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We investigate the finite temperature fermionic condensate and the expectation values of the charge
and current densities for a massive fermion field in a spacetime background with an arbitrary number of
toroidally compactified spatial dimensions in the presence of a nonvanishing chemical potential.
Periodicity conditions along compact dimensions are taken with arbitrary phases and the presence of a
constant gauge field is assumed. The latter gives rise to Aharonov-Bohm-like effects on the expectation
values. They are periodic functions of magnetic fluxes enclosed by compact dimensions with the period
equal to the flux quantum. The current density has nonzero components along compact dimensions only.
Both low- and high-temperature asymptotics of the expectation values are studied. In particular, it has been
shown that at high temperatures the current density is exponentially suppressed. This behavior is in sharp
contrast with the corresponding asymptotic in the case of a scalar field, where the current density linearly
grows with the temperature. The features for the models in odd-dimensional spacetimes are discussed.
Applications are given to cylindrical and toroidal nanotubes described within the framework of effective
Dirac theory for the electronic subsystem.

DOI: 10.1103/PhysRevD.89.085002 PACS numbers: 03.70.+k, 03.75.Hh, 11.10.Kk, 61.46.Fg

I. INTRODUCTION

There exists a variety of different models in which the
physical problem is formulated in spacetime backgrounds
having compact spatial dimensions. In high-energy phys-
ics, the well-known examples are Kaluza-Klein type
models, supergravity and superstring theories. The models
with a compact universe may play an important role in
providing proper initial conditions for inflation [1] (for
physical motivations of considering compact universes
see also Ref. [2]). An interesting application of the field
theoretical models having compact dimensions recently
appeared in condensedmatter physics. The long-wavelength
description of the electronic states in graphene can be
formulated in terms of an effective Dirac theory in a
two-dimensional space with the Fermi velocity playing
the role of the speed of light (for a review, see Ref. [3]).
Carbon nanotubes are generated by rolling up a graphene
sheet to form a cylinder, and the background space for the
corresponding Dirac-like theory has the topology R1 × S1.
The compactification along the nanotube axis gives rise
to another class of graphene-made structures called toroidal
carbon nanotubes having the topology of a two-torus.
In field-theoretical models formulated on a spacetime

background with compact dimensions, the periodicity

conditions imposed on fields separate configurations with
suitable wavelengths. This leads to the shift in the expect-
ation values of various physical observables in quantum
field theory. In particular, many authors have investigated
the vacuum energy and stresses induced by the presence
of compact dimensions (for reviews, see Refs. [4,5]).
This effect, known as the topological Casimir effect, is a
physical example of the connection between global proper-
ties of spacetime and quantum phenomena. In higher-
dimensional field theories with compact extra dimensions,
the Casimir energy induces an effective potential providing
a stabilization mechanism for moduli fields and thereby
fixing the effective gauge couplings. The Casimir effect
has also been considered as an origin for the dark energy in
Kaluza-Klein-type models and in braneworlds [6].
The effects of the toroidal compactification of spatial

dimensions on the properties of quantum vacuum for
various spin fields have been discussed by several authors
(see, for instance, Refs. [4–8], and references therein). One-
loop quantum effects in de Sitter spacetime with toroidally
compact dimensions are studied in Refs. [9] and [10] for
scalar and fermionic fields, respectively. The main part of
the papers, devoted to the influence of the nontrivial
topology on the properties of the quantum vacuum, con-
siders the vacuum energy and stresses. These quantities are
chosen because of their close connection with the structure
of spacetime through the general theory of gravity. Another
important characteristic for charged fields is the expectation
value of the current density. In Ref. [11], we have
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investigated the vacuum expectation value of the current
density for a fermionic field in spaces with an arbitrary
number of toroidally compactified dimensions. Application
of the general results were given to the electrons of a
graphene sheet rolled into cylindrical and toroidal shapes.
Combined effects of compact spatial dimensions and
boundaries on the vacuum expectation values of the fer-
mionic current have been discussed recently in Ref. [12].
The geometry of boundaries is given by two parallel plates
on which the fermion field obeys bag boundary conditions.
Vacuum expectation values of the current densities for
charged scalar and Dirac spinor fields in de Sitter spacetime
with toroidally compact spatial dimensions are investigated
in Ref. [13]. The effects of nontrivial topology around a
conical defect on the current induced by a magnetic flux
were discussed in Ref. [14] for scalar and fermion fields
(for the vacuum polarization induced by conical defects see,
for example, Ref. [15]).
The finite temperature effects are of key importance in

both types of models with compact dimensions used in the
cosmology of the early Universe and in condensed matter
physics. In Ref. [16], we have investigated the finite
temperature expectation values of the charge and current
densities for a complex scalar field with nonzero chemical
potential in the background of a flat spacetime with spatial
topology Rp × ðS1Þq. In the latter, the separate contribu-
tions to the charge and current densities coming from the
Bose-Einstein condensate and from excited states were
studied. Continuing in this line of investigations, in the
present paper we consider the effects of toroidal compac-
tification of spatial dimensions on the finite temperature
fermionic condensate, charge and current densities for a
massive field in the presence of a nonvanishing chemical
potential. The thermal Casimir effect in cosmological
models with nontrivial topology has been discussed in
Refs. [17]. A general discussion of the finite temperature
effects for a scalar field in higher-dimensional product
manifolds with compact subspaces is given in Ref. [18].
Specific calculations are presented for the cases with the
internal space being a torus or a sphere. In Ref. [19],
the corresponding results are extended to the case with a
nonzero chemical potential. In the previous discussions
about the effects from nontrivial topology and finite
temperature, the authors mainly consider periodicity and
antiperiodicity conditions imposed on the fields along
compact dimensions. The latter correspond to untwisted
and twisted configurations of fields respectively. In this
case the current density corresponding to a conserved
charge associated with an internal symmetry vanishes.
As it will be seen below, the presence of a constant gauge
field, interacting with a charged quantum field, will induce
a nontrivial phase in the periodicity conditions along
compact dimensions. As a consequence of this, nonzero
components of the current density appear along compact
dimensions. This is a sort of Aharonov-Bohm-like

effect related to the nontrivial topology of the background
space.
In what follows we consider the fermionic condensate

and the expectation values of the charge and current
densities in ðDþ 1Þ-dimensional spacetime with spatial
topology Rp × ðS1Þq (with pþ q ¼ D). The corresponding
results can be used in three types of models. For the first
one we have p ¼ 3, q > 1, and it corresponds to the
universe with Kaluza-Klein-type extra dimensions. In these
models, the currents along compact dimensions are sources
of cosmological magnetic fields. In the second class of
models D ¼ 3, and the results given below describe how
the properties of the universe are changed by one-loop
quantum effects induced by the compactness of spatial
dimensions. Another possible range for the applications of
the results obtained in the present paper could be graphene-
made structures like cylindrical and toroidal carbon nano-
tubes described within the framework of Dirac-like theory.
The paper is organized as follows. In the next section we

describe the geometry of the problem under consideration
and present a complete set of mode functions needed in
the evaluation of expectation values. Then, the fermionic
condensate is investigated for a complex fermionic field in
thermal equilibrium. In Secs. III and IV, the expectation
values of the charge and current densities are considered.
Several representations are provided and the asymptotic
behaviors are investigated in various limiting cases, includ-
ing low- and high-temperature limits. The features of the
model in odd spacetime dimensions are discussed in Sec. V.
Applications of general results to a ð2þ 1Þ-dimensional
model describing the long-wavelength excitations of the
electronic subsystem in a graphene sheet are given in
Sec. VI. The main results are summarized in Sec. VII.
Throughout the paper, except in Sec. VI, we use the
units ℏ ¼ c ¼ 1.

II. FERMIONIC CONDENSATE

A. General setting

Let us consider a fermionic field ψ on a background of
ðDþ 1Þ-dimensional flat spacetime having the spatial
topology Rp × ðS1Þq, pþ q ¼ D. We shall denote by z ¼
ðzp; zqÞ the Cartesian coordinates, where zp ¼ ðz1;…; zpÞ
and zq ¼ ðzpþ1;…; zDÞ correspond to uncompactified
and compactified dimensions, respectively. One has −∞ <
zl < ∞forl ¼ 1;…; p,and0 ≤ zl ≤ Ll forl ¼ pþ 1;…; D,
with Ll being the length of the lth compact dimension. In
the presence of an external gauge field Aμ, the evolution of
the field is described by the Dirac equation

iγμDμψ −mψ ¼ 0; Dμ ¼ ∂μ þ ieAμ: (2.1)

For the irreducible representation of the Clifford algebra
the Dirac matrices γμ are N × N matrices with N ¼
2½ðDþ1Þ=2� (the square brackets mean the integer part of
the enclosed expression). We take these matrices in the
Dirac representation,
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γ0 ¼
�
1 0

0 −1
�
;

γμ ¼
�

0 σμ

−σþμ 0

�
;

μ ¼ 1; 2;…; D: (2.2)

From the anticommutation relations for the Dirac matrices
we get σμσþν þ σνσ

þ
μ ¼ 2δμν. In the case D ¼ 2 one has

N ¼ 2 and the Dirac matrices can be taken in the form
γμ ¼ ðσP3; iσP2;−iσP1Þ, with σPμ being the usual 2 × 2 Pauli
matrices.1 In what follows we assume that Aμ ¼ ðA0;−AÞ is
a constant vector potential. Although the corresponding
magnetic field strength vanishes, the nontrivial topology
of the background spacetime induces Aharonov-Bohm-like
effects for expectation values of physical observables. As it
will be seen below, the fermionic condensate (FC) and the
current density are periodic functions of the components of
the gauge field along compact dimensions.
One of the characteristic features of field theory on

backgrounds with nontrivial topology is the appearance
of topologically inequivalent field configurations and, in
addition to the field equation (2.1), we need to specify the
periodicity conditions obeyed by the field operator along
compact dimensions. Here we consider the generic quasi-
periodicity boundary conditions,

ψðt; zp; zq þ LlelÞ ¼ e2πiαlψðt; zp; zqÞ; (2.3)

with constant phases αl and with el being the unit vector
along the direction of the coordinate zl, l ¼ pþ 1;…; D.
Twisted and untwisted periodicity conditions, most often
discussed in the literature, correspond to special cases αl ¼
1=2 and αl ¼ 0, respectively. As it will be discussed below,
for a Dirac field describing the long-wavelength properties
of graphene, the cases αl ¼ 0;�1=3 are realized in carbon
nanotubes. In particular, nontrivial phases in the periodicity
conditions are generated in the presence of a magnetic flux
enclosed by the compact dimensions [see discussion below
in the paragraph after formula (2.19)]. In this case, the
parameter αl is determined by the ratio of the flux enclosed
by the lth compact dimension to the flux quantum.
Here, we are interested in the effects of nontrivial

topology and the magnetic fluxes enclosed by compact
dimensions on the FC and the expectation values of the
charge and current densities assuming that the field is in
thermal equilibrium at finite temperature T. First, we
consider the FC defined as

hψ̄ψi ¼ tr½ρ̂ ψ̄ ψ �; (2.4)

where ψ̄ ¼ ψþγ0 is the Dirac conjugated spinor, ρ̂ is the
density matrix and h� � �i means the ensemble average.
For the thermodynamical equilibrium distribution at tem-
perature T, the density matrix has the standard form

ρ̂ ¼ Z−1e−βðĤ−μ0Q̂Þ; β ¼ 1=T; (2.5)

where Ĥ is the Hamilton operator, Q̂ denotes a conserved
charge and μ0 is the related chemical potential. The grand-
canonical partition function Z is defined as

Z ¼ tr½e−βðĤ−μ0Q̂Þ�: (2.6)

For the evaluation of the expectation value in Eq. (2.4)
we shall employ the direct mode summation technique.

