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Deflection angles of massive test particles moving along an unbound trajectory in the Schwarzschild
metric are considered for the case of large deflection. We analytically consider the strong deflection limit,
which is opposite to the commonly applied small deflection approximation and corresponds to the situation
when a massive particle moves from infinity, makes several revolutions around a central object, and goes to
infinity. For this purpose we rewrite an integral expression for the deflection angle as an explicit function of
the parameters determining the trajectory and expand it. Remarkably, in the limiting case of strong
deflection, we succeed in deriving for the first time the analytical formulas for deflection angles as explicit
functions of parameters at infinity. In particular, we show that in this case the deflection angle can be
calculated as an explicit function of the impact parameter and velocity at infinity beyond the usual
assumption of small deflection.
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I. INTRODUCTION

The motion of massive test particles in the Schwarzs-
child metric has been extensively studied throughout the
years [1–13]. Depending on initial parameters, there are
different types of trajectories possible.
Let us consider an unbound orbit with a massive particle

moving from infinity to a central object and then again to
infinity. If the impact parameter of the particle is large, the
trajectory is an almost straight line with a deflection by the
small angle α̂ ≪ 1 (see, for example, Ref. [8]):

α̂ ¼ RS

b

�
1þ 1

v2

�
; RS ¼ 2M; G ¼ c ¼ 1: (1)

Here RS is the Schwarzschild radius, and b and v are the
impact parameter and velocity of incident test particles,
respectively.
Beyond this simple case, the deflection angle of a

massive particle moving from infinity to a central object
and then to infinity cannot be calculated in such an easy
way. The exact formula for the deflection angle is written as
an integral from R (the distance of the closest approach) to
infinity and can be expressed via elliptic integrals.
In this paper we pay our attention to another limiting

case in which the deflection angle can be calculated
analytically, the strong deflection limit (α̂ ≫ 1), which
corresponds to the situation in which a massive particle
moves from infinity, makes several revolutions around a
central object, and goes to infinity. The deflection angle
goes to infinity when the distance of the closest approach
tends to the radius of unstable circular orbit of the particle

(which depends on initial parameters). Thus, a strong
deflection limit implies that the parameters of the orbit
are close to their values at this radius.
Analytical formulas for strong deflection limit were

derivedonly for the caseofphotonmotion [2].Thedeflection
angle diverges logarithmically when R approaches 3M. For
photon deflection beyond the small deflection limit, see
classical papers and books [4–8,10,11]. The subject of
photon deflection in a strong deflection situation is very
popular in gravitational lensing theory. Photons that perform
several revolutions around the central object can form
so-called relativistic images of source. For gravitational
lensing in the strong deflection case, see Refs. [14–24].
The integral in the exact formula for the deflection angle

of massive particles includes a polynomial of the third order
in the radicand, and the expression via elliptic integrals is
usually being written using the roots of this polynomial. In
the general case, these three roots are different and
supposed to be found numerically for given external
parameters E (energy at infinity per unit rest mass) and
L (angular momentum per unit rest mass), which determine
the trajectory and R. For given E and L, one has to obtain
the roots of the polynomial numerically before being able
to calculate the deflection angle (see, for example, Refs. [5]
and [6]). Thus, if the impact parameter is not large, the
deflection angle is not expressed explicitly via external
parameters E and L.
The divergence of the deflection angle leads to diffi-

culties in the derivation of asymptotic formulas for large
angles, and it seems that the most appropriate way is to
expand the exact integral expression. For this purpose we
need the integral to be an explicit function of parameters
determining the trajectory. To achieve it, we suggest using
either the pair (R, L) or (R, E) as an independent pair of*tsupko@iki.rssi.ru
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parameters, instead of (E, L). In this case, all roots can be
found analytically, and therefore we can perform all the
calculations analytically. In this paper we obtain the
deflection angle in the form of elliptic integrals as an
explicit function of the two parameters (R, L) or (R, E). A
similar way is used in the consideration of photon deflec-
tion, in which a similar polynomial is expressed via R.
Expanding the integrals in the asymptotic case of large

