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Inspired by quantum gravity proposals, we construct a deformed phase space which supports the UVand
IR cutoffs. We show that the Liouville theorem is satisfied in the deformed phase space which allows us to
formulate the thermodynamics of the early universe in the semiclassical regime. Applying the proposed
method to the Snyder noncommutative space, we find a temperature dependent equation of state which
opens a new window for the natural realization of inflation as a phase transition from the quantum gravity
regime to the standard radiation dominated era. Also, we obtain finite energy and entropy densities for the
Universe when at least the weak energy condition is satisfied. We show that there is a minimum size for the
Universe which is proportional to the Planck length and consequently the big bang singularity is removed.

DOI: 10.1103/PhysRevD.89.084072 PACS numbers: 04.60.Bc, 98.80.Cq

I. INTRODUCTION

The dynamics of the Universe in the standard big bang
scenario is governed by Einstein’s general theory of
relativity. If general relativity is used to describe the
observed universe, the model requires huge fine-tuned
initial conditions [1]. Such initial conditions can be
accommodated by the standard model, but of course they
cannot be explained in this framework. The inflationary
scenario, an accelerating phase before the nucleosynthesis
era, can resolve this problem in a novel way [2]. Such a
scenario can be realized, for instance, from a grand unified
theory symmetry breaking phase transition SUð5Þ →
SUð3Þ × SUð2Þ ×Uð1Þ around 1015GeV [3]. While infla-
tion solves the initial value problem, it is not a natural
prediction of general relativity. More precisely, general
relativity is a classical theory and is applicable at sub-
Planckian curvatures. On the other hand, inflation occurs in
the quantum gravity regime and so it is plausible to expect
that the problem of the initial condition will be naturally
addressed in the framework of the full quantum gravity
theory. In the absence of a full quantum theory of gravity,
we do not know the exact dynamical equations governing
on the early universe. Nevertheless, there are some candi-
dates such as string theory and loop quantum gravity which
revealed some unknown aspects of quantum gravity. For
instance, the existence of a minimal length and a minimal
momentum which induce ultraviolet (UV) and infrared (IR)
cutoffs, respectively, are common addresses of alternative
candidates for the quantum gravity proposal [4–9].

Einstein equations for the Universe, including the
Friedmann and Raychaudhuri equations, cannot be solved
without supplementing an equation of state. The equation
of state is determined by a statistical analysis of the
particles in the Universe. The question then arises: Is the
equation of state in the quantum gravity regime the same as
the low energy regime ones? We focus on this question in
the present study by considering a deformed phase space
that includes some phenomenological aspects of the quan-
tum gravity proposal in the semiclassical regime. On the
other hand, in the standard model of cosmology the
adiabatic expansion condition implicitly leads to the big
bang singularity when one reverses the expansion history.
We show here that quantum gravity effects modify the
adiabatic expansion condition leading trivially to a non-
singular early universe. Interestingly this resolves the large
entropy density problem too.
The structure of the paper is as follows: In Sec. 2, we

introduce a kinematical phase space ~Γ which is consistent
with the quantum gravity proposal and supports the exist-
ence of the UV and IR cutoffs. In the dynamical level, we
show that the Liouville theorem is satisfied in the deformed
phase space, which ensures that the number of quantum
states is invariant under the time evolution of the system. In
Sec. 3, we formulate the thermostatistics in the noncommu-
tative phase space and we study some consequences of the
model in the early universe cosmology. In Sec. 4, we apply
the proposed model to the Snyder noncommutative space.
Section 5 is devoted to the conclusions.

II. THE DEFORMED PHASE SPACE

The spacetime manifold structure is significantly
affected by quantum gravity effects in the high energy
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regime. All alternative candidates of quantum gravity
suggest some deformations of the algebraic structure in
such a way that the system under consideration to be UV
and IR regularized. These deformations can be addressed
properly through the modified Heisenberg commutation
relations. The Snyder noncommutative spaces are the well-
known example which can be realized from the modified
commutation relations and also are naturally UV/IR-regu-
larized [9,10]. The generalized uncertainty principle is
another proposal which is suggested in the context of
the string theory and supports the existence of minimal
length (UV cutoff) and minimal momentum (IR cutoff)
[4,5]. Also, polymer quantization is an effective approach
to the loop quantum gravity [11] which suggests the direct
deformation to the phase space variables through a process
known as polymerization [12–14]. In what follows we
formulate the kinematics and dynamics of representative
points in a phase space with natural cutoffs.