Let fψ ðþÞ
σ ;ψ ð−Þ

σ g be a complete set of normalized positive-
and negative-energy solutions of Eq. (2.1) obeying the
quasiperiodicity conditions (2.3). The corresponding ener-
gies will be denoted by εð�Þ

σ . Here σ stands for a set of
quantum numbers specifying the solutions. For the evalu-
ation of the FC we expand the field operator as

ψ ¼
X
σ

½âσψ ðþÞ
σ þ b̂þσ ψ

ð−Þ
σ �; (2.7)

and use the relations

tr½ρ̂âþσ âσ0 � ¼
δσσ0

eβðε
ðþÞ
σ −~μÞ þ 1

;

tr½ρ̂b̂þσ b̂σ0 � ¼
δσσ0

eβðε
ð−Þ
σ þ~μÞ þ 1

; (2.8)

with ~μ ¼ eμ0. In Eq. (2.8), δσσ0 corresponds to the Kronecker
delta for the discrete components of the collective index σ
and to the Dirac delta function for the continuous ones.
The expressions for tr½ρ̂âσ0 âþσ � and tr½ρ̂b̂σ0 b̂þσ � are obtained
from (2.8) by using the anticommutation relations for the
creation and annihilation operators.
Substituting the expansion (2.7) into Eq. (2.4) and using

the relations (2.8), for the FC we get the following
expression,

hψ̄ψi ¼ hψ̄ψi0 þ
X
σ

X
j¼þ;−

jψ̄ ðjÞ
σ ψ ðjÞ

σ

eβðε
ðjÞ
σ −j~μÞ þ 1

; (2.9)

where

hψ̄ψi0 ¼
X
σ

ψ̄ ð−Þ
σ ψ ð−Þ

σ (2.10)

is the vacuum expectation value of the FC. The latter
was investigated in Ref. [8] and here we will be mainly
concerned with the finite temperature effects provided by
the second term in the right-hand side of Eq. (2.9).

1Some special features of the model in odd-dimensional
spacetimes will be discussed in Sec. V.
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B. Summation over the modes

For the evaluation of the FC we need to specify the
mode-functions. In accordance with the symmetry of the
problem, we take these functions in the form of plane
waves,

ψ ðþÞ
σ ¼ AðþÞ

σ eik·z−iε
ðþÞ
k t

 
wðþÞ
χ

ðk−eAÞ·σþ
εðþÞ
k −eA0þm

wðþÞ
χ

!
;

ψ ð−Þ
σ ¼ Að−Þ

σ eik·zþiεð−Þk t

�− ðk−eAÞ·σ
εð−Þk þeA0þm

wð−Þ
χ

wð−Þ
χ

�
; (2.11)

where σ ¼ ðσ1; σ2;…; σDÞ and

εð�Þ
k ¼ εð�Þ

σ ¼ �eA0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − eAÞ2 þm2

q
: (2.12)

In Eq. (2.11), wð�Þ
χ , χ ¼ 1;…; N=2, are one-column matri-

ces having N=2 rows with the elements wð�Þ
χl ¼ δχl.

For the components of the momentum k along uncom-
pactified dimensions one has −∞ < kl < ∞, l ¼ 1;…; p.
The components along compact dimensions are quantized
by the quasiperiodicity conditions (2.3) and the corre-
sponding eigenvalues are given by

kl ¼ 2πðnl þ αlÞ=Ll; nl ¼ 0;�1;�2;…; (2.13)

with l ¼ pþ 1;…; D. The coefficients Að�Þ
σ in Eq. (2.11)

are determined by the orthonormalization conditionR
dDxψ ðλÞþ

σ ψ ðλ0Þ
σ0 ¼ δσσ0δλλ0 with λ; λ0 ¼ þ;−. This gives

Að�Þ2
σ ¼ εð�Þ

k ∓eA0 þm

2ð2πÞpVqðεð�Þ
k ∓eA0Þ

; (2.14)

where Vq ¼ Lpþ1 � � �LD is the volume of the compact sub-
space. Now the set of quantum numbers is specified to
σ ¼ ðkp;nq; χÞ, where kp ¼ ðk1;…; kpÞ, nq ¼ ðnpþ1;…;
nDÞ, and

X
σ

¼
Z

dkp

X
nq∈Zq

XN=2

χ¼1

: (2.15)

Substituting the mode functions (2.11) into Eq. (2.9)
and shifting the integration variable kp → kp þ eAp, we
find the following expression,

hψ̄ψi ¼ hψ̄ψi0 þ
X
j¼þ;−

hψ̄ψij; (2.16)

where

hψ̄ψi� ¼ Nm
2ð2πÞpVq

Z
dkp

X
nq∈Zq

1=εðkÞ
eβðεðkÞ∓μÞ þ 1

(2.17)

is the part in the FC coming from particles (upper sign)
and antiparticles (lower sign). In Eq. (2.17), μ ¼ ~μ − eA0,

εðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
p þ ε2nq

q
; εnq

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
l¼pþ1

~k2l þm2

vuut ; (2.18)

and we have introduced the notations

~kl ¼ 2πðnl þ ~αlÞ=Ll; ~αl ¼ αl − eLlAl=2π: (2.19)

As is seen, the FC does not depend on the components of
the vector potential along noncompact dimensions.
The dependence on the phases αl and on the components

of the vector potential along compact dimensions enters in
the form of the combination ~αl in Eq. (2.19). We could
see this directly by the gauge transformation Aμ ¼ A0

μþ∂μΛðxÞ, ψðxÞ ¼ ψ 0ðxÞe−ieΛðxÞ, with ΛðxÞ ¼ Aμzμ. The new
function ψ 0ðxÞ obeys the Dirac equation with A0

μ ¼ 0
and the periodicity condition ψ 0ðt; zp; zq þ LlelÞ ¼
e2πi ~αlψ 0ðt; zp; zqÞ. The expectation values are not changed
under the gauge transformation and, in the new gauge, the
parameter ~αl appears, instead of αl and Al. Note that we
can write eLlAl=2π ¼ ϕl=ϕ0, where ϕl is the magnetic
flux enclosed by the lth compact dimensions and ϕ0 ¼
2π=e is the flux quantum. Hence, the presence of a constant
gauge field is equivalent to the shift of the phases in the
periodicity conditions along compact dimensions. In par-
ticular, a nontrivial phase is induced for the special cases
of twisted and untwisted fermionic fields. As it will be
discussed below, this leads to the appearance of the nonzero
current density along compact dimensions. Another inter-
esting physical effect of a constant gauge field is the
topological generation of a gauge field mass by the toroidal
spacetime (see Ref. [20] and references therein).

If we present the phases ~αl in the form ~αl ¼ ~αðfÞl þ ~αðiÞl ,

with ~αðiÞl being an integer and j ~αðfÞl j ≤ 1=2, then, as it is
seen from Eq. (2.17), the FC depends on the fractional part

~αðfÞl only. We will denote by ε0 the smallest value of the
energy εðkÞ,

ε0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
l¼pþ1

ð2π ~αðfÞl =LlÞ2 þm2

vuut ; (2.20)

which corresponds to nl ¼ − ~αðiÞl . Note that, while the
bosonic chemical potential is restricted by jμj ≤ ε0, the
fermionic chemical potential can have any value with
respect to ε0.
Firstly, we consider the case jμj < ε0. With this

assumption, by making use of the expansion
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ðey þ 1Þ−1 ¼ −
X∞
n¼1

ð−1Þne−ny; (2.21)

after the integration over kp, from (2.17) we get

hψ̄ψi� ¼ −
Nm

ð2πÞðpþ1Þ=2Vq

X∞
n¼1

ð−1Þne�nβμ

×
X
nq∈Zq

εp−1nq fðp−1Þ=2ðnβεnq
Þ: (2.22)

In (2.22) and in what follows we use the notation

fνðxÞ ¼ KνðxÞ=xν; (2.23)

with KνðxÞ being the Macdonald function. Combining
Eqs. (2.16) and (2.22), for the total FC one finds

hψ̄ψi ¼ hψ̄ψi0 −
2Nm

ð2πÞðpþ1Þ=2Vq

X∞
n¼1

ð−1Þn coshðnβμÞ

×
X
nq∈Zq

εp−1nq fðp−1Þ=2ðnβεnq
Þ: (2.24)

As is seen from the above equation, the FC is a periodic
function of ~αl with the period equal to unity. In particular,
FC is a periodic function of the flux enclosed by a compact
dimension with the period equal to the flux quantum.
Let us consider the behavior of the FC, given by

Eq. (2.24), in the asymptotic regions of the parameters. If
the lengths of the compact dimensions are large, Ll ≫ β; m,
the dominant contribution comes from large values of jnlj,
and we can replace the summation by the integration,P

nq∈Zq → Vqð2πÞ−q
R
dkq with εnq

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
q þm2

q
. The

integral is evaluated by using the formulaZ
drxðx2 þ a2Þνfνðb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
Þ

¼ ð2πÞr=2a2νþrfνþr=2ðabÞ; (2.25)

and, to the leading order, we obtain the FC in topologically
trivial Minkowski spacetime:

hψ̄ψiM¼−
2NmD

ð2πÞðDþ1Þ=2
X∞
n¼1

ð−1Þn coshðnβμÞfðD−1Þ=2ðmnβÞ:

(2.26)

Here we have renormalized the zero temperature FC in
Minkowski spacetime to zero. More precisely, if for a part of
compact dimensions (with the index r) the lengths are large,
by replacing the corresponding series by the integrations and
using (2.25), it is seen from Eq. (2.24) that the result obtained
is equivalent to that for the topology Rpþr × ðS1Þq−r.
In the opposite limit, when the length of the lth compact

dimension is small compared with the other length scales

and Ll ≪ β, under the assumption j ~αlj < 1=2, the dominant
contribution to the series over nl in Eq. (2.24) comes from
the term nl ¼ 0. It can be seen that for ~αl ¼ 0, in the leading
order, Llhψ̄ψi coincides with Nhψ̄ψiðp;q−1Þ=ND−1, where
hψ̄ψiðp;q−1Þ is the condensate in ðD − 1Þ-dimensional space
of topology Rp × ðS1Þq−1 with the lengths of the compact
dimensions Lpþ1;… ; Ll−1; Llþ1;… ; LD (ND−1 is the cor-
responding number of spinor components). For ~αl ≠ 0 and
for small values of Ll, the argument of the Macdonald
function in Eq. (2.24) is large and the FC is suppressed by
the factor e−2πj ~αljβ=Ll.
In the low-temperature limit, the parameter β is large and

the dominant contribution to the FC comes from the term
n ¼ 1 in the series over n, and from the term in the series over
nq with the smallest value of εnq

. In the leading order we find

hψ̄ψi ≈ hψ̄ψi0 þ
Nmεp=2−10 e−βðε0−jμjÞ

2ð2πÞp=2Vqβ
p=2 ; (2.27)

with ε0 given by Eq. (2.20).

