing the simplest Uð1Þ
gauge-invariant four-dimensional scalar field theory, in the
form

S ¼
Z

d4x

�
ð∂μϕ� − ieAμϕ�Þð∂μϕþ ieAμϕÞ

− Vðϕ�ϕÞ − 1

4
FμνFμν

�
(1)

and take the standard spherically symmetric ansatz for the
fields describing a gauged Q ball,

ϕðt;~xÞ¼eiωtfðrÞ; fðrÞjr→∞→0;
dfðrÞ
dr

����
r¼0

¼0; (2)

A0ðt;~xÞ¼A0ðrÞ; A0ðrÞjr→∞→0;
dA0ðrÞ
dr

����
r¼0

¼0; (3)

Aiðt; ~xÞ≡ 0; (4)

where r ¼
ffiffiffiffiffi
~x2

p
and fðrÞ, A0ðrÞ are real functions. We

suppose that the function fðrÞ has no nodes and fð0Þ > 0.
Taking into account Eqs. (2)–(4), we can use the

effective action

Seff¼
Z

d3x

�
ðωþgÞ2f2−∂if∂if−VðfÞþ 1

2e2
∂ig∂ig

�
;

(5)

where g ¼ eA0, VðfÞ ¼ Vðϕ�ϕÞ [Eq. (2) implies that
ϕ�ϕ ¼ f2], instead of Eq. (1).1 For the scalar field potential,
the conditions

Vð0Þ ¼ 0;
dV
df

����
f¼0

¼ 0 (6)

are supposed to fulfill. It should be noted that gauged Q
balls in theories with VðfÞ≡ 0 or VðfÞ ¼ M2f2 do not
exist; see, for example, Ref. [4].
The equations of motion, following from effective

action (5), take the form

2e2ðωþ gÞf2 ¼ Δg; (7)

2ðωþ gÞ2f þ 2Δf − dV
df

¼ 0; (8)

where Δ ¼ P
3
i¼1 ∂i∂i. We define the charge of a gauged

Q ball as

Q ¼ 2

Z
d3xðωþ gÞf2: (9)

Note that the physical charge is

Qphys ¼ eQ; (10)

but for convenience, below we will use the charge Q
defined by Eq. (9), not Qphys.
It was shown in Ref. [3] that for a gauged Q ball

solution the sign of ωþ g always coincides with the sign
of ω. Because of the symmetry ω → −ω, g → −g of the
equations of motion, without loss of generality, for
simplicity we can consider ω ≥ 0. In this case, according
to Eq. (9), for ω > 0 we get Q > 0. As it was shown in
Ref. [4], g≡ 0 for ω ¼ 0 and only a purely static solution
for the scalar field can exist, so our choice ω ≥ 0
implies Q ≥ 0.
The energy of a gauged Q ball at rest is defined by

E ¼
Z

d3x

�
ðωþ gÞ2f2 þ ∂if∂if þ VðfÞ þ 1

2e2
∂ig∂ig

�
:

(11)

III. SOME GENERAL PROPERTIES OF Uð1Þ
GAUGED Q BALLS

A. dE
dQ for gauged Q balls

It is well known that for ordinary (nongauged)
Q balls the relation dE

dQ ¼ ω holds. We have failed
to find any note about the validity of this or an analogous
relation for Abelian gauged Q balls in the literature
on this subject. So, below, we present a simple proof of
the fact that for gauged Q balls of form of Eqs. (2)–(4) in a
theory described by action (1) the relation dE

dQ ¼ ω
also holds.
It is reasonable to suppose that the only parameter, which

characterizes the charge and the energy for given VðfÞ and
e, is ω. Thus, differentiating the energy (11) with respect to
ω, we get

1Though the Q ball solution is supposed to be spherically
symmetric, sometimes it is convenient to keep the coordinates xi
and the corresponding volume element d3x, especially in the
calculations for which the spherical symmetry of the fields is not
required.
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dE
dω

¼
Z �

2
dðωþ gÞ

dω
ðωþ gÞf2 þ 2ðωþ gÞ2f df

dω
þ 2∂if∂i

df
dω

þ dV
df

df
dω

þ 1

e2
∂ig∂i

dg
dω

�
d3x ¼

Z �
2
dðωþ gÞ

dω
ðωþ gÞf2 þ 2ðωþ gÞ2f df

dω

þ
�
−2Δf þ dV

df

�
df
dω

þ 1

e2
∂ig∂i

dg
dω

�
d3x

¼
Z �

ðωþ gÞ
�
2
dðωþ gÞ

dω
f2 þ 4ðωþ gÞf df

dω

�
þ 1

e2
∂ig∂i

dg
dω

�
d3x; (12)

where we have used Eq. (8). For convenience, let us use the notation q ¼ 2ðωþ gÞf2. Equation (12) can be rewritten as

dE
dω

¼
Z �

ðωþ gÞ dq
dω

þ 1

e2
∂ig∂i

dg
dω

�
d3x ¼ ω

dQ
dω

þ
Z �

g
dq
dω

þ 1

e2
∂ig∂i

dg
dω

�
d3x; (13)

where, according to Eq. (9), Q ¼ R
qd3x. Equation (7) implies that dq

dω ¼ 1
e2 Δ

dg
dω. Substituting it into Eq. (13), we arrive at

dE
dω

¼ ω
dQ
dω

þ 1

e2

Z �
gΔ

dg
dω

þ ∂ig∂i
dg
dω

�
d3x: (14)

The integral in Eq. (14) is equal to zero, which can be
easily seen by performing integration by parts (since
gjr→∞ ∼ Q

r is assumed for gauged Q balls and consequently
dg
dω jr→∞ ∼ dQ=dω

r , the surface term, arising when an integra-
tion by parts is performed, obviously vanishes). Thus, we
get dE

dω ¼ ω dQ
dω, which leads to

dE
dQ

¼ ω (15)

for dQ
dω ≠ 0. We stress that the fulfillment of Eq. (15) is the

general property inherent to anyUð1Þ gaugedQ ball. As for
the points at which dQ

dω ¼ 0 (and, consequently, dE
dω ¼ 0),

they correspond to the cusps on the EðQÞ diagram (like the
cusps in Figs. 1 and 4 of Sec. IV), indicating the existence
of a (locally) minimal or (locally) maximal charge. The
cusps also separate different branches of the EðQÞ
dependence.

B. Stability of gauged Q balls

In the absence of interactions with fermions, there are
three types of stability ofQ balls. They are the stability with
respect to decay into free particles (i.e., quantum mechani-
cal stability), the stability against decay into Q balls with
smaller charges (i.e., against fission), and the classical
stability (the stability with respect to small perturbations of
fields). Here, we will not consider the classical stability,
because, in the general case, its consistent study for gauged
Q balls is a rather complicated task and lies beyond the

scope of this paper. Here, we will consider only the
quantum mechanical stability and stability against fission.

1. Quantum mechanical stability and maximal charge
of gauged Q-balls

We start with the stability with respect to decay into free
scalar particles. Suppose that there exist free particles of

mass M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
d2V
df2 jf≡0

q
in the theory at hand [all the

reasonings presented below are based on the assumption
that there are no extra fields except those in action (1);
otherwise, the situation can be more complicated]. In this
case, the criterion for Q ball stability looks very simple,

EðQÞ < MQ; (16)

where EðQÞ is the energy of a Q ball with the charge Q.
It is necessary to note that, as it was shown in Refs. [3,4],

the inequality

ω < M

should hold for a Q ball in such a theory. Indeed, the
existence of free scalar particles of massM implies that the
relevant scalar field part of the action has the form

Sscalar ≈
Z

d4xð∂μϕ�∂μϕ −M2ϕ�ϕÞ (17)

for small values of ϕ�ϕ. The latter means that for anyQ ball
in this theory, satisfying Eqs. (2) and (3), inequality ω < M
must hold; otherwise, the corresponding solution to Eq. (8)
does not fall off at infinity rapidly enough to ensure the
finiteness of the Q ball charge and energy.