A. Kinematics

Heisenberg algebra will be deformed in the quantum
gravity regime. The deformed Heisenberg algebra leads to
the deformed Poisson algebra in the classical limit through
a standard relation 1

i ½Â; B̂� → fA;Bg [15]. The most gen-
eral form of the noncanonical symplectic structure on the
phase space ~Γ of dimension 2D is

fqi; qjg ¼ fijðq; pÞ;
fqi; pjg ¼ gijðq; pÞ;
fpi; pjg ¼ hijðq; pÞ; (1)

where i; j ¼ 1; 2;…; D. Here, q and p are the positions and
conjugate momenta, respectively, and fij, gij, and hij are
the differentiable functions which determine the deformed
Poisson algebra on ~Γ. Specifying particular forms for these
functions, one recovers the well-known noncommutative
algebras such as the Snyder and the Moyal algebras (see the
Appendix).

The above deformed Poisson brackets should have the
same properties as the usual Poisson brackets; that is, they
should be antisymmetric, bilinear, and satisfy the Leibnitz
rule and the Jacobi identity. Clearly, fij and hij should be
totaly antisymmetric fij ¼ −fji and hij ¼ −hji through the
antisymmetric property of the Poisson brackets. For two
arbitrary functions UðζaÞ and VðζaÞ where ζa ¼ ðqi; piÞ
with a ¼ 1; 2;…; 2D, the Poisson bracket reads

fU;Vgζ ¼ fζa; ζbg
∂U
∂ζa

∂V
∂ζb : (2)

Expanding the above relation in terms of the phase space
variables q and p and using the relations in (1), one obtains

fU;Vg½q;p� ¼ gij

�∂U
∂qi

∂V
∂pj

−
∂U
∂pj

∂V
∂qi
�

þfij
∂U
∂qi

∂V
∂qj þ hij

∂U
∂pi

∂V
∂pj

: (3)

Also, the Jacobi identity

fU; fV;Wgg þ fV; fW;Ugg þ fW; fU;Vgg ¼ 0 (4)

is satisfied for any functionsUðq; pÞ, Vðq; pÞ, andWðq; pÞ
with a continuous second derivative. Substituting phase
space variables q and p into relation (4) gives four
independent equations

fqi; fqj; qkgg þ fqj; fqk; qigg þ fqk; fqi; qjgg ¼ 0;

fqi; fqj; pkgg þ fqj; fpk; qigg þ fpk; fqi; qjgg ¼ 0;

fqi; fpj; pkgg þ fpj; fpk; qigg þ fpk; fqi; pjgg ¼ 0;

fpi; fpj; pkgg þ fpj; fpk; pigg þ fpk; fpi; pjgg ¼ 0.

(5)

Substituting from (1) and using (3), relations (5) give the
constraints on the functions fij, gij, and hij,

fim
∂fjk
∂qm þ gim

∂fjk
∂pm

þ fjm
∂fki
∂qm þ gjm

∂fki
∂pm

þ fkm
∂fij
∂qm þ gkm

∂fij
∂pm

¼ 0;

fim
∂gjk
∂qm þ gim

∂gjk
∂pm

− fjm
∂gik
∂qm − gjm

∂gik
∂pm

− gmk
∂fij
∂qm þ hkm

∂fij
∂pm

¼ 0;

fim
∂hjk
∂qm þ gim

∂hjk
∂pm

þ gmj
∂gik
∂qm − hjm

∂gik
∂pm

− gmk
∂gij
∂qm þ hkm

∂gij
∂pm

¼ 0;

−gmi
∂hjk
∂qm þ him

∂hjk
∂pm

− gmj
∂hki
∂qm þ hjm

∂hki
∂pm

− gmk
∂hij
∂qm þ hkm

∂hij
∂pm

¼ 0: (6)

We will see that the measure of the phase space ~Γ is different from the measure of the usual phase space Γ. To show this
fact, consider a general noncanonical transformation of the phase space
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ðQ;PÞ → ðq; pÞ; (7)

where the variablesQ and P obey the nondeformed Poisson
algebra on the phase space Γ,

fQi;Qjg ¼ 0; fQi; Pjg ¼ δij; fPi; Pjg ¼ 0; (8)

while the variables q ¼ qðQ;PÞ and p ¼ pðQ;PÞ belong
to the deformed phase space ~Γ and satisfy the deformed
Poisson algebra (1). The Jacobian of transformation (7) in
the 2D-dimensional classical phase space can be expanded
in terms of the Poisson brackets as [16,17]

Jðq; pÞ ¼ ∂ðq; pÞ
∂ðQ;PÞ

¼ 1

2DD!