C. Zeta function approach

An alternative expression for the FC can be obtained by
employing the zeta function technique [21]. We write the
expression (2.16) in the form

hψ̄ψi ¼ −
Nm

ð2πÞpVq

Z
dkp

X
nq∈Zq

×
X∞
n¼0

0ð−1Þn coshðnβμÞ e
−nβεðkÞ

εðkÞ ; (2.28)

where the prime on the sign of the sum means that the term
n ¼ 0 should be taken with the coefficient 1/2. This term
corresponds to the vacuum expectation value of the FC,
hψ̄ψi0. Next, we use the integral representation

e−nβεðkÞ

εðkÞ ¼ 2ffiffiffi
π

p
Z

∞

0

dse−ε
2ðkÞs2−n2β2=4s2 ; (2.29)

and the formula

X∞
n¼0

0ð−1Þn coshðnβμÞe−n2β2=4s2

¼ s
ffiffiffi
π

p
β

Xþ∞

n¼−∞
e−s

2½2πðnþ1=2Þ=βþiμ�2 : (2.30)

The above result can be proved by making use of the
Poisson summation formula. As a result, after the integra-
tion over s, the FC is presented as

hψ̄ψi ¼ −Nmζð1Þ; (2.31)
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where we have defined the zeta function as shown below,

ζðsÞ ¼ 1

Vqβ

Z
dkp

ð2πÞp
X

nqþ1∈Zqþ1

×

�
k2
p þ

XDþ1

l¼pþ1

½2πðnl þ ~αlÞ=Ll�2 þm2

�
−s
; (2.32)

with nqþ1 ¼ ðnq; nDþ1Þ,

LDþ1 ¼ β; ~αDþ1 ¼
1

2
þ iβμ

2π
: (2.33)

The renormalized value for the FC is obtained by the
analytical continuation of the zeta function at s ¼ 1.
An exponentially convergent expression for the analytic
continuation is obtained by integrating over kp and then
applying the generalized Chowla-Selberg formula [22].
In this way we get

ζðsÞ ¼ mDþ1−2s

ð4πÞðDþ1Þ=2
Γðs − ðDþ 1Þ=2Þ

ΓðsÞ þ 21−smDþ1−2s

ð2πÞðDþ1Þ=2ΓðsÞ
×

X0

mqþ1∈Zqþ1

cosð2πmqþ1 · αqþ1Þ

× fðDþ1Þ=2−sðmgðLqþ1;mqþ1ÞÞ; (2.34)

with Lqþ1 ¼ ðLpþ1;…; LDþ1Þ, αqþ1 ¼ ð ~αpþ1;…; ~αDþ1Þ,
and the prime on the summation sign means that the term
mqþ1 ¼ 0 should be excluded from the sum. In Eq. (2.34)
we have introduced the notation

gðLqþ1;mqþ1Þ ¼
�XDþ1

i¼pþ1

L2
i m

2
i

�
1=2

: (2.35)

The contribution of the first term in the right-hand side of
Eq. (2.34) gives the zero temperature FC in the topologi-
cally trivial Minkowski spacetime. This part is subtracted
in the renormalization procedure. The remaining part of the
zeta function is finite, at the physical point s ¼ 1 and for
the renormalized FC one finds

hψ̄ψi ¼ −
NmD

ð2πÞðDþ1Þ=2
X0

mqþ1∈Zqþ1

cosð2πmqþ1 · αqþ1Þ

× fðD−1Þ=2ðmgðLqþ1;mqþ1ÞÞ: (2.36)

In this formula, the term mDþ1 ¼ 0 corresponds to the
vacuum expectation value of the FC,

hψ̄ψi0 ¼ −
NmD

ð2πÞðDþ1Þ=2
X0

mq∈Zq

cosð2πmq · αqÞ

× fðD−1Þ=2ðmgðLq;mqÞÞ; (2.37)

where, again, the prime means that the term with mq ¼ 0
should be excluded.
Extracting the vacuum expectation value, the renormal-

ized FC can also be written in the form

hψ̄ψi ¼ hψ̄ψi0 −
2NmD

ð2πÞðDþ1Þ=2
X∞
n¼1

ð−1Þn coshðnβμÞ

×
X

mq∈Zq

cosð2πmq · αqÞ

× fðD−1Þ=2
�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðLq;mqÞ þ n2β2

q �
; (2.38)

with the notation

gðLq;mqÞ ¼
�XD

i¼pþ1

L2
i m

2
i

�
1=2

: (2.39)

The equivalence of two representations, given by
Eqs. (2.24) and (2.38), is seen by using the formula
(see, for instance, Ref. [8])

X
mq∈Zq

cosð2πmq · αqÞfν
�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðLq;mqÞ þ n2β2

q �

¼ ð2πÞq=2
Vqm2ν

X
nq∈Zq

ε2ν−qnq fν−q=2ðnβεnq
Þ: (2.40)

In order to investigate the high-temperature asymptotic of
the FC, it is convenient to transform the expression (2.36).
In this expression, the term with mq ¼ 0 corresponds to the
FC in the topologically trivial Minkowski spacetime [see
Eq. (2.26)]. Separating this part from the right-hand side of
Eq. (2.36), in the remaining part instead of cosð2πmqþ1 ·
αqþ1Þ we write cosð2πmq · αqÞ cosð2πmDþ1 ~αDþ1Þ. Next, to
the series over mDþ1 we apply the formula

Xþ∞

mDþ1¼−∞
cosð2πmDþ1 ~αDþ1Þfν

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2m2

Dþ1 þ a2
q �

¼ ð2πÞ1=2
βm2ν

×
Xþ∞

n¼−∞
½ð2πðnþ ~αDþ1Þ=βÞ2 þm2�ν−1=2fν−1=2

�
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πðnþ ~αDþ1Þ=βÞ2 þm2

q �
; (2.41)
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which is a special case of Eq. (2.40). This leads to the
representation

hψ̄ψi ¼ hψ̄ψiM −
NmT

ð2πÞD=2

X0

mq∈Zq

cosð2πmq · αqÞ

×
Xþ∞

n¼−∞
½ðπð2nþ 1ÞT þ iμÞ2 þm2�D=2−1

× fD=2−1ðgðLq;mqÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπð2nþ 1ÞT þ iμÞ2 þm2

q
Þ:

(2.42)

At high temperatures, the dominant contribution comes
from the terms with n ¼ 0 and n ¼ −1 and from the terms
in the sum over mq with the smallest value of gðLq;mqÞ.
If Lmin ¼ minðLpþ1;…; LDÞ, then, to the leading order,
one finds

hψ̄ψi ≈ hψ̄ψiM −
2Nme−πLminT

πð2βLminÞðD−1Þ=2
X
l

cosð2π ~αlÞ; (2.43)

where the summation goes over the compact dimensions
with Ll ¼ Lmin. From Eq. (2.43) we conclude that at high
temperatures the topological part in the FC is exponentially
suppressed. At high temperatures, for the Minkowskian
part, to the leading order, we have

hψ̄ψiM ≈
1 − 22−D

2πðDþ1Þ=2 ΓððD − 1Þ=2ÞζRðD − 1ÞNmTD−1;

(2.44)

where ζRðxÞ is the Riemann zeta function. For D ¼ 2 one
gets hψ̄ψiM ≈ ð2πÞ−1NmT ln 2.
An alternative representation for the FC, containing

more detailed information, can be found from Eq. (2.28)
by applying to the sum over nl, for pþ 1 ≤ l ≤ D, the
Abel-Plana summation formula in the form [8,23]

2π

Ll

X∞
nl¼−∞

gð~klÞfðj~kljÞ ¼
Z

∞

0

dx½gðxÞ þ gð−xÞ�fðxÞ

þ i
Z

∞

0

dx½fðixÞ − fð−ixÞ�

×
X
λ¼�1

gðiλxÞ
exLlþ2λπi ~αl − 1

; (2.45)

where ~kl is defined by Eq. (2.19). Taking

gðxÞ ¼ 1; fðxÞ ¼ e
−nβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þk2

pþε2
nl
q−1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ k2

p þ ε2
nl
q−1

q ; (2.46)

with nl
q−1 ¼ ðnpþ1;…; nl−1; nlþ1;…; nDÞ, and

εnl
q−1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2nq

− ~k2l
q

; (2.47)

it can be seen that the part in the FC corresponding to the
first term in the right-hand side of (2.45) corresponds to the
condensate for a D-dimensional space of topology Rpþ1 ×
ðS1Þq−1 with the lengths of the compact dimensions
Lpþ1;…; Ll−1; Llþ1;…; LD. The latter will be denoted
by hψ̄ψipþ1;q−1. In the part of the FC corresponding to
the second term in the right-hand side of Eq. (2.45), we use
the expansion

X
λ¼�1

1

exLlþ2λπi ~αl − 1
¼ 2

X∞
r¼1

e−xrLl cosð2πr ~αlÞ: (2.48)

After the integrations over x and kp with the help of the
formula

Z
∞

a
duu2νþ1ðu2 − a2Þβ−1fνðcuÞ

¼ 2β−1a2βþ2νΓðβÞfνþβðacÞ; (2.49)

we get (the prime means that the term n ¼ 0 should be
halved)

hψ̄ψi ¼ hψ̄ψipþ1;q−1 −
4NmLl

ð2πÞp=2þ1Vq

X∞
n¼0

0ð−1Þn coshðnβμÞ

×
X∞
r¼1

cosð2πr ~αlÞ
X

nl
q−1∈Z

q−1

εp
nl
q−1

× fp=2

�
εnl

q−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2L2

l þ n2β2
q �

; (2.50)

where the second term in the right-hand side of Eq. (2.50) is
induced by the compactification of the lth dimension. In the
special case of a single compact dimension one has l ¼ D,
εnl

q−1
¼ m, and from Eq. (2.50) we obtain

hψ̄ψi ¼ −
4NmD

ð2πÞðDþ1Þ=2
X∞
n¼0

0ð−1Þn coshðnβμÞ

×
X∞
r¼1

cosð2πr ~αDÞfðD−1Þ=2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2L2

D þ n2β2
q �

:

(2.51)

This result coincides with the corresponding one obtained
from Eq. (2.38).
In the discussion above we have assumed that jμj < ε0.

Now we consider the case jμj > ε0. Let us denote by ε
nð0Þ
q

the largest energy for which jμj > ε
nð0Þ
q
. From Eqs. (2.16)

and (2.17), after the integration over the angular part of kp,
we get

FINITE TEMPERATURE FERMIONIC CONDENSATE AND … PHYSICAL REVIEW D 89, 085002 (2014)

085002-7



hψ̄ψi ¼ hψ̄ψi0 þ
ð4πÞ−p=2Nm
Γðp=2ÞVq

X
j¼þ;−

X
nq∈Zq

Z
∞

εnq

dx

×
ðx2 − ε2nq

Þp=2−1
eβðx−jμÞ þ 1

: (2.52)

The contribution of the states with the energies εnq
> jμj to

the FC is treated in a way similar to that described above.
The FC is an even function of the chemical potential and for
definiteness we assume that μ > 0. In this case the finite
temperature part in the FC coming from the antiparticles
remains the same, whereas in the part coming from the
particles the spectral ranges εnq

≤ ε
nð0Þ
q

and εnq
> ε

nð0Þ
q

should be treated separately. In this way we find the
following representation,

hψ̄ψi ¼ hψ̄ψi0 þ hψ̄ψi− þ ð4πÞ−p=2Nm
Γðp=2ÞVq

X
εnq≤εnð0Þq

Z
∞

εnq

dx

×
ðx2 − ε2nq

Þp=2−1
eβðx−μÞ þ 1

−
Nm

ð2πÞðpþ1Þ=2Vq

X∞
n¼1

ð−1Þnenβμ

×
X

εnq>εnð0Þq

εp−1nq
fðp−1Þ=2ðnβεnq

Þ; (2.53)

where hψ̄ψi− is given by Eq. (2.22). In the limit T → 0
we get

hψ̄ψi¼ hψ̄ψi0þ
ð4πÞ−p=2Nm
Γðp=2ÞVq

X
εnq≤εnð0Þq

Z
μ

εnq

dxðx2− ε2nq
Þp=2−1:

(2.54)

The second contribution in the right-hand side comes from
the particles that occupy the states with εnq

< μ. At high
temperatures, the leading term coincides with that in the
topologically trivial Minkowski spacetime and is given
by Eq. (2.44).

