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It has long been known that when spacetime symmetry is spontaneously broken, some of the broken
generators may not give rise to independent gapless Nambu-Goldstone excitations. We provide two
complementary viewpoints of this phenomenon. On the one hand, we show that the corresponding field
degrees of freedom have the same symmetry transformation properties as massive matter fields. The
“inverse Higgs constraints,” sometimes employed to eliminate these modes from the theory, are
reinterpreted as giving a field parametrization that makes these transformation properties manifest. On
the other hand, relations among classical symmetry transformations generally lead to identities for the
associated Noether currents that allow saturation of the Ward-Takahashi identities for all the broken
symmetries with fewer gapless excitations than suggested by the mere counting of broken generators.
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I. INTRODUCTION

The spontaneous breakdown of a global continuous
symmetry leads to gapless excitations in the spectrum:
the Nambu-Goldstone (NG) bosons. A detailed analysis of
broken internal symmetries in relativistic field theory now
belongs as standard textbook material. On the contrary, a
comprehensive understanding of NG bosons of internal
symmetries in the nonrelativistic context has been reached
only very recently [1–3]. In this paper, we deal with some
questions pertinent to spacetime symmetries.
An invaluable tool for building invariant Lagrangians for

NG bosons is provided by the coset construction [4,5].
Together with the proof that in Lorentz-invariant theories,
the effective Lagrangian density can always be made
invariant by a suitable choice of field variables [6], this
establishes a complete, exhaustive framework for the
construction of effective field theories (EFTs) for internal
symmetries. The nonrelativistic case is subtle though, as the
effective Lagrangian is not necessarily invariant [7]. Even
though one then cannot apply the coset construction quite
straightforwardly, it is still possible to express the most
general effective Lagrangian in terms of its basic building
block, the Maurer-Cartan (MC) form [8].
The coset construction was soon extended to spacetime

symmetries [9,10]. This generalization was designed for,
and with rare exceptions applied to, situations where
translational invariance is not spontaneously broken. Yet,
there seems to be no proof analogous to Ref. [6] that, even
with this restriction, the coset construction actually yields
the most general EFT, consistent with all the symmetries.

Moreover, there are indications that for broken translations,
it requires modification.
It is well known [9,11] that when several spacetime

symmetries are spontaneously broken at the same time,
some of them may not give rise to independent NG modes.
A common example is a crystalline solid where both spatial
translations and rotations are broken, yet only the former
produce NG bosons, the acoustic phonons. Within the coset
construction, where one field variable is introduced for
each broken symmetry generator, this is taken into account
by an operational prescription known as the inverse Higgs
mechanism [11]. This allows one to remove the
“unwanted” degrees of freedom by imposing a set of
constraints, compatible with all the symmetries.
The physical interpretation of the inverse Higgs con-

straints (IHCs) seems to be ambiguous in the literature. As
emphasized recently in Ref. [12], having a mere possibility
to eliminate some degrees of freedom is not satisfactory.
One should not have the freedom to impose such con-
straints at will, even if in some cases doing so may turn out
to be equivalent to using the equations of motion [13]. Our
discussion in Sec. IV elaborates the arguments of Ref. [12]
and hopefully clarifies this issue.
The absence of independent NG modes for some

spacetime symmetries can be traced back to the fact that
local forms of certain spacetime transformations, such as
translations and rotations, coincide [14]. This intuitive, but
essentially classical, argument has recently been general-
ized and reformulated in a quantum-field-theoretic lan-
guage [15]; see also recent Ref. [16]. In Sec. V, we further
detail this viewpoint. We observe that the Ward-Takahashi
identities for different broken symmetries can be saturated
by the same NG boson as long as the associated Noether
currents are related, thus providing an alternative insight
into the nature of NG bosons of spacetime symmetries.
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II. SUMMARY OF THE RESULTS

The question of finding the most general low-energy
effective Lagrangian for the NG bosons is equivalent to
classifying all nonlinear realizations of the broken sym-
metry [4,5]. We do not attempt to give a formal proof that
the coset construction actually gives the most general EFT
in case of broken spacetime symmetries. However, we
show the following:

(i) Within the coset construction, there is a field para-
metrization in which a given nonlinear realization
takes the form of a certain minimal realization
augmented by additional non-NG, “matter” degrees
of freedom.

(ii) The minimal nonlinear realization is given solely by
the symmetry-breaking pattern. Hence the number
of true, gapless NG bosons is independent of the
microscopic mechanism that causes the symmetry
breaking.

(iii) Relations among classical local symmetry trans-
formations lead generally to identities among the
associated Noether currents. These establish a direct
link between the symmetry group and the spectrum
of NG modes.