X2D
i1…i2D¼1

ϵi1..i2DfXi1 ; Xi2g…fXi2D−1 ; Xi2Dg

(9)

where ϵ denotes the Levi-Civita symbol and Xi denotes the
phase space variables so that for odd i it is a coordinate qi
and for even i it is a conjugate momenta pi. The Jacobian
Jðq; pÞ induces the UV and IR cutoffs in the high and low
energy regimes, respectively. The deformation to the
measure of the phase space ~Γ can be obtained by means
of the Jacobian (9) asZ

Γ
ð…ÞdωðQ;PÞ⟶

Z
~Γ
ð…Þ d ~ωðq; pÞ

Jðq; pÞ ; (10)

where dωðQ;PÞ is the infinitesimal volume of the 2D-
dimensional usual phase space Γ and d ~ωðq; pÞ=Jðq; pÞ is
its counterpart in the deformed phase space ~Γ. It is
important to note that the deformed phase space volume
d ~ωðq; pÞ=Jðq; pÞ should be invariant under the time
evolution of the system. We consider this issue in the next
section and we show that the Liouville theorem is satisfied
in the deformed phase space ~Γ. In general, the phase spaces
Γ and ~Γ topologically may represent different symplectic
manifolds, but the problem that arises is the following:
How do these two manifolds coincide in the limit of the low
energy regime? This problem arises, for example, in the
polymer framework which can be resolved by a detailed
analysis of the continuous limit of the corresponding theory
[12,13]. In the present study, these manifolds are topo-
logically the same, though at the boundaries they may
behave differently because of, for instance, the existence of
minimal length, minimal momentum, and maximal
momentum which may affect the range of integrals in
relation (10).
Although the ultimate form of the Jacobian Jðq; pÞ will

be specified just after formulating the full quantum gravity
theory, effective theories to the quantum gravity proposal
have proposed some candidates for this quantity [18–24].

Moreover, the deformation such as relation (10), can be
deduced without demanding modified commutation rela-
tions. For instance, the coherent states approach to the
spacetime noncommutativity provides a direct deformation
to the phase space which is equivalent to Jðq; pÞ−1 ¼
e−σq

2−θp2

[7,8] (see also the Appendix), where σ and θ are
the noncommutative deformation parameters that induce
the IR and UV cutoffs, respectively.

B. Dynamics and the Liouville theorem

The next issue now is to consider the dynamics of the
model. The deformed measure,

d ~ωðq; pÞ
Jðq; pÞ ; (11)

determines the number of quantum states in the phase space
~Γ. So, the deformed volume d ~ωðq; pÞ=Jðq; pÞ should be
invariant under the time evolution of the system to ensure
that the Liouville theorem is satisfied and consequently the
number of microstates remains unchanged.
The time evolution of any function of the phase space

Uðq; pÞ in the Hamiltonian formalism can be represented
by the Poisson brackets

dU
dt

¼ fU;Hg; (12)

where Hðq; pÞ is the Hamiltonian of the system. The
equations of motion can be obtained from relations (3) and
(12)

_qi ¼ fqi;Hg ¼ fij
∂H
∂qj þ gij

∂H
∂pj

;

_pi ¼ fpi;Hg ¼ −gji
∂H
∂qj þ hij

∂H
∂pj

: (13)

Consider an infinitesimal transformation of the phase space
variables qi and pi,

qi0 ¼ qi þ δqi;

pi
0 ¼ pi þ δpi; (14)

where δqi and δpi evolve through the relations in (13) as

δqi ¼
�
fij

∂H
∂qj þ gij

∂H
∂pj

�
δt;

δpi ¼
�
gij

∂H
∂qj þ hij

∂H
∂pj

�
δt; (15)

where we have used the fact that hij ¼ −hji. An infini-
tesimal deformed phase space volume evolves with time
through the relations in (14) as
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d ~ωðq0; p0Þ ¼
���� ∂ðqi0; pi