III. CHARGE DENSITY

In this and in the following sections we shall investigate
the expectation value of the fermionic current density,
assuming that the field is in a thermal equilibrium at finite
temperature T. This quantity is given by

hjνi ¼ e tr½ρ̂ ψ̄ðxÞγνψðxÞ�: (3.1)

Substituting the expansion (2.7) and using the relations
(2.8), similar to Eq. (2.9), the following mode-sum formula
is obtained,

hjνi ¼ hjνi0 þ e
X
σ

X
j¼þ;−

jψ̄ ðjÞ
σ γνψ ðjÞ

σ

eβðε
ðjÞ
σ −j ~μÞ þ 1

; (3.2)

with

hjνi0 ¼ e
X
β

ψ̄ ð−Þ
β ðxÞγνψ ð−Þ

β ðxÞ (3.3)

being the corresponding vacuum expectation value. Details
of the calculations here are similar to those for the FC, and
we will describe the main steps only.
First, we consider the charge density corresponding to

the component ν ¼ 0. As has been shown in Ref. [11], the
renormalized vacuum expectation value for the charge
density vanishes: hj0i0;ren ¼ 0. By taking into account
Eq. (2.11), for the finite temperature part of the charge
density we get

hj0i ¼ hj0iþ þ hj0i−; (3.4)

where

hj0i� ¼ � ð4πÞ−p=2eN
Γðp=2ÞVq

X
nq∈Zq

Z
∞

εnq

dx
xðx2 − ε2nq

Þp=2−1
eβðx∓μÞ þ 1

(3.5)

are the contributions to the charge density from the particles
(upper sign) and antiparticles (lower sign). Note that for
the number densities of particles and antiparticles one has
hNi� ¼ �hj0i�=e. As it is seen, the signs of hj0i and μ
coincide, so hj0iμ > 0.
In the case jμj < ε0, by using the expansion (2.21), the

integration over kp is explicitly done and one finds

hj0i� ¼ ∓ eNβ

ð2πÞðpþ1Þ=2Vq

X∞
n¼1

ð−1Þnne�nβμ

×
X
nq∈Zq

εpþ1
nq

fðpþ1Þ=2ðnβεnq
Þ: (3.6)

For the total charge density we get

hj0i ¼ −
2eNβ

ð2πÞðpþ1Þ=2Vq

X∞
n¼1

ð−1Þnn sinhðnβμÞ

×
X
nq∈Zq

εpþ1
nq fðpþ1Þ=2ðnβεnq

Þ: (3.7)

The charge density is an even periodic function of the
phases ~αl with the period equal to the unity. Also, it is an
odd function of the chemical potential μ. If the lengths of
the compact dimensions are large, the contribution of
large jnlj dominates in Eq. (3.7) and, to the leading order,
we replace the summation over nq by the integration. By
using Eq. (2.25), we see that the leading term coincides
with the charge density in the topologically trivial
Minkowski spacetime:
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hj0i ≈ hj0iM ¼ −
2eNmDþ1β

ð2πÞðDþ1Þ=2
X∞
n¼1

ð−1Þnn sinhðnβμÞ

× fðDþ1Þ=2ðnβmÞ: (3.8)

For small values of the length of the lth compact
dimension, Ll, the behavior of the charge density crucially
depends on the value of the phase ~αl. For integer values of
~αl the dominant contribution to the sum over nl in Eq. (3.7)
comes from the term nl ¼ − ~αl and, in the leading order, we
obtain hj0i ≈ Nhj0ip;q−1=ðND−1LlÞ, where hj0ip;q−1 is the
charge density in ðD − 1Þ-dimensional space with the
spatial topology Rp × ðS1Þq−1 and with the lengths of
compact dimensions ðLpþ1;…; Ll−1; Llþ1;…; LDÞ. If ~αl
is not an integer, the dominant contribution to the sum over
nl comes from the term for which jnl þ ~αlj is the smallest.
In this case, the argument of the function fðpþ1Þ=2ðxÞ in
Eq. (3.7) is large and we can use the asymptotic expression
for the Macdonald function for large values of the argu-
ment. In this way we can see that the charge is suppressed
by the factor e−βᾱl=Ll, where ᾱl ¼ min jnl þ ~αlj. Finally, at
low temperatures, the dominant contribution in Eq. (3.7)
comes from the term with n ¼ 1 and from the term in the
sum over nq for which εnq

is the smallest, εnq
¼ ε0. To the

leading order we get

hj0i ¼ eNsgnðμÞεp=20

2ð2πÞp=2Vqβ
p=2 e

−βðε0−jμjÞ; (3.9)

and the charge is exponentially suppressed.
An equivalent expression for the charge density is

obtained by using the zeta function approach. In order
to do that, first let us write the expression (3.5) in the form

hj0i ¼ −
eN
Vq

Z
dkp

ð2πÞp
X
nq∈Zq

X∞
n¼1

ð−1Þn sinhðnβμÞe−nβεðkÞ:

(3.10)

Then it can be transformed as

hj0i ¼ −
eN
Vq

�
μ −

Z
μ

0

dμ∂ββ

�Z
dkp

ð2πÞp

×
X
nq∈Zq

X∞
n¼1

ð−1Þn coshðnβμÞ e
−nβεðkÞ

εðkÞ : (3.11)

Now, by making use of Eq. (2.30), with the transformations
similar to those we have described for the case of the FC,
the charge is presented as

hj0i ¼ −eN
�
μ −

Z
μ

0

dμ∂ββ

�
ζð1Þ; (3.12)

with the zeta function defined by Eq. (2.32). Substituting
the expression (2.34) for the zeta function, we see that the

contribution of the first term in the right-hand side of
Eq. (2.34) vanishes. The contribution of the second term is
finite at the physical point and for the charge density we
directly get

hj0i ¼ −
2eNmDþ1β

ð2πÞðDþ1Þ=2
X∞
n¼1

ð−1Þnn sinhðnβμÞ

×
X

mq∈Zq

cosð2πmq · αqÞ

× fðDþ1Þ=2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðLq;mqÞ þ n2β2

q �
: (3.13)

Here, the term with mq ¼ 0 corresponds to the charge
density in topologically trivial Minkowski spacetime given
by Eq. (3.8). The equivalence of the representations (3.7)
and (3.13), can be seen by using Eq. (2.40).
An alternative representation, convenient for the inves-

tigation of the high-temperature asymptotic of the charge
density, is obtained from Eq. (3.13) with the help of
formula (2.41). First, we separate from the right-hand side
of Eq. (3.13) the part corresponding to hj0iM. Then, by
using nβ sinhðnβμÞ ¼ ∂μ coshðnβμÞ, we apply, for the sum
over n, the formula (2.41). This yields

hj0i ¼ hj0iM −
eNT

ð2πÞD=2 ∂μ

×
Xþ∞

n¼−∞
½ðπð2nþ 1ÞT þ iμÞ2 þm2�D=2

×
X0

mq∈Zq

cosð2πmq · αqÞ

× fD=2ðgðLq;mqÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπð2nþ 1ÞT þ iμÞ2 þm2

q
Þ:
(3.14)

In the limit of high temperatures the contributions of the
terms with n ¼ 0 and n ¼ −1 dominate, and the part in
the charge density induced by nontrivial topology is
suppressed by the factor e−πLminT and hj0i ≈ hj0iM.
The high-temperature asymptotic of the Minkowskian part
is given by

hj0iM ≈
1 − 22−D

πðDþ1Þ=2 ΓððDþ 1Þ=2ÞζRðD − 1ÞeNμTD−1:

(3.15)

For D ¼ 2 one has hj0iM ≈ ð2πÞ−1eNμT ln 2.
Another representation for the charge density is obtained

by applying to the sum over nl in Eq. (3.10) the summation
formula (2.45) with the functions gðxÞ ¼ 1 and fðxÞ ¼
expð−nβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ k2

p þ ε2
nl
q−1

q
Þ. After the transformations

similar to those for the FC, we get

FINITE TEMPERATURE FERMIONIC CONDENSATE AND … PHYSICAL REVIEW D 89, 085002 (2014)

085002-9



hj0i ¼ hj0ipþ1;q−1 −
4eNβLl

ð2πÞp=2þ1Vq

X∞
n¼1

ð−1Þnn sinhðnβμÞ

×
X∞
r¼1

cosð2πr ~αlÞ
X

nl
q−1∈Z

q−1

εpþ2

nl
q−1

× fp=2þ1ðεnl
q−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2L2

l þ n2β2
q

Þ; (3.16)

where hj0ipþ1;q−1 is the charge density in the space with
topology Rpþ1 × ðS1Þq−1 and with the lengths of the
compact dimensions Lpþ1;…; Ll−1; Llþ1;…; LD. The sec-
ond term in the right-hand side of Eq. (3.16) is induced by
the compactification of the coordinate zl.
In the left panel of Fig. 1, for the D ¼ 3 model with a

single compact dimension (p ¼ 2, q ¼ 1), we have plotted
the charge density as a function of ~α3 ≡ ~α for the values of
the parameters μ=m ¼ 0.5 and mL3 ¼ 0.5. The numbers
near the curves correspond to the values of T=m. The
dashed lines present the charge density in Minkowski
spacetime with trivial topology.
For the case jμj > ε0, in a way similar to that we have

used for the FC, assuming that μ > 0, the charge density is
presented as

hj0i ¼ hj0i− þ ð4πÞ−p=2eN
Γðp=2ÞVq

X
εnq≤εnð0Þq

Z
∞

εnq

dx
xðx2 − ε2nq

Þp=2−1
eβðx−μÞ þ 1

−
Neβ

ð2πÞðpþ1Þ=2Vq

X∞
n¼1

ð−1Þnnenβμ

×
X

εnq>εnð0Þq

εpþ1
nq fðpþ1Þ=2ðnβεnq

Þ; (3.17)

where the part coming from the antiparticles, hj0i−, is given
by the same expression (3.6) as before. In the limit T → 0
we get

hj0i ¼ ð4πÞ−p=2eN
pΓðp=2ÞVq

X
εnq≤εnð0Þq

ðμ2 − ε2nq
Þp=2: (3.18)

Note that the number of states per unit volume with the
energies smaller than μ is equal to

N ≤μ ¼
N

2ð2πÞpVq

X
εnq≤εnð0Þq

Z
jkpj≤

ffiffiffiffiffiffiffiffiffiffiffi
μ2−ε2nq

p dkp: (3.19)

Now the charge density at zero temperatures can be written
as hj0iT¼0 ¼ eN ≤μ. At high temperatures, the leading term
in the expansion of the charge density, as before, is given
by Eq. (3.15).
In the discussion above we have considered the charge

density as a function of the temperature, chemical potential,
and the lengths of compact dimensions. From the physical
point of view it is also of interest to consider the behavior
of the system for a fixed value of the charge Q ¼ Vqhj0i.
In this case the expressions derived in this section give the
chemical potential as a function of the charge, temperature
and of the volume of the compact subspace. For example,
we can use the formula which follows from Eqs. (3.4)
and (3.5):