deflection angles, we obtain the formulas for the deflection
angles as analytic functions of (R, L) or (R, E). Nevertheless,
for applications it is more convenient to determine the
trajectory by the parameters at infinity. The distance of
the closest approach R is not a parameter at infinity, and
therefore it is not good as an external parameter. Luckily, in
the strong deflection limit, it becomes possible to express the
deflection angle in terms of the impact parameter b instead of
R. Thus, only the parameters at infinity are used for
calculation of the deflection angle, which is convenient
for applications. A similar approach was used in the
description of photon deflection in Ref. [15].
In this work we present for the first time the analytical

formulas for the deflection angles of massive particles in
the strong deflection limit (α̂ ≫ 1) as an explicit function of
external parameters at infinity, (b, L) or (b, E). Parameters
at infinity are simply related with each other, so it is
possible to calculate the deflection angle with our formulas
in very different situations. For example, our formulas
allow one to calculate analytically the deflection angle of a
particle with a given impact parameter and velocity at
infinity as initial conditions, beyond the usual small
deflection case.
Results of the present paper can be useful for the

investigation of star motion around supermassive black
holes. In this case, the ratio of masses is extremely high,
and such orbits now are often referred to as extreme mass
ratio inspirals (EMRIs). Interest in these orbits is very high
now, since they are some of the most prominent sources of
gravitational waves (see, for example, the pioneering work
of Zel’dovich and Novikov [25]). With appropriate initial
conditions, the test body can perform several revolutions
around the central object. In this case, weak field approxi-
mation is not valid, and the usual way is to solve the strong
field equations numerically. Our formulas allow an easy
explicit calculation of the angular deflection of a star or
compact object in EMRIs and then finding, for example,
the number of revolutions of the test body around a
supermassive black hole for various initial conditions,
which can be useful for gravitational wave estimation [25].
In our recent work [24], we considered unbound photon

orbits in the Schwarzschild metric in presence of homo-
genously distributed plasma, in the case of strong deflec-
tion. In particular, we have derived the formulas for the
deflection angles, in the case of strong deflection. In the
paper of Kulsrud and Loeb [26], it was shown that in
homogeneous plasma the photon wave packet moves like a

massive particle with velocity equal to the group velocity of
the wave packet, the rest mass equal to the plasma
frequency, and its energy equal to the photon energy.
This analogy allows one to apply the results of that paper
to the calculation of deflection angle of massive particle,
with a corresponding change of variables. In some places of
the present paper (where possible), we will refer to some
results of that paper. For the subject of gravitational lensing
in plasma, see also Refs. [27–33].
The paper is organized as follows. In Sec. II we derive

the well-known exact expression for the deflection angle of
the massive test particle moving in the Schwarzschild
metric along an unbound orbit. In Sec. III we express
the formula for deflection via elliptic integrals, working
first with the pair of independent parameters (R, L) and
then, separately, with the pair (R, E). In Sec. IV we find a
critical value for the closest approach distance at which a
massive particle going from infinity remains on the circular
orbit with an infinite number of circles around the center.
This critical value depends on L (or on E). The deflection
angle goes to infinity when the distance of the closest
approach goes to this value. In Sec. V we derive an
analytical formula for the particle deflection angle in the
Schwarzschild metric, in the limit of strong deflection. In
Sec. VI we conclude and discuss our results.

II. EXACT DEFLECTION ANGLE

Let us consider a massive test particle moving in the
Schwarzschild metric:

ds2 ¼ −AðrÞdt2 þ dr2

AðrÞ þ r2ðdθ2 þ sin2θdφ2Þ; (2)

AðrÞ ¼ 1 − 2M
r

:

The system of units used here is

G ¼ c ¼ 1; the Schwarzschild radius RS ¼ 2M: (3)

Indices are

i; k ¼ 0; 1; 2; 3; α; β ¼ 1; 2; 3ðr; θ;φÞ; (4)

signature f−;þ;þ;þg: (5)

Equations governing the orbit of the test massive particle
(see, for example, Ref. [8]) are

�
dr
dτ

�
2

¼ E2 − V2ðrÞ ðradial part of motionÞ; (6)

dφ
dτ

¼ L
r2
ðangular part of motionÞ: (7)
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Here E is the energy at infinity per unit rest mass of the
particle, L is the angular momentum per unit rest mass of
the particle, and the effective potential VðrÞ is

V2ðrÞ ¼
�
1 − 2M

r

��
1þ L2

r2

�
: (8)

From equations of orbit, we can obtain the equation of
the trajectory as

dφ
dr

¼ � L
r2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − AðrÞð1þ L2

r2 Þ
q : (9)