THEORY OF Uð1Þ GAUGED Q-BALLS REVISITED PHYSICAL REVIEW D 89, 085006 (2014)

085006-3



An interesting observation is that gaugedQ balls (as well
as nongauged Q balls) cannot emit free scalar particles;
they can only decay into such particles. Indeed, since the
charge of a free particle in the theory at hand isQp ¼ 1, for
a Q ball, we get

EðQþNÞ¼EðQÞþ
Z

QþN

Q

dE

d ~Q
d ~Q

<EðQÞþM
Z

QþN

Q
d ~Q¼EðQÞþMN; (18)

where N stands for the number of emitted particles. We see
that the emission of N > 0 free scalar particles is ener-
getically forbidden.2 One can easily show that an analogous
emission of scalar antiparticles (i.e., particles with
Qp ¼ −1) is also energetically forbidden.
It this connection, we would like to comment on the

method of derivation of the maximal charge of stable
gauged Q balls, presented in Ref. [3]. Although the
corresponding estimates for the maximal charge were
obtained within the particular model of Ref. [3], they are
used in many papers concerning gaugedQ balls. It is stated
in Ref. [3] that for a charge Q, such that for a Q ball of this
charge the inequality dE

dQ > M (in our notations) holds, it is
energetically favorable to have a Q ball with the charge
Qmax and Q −Qmax free scalar particles. The maximal
charge Qmax is defined as a solution to equation dE

dQ ¼ M.
As it was shown above, for any gauged Q ball in a theory

with dVðϕ�ϕÞ
dðϕ�ϕÞ jϕ�ϕ¼0 ¼ M2 > 0, the inequality dE

dQ ¼ ω < M

holds, andQ balls with dE
dQ ≥ M can never exist (contrary to

what was stated in Ref. [3]). If any approximate solution
leads to the existence of gauged Q balls with dE

dQ ≥ M in a
theory admitting the existence of free particles of mass M,
such an approximate solution is not valid. Thus, the
procedure used in Ref. [3] for estimating the value of
the maximal charge of stable gaugedQ balls contradicts the
main properties of gaugedQ balls and cannot be considered
as correct, as well as the consequent statement about the
existence of the maximal charge.3

Of course, stable gauged Q balls with maximal charges
may exist. As in the nongauged case (see, for example,
Refs. [13,14]), the existence of the maximal charge in the
gauged case can be determined by the form of the scalar
field potential or by the values of the model parameters, and
such a (locally) maximal charge corresponds to a cusp in

the EðQÞ dependence. Explicit examples, which will be
presented in Sec. IV, clearly demonstrate it. Meanwhile,
there are many models with the charge of an absolutely
stable nongauged Q ball (classically stable, quantum
mechanically stable, and stable against fission) not bound
from above; see, for example, Refs. [13,15]. So, we do
not see any evident physical reason why it should not be so
for gauged Q balls. In this connection, we would like to
comment on the common belief that the Coulomb repulsion
makes a gauged Q ball with some large charge unstable.
Indeed, the repulsion due to the gauge field exists. But let
us look at Eq. (7), which can be rewritten as

Δg − 2e2f2g ¼ 2e2ωf2: (19)

This equation implies that the gauge field inside a Q ball
is effectively massive, which dilutes the strength of the
repulsion considerably in comparison with the Coulomb
long-range repulsion. Thus, although its influence on the
stability of gauged Q balls cannot be ignored, it should be
reconsidered more accurately.

2. Stability against fission

Now, we turn to examining the stability against fission.
For ordinary (nongauged) Q balls, the corresponding
stability criterion takes the form

d2E=dQ2 < 0: (20)

If Eð0Þ ¼ 0, then Eq. (20) clearly leads to

EðQ1Þ þ EðQ2Þ > EðQ1 þQ2Þ; (21)

which implies thatQ ball fission is energetically forbidden.
But in many models, the d2E=dQ2 < 0 branches of
the EðQÞ dependence are such that there exists a minimal
charge Qmin ≠ 0: EðQminÞ ¼ Emin ≠ 0. In this case, one
can try to redefine the function EðQÞ in the region ½0; Qmin�
in order to get a continuous and differentiable auxiliary
function EauxðQÞ: Eauxð0Þ ¼ 0, EauxðQÞ is a monotonically
increasing function for Q > 0, d2EauxðQÞ=dQ2 < 0,
and EauxðQÞ ¼ EðQÞ for Q ≥ Qmin. If it is possible to
construct such a function EauxðQÞ, then inequality (21)
is valid for Q1, Q2 ≥ 0 and, consequently, for Q1,
Q2 ≥ Qmin. Of course, such reasonings apply for gauged
Q balls too.
It was shown in Ref. [13] that the necessary condition

for the existence of the function EauxðQÞ is EðQminÞ
Qmin

> ωmin ¼
dE
dQ jQ¼Qmin

. For nongauged Q balls, this relation always
holds because the equality

2This reasoning works only for Q balls from the same branch
of the EðQÞ dependence, transitions between Q balls from
different branches (like those in Fig. 4 of Sec. IV) with the
emission of free scalar particles, or/and antiparticles and vector
particles (photons) are not energetically forbidden in the general
case.

3In Ref. [12] it was observed that Q balls cannot emit free
particles of mass M if the condition dE

dQ ¼ ω < M is fulfilled.
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E ¼ ωQþ 2

3

Z
d3x∂if∂if (22)

holds for nongauged Q balls, leading to EðQminÞ ¼
ωminQmin þ 2

3

R
d3x∂if∂if > ωminQmin.

For Uð1Þ gauged Q balls, one obtains [3]

E ¼ ωQþ
Z

d3x

�
2

3
∂if∂if − 1

3e2
∂ig∂ig

�
: (23)

This relation can be easily derived by applying the scale
transformation technique of Ref. [16] to effective action (5),
substituting the result into Eq. (11) [to exclude VðfÞ] and
using equation of motion (7). One sees that, contrary to the
case of ordinary Q balls (22), the integral in Eq. (23) is not
positive definite. Thus, at this stage, we cannot make any
conclusion about the stability against fission for gauged Q
balls with d2E=dQ2 < 0 in the general case. Of course, one
may simply check that EðQminÞ

Qmin
> ωmin for a particular gauged

Q ball solution. For example, if there exist free scalar
particles of mass M in the theory under consideration and
the part of the EðQÞ dependence with d2E=dQ2 < 0, which
we are interested in, starts at Q ¼ Qmin ≠ 0 and EðQminÞ ≥
MQmin (as we will see below, it holds at least for one
example that will be discussed in our paper later; see also
Ref. [5] where this situation is realized), then Q balls from
this branch are stable against fission. Indeed, ωmin <
M ≤ EðQminÞ

Qmin
; the latter means that, according to Ref. [13],

we always can construct an auxiliary function EauxðQÞ
possessing the properties presented above. An explicit
example of the function EauxðQÞ can be found in
Appendix A.
Here, we discuss another possibility. Suppose we have

gaugedQ ball solutions in a model with e ¼ ex (without loss
of generality, we consider ex > 0) for the region of frequen-
cies ω we are interested in. Let us also suppose that there
exist nongauged Q ball solutions in this model with e ¼ 0
for the same region of frequencies. In this case, one may
assume that gauged Q ball solutions exist for any
0 < e < ex. This assumption is not obvious, and we cannot
justify it in a mathematically rigorous way for the general
case; meanwhile, as we will see explicitly in the next section,
it is valid at least when the backreaction of the gauge field is
small (this fact was also proven in Ref. [8] in a mathemati-
cally rigorous way for a certain class of the scalar field
potentials). If the conditions presented above are fulfilled,
then for a gauged Q ball in a theory with e ¼ ex, the
inequality

E > ωQ

holds. To show it, let us take the energy (11) and differentiate
it with respect to the coupling constant e while keeping ω

fixed. Performing calculations analogous to those made in
Eqs. (12) and (13), we arrive at

dE
de

¼ω
dQ
de

þ
Z �

g
dq
de

− 1

e3
∂ig∂igþ

1

e2
∂ig∂i

dg
de

�
d3x: (24)

Equation (7) implies that dqde ¼ 1
e2 Δ

dg
de − 2q

e ; substituting it into
Eq. (24), we obtain

dE
de

¼ω
dQ
de

þ
Z �

1

e2
gΔ

dg
de

− 2

e
gq− 1

e3
∂ig∂igþ

1

e2
∂ig∂i

dg
de

�
d3x.

(25)

Substituting Eq. (7) into Eq. (25) and performing integrations
by parts in the resulting integral (since gjr→∞ ∼ Q

r is assumed

for gauged Q balls and consequently dg
de jr→∞ ∼ dQ=de

r , the
corresponding surface term vanishes again), we get

dE
de

¼ ω
dQ
de

þ 1

e3

Z
∂ig∂igd3x: (26)

Since e is supposed to be nonnegative and g ∼ e2 for e → 0,
we have

dE
de

≥ ω
dQ
de

: (27)

Now, we integrate Eq. (27) in e from e ¼ 0 to e ¼ ex and
obtain

EðQðexÞ; exÞ − ωQðexÞ > EðQð0Þ; 0Þ − ωQð0Þ: (28)

Qð0Þ and EðQð0Þ; 0Þ stand for the nongauged Q ball, for
which EðQð0Þ; 0Þ − ωQð0Þ > 0 holds for any ω, leading to

EðQðexÞ; exÞ − ωQðexÞ > 0: (29)

The latter means that EðQminÞ
Qmin

> ωmin for such a gaugedQ ball,
which implies that, according to the reasonings presented
above, the function EauxðQÞ can be constructed and the
stability against fission for Q balls corresponding to the
d2E
dQ2 < 0 branch of the EðQÞ dependence can be established.
It is clear that the gauged Q ball with d2E

dQ2 < 0 cannot
decay into a Q ball from the same branch with d2E

dQ2 < 0 and

an anti-Q ball (i.e., a Q ball with ω < 0 and Q < 0).
Indeed, for a gauged Q ball, we have
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EðQ2Þ ¼ EðQ2 þQ1Þ −
Z

Q2þQ1

Q2

dE

d ~Q
d ~Q ¼ EðQ2 þQ1Þ −

Z
Q2þQ1

Q2

ωð ~QÞd ~Q

< EðQ2 þQ1Þ −
Z

Q2þQ1

Q2

ωð ~QÞd ~Qþ Eð−Q1Þ < EðQ2 þQ1Þ þ Eð−Q1Þ;

where Q1 > 0 and Q2 > 0, which means that such a decay
is energetically forbidden.