Our first two points show that the question whether the
“redundant” NG modes should, or should not, be elimi-
nated from the EFT by imposing the IHCs is to some extent
moot. The “constraints” provide us with a field para-
metrization in which these modes transform as matter
fields. This leads to an unambiguous conclusion that they
are not true, massless NG bosons, but rather massive, non-
NG ones. Whether they actually appear in the spectrum of
the theory is a dynamical question which cannot be
answered within the EFT alone.

III. TOY EXAMPLE

Consider the theory of a free massless relativistic scalar
field ϕ, defined by L ¼ 1

2
ð∂μϕÞ2. Its action is invariant,

apart from the spacetime symmetries, under a shift of the
field, ϕ0ðxÞ ¼ ϕðxÞ þ αþ βμxμ. In the ground state, both
the α and the β shifts are spontaneously broken, giving
altogether 2þ d broken generators in d spatial dimensions.
However, there is obviously only one NG mode in the
spectrum. There are different ways to understand why the β
shifts do not give rise to additional 1þ d NG modes. The
NG excitations can be viewed as spacetime-dependent
fluctuations of the order parameter, generated by local
broken symmetry transformations. Now the local forms of
the α and the β shifts coincide, or more precisely, the latter
can be reproduced by the former by setting αðxÞ ¼ βμðxÞxμ.
Hence the fluctuations induced by the β shifts are not
independent, in line with the argument of Ref. [14].
Within the coset construction, one introduces one NG

field for each broken generator, here π for the α shift and ρμ
for the β shifts. Following the general setup applicable to

spacetime symmetries [9,10], the coset element has to
take into account all nonlinearly realized symmetries
including spacetime translations and can be written as
UðxÞ ¼ eix

μPμeiπðxÞMeiρμðxÞNμ
, where Pμ is the energy-

momentum operator, whereas M and Nμ are the generators
of the field shifts. The only nontrivial commutator among
these generators is ½Pμ; Nν� ¼ iημνM where ημν is the
Minkowski metric. From here, one deduces the trans-
formation of the NG fields under the action of the internal
symmetry group, defined by the left multiplication of U by
eiαMeiβμN

μ
,

π0ðxÞ ¼ πðxÞ þ αþ βμxμ; ρ0μðxÞ ¼ ρμðxÞ þ βμ: (1)

The MC form is defined as usual as ω ¼ −iU−1dU and
reads

ω ¼ dxμPμ þ ðdπ − ρμdxμÞM þ dρμNμ: (2)

In the standard inverse Higgs philosophy [11], we could
now set theM component of the MC form to zero. This is a
condition invariant under all the symmetries of the prob-
lem, allowing us to eliminate ρμ in favor of π, namely
ρμ ¼ ∂μπ. We are left with the invariant vielbein,
ωμν
P ¼ ημν, and the NG part of the MC form,

ωμν
N ¼ ∂μρν ¼ ∂μ∂νπ. Note that ωμν

N cannot be used to
construct the original Lagrangian density L in the usual
way. The reason for this is that L changes by a surface term
upon a β shift. The Lagrangian can, however, be obtained in
an analogy with the Wess-Zumino-Witten term [17].
We next explain how the elimination of the “redundant”

degree of freedom ρμ can be circumvented. Equation (2)
hints that upon the field redefinition ρμ → Ωμ ¼ ρμ − ∂μπ,
the new field Ωμ will transform covariantly (in this model it
is even invariant). Consequently, it is possible to add a mass
term Ω2

μ to the effective Lagrangian, consistent with all the
symmetries. The field Ωμ does not represent a NG boson.
This is as much as we can get from the symmetry-breaking
pattern alone. How the effective Lagrangian including both
π and Ωμ looks depends on how we define power counting
in our EFT. Depending on the size of the mass MΩ of Ωμ,
two natural schemes are conceivable:

(I) MΩ is order 0 in the derivative expansion. At the
leading order,Ωμ only has a mass term but no kinetic
term; hence it does not describe a propagating mode.
In this case, the leading-order equation of motion
can be equivalent to imposing the IHC, Ωμ ¼ 0, as
observed in Ref. [13].

(II) MΩ is order 1 in the derivative expansion. Here the
kinetic and mass terms of Ωμ are of the same order,
and hence Ωμ describes a propagating massive mode
in the EFT. At which order of the derivative
expansion it enters depends on the assumption
one makes for the scaling of Ωμ itself.