Assume that the test particle moves in such a way that its
φ coordinate increases. Then the plus sign in Eq. (9)
corresponds to motion with the coordinate r also increas-
ing, and the minus sign corresponds to motion with
decreasing r.
For a particle which moves from infinity to the distance

of the closest approach R (minimal value of the coordinate
r) and then to infinity, a change of angular coordinate is

Δφ ¼ −
Z

R

∞

L
r2

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − AðrÞð1þ L2

r2 Þ
q

þ
Z

∞

R

L
r2

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − AðrÞð1þ L2

r2 Þ
q

¼ 2

Z
∞

R

L
r2

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − AðrÞð1þ L2

r2 Þ
q : (10)

The motion along the straight line corresponds to the
change of the angular coordinate Δφ ¼ π. Therefore, the
deflection angle can be written as

α̂ ¼ 2

Z
∞

R

L
r2

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − AðrÞð1þ L2

r2 Þ
q − π: (11)

The closest approach distance R and the parameters E
and L are connected at the point r ¼ R by the following
boundary condition:

E2 ¼ AðRÞ
�
1þ L2

R2

�
: (12)

The trajectory and the deflection angle are thus completely
determined by any two parameters from fR;E; Lg, with the
third parameter being expressed through Eq. (12). To
compare, the photon motion is determined by only one
parameter, either R or b, which are uniquely connected with
each other.

III. EXPRESSION OF THE DEFLECTION ANGLE
VIA ELLIPTIC INTEGRALS

Here we express the integral for the angle (11) via elliptic
integrals.
Let us introduce notations

1

r
¼ u;

1

R
¼ u0; AðuÞ ¼ 1 − 2Mu;

Aðu0Þ ¼ 1 − 2Mu0; (13)

and rewrite Eq. (11) in terms of u instead of r. We will refer
to the expression in radicand in Eq. (11) as fðuÞ.
Equation (11) becomes

α̂ ¼ 2

Z
u0

0

Lduffiffiffiffiffiffiffiffiffi
fðuÞp − π; (14)

where fðuÞ ¼ E2 − ð1 − 2MuÞð1þ L2u2Þ: (15)

Coefficients of the polynomial fðuÞ are functions of E and
L, and the roots of this polynomial could be found either
numerically or by a very complicated analytical solution of
the third-order algebraic equation. We suggest using R and
L (or R and E) as another pair of independent parameters.
Using the boundary condition (12), we write

E2 ¼ ð1 − 2Mu0Þð1þ L2u20Þ; (16)

fðuÞ ¼ ð1 − 2Mu0Þð1þ L2u20Þ − ð1 − 2MuÞð1þ L2u2Þ:
(17)

Now the coefficients of the polynomial are functions of R
and L, and one of the roots u ¼ 1=R is evidently visible.
The other two roots (as functions of R and L) can be found
easily by solving the quadratic equation. This approach is
productive because we can perform all further calculations
analytically and obtain the deflection angle in the form of
elliptic integrals as an explicit function of the pair of
parameters R and L. A similar approach is usually applied
for the deflection of photons in vacuum, where an analo-
gous polynomial is expressed via R (see, for example,
Ref. [17] and other references in the present paper). We
would like to mention that in the case that is of relevance
for the subject of the paper the polynomial fðuÞ has three
real roots, and R is the biggest of the three values for which
fð1=RÞ ¼ 0. Finally,

fðuÞ ¼ 2ML2ðu − uAÞðu − uBÞðu − uCÞ; (18)

where

uA ¼ R− 2MþQ
4MR

; uB ¼ u0 ¼
1

R
; uC ¼ R− 2M−Q

4MR
;

(19)
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Q2 ¼ ðR − 2MÞ2 þ 8MðR − 2MÞ
�
1 − 2MR2

L2ðR − 2MÞ
�
:

(20)

For the deflection angle α̂, we obtain the expression

α̂ ¼ 2ffiffiffiffiffiffiffi
2M

p
Z

u0

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðu − uAÞðu − uBÞðu − uCÞ
p − π: (21)

Using Ref. [34], we write

Z
uB

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðu − uAÞðu − uBÞðu − uCÞ
p ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uA − uC
p Fðz; kÞ;

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuA − uCÞuB
ðuB − uCÞuA

s
; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uB − uC
uA − uC

r
;