IV. GAUGED Q BALLS WITH SMALL
BACKREACTION OF THE GAUGE FIELD

A. Linearized equations of motion

It seems that it is very difficult, or even impossible,
to find a model providing an exact analytic solution
for a gauged Q ball in the general case. Meanwhile, if
the backreaction of the gauge field is supposed to
be small [jgðrÞj ≪ ω, jfðrÞ − f0ðrÞj ≪ f0ðrÞ, where
f0ðrÞ ¼ f0ðr;ωÞ is a nongauged Q ball solution in
the case e ¼ 0], one can try to use the linear approxi-
mation in gðrÞ and φðrÞ ¼ fðrÞ − f0ðrÞ above the
nongauged background solution, which simplifies the
analysis. In this case, Eqs. (7) and (8) can be reduced to
the form

Δg − 2e2ωf20 ¼ 0; (30)

Δφþ ω2φþ 2ωgf0 − 1

2

d2V
df2

����
f¼f0

φ ¼ 0; (31)

where f0 is defined as a solution to the equation

ω2f0 þ Δf0 − 1

2

dV
df

����
f¼f0

¼ 0 (32)

and the condition jφðrÞj ≪ f0ðrÞ is supposed to hold for
any r.4 To our knowledge, for the first time, the system
of equations (30) and (31) with (32) was analyzed in
Ref. [4], in which the coupling constant e was assumed
to be small. Note that here we do not put any restrictions
on the possible values of e; we only assume that the
fields g and φ are suppressed by the small factor
proportional to e2. Although this factor is proportional
to e2, it does not coincide with e2 in the general case.
This implies that the linearized theory above the back-
ground solution f0, described by Eqs. (30) and (31),
cannot be used when only e2 ≪ 1 holds—the fields g and
φ should also remain small compared to ω and f0,
respectively. We will discuss this issue in detail later;
see also a simple justification of this fact in Appendix B.

B. Charge and the energy of gauged Q balls

Linearizing the charge (9) and the energy (11) with
respect to the background solution f0ðrÞ, performing
integration by parts, and using the linearized equations
of motion, we arrive at

Q ¼ Q0 þ ▵Q ¼ Q0 þ 4π

Z
∞

0

drr2ð2gf20 þ 4ωf0φÞ;
(33)

E ¼ E0 þ ▵E ¼ E0 þ 4πω

Z
∞

0

drr2ðgf20 þ 4ωf0φÞ;
(34)

where Q0 and E0 are defined by Eqs. (9) and (11) with the
background solution f0ðrÞ for the scalar field and
with g≡ 0.
Now, let us calculate ▵Q and ▵E. To this end, let us take

equation (32) and differentiate it with respect to ω. We get

2ωf0 þ ω2
df0
dω

þ Δ
df0
dω

− 1

2

d2V
df2

����
f¼f0

df0
dω

¼ 0: (35)

Now we take Eq. (31), multiply it by df0
dω, integrate over the

spatial volume, and perform integration by parts in the
term containing Δ. We getZ �

φ

�
Δ
df0
dω

þ ω2
df0
dω

− 1

2

d2V
df2

����
f¼f0

df0
dω

�

þ2ωgf0
df0
dω

�
d3x ¼ 0: (36)

Substituting Eq. (35) into Eq. (36), we arrive at

ω

Z �
gf0

df0
dω

− φf0

�
d3x ¼ 0: (37)

Now, let us consider the charge (33). According to Eq. (37),

▵Q ¼ 4π

Z
∞

0

drr2ð2gf20 þ 4ωf0φÞ

¼ 4π

Z
∞

0

drr2
�
2gf20 þ 4ωgf0

df0
dω

�

¼ 4π

Z
∞

0

drr2g
dq
dω

; (38)

where q is defined as q ¼ 2ωf20. The last integral can be
transformed as

4In fact, this condition is too stringent and, as we will see later,
can be relaxed.
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Z
d3xg

dq
dω

¼ d
dω

Z
d3xgq −

Z
d3xq

dg
dω

¼ d
dω

Z
d3xgq −

Z
d3x

1

e2
Δg

dg
dω

¼ d
dω

Z
d3xgq −

Z
d3x

1

e2
gΔ

dg
dω

¼ d
dω

Z
d3xgq −

Z
d3xg

dq
dω

;

where we have used Eq. (30) and the relation Δ dg
dω ¼ e2 dq

dω,
which follows from Eq. (30). Thus, we get

Z
d3xg

dq
dω

¼ 1

2

d
dω

Z
d3xgq: (39)

Let us define

I ¼ 1

2

Z
d3xgq: (40)

Then, from Eqs. (38) and (39), we get

▵Q ¼ dI
dω

: (41)

Now, it is easy to show that

▵E ¼ ω▵Q − I ¼ ω
dI
dω

− I: (42)

With the help of Eq. (30), the integral I can be expressed in
the form

I ¼ − 1

2e2

Z
d3x∂ig∂ig; (43)

which is nothing but the energy of the gauge field taken
with the minus sign [see Eq. (11)].
Relations (41) and (42) allow us to check explicitly the

validity of Eq. (15) in the linearized theory. Indeed,

dðE0 þ ▵EÞ
dðQ0 þ ▵QÞ ¼

dðE0þ▵EÞ
dω

dðQ0þ▵QÞ
dω

¼ ω dQ0

dω þ ω d2I
dω2

dQ0

dω þ d2I
dω2

¼ ω: (44)

Now, we turn to the calculation of the integral I. First, we
take Eq. (30). Given a background solution f0, the spheri-
cally symmetric solution to Eq. (30) such that gjr→∞ → 0,
dg
dr jr¼0 ¼ 0 takes the form [4]

g ¼ gðrÞ ¼ −e2
Z

∞

r
qðyÞydy − e2

1

r

Z
r

0

qðyÞy2dy: (45)

Substituting it into Eq. (40), we get

I ¼ −2πe2
�Z

∞

0

qðrÞr2
Z

∞

r
qðyÞydydr

þ
Z

∞

0

qðrÞr
Z

r

0

qðyÞy2dydr
�
:

(46)

By performing integration by parts, it is easy to show that

Z
∞

0

qðrÞr2
Z

∞

r
qðyÞydydr ¼

Z
∞

0

qðrÞr
Z

r

0

qðyÞy2dydr:
(47)

Thus, we arrive at

I
4π

¼ −4e2ω2

Z
∞

0

f20ðrÞr
Z

r

0

f20ðyÞy2dydr; (48)

where we have used q ¼ 2ωf20. Equivalently, Eq. (48) can
be rewritten as

I
4π

¼ −2e2ω2

Z
∞

0

�Z
r

0

f20ðyÞy2dy
�

2 1

r2
dr: (49)

From Eqs. (41), (42), and (48), we see that the charge and
the energy of a gauged Q ball through the terms linear in e2

can be calculated using only the background solution f0 for
the nongaugedQ ball. The corresponding formulas look like

QðωÞ ¼ Q0ðωÞ þ
dIðωÞ
dω

; (50)

EðωÞ ¼ E0ðωÞ þ ω
dIðωÞ
dω

− IðωÞ; (51)

IðωÞ¼−16πe2ω2

Z
∞

0

f20ðr;ωÞr
Z

r

0

f20ðy;ωÞy2dydr (52)

whereQ0ðωÞ andE0ðωÞ are the charge and the energy of the
nongauged Q ball, respectively. Thus, to examine the main
properties of gauged Q balls in a theory with a small
parameter (proportional to e2) standing for the backreaction
of the gauge field, it is not necessary to solve explicitly
the linearized differential equation (31), which is a rather
complicated task and can be made only numerically in the
general case. Instead of this, one can simply take the
corresponding nongauged background solution f0ðr;ωÞ,
evaluate the double integral in Eq. (48) (numerically, in
the general case) to get the function IðωÞ, and calculate the
corresponding EðQÞ dependence.5 We remind the reader that
for obtaining Eqs. (50)–(52) we have used only the

5As we will see below, in most cases, the energy of a gaugedQ
ball at a given charge can be calculated using the formula that is
even simpler than those in Eqs. (50) and (51).

THEORY OF Uð1Þ GAUGED Q-BALLS REVISITED PHYSICAL REVIEW D 89, 085006 (2014)

085006-7



supposition that φ and g are exact solutions to linearized
equations of motion; the restriction e2 ≪ 1 has not
been used.