In any case, the EFT itself cannot tell us whetherΩμ excites
an independent physical state. In scheme I, Ωμ is simply an
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auxiliary field which couples to the same state as π.
However, even in scheme II, the massMΩ can, if somewhat
artificially, be taken to infinity, thus eliminating Ωμ from
the observable spectrum. In the present trivial model, there
is obviously no massive particle described by Ωμ. In the
next section, we will suggest some examples whereΩμ may
be physical though.
This example allows us to draw several morals, which

apply also to the general case discussed in the next section.
First, eliminating the massive field by imposing the IHC
and by using the equation of motion may result in
apparently different EFTs. This is obviously the case for
our scheme II. One should nevertheless emphasize that how
precisely the redundant degree of freedom is removed from
the theory is immaterial; see the discussion in Sec. IV C for
more details.
Second, within scheme II, imposing the IHC modifies the

physical content of the EFT. We start with an EFT
containing a NG boson π and a massive mode Ωμ, and
upon imposing the IHC end up with a theory of π alone.
Nevertheless, both theories are equally good EFTs for the
massless relativistic scalar that we started with: at energy
scales below MΩ, Ωμ will decouple anyway.
Third, these arguments do not rely on the use of the coset

constructiontobuildtheeffectiveLagrangian.Weonlyneeded
the MC form (2) to identify the field Ωμ with suitable
transformation properties. Apart from that, we can construct
theeffectiveLagrangian,forinstance,bycollectingallpossible
operatorsallowedbythelinearlyrealizedsymmetries,andthen
imposing the remaining symmetries by hand.
Finally, our simple toy model shows that the subtleties

concerning the spectrum of NG modes are not limited to
spacetime symmetries, but apply more generally to non-
uniform symmetries, that is roughly, symmetries that do not
commute with spacetime translations (see Ref. [1] for a
precise definition).

IV. INVERSE HIGGS CONSTRAINTS

We are now ready to generalize what we learned by
studying the simple toy model. There are two ways to
construct the low-energy EFT for a given system. The first
one starts from a known microscopic theory and eliminates
all degrees of freedom but the NG modes. The second
approach requires the construction of the most general
effective action for the NG degrees of freedom alone; its
a priori undetermined effective couplings are to be fixed
either by experiment or by matching to the microscopic
theory. We will discuss these approaches separately.

A. Microscopic picture

A key step in integrating out the massive modes from the
microscopic theory is finding a suitable field parametrization
thatmakes theNGdegrees of freedommanifest. Let us recall
howone proceeds in the case of uniform internal symmetries

[18]. Suppose that the order parameter for breaking the
symmetry group G down to its subgroup H is given by an
expectation value of an elementary (not necessarily scalar)
field, hϕðxÞi ¼ ϕ0. (The field can carry indices, both internal
and spacetime, which are not displayed.) A general point in
the field space can then be expressed as

ϕðxÞ ¼ UðxÞ½ϕ0 þ χðxÞ�; (3)

whereUðxÞ isa localG transformationandχðxÞ is a field from
which all NG degrees of freedomhave been eliminated. This
can be ensured by imposing the condition Imðχ†Tiϕ0Þ ¼ 0,
where Ti are the generators of G.
The matrix UðxÞ is only defined up to a right multipli-

cation by an element ofH, and it is common to parametrize
it as UðxÞ ¼ eiπ

aðxÞTa in terms of NG fields πaðxÞ and the
broken generators ofG, Ta. This way, one can obtain a one-
to-one field parametrization for any uniform internal
symmetry. When the massive modes are simply dropped,
ϕðxÞ ¼ eiπ

aðxÞTaϕ0, one arrives at a particular EFT known
as the nonlinear sigma model.
For nonuniform symmetries, on the contrary, this pre-

scription does not lead to a one-to-one field parametriza-
tion. In the example from the previous section, the field
ϕðxÞ can obviously be obtained by a local shift generated
by M, acting on the vacuum, ϕ0 ¼ 0. Formally, this can be
written as ϕðxÞ ¼ eiπðxÞMϕ0. As observed before, local
fluctuations ρμðxÞ induced by Nμ are not independent; they
can be completely removed by a redefinition of πðxÞ. As
another example, consider a two-dimensional crystal lat-
tice. The spontaneously broken generators in this case
include translations Px, Py and the rotation J. Using the
well-known relation J ¼ xPy − yPx, the would-be rotation
NG mode θðxÞ can be eliminated in favor of the translation
NG modes, as follows from eiθJ ¼ ei½ðxθÞPy−ðyθÞPx�. The
origin and importance of such relations among symmetry
generators will be discussed at length in Sec. V.
In Ref. [12], this redundancy is interpreted as a sort of

gauge freedom: one starts by introducing one NG field for
each spontaneously broken generator and then notices that
the corresponding fluctuations of the order parameter are
not independent. The parametrization of the microscopic
field ϕðxÞ can be made one-to-one by “fixing the gauge,”
that is, by setting some of the NG fields to zero. From the
point of view of the microscopic theory, however, it is
obviously more natural to work with a one-to-one field
parametrization to start with.