½uA > uB > 0 ≥ uC�: (22)

Here Fðz; kÞ is an elliptic integral of the first kind [34,35]:

Fðz; kÞ ¼
Z

z

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − k2x2Þ

p ¼
Z

φ

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p

¼ ~Fðφ; kÞ; Fðsinφ; kÞ≡ ~Fðφ; kÞ;
x ¼ sin θ; z ¼ sinφ: (23)

Using Eq. (22) in Eq. (21) and substituting Eq. (19), we
obtain the deflection angle α̂ in the form

α̂ ¼ 4

ffiffiffiffi
R
Q

r
Fð~y; kÞ − π; (24)

where ~y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8MQ
ð6M − RþQÞðR − 2M þQÞ

s
; (25)

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6M − RþQ

2Q

s
: (26)

The expression (24) can be also written differently, due to
the property of elliptic integrals [36], which in our notations
reads

Fðz; kÞ þ Fð~y; kÞ ¼ Fð1; kÞ;

provided
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p zffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ~yffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~y2

p ¼ 1: (27)

Here Fð1; kÞ ¼ ~Fðπ=2; kÞ ¼ KðkÞ is the complete elliptic
integral of the first kind. It is easy to check that

z2 ¼ 2M þQ − R
6M þQ − R

(28)

and ~y given by Eq. (25) satisfy the relation (27), inde-
pendently on the form of Q. Therefore, we obtain the
deflection angle α̂ in the form

α̂ ¼ 4

ffiffiffiffi
R
Q

r
½Fð1; kÞ − Fðz; kÞ� − π: (29)

Thus, we have obtained, for the first time, the formulas for
the deflection angle (24), (29) of massive test particles,
where arguments of elliptical integrals are expressed
explicitly via parameters R and L, defining the trajectory.
To obtain the deflection angle as a function of R and E,

we rewrite Eq. (12) as

L2 ¼ R2

�
E2

AðRÞ − 1

�
(30)

and substitute Eq. (30) into the expression for the deflection
angle (11). The deflection angle then will be in the form of
Eq. (14) with the expression fðuÞ in the form

fðuÞ ¼ 2MR2ðRE2 − Rþ 2MÞ
R− 2M

ðu− uAÞðu− uBÞðu− uCÞ;
(31)

where

uA ¼ R− 2MþQ
4MR

; uB ¼ u0 ¼
1

R
; uC ¼ R− 2M −Q

4MR
;

(32)

Q2 ¼ ðR − 2MÞ2 þ 8MðR − 2MÞ 1

1þ 2M
RðE2−1Þ

: (33)

Finally, in this case we obtain the same expressions (24)
and (29) with the only difference in the definition ofQ. For
more details about this case, see our work in Ref. [24].
We obtain the exact expression for the deflection angle

as an explicit function of the pair ðR;LÞ or ðR; EÞ, see
Eqs. (24) and (29), with the variables ~y given by Eq. (25), k
by Eq. (26), z by Eq. (28), andQ in the form of Eq. (20) for
the ðR;LÞ case or Eq. (33) for the ðR;EÞ case.
The exact expression allows one to calculate the deflec-

tion angle for any ranges of α̂. In case of small deflection
angles (α̂ ≪ 1), there is an analytical formula for the
deflection angle (1). In the opposite case of strong
deflection (α̂ ≫ 1), we can also obtain an asymptotic
analytical formula for the deflection angle, expanding
formula (29) for the exact deflection.
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IV. CRITICAL DISTANCE OF THE CLOSEST
APPROACH FOR UNBOUND MASSIVE TEST

PARTICLES

To obtain an expression for the angle in the limit of
strong deflection, we need to expand the integral (29) about
the value of R, at which the deflection angle goes to infinity.
It will be referred to as the critical value of R.
The deflection angle (14) can be written in terms of an

effective potential [8],

α̂ ¼ 2

Z
u0

0

Lduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − V2ðuÞ

p − π; (34)

where

V2ðuÞ ¼ ð1 − 2MuÞð1þ L2u2Þ: (35)

From the condition

dV2ðuÞ
du

¼ 0; (36)

we obtain

u ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12M2=L2

p
6M

: (37)

The maximum and minimum of the effective potential are
located at the points rM and rm, respectively:

rM ¼ 6M
1þ x

; rm ¼ 6M
1− x

; x≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 12M2

L2

r
; rM < rm:

(38)

The point r ¼ rM corresponds to an unstable circular
orbit of the particle, and rm corresponds to a stable circular
orbit. The critical distance of the closest approach (at given
L) is being reached when the value of R coincides with rM.
In other words, the unbound orbit with infinite deflection
takes place if R ¼ rM. For simplicity, we will denote the
critical value of the closest approach as rM.
The critical distance of the closest approach rM is a

function of L. To derive the strong deflection limit as a
function of ðR;LÞ, one should expand the integrals in exact
formulas for deflection angles near R ¼ rM where rM is
expressed in terms of L. Analogously, to get the strong
deflection limit as a function of ðR;EÞ, one needs to rewrite
rM as a function of E instead of L.
Using Eqs. (30) and (38), we express the critical distance

rM for unbound massive particles coming from infinity as a
function of E in the form

rM ¼ 3E2 − 4þ 3E2y
2ðE2 − 1Þ M; y≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8

9E2

r
: (39)

Noticing that 3E2 − 4þ 3E2y ¼ 3
2
E2ð3y − 1Þð1þ yÞ, we

write rM as

rM ¼ 3

4

ð3y − 1Þð1þ yÞ
1 − 1

E2

M: (40)

Then, because of the equality E2ð3y − 1Þð3yþ 1Þ ¼
8ðE2 − 1Þ, rM takes the following form:

rM ¼ 6M
1þ y
1þ 3y

; y≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8

9E2

r
: (41)

At given L (or E), the trajectory is determined by the
choice of the second parameter R. The deflection angle
goes to infinity when R approaches rM, and the massive
particle performs an infinite number of turns at the radius
rM. Therefore, rM is the critical (minimal) distance of the
closest approach R, for given L (or E). For unbound orbits
of massive particles coming from infinity, making several
loops around a black hole and going back to infinity, the
value of the critical distance of the closest approach is
between 3M and 4M.
We should mention here that the points of maximum rM

and minimum rm of the effective potential appear only for
L > 2

ffiffiffi
3

p
M. According to Eqs. (38) and (41), rM varies

from 6M to 3M if L varies from 2
ffiffiffi
3

p
M to infinity or,

equivalently, if E varies from
ffiffiffi
8

p
=3 to infinity. In this paper

we consider only the case in which the particle moves from
infinity; therefore, for the studied orbit, it has E ≥ 1. As we
are interested in the case in which the particle reaches the
point R and then returns to infinity, we need VðrMÞ to be
more than unity. In another words, the point of the
maximum of the effective potential should be higher than
the value of effective potential at infinity. This happens if
L ≥ 4M (see Ref. [8]). Therefore, for the studied orbit, rM
varies from 4M to 3M if L varies from 4M to infinity or,
equivalently, if E varies from 1 to infinity.

V. DEFLECTION ANGLE IN THE STRONG
DEFLECTION LIMIT

A. As a function of R and L

When R tends to rM (R > rM), the deflection angle goes
to infinity. To obtain the analytic expression for the deflec-
tion angle in the strong deflection limit (α̂ ≫ 1), one needs to
expand the integral (29) around the point R ¼ rM.
As follows from Eqs. (26) and (20), k≃ 1 corresponds to

R≃ rM, so we can use the expansions of the elliptic
integrals about k ¼ 1 [34,37]:

Fð1; kÞ≃ ln
4ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2
p ; (42)

Fðz; kÞ≃ ln tan

�
arcsinðzÞ

2
þ π

4

�
: (43)
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The expression (29) for the deflection angle is simplified to
the following:

α̂ ¼ 4

ffiffiffiffi
R
Q

r �
ln

4ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p − ln
1þ zffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
�
− π: (44)

Expanding (1 − k2) near R ¼ rM [rM is defined by
Eq. (38)], after simplifications (see Appendix A) we have

1 − k2 ≃ ð1þ xÞ2
9Mx

ðR − rMÞ: (45)

Thus, expanding Eq. (44) near R ¼ rM and keeping the
leading terms, we obtain

α̂ ¼ − 2ffiffiffi
x

p ln

�ðR − rMÞM
4r2Mx

ð1þ zÞ2
1 − z2

�
− π; (46)

where z [expression (28) with Q taken in the form of
Eq. (20)] is simplified to

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2x − 1

3x

r
: (47)

Substituting z, we obtain the deflection angle α̂ as a
function of the closest approach distance R and L in
the form

α̂ðR; LÞ ¼ − 2ffiffiffi
x

p ln

�
z1ðxÞ

R − rM
rM

�
− π; (48)

where

z1ðxÞ ¼
5x − 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3xð2x − 1Þp

24x
; (49)

and rM and x are defined in Eq. (38). This formula (48) is
asymptotic and valid for R close to rM.