Q ¼ ð4πÞ−p=2eN
Γðp=2Þ

X
nq∈Zq

Z
∞

εnq

dxx
X
j¼�

j
ðx2 − ε2nq

Þp=2−1
eβðx−jμÞ þ 1

:

(3.20)
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FIG. 1 (color online). Charge (left panel) and current (right panel) densities as functions of ~α in D ¼ 3 model with a single compact
dimension for the values of the parameters μ=m ¼ 0.5,mL3 ¼ 0.5. The curves are labelled with the value of T=m. On the left panel, the
dashed lines correspond to the charge density in Minkowski spacetime with trivial topology. The dashed curve on the right panel
presents the VEV of the current density.
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From here it directly follows that the sign of μ coincides
with the sign of Q, consequently μQ > 0, and that the
chemical potential is an odd function of Q. For fixed
temperature and lengths of compact dimensions, the
function jμj monotonically increases with increasing jQj.
At high temperatures, by taking into account that
Q ≈ Vqhj0iM, up to exponentially small terms, and using
Eq. (3.15), in the leading order we get

μ ≈
ð1 − 22−DÞ−1

ΓððDþ 1Þ=2ÞζRðD − 1Þ
πðDþ1Þ=2Q
eNVqTD−1 : (3.21)

With decreasing the temperature, the chemical potential
increases and its value at the zero temperature is determined
from Eq. (3.18).
On the left panel of Fig. 2, for the D ¼ 3 model with a

single compact dimension of the length L3 (p ¼ 2, q ¼ 1),
we plotted the chemical potential as a function of the
temperature for a fixed value of the charge corresponding to
Q=ðem2Þ ¼ 2 and for mL3 ¼ 0.25. The numbers near the
curves correspond to the values of the phase ~α3 ¼ ~α. The
dashed curve presents the chemical potential in D ¼ 3
Minkowski spacetime with trivial topology R3 and with the
same charge density corresponding to hj0iML3=ðem2Þ ¼ 2.
The right panel displays the chemical potential as a
function of ~α for the same value of the charge Q=ðem2Þ ¼
2 and for T=m ¼ 1. The numbers near the curves corre-
spond to the values of mL3.

IV. CURRENT DENSITY

Now let us consider the spatial components of the
expectation value hjνi. Substituting the mode functions
(2.11) into Eq. (3.2), we get

hjνi ¼ hjνi0 þ
X
j¼þ;−

hjνij; (4.1)

where the contributions from the particles (j ¼ þ) and
antiparticles (j ¼ −) are given by the expression below,

hjνi� ¼ eN
2ð2πÞpVq

Z
dkp

X
nq∈Zq

~kν=εðkÞ
eβðεðkÞ∓μÞ þ 1

; (4.2)

for ν ¼ 1;…; D. In the case of ν ¼ 1;…; p, the integrand is
an odd function of kν and the integral is zero. Hence, the
current density along uncompactified dimensions vanishes:
hjνi ¼ 0, ν ¼ 1;…; p.
Under the condition jμj < ε0, by using Eq. (2.21), and

after the integration over kp, we find

hjνi� ¼ −
eN

ð2πÞðpþ1Þ=2Vq

X∞
n¼1

ð−1Þne�nβμ

×
X
nq∈Zq

~kνε
p−1
nq fðp−1Þ=2ðnβεnq

Þ; (4.3)

for the current densities coming from particles or anti-
particles, and

hjνi ¼ hjνi0 −
2eN

ð2πÞðpþ1Þ=2Vq

X∞
n¼1

ð−1Þn coshðnβμÞ

×
X
nq∈Zq

~kνε
p−1
nq

fðp−1Þ=2ðnβεnq
Þ; (4.4)

for the total current density. From Eq. (4.4) it follows that
the current density along the νth compact dimension is an
even function of the phases ~αl, l ≠ ν, and an odd function of
the phase ~αν. In particular, hjνi ¼ 0 for ~αν ¼ 0. The latter is
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FIG. 2 (color online). The chemical potential as a function of the temperature (left panel) and of the phase ~α (right panel) in theD ¼ 3
model with a single compact dimension. The graphs are plotted for a fixed value of the charge corresponding to Q=ðem2Þ ¼ 2. For the
left panel mL3 ¼ 0.25 and the numbers near the curves are the corresponding values of the phase ~α. The dashed curve presents
the chemical potential in the Minkowski spacetime with trivial topology. For the right panel T=m ¼ 1, and the curves are labelled with
the value of mL3.
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the case for twisted and untwisted fields in the absence of
magnetic fluxes. At low temperatures regime, the dominant
contribution to the finite temperature part comes from the
mode with the lowest energy and, to the leading order,
one has

hjνi ¼ hjνi0 þ
eN ~ανε

p=2−1
0 e−βðε0−jμjÞ

2ð2πÞp=2−1VqLνβ
p=2 : (4.5)

In this limit, the finite temperature part is exponentially
suppressed.
Another form for the current density is obtained on the

base of the zeta function approach. With this aim, we write
Eq. (4.2) as

hjνi ¼ −
eN

ð2πÞpVq

Z
dkp

X
nq∈Zq

~kν
εðkÞ

×
X∞
n¼0

0ð−1Þn coshðnβμÞe−nβεðkÞ: (4.6)

By using Eqs. (2.29) and (2.30), this expression is
presented in the form

hjνi ¼ −
eN
Lν

Xþ∞

nν¼−∞

~kνζνð1Þ; (4.7)

where the partial zeta function is defined as

ζνðsÞ ¼
Lν

βVq

Z
dkp

ð2πÞp
X
nν
q∈Zq

�
k2
p þ

XDþ1

l¼pþ1

~k2l þm2

�
−s
;

(4.8)

with nν
q ¼ ðnpþ1;…; nν−1; nνþ1;…; nDþ1Þ. Here, ~kDþ1 ¼

2πðnDþ1 þ ~αDþ1Þ=LDþ1 with LDþ1 and ~αDþ1 being given
by Eq. (2.33).
After the integration over kp and the application of the

generalized Chowla-Selberg formula [22], the following
representation is obtained,

ζνðsÞ ¼
mD−2s

ν

ð4πÞD=2

Γðs −D=2Þ
ΓðsÞ þ 21−smD−2s

ν

ð2πÞD=2ΓðsÞ
×
X0

nν
q∈Zq

cosð2πnν
q · αν

qÞfD=2−sðmνgðLν
q;nν

qÞÞ; (4.9)

where Lq ¼ ðLpþ1;…; Lν−1; Lνþ1;…LD; βÞ, αν
q ¼

ð ~αpþ1;…; ~αν−1; ~ανþ1;…; ~αDþ1Þ and

mν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2ν þm2

q
: (4.10)

The contribution of the second term in the right-hand side
of Eq. (4.9) to the current density is finite at the physical

point s ¼ 1. The analytical continuation of the first term is
obtained by applying the summation formula (2.45) to the
series over nν. In this way, we get

Γðs −D=2Þ
ð4πÞD=2ΓðsÞ

Xþ∞

nν¼−∞

~kν
m2s−D

ν
¼ 2Lν

ð2mÞðDþ1−2sÞ=2þ1

ð4πÞðDþ1Þ=2ΓðsÞ

×
X∞
n¼1

sinð2πn ~ανÞ

×
KðDþ1−2sÞ=2þ1ðnLνmÞ

ðnLνÞðDþ1−2sÞ=2 :

(4.11)

Combining Eqs. (4.9) and (4.11), for the current density
along the νth compact dimension, we find

hjνi ¼ hjνiD−1;1 −
2eNL−1

ν

ð2πÞD=2

X∞
n¼0

0ð−1Þn coshðnβμÞ

×
Xþ∞

nν¼−∞

~kνmD−2
ν

X
nν
q−1∈Z

q−1

cosð2πnν
q−1 · αν

q−1Þ

× fD=2−1

�
mν

� XD
i¼pþ1;≠ν

L2
i n

2
i þ n2β2

�
1=2
�
; (4.12)

where the term n ¼ 0, nν
q−1 ¼ 0 is excluded,

nν
q−1¼ðnpþ1;…;nν−1;nνþ1;…;nDÞ, αν

q−1 ¼ð ~αpþ1;…; ~αν−1;
~ανþ1;… ~αDÞ, and

hjνiD−1;1 ¼ −
2eNmDþ1Lν

ð2πÞðDþ1Þ=2
X∞
l¼1

l sinð2πl ~ανÞfðDþ1Þ=2ðlLνmÞ

(4.13)

is the zero-temperature current density for the topology
RD−1 × S1 with the compact dimension of the length Lν.
A more compact form is obtained by making use of the
relation

Xþ∞

nν¼−∞

~kνmD−2
ν fD=2−1ðmνyÞ

¼
ffiffiffi
2

π

r
L2
νmDþ1

X∞
nν¼1

nν sinð2πnν ~ανÞ

× fðDþ1Þ=2ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ n2νL2

ν

q
Þ: (4.14)

This leads to the final result:
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hjνi ¼ −
4eNmDþ1Lν

ð2πÞðDþ1Þ=2
X∞
n¼0

0ð−1Þn coshðnβμÞ

×
X∞
nν¼1

nν sinð2πnν ~ανÞ
X

nν
q−1∈Z

q−1

cosð2πnν
q−1 · αν

q−1Þ

× fðDþ1Þ=2ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðLq;nqÞ þ n2β2

q
Þ: (4.15)

The n ¼ 0 term in this formula corresponds to the VEVof
the current density:

hjνi0 ¼ −
2eNmDþ1Lν

ð2πÞðDþ1Þ=2
X∞
nν¼1

nν sinð2πnν ~ανÞ

×
X

nν
q−1∈Z

q−1

cosð2πnν
q−1 · αν

q−1Þ

× fðDþ1Þ=2ðmgðLq;nqÞÞ: (4.16)

In order to see the asymptotic behavior of the current
density at high temperatures, we apply to the series over n
in Eq. (4.15) the formula (2.41). This leads to the
expression

hjνi¼−
2eNLνT

ð2πÞD=2

X∞
nν¼1

nν sinð2πnν ~ανÞ

×
Xþ∞

n¼−∞
½ðπð2nþ1ÞTþ iμÞ2þm2�D=2

×
X

nν
q−1∈Z

q−1

cosð2πnν
q−1 ·αν

q−1Þ

×fD=2ðgðLq;nqÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπð2nþ1ÞTþ iμÞ2þm2

q
Þ: (4.17)

At high temperatures the dominant contribution comes
from the terms n ¼ −1; 0 in the series over n and from the
term with nl ¼ δlν. To the leading order, we get

hjνi ≈ −
2eN sinð2π ~ανÞTðDþ1Þ=2

ð2LνÞðD−1Þ=2eπLνT
; (4.18)

and the current density is exponentially suppressed. This is
in sharp contrast with the high-temperature behavior of the
current density in the case of a scalar field. At high
temperatures, the current density for a scalar field linearly
grows with the temperature [16]. This difference of the
asymptotics for scalar and fermionic current densities is a
direct consequence of different periodicity conditions
imposed on the fields along imaginary time (periodic
and antiperiodic conditions for scalar and fermion fields,
respectively).
An alternative representation for the current density is

obtained by applying the summation formula (2.45) to the
series over nν in Eq. (4.6) by taking gðxÞ ¼ x and the

function fðxÞ from Eq. (2.46). With this choice, the first
term in the right-hand side of Eq. (2.45) vanishes, and for
the current density one gets

hjνi ¼ −
4eNL2

ν

ð2πÞp=2þ1Vq

X∞
n¼0

0ð−1Þn coshðnβμÞ

×
X∞
l¼1

l sinð2πl ~ανÞ
X

nν
q−1∈Z

q−1

εpþ2
nν
q−1

× fp=2þ1

�
εnν

q−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2L2

ν þ n2β2
q �

: (4.19)