B. Effective field theory picture

Within the coset construction, one builds a model-
independent low-energy EFT using the information about
the symmetry breaking alone. Formally, this means that the
dynamical degrees of freedom are given by the matrixUðxÞ
itself rather than its action on a particular order parameter
ϕ0. Hence, all the fields πaðxÞ are independent in this
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picture. For nonuniform symmetries, the translations have
to be included in the definition of the coset element, and we
thus set UðxÞ ¼ eix

μPμeiπ
aðxÞTa . The action of a transforma-

tion g from the symmetry group G, now including
spacetime transformations, is defined by [10]

geix
μPμeiπ

aðxÞTa ¼ eix
0μPμeiπ

0aðx0ÞTahðg; πðxÞÞ; (4)

where h ∈ H is a compensating transformation which
ensures that U remains in the coset space G=H.
Denoting the unbroken generators of H (apart from the
momentum operator Pμ) as Tρ, the MC form, defined by
ω ¼ −iU−1dU, can be expanded as

ω ¼ ωP þ ωa⊥Ta þ ωρ
∥Tρ; (5)

where ωP ¼ eμνPμdxν. The individual components of the
MC form then transform in accord with Eq. (4) as

ωP;⊥ → hωP;⊥h−1; ω∥ → hω∥h−1 − ihdh−1: (6)

If necessary, the EFT can be augmented with other, non-
NG degrees of freedom, usually called matter fields.
Consider a field ψ that transforms in some linear repre-
sentation R of the unbroken subgroup H,
ψ 0ðx0Þ ¼ RðhÞψðxÞ. This can be extended using Eq. (4)
to a nonlinear realization of the whole group G,

ψ 0ðx0Þ ¼ Rðhðg; πðxÞÞÞψðxÞ: (7)

An invariant action can be constructed using as building
blocks the covariant derivatives of NG fields, extracted
from ωa⊥ ¼ eμνDμπ

adxν, the matter fields ψ , their covariant
derivatives, defined by Dψ ¼ ðdþ iω∥Þψ ¼ ωμ

PDμψ, and
the volume measure, obtained from the invariant vielbein
eμν [10]. Using the definition of the coset element UðxÞ, the
broken part of the MC form ω⊥ can be expressed, to linear
order in the NG fields, as

ωa⊥ ¼ ð∂μπ
a − faμbπ

bÞdxμ þ � � � ; (8)

where the structure constant is defined
by ½Pμ; Tb� ¼ ifaμbTa.
Suppose now that there are two sets of broken gener-

ators, Tα and TA, that transform in some representations R1

and R2 of H, R2 being irreducible. Let us further assume
that the translation generators Pμ span a representation RP
ofH, and that a direct product of any two representations of
H is fully reducible. Provided that the direct product RP ⊗
R1 contains R2 in its decomposition, and that some of
the structure constants fαμA are nonzero, the projection of
the covariant derivative Dμπ

α to R2, accomplished with the
appropriate Clebsch-Gordan coefficients and denoted as
Dμπ

αjA, contains a term linear in πA [11]. In the standard
inverse Higgs language, this means that the field πA can be
eliminated from the theory by imposing the IHC

Dμπ
αjA ¼ 0: (9)

Here we propose a different interpretation. We instead
perform a field redefinition πA → ΩA ¼ Dμπ

αjA. The pos-
sibility to eliminate all πAs in R2 via a set of IHCs,
stemming from the existence of terms linear in πA in the
covariant derivatives, automatically guarantees that this
field redefinition is nonsingular. Moreover, ΩA transforms
under G in the same way as ω⊥. It therefore behaves as a
matter field in the adjoint representation ofH. As such, it is
not protected by symmetry from attaining a mass term, and
hence does not represent a NG boson.

C. Discussion

Here we wish to make several comments that elucidate
the physical meaning of the above observation. Our argu-
ment generalizes the discussion of Sec. III.

(i) There is only a limited number of true NG modes
that are protected by symmetry. They are exactly
those of the πa fields which cannot be eliminated by
any IHC. This implies one of our main conclusions
that nonlinear realizations of the broken symmetry
can be reduced to a certain minimal realization, to
which matter fields can be added at will if necessary.
The minimal realization, and hence the number of
true NG bosons, depends solely on the symmetry-
breaking pattern.