C. Validity criteria for the linear approximation

It is clear that in a nonlinear theory the linear approxi-
mation above a background solution is valid if the
corrections are much smaller than the background solution
itself. In our case, this suggests that the relations

jgðrÞj ≪ ω; (53)

jφðrÞj ≪ f0ðrÞ (54)

should be fulfilled for any r. We start with the first relation.
Equation (45) implies that dgdr ≥ 0 for any r and gjr→∞ → 0

[of course, if the corresponding integrals in Eq. (45)
converge, which is exactly our case]. This means that
jgðrÞj ≤ jgð0Þj for any r. The value of gð0Þ can be easily
obtained from Eq. (45) and takes the form

gð0Þ ¼ −2e2ω
Z

∞

0

f20ðyÞydy: (55)

In this case, Eq. (53) can be rewritten as

2e2
Z

∞

0

f20ðyÞydy ≪ 1: (56)

This inequality implies that the natural small parameter of
the theory is not simply e2. Indeed, in principle, it is
possible that even for a very small value of e2 the integralR
∞
0 f20ðyÞydy is large enough and inequality (56) is not
fulfilled and vice versa. As wewill see below, the parameter
jgð0Þj
ω plays an important role in the estimation of the small

parameter of the theory.
Now we turn to Eq. (54). As will be shown below by

particular examples, it is quite possible that jφðrÞjf0ðrÞ grows with
r (this happens in both models, which will be studied
below; see also Appendix C, in which it is shown explicitly
for a certain wide class of the scalar field potentials).
Formally, the linear approximation breaks down at large r
in such a case. So, there arises a question: is it possible
to use Eqs. (50)–(52), which were obtained in the linear
approximation, when it breaks down, though at large r?
The answer is yes, and below we will justify why it is so.
To start with, let us suppose that there exists an exact

solution fðrÞ to Eqs. (7) and (8) for a given ω, as well as a
solution f0 to Eq. (32) with the same ω as the one in f.
Now, we take Eqs. (9) and (11) and write the exact
equations

▵Q ¼ Q −Q0 ¼
Z

d3xð2gf20 þ 4ωðf − f0Þf0Þ þ
Z

d3xð2ðωþ gÞðf − f0Þ2 þ 4gðf − f0Þf0Þ; (57)

▵E ¼ E − E0 ¼
Z

d3xðωgf20 þ 4ω2ðf − f0Þf0Þ þ
Z

d3x

�
VðfÞ − Vðf0Þ − ðf − f0Þ

dV
df

����
f¼f0

�

þ
Z

d3xðω2ðf − f0Þ2 þ 2ωgðf − f0Þf0 þ ωgðf − f0Þ2 þ ∂iðf − f0Þ∂iðf − f0ÞÞ; (58)

where we have used Eqs. (7) and (32) while performing
integrations by parts. The functions f0 and f are supposed
to fall off rapidly at large r, so that f − f0 also falls off
rapidly. Now, let us assume that in the inner region r ≤ R̂,
from which the main contribution to Q0 and E0 comes,
jgj ≪ ω and jφj ¼ jf − f0j ≪ f0. The radius R̂ can be
defined as

Z
∞

R̂
f20r

2dr ¼ ϵ

Z
R̂

0

f20r
2dr; (59)

with ϵ ≪ 1 and R̂ ¼ R̂ðωÞ. In this case, in the inner region
r ≤ R̂, the last integrals in the rhs of Eqs. (57) and (58) can
be neglected in comparison with those containing only the
linear terms in g and φ, whereas the second integral in the
rhs of Eq. (58) is equal to zero in this approximation.
The outer region r > R̂ is supposed to be chosen such that
the fields f and f0 have very small absolute values inside
it; see Eq. (59). In this case, even though φ can be of the

order of f0 or larger, due to negligibly small absolute
values of the fields f and f0, we have [of course, we
suppose that VðfÞ and Vðf0Þ are also negligibly small in
this area]

▵Qouter ≪ ▵Qinner; ▵Eouter ≪ ▵Einner;

which leads to

▵Q ≈ 4π

Z
R̂

0

ð2gf20 þ 4ωφf0Þr2dr

≈ 4π

Z
∞

0

ð2gf20 þ 4ωφf0Þr2dr; (60)

▵E ≈ 4πω

Z
R̂

0

ðgf20 þ 4ωφf0Þr2dr

≈ 4πω

Z
∞

0

ðgf20 þ 4ωφf0Þr2dr (61)
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with a good accuracy. Of course, Eqs. (50)–(52) are valid
with the same accuracy if the linearized theory works only in
the inner region. This is enough for all practical purposes.
The problem is how to check that the condition jφðrÞj ≪

f0ðrÞ is valid in the inner region and the contribution of the
outer region is negligibly small. The only fully consistent
way to do it is to solve Eq. (31) with a particular f0ðr;ωÞ.
For a fixed ω, this can be done numerically in the general
case, the situation is more complicated if one has to analyze
a rather wide range of ω: a search for solutions to Eq. (31)

and the subsequent calculation of jφðrÞj
f0ðrÞ for r < R̂ may take

quite a long time. But we think that at least an estimate of

the maximal value of jφðrÞj
f0ðrÞ for r < R̂ can be made without

solving Eq. (31).
Below, we will propose two parameters, which can be

useful for such an estimate. To find the first parameter, we
notice that if jφðrÞj ≪ f0ðrÞ then

����
Z

R̂

0

φf0r2dr

���� ≪
����
Z

R̂

0

f20r
2dr

����: (62)

The opposite is not correct. Indeed, if φ changes its sign at
some r > 0 (this is exactly the situation realized in model 2,
which will be presented below), then it is possible that the
integral in the lhs of Eq. (62) is equal to zero for nonzero φ,
which does not provide any estimate. Meanwhile, inequal-
ity (62) may be useful taken together with other parameters,
which will be discussed later. For r > R̂, the absolute
values of the field φ are negligibly small in the outer region,
so we can rewrite inequality (62) as

����
Z

∞

0

φf0r2dr

���� ≪
����
Z

∞

0

f20r
2dr

����: (63)

In other words, the fulfillment of the latter inequality
implies that the contribution of the fields from the outer
region, where jφj can be of the order of f0 and larger, is
negligibly small in comparison with the main contribution
of the inner region. Now, multiplying Eq. (63) by 4πω2 and
using Eqs. (60) and (61) [or Eqs. (33) and (34)], we can
rewrite Eq. (63) as

j2▵E − ω▵Qj
2ωQ0

≪ 1: (64)

It can be rewritten in the explicit form as

���� 14ω
dI
dω

− I
2ω2

���� ≪ 4π

Z
∞

0

f20r
2dr: (65)

Now, we turn to the second parameter. To find it, we take
the inhomogeneous equation (31) and rewrite it as

Δφþ ω2φ − 1

2

d2V
df2

����
f¼f0

φ ¼ −2ωgðrÞf0ðrÞ ≤
− 2ωgð0Þf0ðrÞ; (66)

where we have used the fact that gðrÞ < 0 and jgðrÞj ≤
jgð0Þj for any r. Equation (66) suggests that, at least for an
estimation of φ, one can consider the simplified equation

Δφ̂þ ω2φ̂ − 1

2

d2V
df2

����
f¼f0

φ̂þ 2ωgð0Þf0ðrÞ ¼ 0 (67)

instead of Eq. (31). We think that the difference between φ
and φ̂ should be of the order of φ, which is not critical for
the estimate. But according to Eq. (35), Eq. (67) can be
solved exactly—its solution has the form

φ̂ ¼ gð0Þ df0
dω

: (68)

Thus, instead of jφðrÞjf0ðrÞ, we can try to estimate jφ̂ðrÞj
f0ðrÞ, for which���� gð0Þf0ðrÞ

df0ðrÞ
dω

���� ≪ 1 (69)

should hold. Note that the new parameter in Eq. (69) is
proportional to the first parameter jgð0Þj

ω . We think that in
order to get better estimates one should calculate Eq. (69) at
several different points of r for a given ω.
The fulfillment of Eq. (56) together with Eqs. (64) and

(69) suggests, although it does not ensure, that the linear
approximation is valid for g and φ in the inner region,
whereas the outer region does not make any significant
contribution, and the linearized theory indeed can be used
for a description of gauged Q ball.6 Note that, as will be
shown below by an explicit example (model 2), the
fulfillment of Eq. (56) does not imply the fulfillment of
Eqs. (64) and (69) and vice versa. Thus, in the general case,
one should estimate all the parameters presented above
while analyzing the question about the applicability
of Eqs. (50)–(52). It is possible simply to define the
function

αðωÞ¼max
i

�jgð0Þj
ω

;
j2▵E−ω▵Qj

2ωQ0

;

���� gð0Þ
f0ðriÞ

df0ðriÞ
dω

����
�

(70)

and consider it as the natural small parameter depending on
ω, for which

αðωÞ ≪ 1 (71)

6Of course, the breakdown of the linear approximation at large
r does not mean that a solution to nonlinear equations (7) and (8)
does not exist—it simply means that the linear approximation
does not describe the Q ball properly far away from its center.
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should hold. We emphasize that for calculating αðωÞ only
the background solution f0ðr;ωÞ is necessary. Because of
the dependence of the parameter αðωÞ on ω, one can say
that it “runs”with ω. It is obvious that αðωÞ ∼ e2, but, as we
will see below, the smallness of e2 does not guarantee the
fulfillment of Eq. (71).