The n ¼ 0 term in this expression corresponds to the VEV
of the current density:

hjνi0 ¼ −
2eNL2

ν

ð2πÞp=2þ1Vq

X∞
l¼1

l sinð2πl ~ανÞ

×
X

nν
q−1∈Z

q−1

εpþ2
nν
q−1
fp=2þ1ðlLνεnν

q−1
Þ: (4.20)

In the model with a single compact dimension, Eq. (4.19) is
reduced to Eq. (4.13).
Let us consider the limit of Eq. (4.19) when the length of

the rth dimension is much smaller than Lν, Lr ≪ Lν. The
current density is a periodic function of ~αr with the period
equal to unity and, without loss of generality, we can
assume that j ~αrj < 1=2. If ~αr ¼ 0, the dominant contribu-
tion comes from the term nr ¼ 0 and, to the leading order,
we have hjνi ≈ Nhjνiðp;q−1Þ=ðND−1LrÞ, where hjνiðp;q−1Þ is
the current density in ðD − 1Þ-dimensional space of top-
ology Rp × ðS1Þq−1 with the lengths of the compact
dimensions Lpþ1;… ; Lr−1; Lrþ1;… ; LD. The corrections
to this leading term are of the order e−2πLν=Lr. For ~αr ≠ 0,
once again, the dominant contribution comes from the term
with nr ¼ 0, and the argument of the function fp=2þ1ðxÞ in
Eq. (4.19) is large. By using the corresponding asymptotic
for the Macdonald function, we see that the current density
is suppressed by the factor e−2πj ~αrjLν=Lr.
The right panel of Fig. 1 displays the current density in

the D ¼ 3 model with a single compact dimension, as a
function of ~α3 ≡ ~α for μ=m ¼ 0.5 and mL3 ¼ 0.5. The
numbers near the curves are the correspond values of T=m.
The dashed curve presents the current density at zero
temperature.
Now we turn to the case jμj > ε0. After the integration in

Eq. (4.2), the general formula (4.1) is given in the form

hjνi ¼ hjνi0 þ
ð4πÞ−p=2eN
Γðp=2ÞVq

X
nq∈Zq

~kν

Z
∞

εnq

dx

×
X
j¼þ;−

ðx2 − ε2nq
Þp=2−1

eβðx−jμÞ þ 1
: (4.21)
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For definiteness, assuming that μ > 0, the transformations
for the part with j ¼ − and for the part j ¼ þ in the range
εnq

> μ are the same as those described above. For the
current density along the νth compact dimension, one finds

hjνi ¼ hjνi0 þ hjνi− þ ð4πÞ−p=2eN
Γðp=2ÞVq

X
εnq≤εnð0Þq

~kν

×
Z

∞

εnq

dx
ðx2 − ε2nq

Þp=2−1
eβðx−μÞ þ 1

−
eN

ð2πÞðpþ1Þ=2Vq

×
X∞
n¼1

ð−1Þnenβμ
X

εnq>εnð0Þq

~kνε
p−1
nq

fðp−1Þ=2ðnβεnq
Þ:

(4.22)

In the limit T → 0 we get

hjνiT¼0 ¼ hjνi0 þ
ð4πÞ−p=2eN
VqΓðp=2Þ

×
X

εnq≤εnð0Þq

~kν

Z
μ

εnq

dxðx2 − ε2nq
Þp=2−1: (4.23)

The second term on the right is the current density induced
by the particles filling the states with the energies εnq

≤ μ. At
zero temperature the states with the energies εnq

> μ are
empty. At high temperatures, similar to the case jμj < ε0, the
current density is exponentially suppressed [see Eq. (4.18)].
For a fixed value of the charge, Eq. (3.20) determines the

chemical potential as a function of temperature. Examples
of this function are plotted in Fig. 2. Substituting the
chemical potential into Eq. (4.21) or Eq. (4.22), we find the
current density as a function of the temperature for a fixed
value of the charge. On the left panel of Fig. 3 we have
plotted this function in the D ¼ 3 model with a single

compact dimension of the length L3, for the fixed value of
the charge corresponding to Q=ðem2Þ ¼ 2. The graphs are
plotted for mL3 ¼ 0.25 and the numbers near the curves
correspond to the values of ~α3 ¼ ~α. The right panel presents
the current density versus the phase ~α for different values
of Q=ðem2Þ (numbers near the curves) and for T=m ¼
0.5, mL3 ¼ 0.5.

V. EXPECTATION VALUES IN TIME-REVERSAL
SYMMETRIC ODD-DIMENSIONAL MODELS

In the discussion above we have considered a fermionic
field realizing the irreducible representation of the Clifford
algebra. With this representation, in odd-dimensional
spacetimes (D is an even number), the mass term in the
Lagrangian breaks C invariance in D ¼ 4n, P invariance in
D ¼ 4n; 4nþ 2, and T invariance in D ¼ 4nþ 2 (for a
general discussion, see Ref. [24]). In order to restore these
symmetries, we note that in odd dimensions the γD matrix
can be represented by other gamma matrices in the
following way,

γD ¼ γD� ¼
��γ; D ¼ 4n;

�iγ; D ¼ 4nþ 2;
(5.1)

where γ ¼ γ0γ1 � � � γD−1. Hence, the Clifford algebra in odd
dimensions has two inequivalent representations corre-
sponding to the upper and lower signs in Eq. (5.1).
Now, two N-component Dirac fields, ψþ and ψ−, can be
introduced with the equations

ðiγμ�Dμ −mÞψ� ¼ 0; (5.2)

where γμ� ¼ ðγ0; γ1; � � � γD−1; γD�Þ. Defining the charge con-
jugation as ψCþ ¼ Cψ̄T

− (for C, P, and T transformations,
see, for instance, Ref. [24]), we see that the total
Lagrangian L ¼Pj¼þ;−ψ̄ jðiγμjDμ −mÞψ j is invariant
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FIG. 3 (color online). The current density for a fixed value of the charge as a function of the temperature (left panel) and of the phase ~α
(right panel) in D ¼ 3 model with a single compact dimension. On the left panel the graphs are plotted for Q=ðem2Þ ¼ 2, mL3 ¼ 0.25
and the curves are labelled with the value of ~α. For the right panel T=m ¼ 0.5, mL3 ¼ 0.5, and the numbers near the curves correspond
to the values of Q=ðem2Þ.
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under the charge conjugation. In a similar way, by suitable
transformations of the fields, it can be seen that the
combined Lagrangian is invariant under P and T trans-
formations, as well (in the absence of magnetic fields).
Note that by defining new fields ψ 0þ ¼ ψþ, ψ 0

− ¼ γψ−, the
Lagrangian is transformed to the form

L ¼
X
j¼þ;−

ψ̄ 0
jðiγμDμ − jmÞψ 0

j: (5.3)

Thus, the field ψ 0
− satisfies the same equation as ψ 0þ with

the opposite sign for the mass term. The N-component
Dirac spinors ψ 0þ and ψ 0

− can be combined in a
2N-component spinor: Ψ ¼ ðψ 0þ;ψ 0

−ÞT . Introducing 2N ×
2N Dirac matrices ~γμ ¼ I2 ⊗ γμ and η ¼ σP3 ⊗ IN , where
IN is the N × N unit matrix and σP3 ¼ diagð1;−1Þ the
Pauli matrix, the Lagrangian is written in the form
L ¼ Ψ̄ði~γμDμ −mηÞΨ. An alternative representation is
obtained by using the 2N × 2N reducible representation
of gamma matrices γμð2NÞ ¼ σP3 ⊗ γμ with the Lagrangian

L ¼ Ψ̄ðiγμð2NÞDμ −mÞΨ: (5.4)

The FC, the charge and current densities for the model
described by the Lagrangian (5.3) can be obtained from the
formulas given above. In deriving the expectation values of
these quantities, we have assumed that the parameter m is
non-negative. However, the results are easily generalized
for a negative m as well. It can be seen that hψ̄ψi=m and
hjμi are even functions of m. Consequently, the current
densities corresponding to the fields ψ 0þ and ψ 0

− are given
by expressions presented in Secs. III and IV, whereas the
FC for the fields ψ 0þ and ψ 0

− differ by the sign. Hence,
assuming that in Eq. (5.3) m ≥ 0, for the total expectation
values one finds

hΨ̄Ψi ¼ hψ̄ψi↑ − hψ̄ψi↓;
hjνi ¼ hjνi↑ þ hjνi↓; (5.5)

where the parts with the indices ↑ and ↓ are the contri-
butions coming from the upper (ψ 0þ) and lower (ψ 0

−)
components of the 2N-component spinor Ψ. The separate
terms in (5.5), hψ̄ψi↑;↓ and hjνi↑;↓ are given by the
expressions presented in Secs. III and IV. If the phases
in the quasiperiodicity conditions for the upper and lower
components of the 2N-spinor Ψ are the same, then the
resulting FC vanishes, whereas the expressions for the
charge and current densities are obtained from the expres-
sions given above with an additional coefficient 2.
However, the phases in the quasiperiodicity conditions
for the upper and lower components, in general, can be
different. As we will see below, this is the case for the Dirac
model in a class of carbon nanotubes.

VI. APPLICATIONS TO CARBON NANOTUBES

In this section we apply the general results given above
for the investigation of the FC and current density in carbon
nanotubes (for a review see Ref. [25]). A single-wall
cylindrical nanotube is obtained from a graphene sheet
by rolling it into a cylindrical shape. In graphene, the low-
energy excitations of the electronic subsystem, for a given
value of spin s ¼ �1, are described by an effective Dirac
theory of four-component spinors Ψs ¼ ðψþ;As;ψþ;Bs;
ψ−;As;ψ−;BsÞ, where the components ψ�;Js, with J ¼ A
and J ¼ B, give the amplitude of the wave function on the
A and B triangular sublattices of the graphene hexagonal
lattice and the indices þ and − correspond to inequivalent
points ðKþ;K−Þ at the corners of the two-dimensional
Brillouin zone (see Ref. [3]). The quasiparticles are con-
fined to a graphene sheet and, hence, for the spatial
dimension of the corresponding Dirac-like theory one
has D ¼ 2. The corresponding Lagrangian has the form
(we restore the standard units)

L ¼
X
s¼�1

Ψ̄sðiℏγ0∂t þ iℏvFγlDl − ΔÞΨs; (6.1)

where Dl ¼ ð∇ − ieA=ℏcÞl, l ¼ 1; 2, with e ¼ −jej for
electrons, and vF ≈ 7.9 × 107 cm/s is the Fermi velocity
that plays the role of the speed of light. (For other planar
condensed-matter systems with the low-energy sector
described by Eq. (6.1), see for instance, Ref. [26].) For
the Fermi velocity one has vF ¼ ffiffiffi