(ii) An EFT for the true NG bosons alone can be
obtained from one for all the G=H coset fields in
different ways: by setting the ΩAs to zero (that is by
imposing all possible IHCs), by eliminating the ΩAs
via their equations of motion, or by integrating them
out from the functional integral. The fact that the
ΩAs have a mass term guarantees that in any case,
we obtain a local EFTwith a well-defined derivative
expansion. While these three procedures can lead to
seemingly different EFTs, upon a proper matching
of the effective couplings, they have to give the same
prediction for any physical observable.

(iii) The fact that the ΩA fields acquire a mass term does
not necessarily mean they are unphysical. One
generic possibility how they could represent a
massive state in the physical spectrum might be to
focus on the vicinity of a second-order phase
transition between phases where spacetime sym-
metries are spontaneously broken according to
different patterns. However, whether such a phase
transition can be realized, or more generally whether
the anticipated massive states actually exist, has to
be investigated case by case.

D. Examples

For an example of how the IHC works, consider a
nonrelativistic superfluid (see Ref. [19] for a recent dis-
cussion of this system from the IHC perspective). The
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ground state breaks the Uð1Þ symmetry associated with
particle number Q as well as the Galilei boosts Bi. We
choose the coset parametrization UðxÞ ¼ eix

μPμe−ivðxÞ·B
e−iθðxÞQ. Using the commutators of boost generators with
the Hamiltonian and with the charge Q, ½H;B� ¼ iP and
½Pi; Bj� ¼ iδijmQ, we obtain

ω ¼ dxμPμ þ vdt · P − dv · B

−
�
ð∇θ þmvÞ · dxþ

�
∂0θ −

1

2
mv2

�
dt

�
Q: (10)

Assuming only s-wave interactions, which is appropriate at
low particle densities, the superfluid can be described by a
microscopic model for a complex Schrödinger field ψðxÞ,

L ¼ i
2
ðψ†∂0ψ − ∂0ψ

†ψÞ −∇ψ† ·∇ψ

2m
−
g
2
ðψ†ψ − n0Þ2:

(11)

By parametrizing the field as ψðxÞ ¼ ffiffiffiffiffiffiffiffiffi
nðxÞp

e−iθðxÞ, one
immediately notices that nðxÞ is canonically conjugate to
θðxÞ, so that the Lagrangian (11) describes just 1 degree of
freedom. (This observation also excludes the existence of a
Higgs mode in the nonrelativistic superfluid [20].)
Therefore, there is no space for the boost mode vðxÞ,
and it has to be eliminated from the EFT, for instance by
using the IHC, ∇θ þmv ¼ 0. One thereby obtains the
effective Lagrangian,

L ¼ PðμÞ; μ ¼ ∂0θ −
mv2

2
¼ ∂0θ −

ð∇θÞ2
2m

; (12)

invariant under the Galilei transformation
θ0ðxþ vt; tÞ ¼ θðx; tÞ −mv · x − 1

2
mv2t. The unknown

function PðμÞ can be shown to coincide with the pressure
in thermodynamic equilibrium [21].
As the next example, we now discuss a superfluid in two

spatial dimensions, rotatingwith angular velocityΩ. In such a
system, a triangular lattice of vortices spontaneously forms.
Neglecting the centrifugal potential due to the rotation as well
as the trapping potential, the Lagrangian becomes identical to
one fora systemof chargedbosons in auniformmagnetic field
of intensityeB ¼ 2mΩ.LetXbethebody-fixedcoordinatesof
the medium and Π the generator of the internal translation
X0ðx; tÞ ¼ Xðx; tÞ þ a [22]. The vortex lattice configuration
spontaneously breaks both the spatial and the internal trans-
lations.Neglecting for simplicity thediscreteness of the lattice
andtreatingthesystemasanisotropiccrystal, thereisaresidual
continuous symmetry, generated by the diagonal translation
operator Pþ Π. We now parametrize the coset as

UðxÞ ¼ eix
μPμe−iXðxÞ·Πe−iθðxÞQ: (13)

Here θðxÞ represents the smooth part of the superfluid phase.
The vibrations of the vortex lattice are described by the
displacement field, uðx; tÞ ¼ x − Xðx; tÞ.