D. Comparison of gauged and nongauged Q balls

Now, let us compare some properties of gauged
[obtained in the linear approximation in αðωÞ] and non-
gauged Q balls. We start with comparing the energies of Q

balls at a given charge Q. For a gauged Q ball, we have
Q ¼ Q0ðω1Þ þ ▵Qðω1Þ, whereas for a nongauged Q ball,
Q ¼ Q0ðω2Þ. From Q0ðω1Þ þ ▵Qðω1Þ ¼ Q0ðω2Þ, in the
linear approximation in αðωÞ, we obtain

▵Qðω1Þ ¼ ðω2 − ω1Þ
dQ0

dω

����
ω¼ω1

: (72)

Now, let us compare the energies of gauged and nongauged
Q balls with the same charges. We get

Eðω1Þ − E0ðω2Þ ¼ E0ðω1Þ þ ▵Eðω1Þ − E0ðω2Þ ≈ ▵Eðω1Þ − ðω2 − ω1Þ
dE0

dω

����
ω¼ω1

¼ ▵Eðω1Þ −
dE0

dω jω¼ω1

dQ0

dω jω¼ω1

▵Qðω1Þ ¼ ▵Eðω1Þ − ω1▵Qðω1Þ; (73)

where we have used Eq. (72) and the relation dE0

dQ0
¼ ω. But

according to Eqs. (41), (42), and (43),

▵Eðω1Þ − ω1▵Qðω1Þ ¼ −Iðω1Þ ¼
1

2e2

Z
d3x∂ig∂ig; (74)

which is always positive for g≢0. Thus, for any charge
Q > 0, the energy of a gauged Q ball is larger than the
energy of the corresponding nongauged Q ball with the
same charge that is, of course, the expected result. It is
interesting to note that Eq. (74) also follows from Eq. (26).
Indeed, ▵Q ∼ e2 and ▵E ∼ e2, leading to dQ

de ¼ 2▵Q
e and

dE
de ¼ 2▵E

e . Substituting the latter relations into Eq. (26), we
get Eq. (74).
Now, we turn to examining another property of Q

balls—cusps on the EðQÞ diagrams. Such cusps, which
are a consequence of the existence of (locally) minimal
or/and (locally) maximal charges, exist on EðQÞ diagrams
in many models of nongauged Q balls. The origin of the
cusps is the following: for a (locally) minimal or a (locally)
maximal charge, we have dQ

dω jω¼ω̂ ¼ 0with ω̂ > 0, whereas

from dE
dω ¼ ω dQ

dω, it follows that
dE
dω jω¼ω̂ ¼ 0, which leads to

the appearance of a cusp at the point Qm ¼ Qðω̂Þ. Of
course, analogous cusps are expected in the gauged case
also. For example, one can recall the model of Ref. [5], in
which the function EðQÞ was drawn with the help of
gauged nontopological soliton solutions, which were
obtained by solving numerically the corresponding exact
equations of motion, although for rather small values of the
expansion parameter (the cusp is clearly seen on the EðQÞ
diagram presented in Ref. [5]). Below, we will obtain
relations between the charges, corresponding to the cusps,
in the gauged and nongauged cases.

The position of a cusp in the gauged case is defined by
dðQ0þ▵QÞ

dω jω¼ω̂1
¼ 0, whereas for the nongauged case, it is

defined by dQ0

dω jω¼ω̂2
¼ 0. The difference between the

charges in the linear order in αðωÞ is

Qðω̂1Þ −Q0ðω̂2Þ ¼ Q0ðω̂1Þ þ ▵Qðω̂1Þ −Q0ðω̂2Þ

≈ ▵Qðω̂1Þ þ ðω̂1 − ω̂2Þ
dQ0

dω

����
ω¼ω̂2

¼ ▵Qðω̂1Þ ≈ ▵Qðω̂2Þ: (75)

We see that in the linear approximation in αðωÞ the
difference between the charges corresponding to the cusps
in the gauged and nongauged cases is defined by the value
of ▵Q at ω corresponding to the cusp in the nongauged
case. As we will see below using explicit examples, the
difference can be positive, negative, or even zero.
One makes an interesting observation from Eqs. (73),

(74), and (75). Since Iðω1Þ ≈ Iðω2Þ in the linear order in
αðωÞ, for ω2 which is not very close to ω̂2, one has
Eðω1Þ ¼ E0ðω2Þ − Iðω2Þ. Suppose that we have a non-
gauged Q ball with the charge Qx and the energy E0ðQxÞ.
Then, the energy of the corresponding gauged Q ball with
the same charge Qx (not with the same ω) is simply

EðQxÞ ¼ E0ðQxÞ − IðωÞjω¼Q−1
0
ðQxÞ; (76)

where −IðωÞjω¼Q−1
0
ðQxÞ is just the energy of the gauge field

produced by the nonpointlike charge Qx [recall Eq. (43)].
Near the cusps, this formula must be used very carefully: at
first, it is necessary to check that for a given charge Qx of
the nongauged Q ball the corresponding gauged Q ball
really exists [see Eq. (75)] and that Eq. (72) results in
ω2 − ω1 ∼ αðω2Þ. If it is not so, one should use Eqs. (50)
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and (51) instead of Eq. (76). But it is clear that Eq. (76) can
be used for most values of the Q ball charge.

E. Explicit examples of gauged Q balls

In the general case, a straightforward numerical evalu-
ation of the function IðωÞ for a given background solution
f0ðr;ωÞ may take quite a long time. So, to illustrate how
the general results, presented above, can be used for
calculations, we choose two models with very simple
background Q ball solutions f0ðr;ωÞ. The simplicity of
the background solutions allows us not only to find the
function IðωÞ analytically in both cases but also to obtain
exact analytic solutions to the system of linearized
equations (30), (31).

1. Model 1

Let us consider the model proposed in Ref. [11] with the
potential (in our notations)

Vðϕ�ϕÞ ¼ −μ2ϕ�ϕ lnðβ2ϕ�ϕÞ; (77)

where μ and β are the model parameters. The spherically
symmetric background (nongauged) solution for the Q ball
in this model takes the form

f0ðrÞ ¼ μξe
−ω2

2μ2e−μ2r2

2 ; (78)

where 0 ≤ ω < ∞ and ξ ¼ e
βμ. The charge and the energy of

the Q ball looks like

Q0 ¼ 2π
3
2ξ2

ω

μ
e
−ω2

μ2 ; (79)

E0 ¼ 2π
3
2ξ2μ

�
ω2

μ2
þ 1

2

�
e
−ω2

μ2 : (80)

For additional details concerning nongauged Q balls in the
model with potential (77), see Ref. [14], in which this
model was thoroughly investigated.
The integral in Eq. (52) can be easily calculated

analytically for the background solution defined by
Eq. (78). The result looks like

I
4π

¼ −μe2
ffiffiffi
π

p

4
ffiffiffi
2

p ξ4
�
ω

μ

�
2

e
−2ω2

μ2 : (81)

We see that Eq. (81) has a very simple form. The
corrections ▵Q and ▵E can also be calculated analytically,
and for the charge and the energy of the gauged Q ball,
we get

Q ¼ Q0 þ ▵Q ¼ 2π
3
2ξ2ð ~Q0 þ e2ξ2▵ ~QÞ ¼ 2π

3
2ξ2 ~Q; (82)

E ¼ E0 þ ▵E ¼ μ2π
3
2ξ2ð ~E0 þ e2ξ2▵ ~EÞ ¼ μ2π

3
2ξ2 ~E; (83)

with

~Q0 ¼ ~ωe− ~ω2

; (84)

~E0 ¼
�
~ω2 þ 1

2

�
e− ~ω2

; (85)

▵ ~Q ¼
� ffiffiffi

2
p

~ω3 − ~ωffiffiffi
2

p
�
e−2 ~ω2

; (86)

▵ ~E ¼
� ffiffiffi

2
p

~ω4 − ~ω2

2
ffiffiffi
2

p
�
e−2 ~ω2

; (87)

where ~ω ¼ ω
μ. We also define the parameter

α1 ¼ e2ξ2; (88)

which will be used below. In Fig. 1, one can see an example
of the EðQÞ diagram for the gauged Q ball in this model.
This diagram was plotted using Eqs. (50) and (51). We see
from Fig. 1 that the energy of the gauged Q ball is larger
than the energy of the corresponding nongauged Q ball
with the same charge, as it was shown in the previous
section. One sees that there is a cusp on the EðQÞ diagram
for the gauged case as well as for the nongauged case.
There are maximal charges, which correspond to these
cusps. For the nongauged case, the charge is maximal at
~ω ¼ 1ffiffi

2
p . From Eq. (86), it follows that ▵Qj ~ω¼ 1ffiffi

2
p ¼ 0, which

means that the values of the maximal charge in the gauged
and nongauged cases coincide through the linear order in
α1 [this also implies that one can use Eq. (76) instead of
Eqs. (50) and (51) for plotting the EðQÞ diagram, presented
in Fig. 1, with the same accuracy]. It follows from Fig. 1
that on the lower branch of the EðQÞ diagram d2E

dQ2 < 0 and
Eð0Þ ¼ 0 (the latter corresponds to ω → ∞), which means

0.1 0.2 0.3 0.4
Q

0.1

0.2

0.3

0.4

0.5

0.6

E

FIG. 1. EðQÞ for the gauged (solid line) and nongauged
(dashed line) cases. Here, α1 ¼ 0.05 and 0 ≤ ~ω ≤ 10.