3
p

aγ0=ð2ℏÞ, where a is
the lattice constant and γ0 ≈ 2.9 eV is the transfer integral
between first-neighbor π orbitals. We have included in the
Lagrangian the energy gap Δ. It is expressed in terms of the
corresponding Dirac mass mD as Δ ¼ mDv2F. The gap in
the energy spectrum is essential in many physical appli-
cations and can be generated by a number of mechanisms
(see, for example, Ref. [3] and references therein). Some
mechanisms give rise to mass terms with the matrix
structure different from that we consider here. In depend-
ence of the physical mechanism for the generation, the
energy gap may vary in the range 1 meV≲ Δ≲ 1 eV.
In the discussion of the graphene properties within the
framework of the model described by Lagrangian (6.1), the
Dirac matrices are usually taken in the form γμ ¼ σP3 ⊗
ðσP3; iσP2;−iσP1Þ. Now comparing with Eq. (5.4), we see
that Eq. (6.1) is a special case with D ¼ 2, N ¼ 2.
In the case of the cylindrical nanotube, the spatial

topology for the effective Dirac theory is R1 × S1 with
the compactified dimension of the length L. The carbon
nanotube is characterized by its chiral vector
Ch ¼ nca1 þmca2, where a1 and a2 are the basis vectors
of the hexagonal lattice of graphene and nc,mc are integers.
The length of the compact dimension is given by
L ¼ jChj ¼ aNc, with Nc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2c þm2

c þ ncmc

p
and a ¼

ja1j ¼ ja2j ¼ 2.46Å being the lattice constant. The special
cases Ch ¼ ðnc; 0Þ and Ch ¼ ðnc; ncÞ correspond to zigzag
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and armchair nanotubes respectively. All other cases
correspond to chiral nanotubes. In the case nc −mc ¼
3lc, lc ∈ Z, the nanotube will be metallic and in the case
nc −mc ≠ 3lc the nanotube will be a semiconductor with
an energy gap inversely proportional to the diameter. In
particular, the armchair nanotube is metallic, and the ðnc; 0Þ
zigzag nanotube is metallic if and only if nc is an integer
multiple of 3.
Periodicity conditions along the compact dimension for

the bispinorΨs in (6.1) are obtained from the periodicity of
the electron wave function (see Refs. [25,27]). For metallic
nanotubes one has periodic boundary conditions [αl ¼ 0
in Eq. (2.3)] and for semiconducting nanotubes, depending
on the chiral vector, we have two classes of inequivalent
boundary conditions corresponding to αl ¼ �1=3 (nc−
mc ¼ 3lc � 1). The phases have opposite signs for the
upper and lower components of the four-spinor Ψs in (6.1),
corresponding to the points Kþ and K−.
For a given value of the spin s, the expressions of the FC

and of the expectation values of the current densities for
separate contributions from the points Kþ and K− are
obtained from the expressions given in previous sections by
the replacements

m → a−1Δ=γF; β → aγFβ; μ → a−1μ=γF; (6.2)

where γF ¼ ℏvF=a ¼ ffiffiffi
3

p
γ0=2 ≈ 2.51 eV determines the

characteristic energy scale of the model. In addition, in
expressions for the current density along compact dimen-
sions a factor vF should be added, because now the operator
of the spatial components of the current density is defined
as jν ¼ evFψ̄ðxÞγνψðxÞ. For a given spin s, the separate
contributions are combined in a way given by Eq. (5.5),
where ↑ and ↓ correspond to the points Kþ and K−,
respectively. In the model under consideration, the spin
s ¼ þ1 and s ¼ −1 give the same contributions to the total
expectation values. For cylindrical carbon nanotubes, the
spatial topology for the effective theory corresponds to
R1 × S1 and, hence, in the formulas above p ¼ 1, q ¼ 1.
The compactification of the direction along the cylinder

axis gives another class of graphene made structures called
toroidal carbon nanotubes [28] with the background top-
ology ðS1Þ2 (p ¼ 0; q ¼ 2). The nanotorus is classified by
its chiral vector Ch and translational vector T ¼ pca1 þ
qca2 with the coordinates along these directions z1 and z2

and with the lengths L1 and L2. Usually one has L1 ≪ L2.
From the asymptotic analysis given above [see the para-
graph after Eq. (4.20)], it follows that for ~α1 ¼ 0 the current
density along z2, in the leading order, coincides with the
corresponding quantity in the model with D ¼ 1 and with
the length of the compact dimension L2. The corresponding
corrections are of the order e−2πL2=L1. In the absence of the
magnetic flux, this case corresponds to nanotubes for which
α1 ¼ 0 and, hence, nc −mc ¼ 3lc, lc ∈ Z, (type I and II
toroidal carbon nanotubes). For ~α1 ≠ 0, the current density

along the z2 direction is suppressed by the factor
e−2πj ~α1jL2=L1 . In the absence of the magnetic flux, this case
corresponds to nc −mc ≠ 3lc, lc ∈ Z, with jα1j ¼ 1=3
(type III toroidal carbon nanotubes).
In discussing the FC and current density in cylindrical

and toroidal nanotubes we work within the zone-folding
approximation in which the effect of confinement is to
induce the selection on allowed values of the momentum
projection along the compact dimension. This approxima-
tion ignores the curvature effects which may cause the
mixing of σ and π orbitals of the carbon atoms. These
effects are small for nanotubes with a sufficiently large
diameter.

A. One-dimensional rings

Here, we start with the simplest case D ¼ 1 having a
compact dimension of the length L ¼ aNc and with the
phase in the periodicity condition α1 ¼ α. As we have
noted, this case can be considered as a model of a toroidal
nanotube in the limit when the length of one of the compact
dimensions is small compared to the other (for the inves-
tigation of persistent currents in toroidal carbon nanotubes
within the framework of the tight-binding approximation,
see Refs. [29]).2 For simplicity we consider the case of
zero chemical potential when the charge density vanishes.
The zero value for the chemical potential is predicted by
simple tight-binding calculations for the hexagonal lattice
of a single graphene sheet (see, for example, [25]). By
using the formulas given in previous sections, the gener-
alization for the case of a nonzero chemical potential is
straightforward (for mechanisms of generation of a nonzero
chemical potential see Ref. [26]).
By summing the contributions coming from two sub-

lattices with opposite signs of α and adding an additional
factor 2 which takes into account the contributions from
two spins s ¼ �1, for the FC we find

hψ̄ψi ¼ −
8xc
πL

X∞
r¼1

sinð2πrαÞ sinð2πrϕ=ϕ0ÞK0ðrxcÞ

þ 4xc
L

Xþ∞

r¼−∞

X
j¼�1

j=bðjÞr

eb
ðjÞ
r yc þ 1

; (6.3)

with the notations

xc ¼ NcΔ=γF; yc ¼ γF=ðNcTÞ; (6.4)

and

2Of course, the FC and current density in toroidal nanotubes
can also be considered for general values of the lengths L1 and
L2, by using the formulas given above for the model D ¼ 2 and
p ¼ 0.
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bðjÞr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðjÞ2r þ x2c

q
; κðjÞr ¼ 2πðrþ jα − ϕ=ϕ0Þ:

(6.5)

The first term in the right-hand side of Eq. (6.3) gives the
FC at zero temperature. As is seen, the quantity γF=Nc
determines the characteristic energy scale of the model.
For toroidal nanotubes one has Nc ∼ 103 and this energy
scale is of the order of the meV. The corresponding
characteristic temperature is Tc ¼ γF=ðNckBÞ ≈ 30 K.
An alternative expression is obtained by making use of

Eq. (2.36),

hψ̄ψi ¼ −
16xc
πL

X∞
n¼0

0ð−1Þn
X∞
r¼1

sinð2πrαÞ sinð2πrϕ=ϕ0Þ

× K0

�
xc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2y2c

q �
; (6.6)

where the zero-temperature part is given by the term n ¼ 0.
From the asymptotic analysis in Sec. II we see that at
high temperatures, T ≫ γF=Nc, the FC is exponentially
suppressed:

hψ̄ψi ≈ −
16xc sinð2παÞ

πL
sinð2πϕ=ϕ0Þe−π=yc : (6.7)

An exponential suppression takes place also for large
values of the energy gap: xc ≫ 1. In Fig. 4 we have
plotted the FC, given by Eq. (6.3), as a function of the
magnetic flux for α ¼ 1=3 and xc ¼ 0.5. The numbers near
the curves correspond to the value of TNc=γF.
Now we turn to the current density. By summing the

contributions coming from two valleys with opposite signs
of α, from Eq. (4.4), with the replacements (6.2), we get

hj1i ¼ 8evFxc
πL

X∞
n¼1

cosð2πnαÞ sinð2πnϕ=ϕ0ÞK1ðnxcÞ

þ 4evF
L

Xþ∞

r¼−∞

X
j¼�1

κðjÞr =bðjÞr

eb
ðjÞ
r yc þ 1

; (6.8)

where the first term represents the zero-temperature part
and has been already given in Ref. [11]. Alternatively, from
Eq. (4.15) one obtains an equivalent representation

hj1i ¼ 16evFx2c
πL

X∞
n¼0

0ð−1Þn
X∞
r¼1

r cosð2πrαÞ sinð2πrϕ=ϕ0Þ

× f1ðxc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2y2c

q
Þ: (6.9)

At high temperatures, we have the asymptotic expression

hj1i ≈ 16evF
Lyc

cosð2παÞ sinð2πϕ=ϕ0Þe−π=yc ; (6.10)

with the exponential suppression.
For a zero gap energy, the expressions for the current

density are reduced to

hj1i ¼ hj1iT¼0 þ
4evF
L

Xþ∞

r¼−∞

X
j¼�1

κðjÞr =jκðjÞr j
ejκ

ðjÞ
r jyc þ 1

¼ hj1iT¼0 þ
16evF
πL

X∞
n¼1

ð−1Þn

×
X∞
r¼1

r sinð2πrϕ=ϕ0Þ
cosð2πrαÞ
r2 þ n2y2c

; (6.11)

where for the zero-temperature part one has

hj1iT¼0 ¼
2evF
L

X
j¼�1

Iðϕ=ϕ0 þ jαÞ: (6.12)

In Eq. (6.12), we have defined the function

IðxÞ ¼ 2

π

X∞
n¼1

sinð2πnxÞ
n

¼
�
1 − 2fxg; x > 0

2jfxgj − 1; x < 0
; (6.13)

with fxg being the fractional part of x. In Fig. 5 we have
plotted the current density, in units of evF=L, as a function
of the magnetic flux for α ¼ 0 (left panel) and α ¼ 1=3
(right panel) with a fixed value of the gap corresponding to
xc ¼ 0.5. The numbers near the curves are the values of
TNc=γF. The persistent currents in normal metal rings with
the radius ≈103 nm have been recently experimentally
observed [30]. Measurements agree well with calculations
based on a model of noninteracting electrons.
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L

FIG. 4 (color online). FC as a function of the magnetic flux for
α ¼ 1=3 and xc ¼ 0.5. The numbers near the curves correspond
to the value of TNc=γF.
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B. FC and the current in cylindrical nanotubes

The contributions from separate valleys to the FC and the
current density along the compact dimension for a cylindrical
nanotube are obtained specifying in the formulas above
p ¼ q ¼ 1 and N ¼ 2. Combining these contributions in
accordance with Eq. (5.5) and adding a factor 2 correspond-
ing to the spin states s ¼ �1, by taking into account
Eq. (6.2), for the FC we get the following representations:

hψ̄ψi ¼ −
4xc
πL2

X∞
n¼1

�
sinð2πnαÞ
nenxc

sinð2πnϕ=ϕ0Þ

þ ð−1Þn
Xþ∞

r¼−∞

X
j¼�1

jK0ðnbðjÞr ycÞ
	
; (6.14)

with the same notations as in Eq. (6.3), and

hψ̄ψi ¼ −
8xc
πL2

X∞
n¼0

0ð−1Þn
X∞
r¼1

sinð2πrαÞ sinð2πrϕ=ϕ0Þ

×
e−xc

ffiffiffiffiffiffiffiffiffiffiffiffi
r2þn2y2c

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2y2c

p : (6.15)