B. As a function of R and E

In this case, it follows from Eqs. (26) and (33) that k≃ 1
corresponds to R≃ rM, so we use the same formulas (42),
(43), (44). Expanding (1 − k2) near R ¼ rM [rM is given by
Eq. (41)], after significant simplifications (see Ref. [24] for
details) we have

1 − k2 ≃ 2
1þ y
y

MðR − rMÞ
r2M

: (50)

Expanding Eq. (44) near the point R ¼ rM and keeping the
leading terms, we obtain

α̂ ¼ −2
ffiffiffiffiffiffiffiffiffiffiffi
1þ y
2y

s
ln

�
1þ y
8y

ðR − rMÞM
r2M

ð1þ zÞ2
1 − z2

�
− π; (51)

where z [expression (28) with Q taken in the form of
Eq. (33)] is simplified to

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3y − 1

6y

s
: (52)

Substituting z, we obtain the deflection angle α̂ as a
function of the closest approach distance R and E in the
form

α̂ðR;EÞ ¼ −2
ffiffiffiffiffiffiffiffiffiffiffi
1þ y
2y

s
ln

�
z2ðyÞ

R − rM
rM

�
− π; (53)

where

z2ðyÞ ¼
9y − 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6yð3y − 1Þp

48y
; (54)

and rM and y are defined in Eq. (41). This formula (53) is
asymptotic and valid for R close to rM.

C. As a function of b and L

The impact parameter b for a massive particle is defined
uniquely by E and L as [8], [9]

b2 ¼ L2

E2 − 1
: (55)

Let us assume that bcr is the minimal impact parameter,
corresponding to the critical distance of the closest
approach rM. Since we need b to be a function of R and
L, we substitute E2 from Eq. (12) into Eq. (55). Expanding
b in Eq. (55) around the point R ¼ rM, we obtain

b ¼ bcrðxÞ þ b1ðR − rMÞ2; (56)

where

bcrðxÞ ¼ rM

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2x − 1

r
; (57)

b1 ¼
3x

2ð2x − 1Þr2M
bcrðxÞ: (58)

Writing

ðR − rMÞ2
r2M

¼ 2z2
b − bcrðxÞ
bcrðxÞ

; (59)

we obtain the deflection angle α̂ as a function of the impact
parameter b and L,
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α̂ðb; LÞ ¼ − 1ffiffiffi
x

p ln

�
2z2z21ðxÞ

b − bcrðxÞ
bcrðxÞ

�
− π; (60)

where z is given by Eq. (47), z1ðxÞ is given by Eq. (49),
bcrðxÞ is given by Eq. (57), and rM and x are defined in
Eq. (38). This formula is valid for b close to bcrðxÞ, where
bcrðxÞ is the critical value of impact parameter at given
L (57).

D. As a function of b and E

In this case we need b to be a function of R and E, and we
substitute L2 from Eq. (30) into Eq. (55). Expanding b in
Eq. (55) around the point R ¼ rM, we obtain (for this case,
see Ref. [24])

b ¼ bcrðyÞ þ b1ðR − rMÞ2; (61)

where

bcrðyÞ ¼
ffiffiffi
3

p
rM

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y
3y − 1

s
; (62)

b1 ¼
3

ffiffiffi
3

p

2

y
rM

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y
3y − 1

s
¼ 3y

2r2M
bcrðyÞ: (63)

Writing

ðR − rMÞ2
r2M

¼ 2

3y
b − bcrðyÞ
bcrðyÞ

; (64)

we obtain the deflection angle α̂ as a function of the impact
parameter b and E,

α̂ðb; EÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
1þ y
2y

s
ln

�
2z22ðyÞ
3y

b − bcrðyÞ
bcrðyÞ

�
− π; (65)

where z2ðyÞ is given by Eq. (54), bcrðyÞ is given by
Eq. (62), and rM and y are defined in Eq. (41). This
formula is valid for b close to bcrðyÞ, where bcrðyÞ is the
critical value of impact parameter at given E (62).
If impact parameter b and asymptotic velocity at infinity

v are used as initial parameters, the deflection angle can be
calculated by the formula (65) with

E ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p :

In other cases connection L ¼ Evb (see, for example,
Ref. [8]) can be used.