THEORY OF Uð1Þ GAUGED Q-BALLS REVISITED PHYSICAL REVIEW D 89, 085006 (2014)

085006-11



that gauged Q balls from this branch are stable against
fission.
In Fig. 2, the plots of corrections ▵ ~Q and ▵ ~E are

presented. One sees from these plots that ▵Q and ▵E
can be negative or positive for a given ω (although the
energy of gauged Q ball is always larger than the energy of
the corresponding nongaugedQ ball with the same charge).
The parameter j2▵E−ω▵Qj

2ωQ0
in Eq. (64), which is necessary

for checking the applicability of linear approximation, can
be obtained directly from Eqs. (84), (86), and (87). It is not
difficult to show that it can be estimated as

j2▵E − ω▵Qj
2ωQ0

¼ α1ffiffiffi
2

p ~ω2e− ~ω2 ≤
1ffiffiffi
2

p
e
α1: (89)

As for the parameter jgð0Þj
ω in Eq. (56), it can also be

calculated analytically for Eq. (78) and takes the form

jgð0Þj
ω

¼ α1e− ~ω2 ≤ α1: (90)

And finally, the parameter (69) does not depend on r in this
model and has the form

���� gð0Þf0ðrÞ
df0ðrÞ
dω

���� ¼ α1 ~ω
2e− ~ω2 ≤

1

e
α1: (91)

We see that in the model under consideration all the

parameters jgð0Þj
ω , j2▵E−ω▵Qj

2ωQ0
, and j gð0Þ

f0ðrÞ
df0ðrÞ
dω j can be easily

estimated. The most stringent ω-independent restriction on
eξ comes from Eq. (90) and looks very simple:

e2ξ2 ¼ α1 ≪ 1:

Note that for large ~ω Eq. (70) gives

αðωÞ ¼ e2ξ2 ~ω2e− ~ω2

:

It means that, with a fixed eξ, the larger ~ω is, the smaller the
parameter αðωÞ is. In other words, the larger ~ω is, the larger
the maximal value of eξ, for which the linearized theory can

be used with this ~ω, is. Nevertheless, one can consider α1 as
an ω-independent small parameter for this model, which
can be useful in certain cases.
The restriction α1 ≪ 1 clearly shows that the fulfillment

of e2 ≪ 1 is not sufficient to ensure the validity of the linear
approximation. Indeed, even for a very small value of e2,
the parameter ξ, which is defined by the parameters of the
scalar field potential, can be rather large to make the use of
the linear approximation impossible (this fact was previ-
ously observed in Ref. [10]).
For completeness, below we present the explicit solution

for the fields g and φ in this model. It satisfies the
conditions dg

dr jr¼0 ¼ 0, gjr→∞ ¼ 0, dφ
dr jr¼0 ¼ 0, and

φjr→∞ ¼ 0 and can be factorized into terms containing
ω and r. For the first time, this exact, in the linear
approximation, solution was obtained in Ref. [10], and
in our notations, it has the form

gðrÞ ¼ μα1ΦgðωÞFgðrÞ; (92)

φðrÞ ¼ μα1ξΦφðωÞFφðrÞ; (93)

where

ΦgðωÞ ¼
ffiffiffi
π

p
2

ω

μ
e
−ω2

μ2 ; (94)

FgðrÞ ¼ −
1

μr
erfðμrÞ; (95)

ΦφðωÞ ¼
ffiffiffi
π

p �
ω

μ

�
2

e
−3ω2

2μ2 ; (96)

FφðrÞ ¼ e−3μ2r2

2

�
1

4
ffiffiffi
π

p þ 1

4
eμ

2r2
�
μrþ 1

2μr

�
erfðμrÞ

�
: (97)

Here erfðzÞ ¼ 2ffiffi
π

p
R
z
0 e

−t2dt.
The explicit solution, presented above, allows us to

estimate how jφðrÞj
f0ðrÞ grows with r. In Fig. 3, the function

FφðrÞ
e−

μ2r2

2

is presented, clearly indicating the growth. One sees from
this plot that, for example, for a given ω the value of
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4

FIG. 2. ▵ ~Q (left plot) and ▵ ~E (right plot) for 0 ≤ ~ω ≤ 2.3.
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φðrÞ
f0ðrÞ jμr¼10 is approximately five times larger than the value

of φðrÞ
f0ðrÞ jμr¼2. Meanwhile, the absolute values of the fields φ

and f0 are proportional to the factor of the order of e−50 at
μr ¼ 10, which is extremely small. This confirms that if,
with an appropriate choice of α1, the linear approximation
is valid in the inner region of this gaugedQ ball (which can
be defined, for example, as 0 ≤ μr ≤ 10), Eqs. (81)–(87)
are also valid.

2. Model 2

Now, we consider the model with a piecewise parabolic
potential, which was proposed in Ref. [1] and thoroughly
examined in Ref. [13].7 The piecewise scalar field potential
in this model has the form

Vðϕ�ϕÞ¼M2ϕ�ϕθ
�
1−ϕ�ϕ

v2

�

þðm2ϕ�ϕþv2ðM2−m2ÞÞθ
�
ϕ�ϕ
v2

−1

�
; (98)

where M2 > 0, M2 > m2, and θ is the Heaviside step
function with the convention θð0Þ ¼ 1

2
. The background

solution for the Q ball in this model takes the form

f0ðr < RÞ ¼ f<0 ðrÞ ¼ v
R sin ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
rÞ

r sin ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
RÞ

; (99)

f0ðr > RÞ ¼ f>0 ðrÞ ¼ v
Re−

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

re−
ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
R
; (100)

where R is defined as

R ¼ RðωÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
�
π − arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
��

:

(101)

The charge and the energy of the Q ball looks like

Q0 ¼ 4πR2ωv2
�ðM2 −m2ÞðR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
þ 1Þ

ðω2 −m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
�
; (102)

E0 ¼ ωQ0 þ 4π
R3v2ðM2 −m2Þ

3
: (103)

For additional details concerning nongauged Q balls in the
model with potential (98), see Ref. [13].
As in the previous case, the integral in Eq. (52) can be

calculated analytically for the background solution defined
by Eqs. (99) and (100). The result looks like

I
4π

¼ e2ω2

�
a4
�
sinð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
RÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p − Rþ Sið2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
RÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p − Sið4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
RÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
�

− 4b2
�
a2
�
R
2
− sinð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
RÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
�
þ b2e−2

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
R

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
�
E1ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
RÞ

þ 2b4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p E1ð4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
RÞ

�
; (104)

2 4 6 8 10
r
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FIG. 3. The function FφðrÞ
e−

μ2r2

2

.

7Another model with a piecewise parabolic potential (it was also proposed in Ref. [1]), admitting a rather simple solution, was
discussed in detail in Ref. [15]. The model in Ref. [13] provides a simpler solution [especially for RðωÞ, which, contrary to the case of
Ref. [15], has a very simple analytic form (101)], which appears to be more useful for illustrative purposes and numerical analysis.

THEORY OF Uð1Þ GAUGED Q-BALLS REVISITED PHYSICAL REVIEW D 89, 085006 (2014)

085006-13



where

SiðyÞ ¼
Z

y

0

sinðtÞ
t

dt; (105)

E1ðyÞ ¼
Z

∞

y

e−t
t
dt (106)

and

a ¼ aðωÞ ¼ vR

sin ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
RÞ

; (107)

b ¼ bðωÞ ¼ vR

e−
ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
R
: (108)

We see that Eq. (104) has a much more complicated form
than the corresponding result for the previous model.
In principle, with the help of Eqs. (101), (107), and
(108), the derivative dI

dω can also be calculated analytically,
although we derived it numerically for obtaining the EðQÞ
dependence.
To perform numerical calculations, one should pass to

dimensionless variables. The most natural choice for the
scale parameter in this model is the mass parameter M.
Thus, we choose the dimensionless variables ~ω ¼ ω

M and
~r ¼ Mr. The background scalar field takes the form

f0ðω; rÞ ¼ v ~f0ð ~ω; ~rÞ: (109)

It is not difficult to show that the charge and the energy can
be represented as

Q ¼ Q0 þ ▵Q ¼ v2

M2

�
~Q0 þ

e2v2

M2
▵ ~Q

�
; (110)

E ¼ E0 þ ▵E ¼ v2

M

�
~E0 þ

e2v2

M2
▵ ~E

�
; (111)

with ~Q0, ~E0, Δ ~Q, and ▵ ~E being dimensionless functions
depending on ~ω and m2

M2 only. This suggests that the
parameter

α2 ¼
e2v2

M2
(112)

in this model is such that αðωÞ ∼ α2. It is confirmed by the
fact that, as can be shown from Eqs. (30) and (31) using
Eqs. (98) and (109), solutions for the fields g and φ can be
expressed in the form

g ¼ Mα2 ~g; (113)

φ ¼ vα2 ~φ: (114)

where the dimensionless functions ~g and ~φ depend only on
~ω, and m2

M2 and ~r and do not depend on v and e.