At high temperatures one has the asymptotic behavior

hψ̄ψi ≈ −
16xc sinð2παÞ
πL2

ffiffiffiffiffiffiffi
2yc

p sinð2πϕ=ϕ0Þe−π=yc : (6.16)

For single-walled cylindrical nanotubes Nc ∼ 10 and for
the characteristic energy scale, one has γF=Nc ∼ 0.2 eV.
The corresponding characteristic temperature Tc ¼ γF=
ðNckBÞ ≈ 3 × 103 K. For T ≪ kBTc, the finite temperature
corrections are small and the contribution of the vacuum
expectation value dominates. In Fig. 6 we have plotted the
FC, given by Eq. (6.14), as a function of the magnetic flux

for α ¼ 1=3 and xc ¼ 0.5. The numbers near the curves
correspond to the value of TNc=γF.
Now let us consider the current density. By summing

the contributions coming from two separate valleys with
opposite signs of α, again, we find two representations,

hj2i ¼ 4evF
πL2

X∞
n¼1

�
cosð2πnαÞ sinð2πnϕ=ϕ0Þ

1þ nxc
n2enxc

− ð−1Þn
Xþ∞

r¼−∞

X
j¼�1

κðjÞr K0ðnbðjÞr ycÞ
	
; (6.17)

and

hj2i ¼ 8evF
πL2

X∞
n¼0

0ð−1Þn
X∞
r¼1

r sinð2πrϕ=ϕ0Þ

×
cosð2πrαÞð1þ xc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2y2c

p
Þ

ðr2 þ n2y2cÞ3=2exc
ffiffiffiffiffiffiffiffiffiffiffiffi
r2þn2y2c

p : (6.18)
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FIG. 5 (color online). Current density as a function of the magnetic flux for α ¼ 0 (left panel) and α ¼ 1=3 (right panel). The graphs
are plotted for xc ¼ 0.5 and the curves are labelled with the value of TNc=γF.
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FIG. 6 (color online). FC in a carbon nanotube as a function of
the magnetic flux for α ¼ 1=3 and xc ¼ 0.5. The numbers near
the curves correspond to the values of TNc=γF.
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In the absence of a gap energy one has xc ¼ 0, and in
Eq. (6.17) we take b ¼ jκðjÞr j. At high temperatures the
current density is exponentially suppressed:

hj2i ≈ 16e cosð2παÞffiffiffi
2

p
L2y3=2c

sinð2πϕ=ϕ0Þe−π=yc : (6.19)

In Fig. 7 we displayed the current density, in units of
evF=L, as a function of the magnetic flux for α ¼ 0 (left
panel) and α ¼ 1=3 (right panel) with fixed value of the gap
corresponding to xc ¼ 0.5. The numbers near the curves
correspond to the values of TNc=γF.

VII. CONCLUSION

In this paper we have considered the combined effects of
finite temperature and nontrivial topology on the FC and on
the expectation values of charge and current densities for a
massive fermionic field. Along compact dimensions, qua-
siperiodicity conditions (2.3) are imposed with arbitrary
phases αl. Twisted and untwisted periodicity conditions,
most often discussed in the literature, are special cases. In
addition, we have assumed the presence of a constant gauge
field which gives rise to Aharonov-Bohm-like effects on
the expectation values. The effects of nontrivial phases in
the boundary conditions and of the gauge field appear in the
form of the combination ~αl, given by Eq. (2.19).
Under the condition jμj < ε0, with ε0 being the lowest

energy in the energy spectrum of a fermionic particle [see
Eq. (2.20)], the FC is given by Eq. (2.24), where hψ̄ψi0 is
the FC at zero temperatures and the second term on the
right presents the finite temperature contribution. The FC is
an even periodic function of ~αl with the period equal to
unity. In particular, it is a periodic function of the fluxes
enclosed by compact dimensions with the period equal to
the flux quantum. As a limiting case, from the general result

we have derived the expression for the FC in the topo-
logically trivial Minkowski spacetime, Eq. (2.26). If the
length of one of the compact dimensions, say the lth
dimension, is much smaller than the other length scales, the
behavior of the FC crucially depends on the value of the
parameter ~αl. Assuming that j ~αlj < 1=2, for ~αl ≠ 0 and for
small values of Ll, the FC is suppressed by the factor
e−2πj ~αljβ=Ll . In the case ~αl ¼ 0, to the leading order the FC
coincides with Nhψ̄ψiðp;q−1Þ=ðND−1LlÞ, where hψ̄ψiðp;q−1Þ
is the FC in the ðD − 1Þ-dimensional space of topology
Rp × ðS1Þq−1. At low temperatures, the thermal corrections
are suppressed by the factor e−ðε0−jμjÞ=T [see Eq. (2.27)].
An alternative expression for the FC, Eq. (2.38), is

obtained by using the analytic continuation of the gener-
alized zeta function (2.32) provided by the Chowla-Selberg
formula. A representation of the FC, Eq. (2.42), convenient
in the investigation of the high temperature limit is obtained
from Eq. (2.38) with the help of formula (2.41). At high
temperatures, the dominant contribution comes from the
terms with n ¼ 0 and n ¼ −1 and the effects induced by
the nontrivial topology are suppressed by the factor
e−πTLmin , with Lmin being the smallest length of the compact
dimensions. In the high-temperature expansion of the FC,
the leading terms coincides with that for the FC in the
topologically trivial Minkowski spacetime with the asymp-
totic behavior given by Eq. (2.44). The representation of the
FC, Eq. (2.50), containing more detailed explicit informa-
tion, is obtained by applying a variant of the Abel-Plana
summation formula (2.45). The second term in the right-
hand side of Eq. (2.50) presents the part in the FC induced
by the compactification of the l-th dimension. This infor-
mation is not explicit in the previous two representations.
In the case jμj > ε0, assuming that μ > 0, the expres-

sion for the finite temperature part in the FC coming from
the antiparticles remains the same, whereas in the part
coming from the particles the spectral ranges εnq

≤ ε
nð0Þ
q
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FIG. 7 (color online). Current density along the compact dimension of a cylindrical nanotube as a function of the magnetic flux for
α ¼ 0 (left panel) and α ¼ 1=3 (right panel). The graphs are plotted for xc ¼ 0.5 and the numbers near the curves correspond to the
values of TNc=γF.
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and εnq
> ε

nð0Þ
q

should be treated separately and the
expression for the FC takes the form (2.53). Now, at zero
temperature one has Eq. (2.54), where the second contri-
bution in the right-hand side comes from the particles
which occupy the states with εnq

< μ. At high temper-
atures, the leading term in the asymptotic expression for
the FC remains the same, and it coincides with that in the
topologically trivial Minkowski spacetime.
The expectation value of the charge density is investigated

in Sec. III. In the case jμj < ε0, the zero temperature charge
density vanishes, and the effects induced by the finite
temperature are given by Eq. (3.7). The charge density is
an even periodic function of the phases ~αl with the period
equal to unity. Besides, it is an odd function of the chemical
potential μ. For large values of the lengths of compact
dimensions, in the leading order we recover the result for
the topologically trivial Minkowski bulk, Eq. (3.8). At low
temperatures the induced charge is exponentially small [see
Eq. (3.9)]. An equivalent representation for the charge
density, Eq. (3.13), is obtained by making use of the related
zeta function analytic continuation. At high temperatures the
part in the charge density coming from the nontrivial
topology is exponentially suppressed, and the leading term
in the asymptotic expansion is given by the Minkowskian
part, Eq. (3.15). Besides, another representation for the
charge density, Eq. (3.16), is obtained by using the Abel-
Plana formula. This representation separates the part due to
the compactification of the lth compact dimension.
For jμj > ε0 and assuming that μ > 0, the contribution to

the charge density coming from antiparticles remain the
same, and the total charge density is given by Eq. (3.17) [or
equivalently by Eq. (3.20)]. In this case the charge density
at zero temperature is presented as Eq. (3.18). The latter is
related to the number of states with the energies smaller
than jμj by a simple formula hj0iT¼0 ¼ eN ≤μ. For a fixed
value of the charge, the formulas for the charge density
determine the chemical potential as a function of the
charge, the temperature and the volume of the compact
subspace. At high temperatures this function decays with
the leading term (3.21). Decreasing the temperature, the
chemical potential increases and its value at the zero
temperature is determined by Eq. (3.18).
An interesting effect induced by the nontrivial topology

is the appearance of the nonzero current density along
compact dimensions. The current density along the νth
compact dimension, given by Eq. (4.4) for jμj < ε0, is an
even periodic function of the phases ~αl, l ≠ ν, with the
period equal to unity, and an odd periodic function of the
phase ~αν. In particular, the current density vanishes for
twisted and untwisted fields in the absence of the gauge
field. The current density is an even function of the
chemical potential. At low temperatures it coincides with
the corresponding result al zero temperature, given by
Eq. (4.16), for jμj < ε0, up to exponentially small terms.
At high temperatures, the thermal corrections to the current

density along the νth compact dimension are suppressed
by the factor e−πTLν. This behavior is in sharp contrast with
the high-temperature asymptotic of the current density in
the case of a scalar field. For the latter, the current density
linearly grows with the temperature. For μ > ε0, the
contribution of the particles to the current density with
the energies εnq

< μ should be considered separately and
the corresponding expression takes the form (4.22).
Now the current density at zero temperature receives the
contributions from both virtual and real particles. The latter
is given by the second term in the right-hand side of
Eq. (4.23). The asymptotic behavior at high temperatures
remains the same. We have also investigated the current
density along compact dimensions for a fixed value of the
charge. A numerical example for a D ¼ 3 model with a
single compact dimension is presented in Fig. 3.
For odd spacetime dimensions, with an irreducible

representation of the Clifford algebra, the mass term breaks
C-invariance in D ¼ 4n, P-invariance in D ¼ 4n; 4nþ 2,
and T-invariance inD ¼ 4nþ 2. In the absence of magnetic
fields, these symmetries are restored in the model with two
fermionic fields realizing two inequivalent representations of
the Clifford algebra. These two fields can be combined in a
single 2N-component spinor with the Lagrangian density
(5.4). The respective FC and the current densities are
obtained by combining the corresponding results for the
upper and lower components of this spinor in the form of
Eq. (5.5). As an application of the general results we have
considered the D ¼ 2 model used for the effective field
theoretical description of low-energy degrees of freedom of
the electrons in a graphene sheet. For carbon nanotubes the
corresponding topology is R1 × S1. Depending on the chiral
vector of the nanotube, for the phases in the quasiperiodicity
conditions one has αl ¼ 0;�1=3, and the phases have
opposite signs for the upper and lower components of the
four-spinor. Compactifying the direction along the nanotube
axis, one gets toroidal carbon nanotubes with the topology
of a two-torus for the effective Dirac theory. As a simple
model of a toroidal nanotube, we have considered a one-
dimensional ring. For simplicity, in both cases of cylindrical
and toroidal topologies we have assumed the zero chemical
potential. In this case the charge density vanishes. On the
base of the formulas for general D, the generalization of
the corresponding expressions of the FC and current density
in nanotubes for the case of a nonzero chemical potential is
straightforward.
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