The nontrivial properties of collective modes in this
system stem from the fact that the two components of
momentum no longer commute with each other. The
magnetic translation operator P satisfies ½Pi; Pj� ¼
−2imΩϵijQ due to the effective magnetic field.
Moreover, vortices make the internal translation Π non-
commuting as well, ½Πi;Πj� ¼ −2iπm0ϵ

ijQ, where m0 ¼
−mΩ=π is the number density of the vortices. Using these
commutation relations, one obtains the MC form,

ω ¼ dxμPμ − dX · Π − ½dθ þmΩϵijðxidxj − XidXjÞ�Q:

(14)

The third term can be rewritten as

Dθ ¼ d~θ þmΩϵijð2uidxj − uidujÞ; (15)

where ~θ ¼ θ þmΩϵijxiuj. In this case, uðxÞ describes a
physical gapped mode with the gap 2mΩ [15], whose
presence is guaranteed by Kohn’s theorem [23]. Therefore,
imposing naively the IHC Diθ ¼ 0, that is,
ui ¼ − 1

2mΩ ϵ
ij∂j

~θ þ � � �, would clearly modify the physical
content of the system. If one is only interested in the
physics below this gap, one can integrate the displacement
field out and get the effective Lagrangian for the phase
fluctuation, φðx; tÞ ¼ μ0t − ~θðx; tÞ. The Lagrangian starts
with ð∂0φÞ2 and ð∇2φÞ2, so that this mode can be classified
as type-II and type-A [2,24]. In contrast to the usual type-II
and type-B NG modes, such soft excitations tend to restore
the broken symmetry even at zero temperature and the
phase correlation shows only a quasi-long-range order
(power law decay) [25].

V. RELATIONS AMONG NOETHER CURRENTS

As remarked in Sec. IVA, the redundancy in order
parameter fluctuations can be explained as a consequence
of certain relations among the broken generators. In this
section, we will show that these follow directly from the
properties of classical local symmetry transformations, our
main result being Eq. (20).

A. Definition of a Noether current

Consider a theory of a set of (not necessarily scalar)
fields, denoted collectively as ϕðxÞ, defined by the action
S½ϕðxÞ�. This is assumed to be a spacetime integral of a
local Lagrangian density, which is a function of ϕðxÞ and its
derivatives. Suppose that the action is invariant under a
simultaneous transformation of the fields and the spacetime
coordinates,

ϕ0ðx0Þ ¼ ϕðxÞ þ ϵζðϕðxÞ; xÞ; x0 ¼ xþ ϵξðxÞ: (16)

Here ϵ is an infinitesimal parameter of the transformation.
Let us now perform an infinitesimal transformation with a
coordinate-dependent parameter ϵðxÞ such that it reduces to
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Eq. (16) for constant ϵðxÞ ¼ ϵ. Owing to the invariance
assumption, the variation of the action has to take the form

δS ¼
Z

dxJμðxÞ∂μϵðxÞ; (17)

which defines the associated Noether current JμðxÞ. There
are two sources of ambiguity in this definition. First, the
extension of the symmetry transformation to local ϵðxÞ is
not unique. One could naively take the same functional
form (16) and merely replace ϵ → ϵðxÞ, but this is not
mandatory. Any choice compatible with Eq. (16) gives a
current that is conserved for fields satisfying the equations
of motion (on shell). Second, shifting the current by a
vector function GμðxÞ such that ∂μGμ ¼ 0 for all field
configurations (off shell) does not affect Eq. (17). This kind
of ambiguity gives rise to an equivalence relation that will
be denoted by the symbol ≜, that is, Jμ≜Jμ þ Gμ.

B. Locally identical field transformations

Consider two classes of symmetry transformations,
characterized by infinitesimal parameters ϵα1 and ϵa2 .
Assume that their (suitably chosen) local forms coincide;
that is, there is a set of functions faαðxÞ such that setting
ϵa2ðxÞ ¼ faαðxÞϵα1ðxÞ makes the two local transformations
identical. The variation of the action under such trans-
formation reads

δS ¼
Z

dxJμ2a∂μϵ
a
2 ¼

Z
dxJμ2aðfaα∂μϵ

α
1 þ ϵα1∂μfaαÞ: (18)

However, since ϵα1ðxÞ is a parameter of an identical local
transformation, this should be equal to δS ¼ R

dxJμ1α∂μϵ
α
1 .

That is only possible provided

Jμ2a∂μfaα ¼ ∂μN
μ
α (19)

for some vector function Nμ
αðxÞ. By comparison, we then

obtain

Jμ1α≜faαJ
μ
2a − Nμ

α: (20)

This alone would be a void statement (any two currents
differ by some vector function) if it were not for the
simultaneous condition (19) which must be satisfied off
shell. Thanks to this condition, the (on shell) conservation
of Jμ1α is a consequence of the conservation of J

μ
2a. In fact, a

stronger conclusion holds: ∂μJ
μ
1α ¼ faα∂μJ

μ
2a off shell. Note

that the argument leading to Eq. (20) was previously used
to derive the conserved currents associated with non-
relativistic Galilei invariance [26].
Given the freedom that one has in the definition of the

Noether currents, one may wonder if they can be
“improved” so that the correction term Nμ