As in the previous case, Eq. (112) clearly shows that the
linear approximation can be used if not only e2 ≪ 1 holds
but if αðωÞ ≪ 1 holds, too. Indeed, even for a very small
value of e2, the relation v2

M2 can be large enough to make the
use of the linear approximation impossible (as we will see
below, for α2 ¼ 0.001, the linear approximation does not
work well enough for all values of ω, whereas such value of
α2 can be obtained by choosing v ¼ M and e2 ¼ 0.001,
which looks small enough). On the other hand, for larger
values of e2, the value of v2

M2 can be chosen to be rather small
to make αðωÞ ≪ 1.
For a numerical analysis, we choose the case m2 < 0,

which is, in our opinion, the most interesting for illustrative
purposes. In Fig. 4, one can see an example of the EðQÞ
diagram for the gauged Q ball in our model. This diagram
was plotted using Eqs. (50) and (51).
Let us discus the properties of the gauged Q balls at

hand. Again, we see from Fig. 4 that the energy of the
gaugedQ ball is larger than the energy of the corresponding
nongauged Q ball for the same values of charge. One also
sees that there are two cusps on the EðQÞ diagram for the
gauged case as well as for the nongauged case. There are
locally minimal charges Qmin and locally maximal charges
Qmax, which correspond to these cusps. For the nongauged
case with jmj

M ¼ 0.6, the charge is locally maximal at
~ω ≈ 0.2846, whereas it is locally minimal at ~ω ≈ 0.9426.
We calculated numerically the values of ▵Q for these
values of ~ω. According to Eq. (75), we have

M2

4πv2
ðQmax −Qmax

0 Þ ≈ −0.421α2;
M2

4πv2
ðQmin −Qmin

0 Þ ≈ 0.139α2:

Of course, the difference betweenQmax andQmax
0 cannot be

seen in Fig. 4 by the naked eye because of the small value
of the parameter α2. Contrary to the case of the previous
model, here Qmax < Qmax

0 and Qmin > Qmin
0 . The latter

10 20 30 40 50 60

Q M 2

4 v2

15

20
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40

E M

4 v2

FIG. 4. EðQÞ for the gauged (solid line) and nongauged (dashed
line) cases. The dotted line stands for free scalar particles of massM

at rest. Here, m2 < 0, jmj
M ¼ 0.6, α2 ¼ 0.001, and 0 ≤ ~ω ≤ 0.99.
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relations are not universal even in the model under
consideration. For example, for jmj

M ¼ 1.3,

M2

4πv2
ðQmax −Qmax

0 Þ ≈ 0.0009α2;

M2

4πv2
ðQmin −Qmin

0 Þ ≈ 0.0056α2;

i.e., now Qmax > Qmax
0 .

We also present the plots of ▵ ~Q and ▵ ~E; see Fig. 5.
Again, one sees from these plots that the corrections ▵Q
and ▵E can be negative or positive for a given ω.
The plots of the parameters jgð0Þj

ω , η ¼ j2▵E−ω▵Qj
2ωQ0

, and

ρðriÞ ¼ jgð0Þj
f0ðriÞ

df0ðriÞ
dω , which are necessary for checking the

validity of the linear approximation, are presented in Fig. 6.
All these parameters were calculated numerically. We
calculated ρðrÞ at two points: the first one is defined by
f0ðRe;ωÞ ¼ e−1f0ð0;ωÞ, whereas the second point, Rϵ,
is defined by Eq. (59) with ϵ ¼ 10−2 and corresponds to the
radius of the inner region. Both Re and Rϵ depend on ω; see
Appendix D for details concerning the calculation of Re
and Rϵ.
We see from Fig. 6 that all the parameters depend on ω in

different ways. This explicit example confirms that in order
to check the validity of the linear approximation in the

general case (in which the dependence of these parameters
on ω is very complicated or can not be obtained analyti-

cally) it is better to estimate all the parameters jgð0Þj
ω ,

η ¼ j2▵E−ω▵Qj
2ωQ0

, and ρðriÞ ¼ jgð0Þj
f0ðriÞ

df0ðriÞ
dω or to calculate the

function αðωÞ ¼ maxifjgð0Þjω ; η; jρðriÞjg, defined by Eq. (70),
which is presented in Fig. 7 for the set of the model
parameters chosen above. Figures 6 and 7 demonstrate that,
although the use of parameters like α2 as ω-independent
small parameters can be convenient for calculations and for
rough estimates, they cannot replace the natural small
parameters αðωÞ in the general case.
Of course, the smaller α2 is, the wider the region (or

regions) of frequencies ω, in which the linear approxima-
tion works, is. Meanwhile, the chosen set of the parameters,
for which Figs. 6 and 7 were plotted, is very useful for
illustrative purposes. Based on these reasons, as well as to
make the differences between the gauged and nongauged
cases visible by the naked eye, we keep Fig. 4 as it is,
although, according to Fig. 7, the linear approximation
works well enough only in the vicinity of ~ω ≈ 0.85
for α2 ¼ 0.001.
Now, let us turn to the discussion of stability of gaugedQ

balls in this model. We will focus on the lowest branch in
Fig. 4, for which d2E

dQ2 < 0. The results of Sec. III imply that

Q balls from the lowest branch are stable against fission.
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FIG. 5. ▵ ~Q (left plot) and ▵ ~E (right plot) for m2 < 0, jmj
M ¼ 0.6 and 0 ≤ ~ω ≤ 0.99.
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FIG. 6. jgð0Þj
ω , η and ρ for m2 < 0, jmj

M ¼ 0.6, α2 ¼ 0.001, and
0 ≤ ~ω ≤ 0.96.
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FIG. 7. αðωÞ for m2 < 0, jmj
M ¼ 0.6, α2 ¼ 0.001, and

0 ≤ ~ω ≤ 0.96.
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We also see that the part of this lowest branch lies below the
line E ¼ MQ standing for free scalar particles of mass M.
This means that, at least in the absence of fermions,Q balls
from this part of the branch are stable with respect to decay
into free particles.
The last type of stability, which could be discussed here,

is the classical stability. Of course, we may wonder that the
main properties of gauged and nongauged Q balls are
similar at least in the case in which the parameter αðωÞ is
rather small. So, if we suppose that the classical stability
criterion for ordinary Q balls [6], which states that Q balls
for which dQ

dω ¼ ðd2EdQ2Þ−1 < 0 (for Q > 0, ω > 0) holds are

classically stable, is valid for gauged Q balls, then the
gauged Q balls from the lowest branch are also classically
stable. In such a case, the part of the lowest branch, which
lies below the line E ¼ MQ, consists of absolutely stableQ
balls. But we can not justify that the classical stability
criterion for ordinaryQ balls works for gaugedQ balls, too,
so we consider the Q balls from the part of the lowest
branch, which lies below the E ¼ MQ line, as stable
against fission and against decay into free scalar particles
only. According to Fig. 4, for the given values of the model
parameters (m2 < 0, jmj

M ¼ 0.6, α2 ¼ 0.001), such Q balls
have charges in the range 21.5≲ M2

4πv2 Q≲ 61.8 and energies
in the range 21.5≲ M

4πv2 E≲ 43.5.
As for the previous model, for completeness, below we

present an explicit solution for the fields g and φ in this
model. The solution for the field g can be obtained directly
from Eq. (45) with Eqs. (99) and (100), whereas solution
for the field φ was obtained by means of the method of
variation of parameters. We present it for the simplest case
m ¼ 0. This solution, satisfying dg

dr jr¼0 ¼ 0, gjr→∞ ¼ 0,
dφ
dr jr¼0 ¼ 0, φjr→∞ ¼ 0, and the nonstandard matching

conditions at r ¼ R [because d2V
df2 jf¼v ∼ δðr − RÞ], has

the form for the gauge field

gðr < RÞ ¼ g<ðrÞ

¼ C1

�
lnðωrÞ − Cið2ωrÞ þ sinð2ωrÞ

2ωr

�
þ C2;

(115)

gðr>RÞ¼g>ðrÞ

¼C3

r
þC4

�
e−2

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r
−E1ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
rÞ
�
;

(116)where

CiðyÞ ¼ −
Z

∞

y

cosðtÞ
t

dt; (117)

C1 ¼ C1ðωÞ ¼ e2v2ωR2
1

sin2ðωRÞ ; (118)

C2 ¼ C2ðωÞ ¼ −e2v2ωR2

�
2e2

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
RE1ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
RÞ

þ −Cið2ωRÞ þ lnðωRÞ þ 1

sin2ðωRÞ
�
; (119)

C3 ¼ C3ðωÞ ¼ −e2v2ωR2

�
M2

ω2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p þ R
sin2ðωRÞ

�
;

(120)

C4 ¼ C4ðωÞ ¼ e2v2ωR2ð2e2
ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
RÞ; (121)

and for the scalar field

φðr < RÞ ¼ B
sinðωrÞ

r
þ sinðωrÞ

ωr

Z
r

0

G<ðtÞ cosðωtÞdt

−
cosðωrÞ

ωr

Z
r

0

G<ðtÞ sinðωtÞdt; (122)

φðr>RÞ¼A
e−

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

r
− e

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

Z
∞

r
G>ðtÞe−

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
tdt

−
e−

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

Z
r

R
G>ðtÞe

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
tdt; (123)

where

G<ðrÞ ¼ −2ωrg<ðrÞf<0 ðrÞ; (124)

G>ðrÞ ¼ − 2ωrg>ðrÞf>0 ðrÞ; (125)

B ¼ BðωÞ ¼ 1

D
F1

e
ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
R

sinðωRÞ − F2

ω
þ F3

ω2R
; (126)

A ¼ AðωÞ ¼ e
ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
R

D

�
F1e

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
R

�
1þ D

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
�

þ F3

M2 sinðωRÞ
ω2

�
; (127)

D ¼ DðωÞ ¼ M2R

1þ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p ; (128)

F1 ¼ F1ðωÞ ¼
Z

∞

R
G>ðtÞe−

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
tdt; (129)

F2 ¼ F2ðωÞ ¼
Z

R

0

G<ðtÞ cosðωtÞdt; (130)