E. Comparison of formulas

We have shown the derivation of the formulas for the two
cases fðR;LÞ; ðb; LÞg and fðR;EÞ; ðb; EÞg from the very
outset to the final results. In the first case, we used L as the

second independent variable, and in the other case we used
E instead.
Here we would like to discuss also how these two cases

can be transformed to each other by the appropriate change
of variables.
In the case of formulas with the distance of the closest

approach R, Eqs. (48) and (53), it is easy to do. Comparing
Eqs. (38) and (41), one easily finds that x ¼ 2y=ð1þ yÞ.
Substituting this into Eq. (48), we obtain the deflection
angle α̂ as a function of the closest approach distance R and
E in the form (53).
In the case of formulas with the impact parameter b,

Eqs. (60) and (65), the change of variables is more
complicated and cannot be performed by this simple
substitution. In the derivation of these formulas, we expand
the impact parameter up to quadratic terms ðR − rMÞ2.
Therefore, in this case it is necessary to perform the change
of variables with the same accuracy. To get the expression
(61) from Eq. (56), it is necessary to substitute the exact
expression of L via R and E [see Eq. (30)] to Eq. (56) and
expand it up to quadratic terms ðR − rMÞ2. In this pro-
cedure, additional quadratic terms will arise from the term
bcrðxÞ in Eq. (56), and after simplifications we can finally
get the expression (61). It is also possible to get the
expression (56) from Eq. (61). Therefore, we can transform
formulas (60) and (65) into each other.
We should emphasize therefore that if one wants to use

other variables instead of the pair used in the given formula
one should calculate the new pair of variables using the
exact relations, for example, Eq. (55).
In the limiting case of L → ∞ or E → ∞, our formulas

for massive particles transform to formulas for photons in
vacuum; for the deflection angle of photons in the strong
deflection limit with R, see Ref. [2], and for the formula
with b, see Ref. [15].

VI. DISCUSSION

The main result of present paper is a derivation of the
analytical formulas (48), (53), (60), (65) for deflection angles
of a massive test particle in the strong deflection limit
(α̂ ≫ 1). The large deflection limit is the opposite of the
commonly used small deflection case and works very well
for the situation in which a massive particle goes from
infinity, performs several revolutions around the central
object, and then goes to infinity. Formulas are written as
functions of parameters at infinity determining the trajectory.
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APPENDIX A: CALCULATIONS FOR SEC. V

To find an expansion (45) of (1 − k2) near the point
R ¼ rM, let us rewrite k2 as

k2 ¼ 6M − RþQ
2Q

¼ 1

2
þ 1

2

6M − R
Q

: (A1)

For convenience, let us calculate Q2=ð6M−RÞ2. Here Q2 is

Q2 ¼ ðR − 2MÞ2 þ 8MðR − 2MÞ
�
1 − 2MR2

L2ðR − 2MÞ
�
:

(A2)

Let us write R as

R ¼ rM þ ΔR: (A3)

Here ΔR ¼ R − rM is a small variable,

ΔR ≪ rM; (A4)

and

rM ¼ 6M
1þ x

: (A5)

Expanding Q2 near R ¼ rM (the small variable here is
ΔR), we obtain

Q2 ≃Q0 þQ1ΔR;

where

Q0 ¼
36M2x2

ð1þ xÞ2 ; Q1 ¼
4Mxð1þ 4xÞ

1þ x
:

Expanding ð6M − RÞ2 near R ¼ rM (the small variable
here is ΔR), we obtain

ð6M − RÞ2 ≃ 36M2x2

ð1þ xÞ2
�
1 − 1þ x

3Mx
ΔR

�
: (A6)

Keeping the leading terms, we obtainQ2=ð6M − RÞ2 in the
form

Q2

ð6M − RÞ2 ≃ 1þ 4ð1þ xÞ2
9Mx

ΔR: (A7)

By using Eq. (A1), we obtain finally

1 − k2 ≃ ð1þ xÞ2
9Mx

ΔR: (A8)
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