α vanishes.
This is indeed often possible, but cannot be achieved in

general. Recall the free massless scalar field discussed in
Sec. III. The Noether currents of the α and β shifts are easily
evaluated explicitly,

Jμ≜∂μϕ; Jμα≜xα∂μϕ − ημαϕ: (21)

The local β shift can be reproduced by a local α shift with
αðxÞ ¼ xαβαðxÞ, that is, fαðxÞ ¼ xα. We thus have
Jμ∂μfα ¼ ∂αϕ, which implies Nμ

α ¼ ημαϕ; Eq. (20) recovers
the current of the β shifts given in Eq. (21). However, it is
not possible to improve the currents so that ~Jμα≜xα ~J

μ holds,
since current conservation would imply ~Jα ¼ 0 on shell, in
contradiction with the fact that the integral of the temporal
component of the current is a generator of the associated
symmetry transformation.
There are other, more important examples. Spacetime

rotations acting on a scalar field correspond to setting ζ ¼ 0
and ϵξμ → θαβωμ

αβ in Eq. (16), where θαβ is the antisym-
metric matrix of parameters and ωμ

αβ ¼ xαη
μ
β − xβη

μ
α. A

local rotation is then reproduced by a local translation x0μ ¼
xμ þ aμðxÞ with aμðxÞ ¼ ωμ

αβðxÞθαβðxÞ; hence we set
fμαβ ¼ ωμ

αβ. The condition (19) is now satisfied with Nμ
αβ ¼

0 provided the energy-momentum tensor Tμν is symmetric.
Equation (20) in turn implies the well-known relation for
the angular-momentum tensor

Mμαβ≜xαTμβ − xβTμα: (22)

Using the ambiguity in the definition of the Noether
currents, one can ensure that this identity holds also for
theories containing fields with spin. Analogous identities
can be derived from relations among symmetry trans-
formations for the Noether currents of dilations and
conformal transformations [27].
As the last example, consider a nonrelativistic theory of a

complex Schrödinger field ψðxÞ. Apart from spatial trans-
lations and rotations, it is assumed to be invariant under
Uð1Þ phase transformations ψ 0ðxÞ ¼ eiθψðxÞ, and Galilei
boosts,

ψ 0ðxþ vt; tÞ ¼ eimðv·xþ1
2
v2tÞψðx; tÞ: (23)

This corresponds to Eq. (16) with ζi ¼ −imxiψ and
ξμi ¼ ημi t; the index i labels different boosts with velocities
vi. Observe now that a local boost can be reproduced by a
combination of a local translation with aμðxÞ ¼ ημi v

iðxÞt
and a local phase transformation with θðxÞ ¼ −mviðxÞxi.
This corresponds to fμi ðxÞ ¼ ημi t and ~fiðxÞ ¼ −mxi. The
consistency condition (19) then implies

T0i −mji ¼ ∂μNμi; (24)

where Tμi and jμ are the momentum current and the particle
number current, respectively. The Galilei boost current
reads, in accord with Eq. (20),
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Bμi≜tTμi −mxijμ − Nμi: (25)

These identities were established using only fairly weak
assumptions. In the next subsection, we will see under what
conditions the term Nμi actually vanishes.
The relations such as Eq. (22) or (25) explain the

redundancy in NG bosons from the quantum-field-theoretic
point of view. The vertex functions of related currents share
the pole structure; hence the Ward-Takahashi identities for
several broken symmetries can be saturated by a single NG
mode [27].

C. Noether constraints from gauged actions

Global symmetry ensures that Noether currents satisfy
the relation (20) but the term Nμ

α is a priori undetermined.
This becomes aggravating when a microscopic theory is
compared to the EFT for its low-energy degrees of freedom.
Both must share the same global symmetry, but since they
can be based on very different degrees of freedom (as
quantum chromodynamics and its low-energy EFT, the
chiral perturbation theory), there is no way to relate their
Nμ

αs based on global symmetry alone.
The way around this problem is to couple both theories

to a set of background gauge fields Aμ; their generating
functionals in terms of these fields then have to coincide.
Technically, we replace the action S½ϕ� with a new action
~S½ϕ; A� such that ~S½ϕ; 0� ¼ S½ϕ�, which is invariant under a
simultaneous local transformation of ϕ and Aμ. If we
manage to derive the Noether currents based on the
transformation rules for the gauge fields alone, we can
ensure that they satisfy the same identities in the EFT as in
the microscopic theory.
We will not develop the general theory whose details

closely parallel the derivation of Eq. (20). Instead, we will
outline the main idea and give an illustrative example. The
variation of the action can be split into contributions of the
matter fields and the gauge fields, δ ~S ¼ δϕ ~Sþ δA ~S. Using
the assumed gauge invariance and setting A ¼ 0 so that δϕ ~S
becomes equal to Eq. (17), the Noether current can be
extracted from