F3 ¼ F3ðωÞ ¼
Z

R

0

G<ðtÞ sinðωtÞdt: (131)
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We see that, even for the very simple background solution
(99), (100), the solution for g and φ appears to be
complicated. Contrary to the case of model 1, the solution
(115)–(131) cannot be factorized. It should be mentioned
that the double integrals in Eqs. (115)–(131) [the functions
CiðyÞ and E1ðyÞ have integral representations themselves]
in principle can be transformed to the form containing only
integrals of one variable by performing integration by parts
(corresponding calculations are straightforward, though
rather tedious); this is possible only because of the
simplicity of the background solution (99), (100).
The plots of this solution for the fields g and φ are

presented in Figs. 8 and 9. One can see the breaks on the
curves corresponding to the field φ. This is an artifact of
linearization in the theory with potential (98), which also
contains a break [recall that d

2V
df2 jf¼v ∼ δðr − RÞ]. Of course,

the break in potential (98) can be regularized, leading to the
smooth behavior of φ at r ¼ R.
One also sees that for different values of ~ω solutions for

the field φ have different form: in the first case, φ increases
at small r, whereas in the second case, it decreases at small
r starting from r ¼ 0. It should be noted that, contrary to
what we have in model 1 [see Eq. (97)], in both cases, the
solution for the field φ crosses the axisMr and then tends to
zero from below. It is clearly seen in Fig. 9; as for the case
presented in Fig. 8, the solution crosses the axis Mr at
Mr ≈ 17.38, which is out of range of the presented plot.
Solutions for other values of the model parameters have the

form similar either to the solution presented in Fig. 8 or to
the solution presented in Fig. 9.
Finally, we would like to note that, as it can be checked

explicitly, the relation jφðrÞj
f0ðrÞ grows logarithmically with r in

this model (see also Appendix C). But, again, this growth is
very slow relative to the exponential fall of f0 and φ, and,
analogously to the previous case, this confirms that with an
appropriate choice of the model parameters (including ω)
and with αðωÞ ≪ 1 the use of the linear approximation is
fully justified.

V. CONCLUSION

In the present paper, we studied some general properties
ofUð1Þ gaugedQ balls. In particular, we showed that, as in
the case of ordinary nongaugedQ balls, the relation dE

dQ ¼ ω
also holds for Uð1Þ gauged Q balls. Based on this result
and using the fact that ω < M in theories admitting the
existence of free scalar particles of mass M, we demon-
strated that the statement about the existence of the
maximal charge of stable gauged Q balls, presented in
Ref. [3], was obtained by means of the erroneous inequality
dE
dQ ≥ M and thus cannot be considered as correct.
We also presented a powerful method for analyzing

gauged Q balls in the case in which the backreaction of the
gauge field on the scalar field is small. Provided a non-
gauged (background) Q ball solution f0ðr;ωÞ, for a given
value of the coupling constant e, the strength of the
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FIG. 8. Solutions for the fields gðrÞ (left plot) and φðrÞ (right plot). Here, m ¼ 0 and ~ω ¼ 0.8.
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FIG. 9. Solutions for the fields gðrÞ (left plot) and φðrÞ (right plot). Here, m ¼ 0 and ~ω ¼ 0.99.
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backreaction of the gauge field can be estimated by
calculating the parameter αðωÞ defined by Eq. (70), which
depends on ω and the background solution f0ðr;ωÞ only.
This parameter is proportional to e2 in general but does not
coincide with it. We have shown that our results can be used
not if only the inequality e2 ≪ 1 holds but if the overall
parameter αðωÞ is also rather small to ensure the validity of
the linear approximation [in principle, the smallness of
αðωÞ does not exclude the cases in which e is not small].
The main parameters of gauged Q balls in such a theory—
the charge and the energy—can also be calculated using
the background solution f0ðr;ωÞ only [using Eqs. (50) and
(51) or the even simpler Eq. (76)], whereas an explicit
solution to the system of linearized equations of motion is
not necessary at all.
The obtained results were illustrated by the examples of

two exactly solvable models proving the efficiency of the
proposed method—indeed, even for the very simple back-
ground solution (99), (100), the explicit analytic solution
for gauged Q ball (115)–(131), which was obtained in the
linear approximation in φ and g, appears to be rather
complicated and its derivation (at least for the field φ) is
more bulky than the analytical evaluation of integral (48)
for Eqs. (99) and (100). Without Eqs. (50)–(52) or Eq. (76),
evaluation of Eqs. (33) and (34) does not seem to be a
simple task, taking into account the necessity to solve
numerically (in the general case) the differential equa-
tion (31) to get a solution for the field φ. Obviously, it is a
much more complicated task than the evaluation of the
double integral in Eq. (48), even with a background
nongauged solution f0ðr;ωÞ obtained numerically.
We hope that the results presented in this paper can be

useful for the future research in this area.
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APPENDIX A

Let EðQminÞ
Qmin

¼ ω̂ > ωmin ¼ dE
dQ jQ¼Qmin

. In this case, the
function EauxðQÞ can be chosen as

EauxðQÞ ¼ ð2ω̂ − ωminÞQþ Q2

Qmin
ðωmin − ω̂Þ; Q < Qmin;

EauxðQÞ ¼ EðQÞ; Q ≥ Qmin:

One can check that
Eauxð0Þ ¼ 0;

EauxðQminÞ ¼ EðQminÞ;
dEauxðQÞ

dQ

����
Q¼Qmin

¼ dEðQÞ
dQ

����
Q¼Qmin

;

dEauxðQÞ
dQ

¼ 2ðω̂ − ωminÞ
�
1 − Q

Qmin

�

þ ωmin > 0 for Q ≤ Qmin;

d2EauxðQÞ
dQ2

¼ 2

Qmin
ðωmin − ω̂Þ < 0;

i.e., all the necessary conditions are fulfilled. Since
Eauxð0Þ ¼ 0, inequality (21) holds for Q1, Q2 ≥ 0 and,
consequently, for Q1, Q2 ≥ Qmin. For more details,
see Ref. [13].

APPENDIX B

Let us consider Eqs. (30) and (31) and represent the
coupling constant e in Eq. (30) as e ¼ γe0, where γ > 0 is a
constant. Let us define f00 ¼ γf0, φ0 ¼ γφ. With these
notations, Eqs. (30) and (31) can be rewritten as

Δg − 2e02ωf00
2 ¼ 0; (B1)

Δφ0 þ ω2φ0 þ 2ωgf00 − 1

2

d2V 0ðf0Þ
df02

����
f0¼f0

0

φ0 ¼ 0; (B2)

where V 0ðf0Þ ¼ γ2Vðf0γ Þ. Equations (B1) and (B2) have the
same form as Eqs. (30) and (31), but now with the coupling
constant e0 instead of e and with the scalar field potential
that differs from the one in Eq. (31). Meanwhile, in fact, the
system of equations remains the same—we have only
changed the variables. This simple argumentation shows
that not only the coupling constant e defines whether the
linear approximation can be used, but it is the coupling
constant together with the parameters of the scalar field
potential.

APPENDIX C

Let us show that jφðrÞj
f0ðrÞ grows logarithmically with r for

potentials satisfying

dV
df

����
f¼0

¼ 0;
1

2

d2V
df2

����
f¼0

¼ M2:

It is clear that for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
r ≫ 1 the background solution

in such a model has the form f0ðrÞ ∼ e−
ffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

r , whereas
gðrÞ ∼ 1

r. So, Eq. (31) can be written as
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Δφþ ðω2 −M2Þφ ¼ C
e−

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

r2
; (C1)

for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
r ≫ 1, where C is a constant [in fact,

C ¼ CðωÞ, but it is not important for the present calcu-
lation]. Now, we define ψ ¼ rφ and rewrite Eq. (C1) as

d2ψ
dr2

þ ðω2 −M2Þψ ¼ C
e−

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

r
: (C2)

Equation (C2) can easily be solved by means, say, of the
method of variation of parameters. Its solution [such that
ψðrÞjr→∞ → 0] takes the form

ψ ¼ − C

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
�
e−

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r lnðξrÞ

þ e
ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

Z
∞

r

e−2
ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
z

z
dz

�
; (C3)

where ξ is a constant. Recalling that φ ¼ ψ
r , in the leading

order, we get

jφðrÞj
f0ðrÞ

����
r→∞

∼ lnðξrÞ:

APPENDIX D

The radius Re ¼ ReðωÞ is defined by the relation
f0ðReÞ ¼ e−1f0ð0Þ. Using Eqs. (99), (100), and (101), it
is not difficult to show that Re satisfies the following
equations:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
Re

sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
ReÞ

¼ e; for Re < R; (D1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −m2

p
Ree

ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
Re

e
ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
R

¼ e; for Re ≥ R: (D2)

At first, we solved numerically Eq. (D1) for a given ω. The
result satisfying Re < R ¼ RðωÞ was accepted; the result
satisfying Re > R ¼ RðωÞ was rejected, and the solution to
Eq. (D2) was accepted as the value of Re.
The coordinate Rϵ is defined by Eq. (59). Suppose that

Rϵ ¼ RϵðωÞ > RðωÞ for m2 < 0, jmj
M ¼ 0.6, and ϵ ¼ 10−2.

In this case, Eq. (59) gives

Rϵ¼Rþ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p ln

� ðϵþ1Þðω2−m2Þ
ϵðM2−m2Þð1þR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
Þ

�
:

(D3)

It can be checked that the equality RϵðωÞ > RðωÞ indeed
holds for the chosen set of the parameters.
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