Z
dxJμðxÞ∂μϵðxÞ ¼ −δA ~S

����
A¼0

; (26)

that is, as minus the coefficient of ∂μϵ in δA ~S. The fact that
two different global symmetries have the same local form
means that they can be gauged simultaneously by adding a
single gauge field. For instance, local translations and local
rotations are both included in the group of local diffeo-
morphisms; the spacetime metric plays the role of the
background gauge field here. This naturally leads to
relations of the type (20), for the two Noether currents
are obtained by functional differentiation of the action with
respect to the same gauge field.

As a concrete example, note that under certain con-
ditions, global spatial translations in a nonrelativistic theory
can be promoted to nonrelativistic general coordinate
invariance [28]. This necessarily also includes the Galilei
boosts (23) and the local Uð1Þ phase transformations of the
field ψðxÞ. The extended action ~S½ψ ; g; A� depends on the
matter field ψðxÞ, the spatial metric gijðxÞ and the Uð1Þ
gauge field AμðxÞ. A combined local Uð1Þ rotation with
parameter θðxÞ and local spatial translation with parameter
ξiðxÞ takes the form [28]

δgij ¼ −ξk∂kgij − gik∂jξ
k − gkj∂iξ

k;

δA0 ¼ ∂0θ − ξj∂jA0 − Aj∂0ξ
j;

δAi ¼ ∂iθ − ξj∂jAi − Aj∂iξ
j þmgij∂0ξ

j: (27)

The local phase transformation is obtained by setting
ξi ¼ 0, i.e. δgij ¼ 0 and δAμ ¼ ∂μθ. The variation of the
action becomes

δ ~S ¼ δψ ~Sþ
Z

dx
δ ~S
δAμ

∂μθ: (28)

From here we immediately obtain the expression for the
particle number current, jμ≜ − δ ~S=δAμjA¼0. (We denote by
A ¼ 0 the limit of both gij → −δij and Aμ → 0.)
Analogously, we obtain the variation of the action under
local translations and thence the momentum current,
defined by δS ¼ R

dxTμ
i ∂μξ

i,

T0i≜ −m
δ ~S
δAi

����
A¼0

; Tij≜2
δ ~S
δgij

����
A¼0

: (29)

Finally, by setting θðxÞ ¼ −mxiviðxÞ and ξiðxÞ ¼ viðxÞt,
we reproduce local Galilei boosts with parameters viðxÞ,
which gives the boost current, defined by
δS ¼ R

dxBμ
i ∂μvi,

B0j≜mxj
δ ~S
δA0

����
A¼0

−mt
δ ~S
δAj

����
A¼0

;

Bij≜mxj
δ ~S
δAi

����
A¼0

þ 2t
δ ~S
δgij

����
A¼0

: (30)

Putting together all the intermediate expressions gives the
result

T0i≜mji; Bμi≜tTμi −mxijμ: (31)

The reason we obtained stronger relations than in Eqs. (24)
and (25) is the assumption that the theory can be made
generally coordinate invariant by introducing background
gauge fields gij and Aμ. This is a nontrivial assumption
which imposes stronger constraints on the action than mere
global Uð1Þ, translational and Galilei invariance [28].
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VI. CONCLUSIONS

In this paper, we gave a new interpretation of the inverse
Higgs constraints, commonly employed in constructions of
effective Lagrangians for spontaneously broken spacetime
symmetries. We showed that this procedure is less arbitrary
than it seems: the number of true massless NG bosons
depends solely on the symmetry-breaking pattern; all
nonlinear realizations of the broken symmetry can be
obtained by augmenting the EFT for these NG modes
with matter fields. The spontaneously broken “redundant”
symmetries can in some systems manifest themselves by
the presence of massive modes in the spectrum.
Together with recent progress in understanding broken

symmetries in the nonrelativistic context [1–3,15], this
provides a fairly complete picture of NG bosons in an
arbitrary quantum many-body system, except for the cases
where translational invariance is spontaneously broken. To
fill this gap represents one of the main goals of our
future work.
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Note added.—While this paper was being finished,

Ref. [29] appeared which makes the same key observation
that some of the NG fields of broken spacetime symmetries
can acquire a mass term. Our field redefinition based on
Eq. (9) makes the nature of these modes more transparent
as it demonstrates that they have no attributes of NG
bosons. On the other hand, the authors of Ref. [29] observe
that in some cases, the deficit in the number of true NG
bosons cannot be explained by redundancy in fluctuations
of the order parameter as in Sec. IVA.
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