0Þ
∂ðqi; piÞ

����d ~ωðq; pÞ: (16)

From relations (14) we have

∂qi0
∂qj ¼ δij þ

∂δqi
∂qj ;

∂qi0
∂pj

¼ ∂δqi
∂pj

;

∂pi
0

∂qj ¼ ∂δpi

∂qj ;
∂pi

0

∂pj
¼ δij þ

∂δpi

∂pj
. (17)

Using the above relations and up to the first order of δt we
have [18]

���� ∂ðqi0; pi
0Þ

∂ðqi; piÞ
���� ¼ 1þ

�∂δqi
∂qi þ ∂δpi

∂pi

�
: (18)

Substituting this relation in relation (16) one obtains

d ~ωðq0; p0Þ ¼
�
1þ

�∂fij
∂qi −

∂gji
∂pi

� ∂H
∂qj δt

þ
�∂gij
∂qi −

∂hji
∂pi

� ∂H
∂pj

δt

�
d ~ωðq; pÞ: (19)

In the next step we should consider the time evolution of
the Jacobian (9). For a small deviation from the usual
Poisson algebra, we have

fij ≪ 1; ðgij − δijÞ ≪ 1; hij ≪ 1; (20)

independent of the explicit form of these functions. The
above conditions ensure that the noncanonical symplectic
structure (1) reduces to the usual canonical ones in the low
energy limit. In this limit, the Jacobian (9) can be
approximated as [16]

Jðq; pÞ ¼
YD
i¼1

fqi; pig ¼
YD
i¼1

gii ≈ 1þ
XD
i¼1

ðgii − 1Þ: (21)

The time evolution of the above Jacobian can be obtained
through the relations in (14) as

Jðq0; p0Þ ¼
YD
i¼1

fqi0; pi
0g

¼
YD
i¼1

ðfqi; pig þ fqi; δpig

þ fδqi; pig þ fδqi; δpigÞ: (22)

The last term fδqi; δpig is the second order of δt and can be
ignored. Then, up to the first order of δt we find

Jðq0; p0Þ ¼
YD
i¼1

fqi; pig þ
YD
i¼1

ðfqi; δpig þ fδqi; pigÞ: (23)

The first term in the right-hand side of the above relation
coincides with relation (21). Substituting from the relations
in (15), to first order of δt relation (23) becomes

Jðq0; p0Þ ¼ Jðq; pÞ þ
YD
i¼1

�
gik

�∂fkj
∂qi −

∂gji
∂pk

� ∂H
∂qj

þ gik

�∂gkj
∂qi −

∂hji
∂pk

� ∂H
∂pj

− fik

�∂gij
∂qk

∂H
∂qj þ

∂hji
∂qk

∂H
∂pj

�

þ hik

�∂fkj
∂pi

∂H
∂qj þ

∂gjk
∂pi

∂H
∂pj

��
δt;

where we have used relation (21). In light of relation (20),
one can neglect the second order terms

ðgij − δijÞ × fij; ðgij − δijÞ × hij; fij × hij: (24)

So, the last two terms can be neglected and the above
Jacobian reduces to the following relation:

Jðq0; p0Þ ≈ Jðq; pÞ þ
�∂fij
∂qi −

∂gji
∂pi

� ∂H
∂qj δt

þ
�∂gij
∂qi −

∂hji
∂pi

� ∂H
∂pj

δt; (25)

which after some manipulation becomes

Jðq0; p0Þ
Jðq; pÞ ¼ 1þ J−1ðq; pÞ

��∂fij
∂qi −

∂gji
∂pi

� ∂H
∂qj

þ
�∂gij
∂qi −

∂hji
∂pi

� ∂H
∂pj

�
δt: (26)

The inverse of the Jacobian can be approximated through
relation (21) as

J−1ðq; pÞ ≈ 1 −
XD
i¼1

ðgii − 1Þ; (27)

where we have used relation (20). Substituting the inverse
of the Jacobian (27) and again neglecting the second order
terms, one gets

Jðq0; p0Þ
Jðq; pÞ ¼ 1þ

�∂fij
∂qi −

∂gji
∂pi

� ∂H
∂qj δt

þ
�∂gij
∂qi −

∂hji
∂pi

� ∂H
∂pj

δt: (28)
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From relations (28) and (19) we have

d ~ωðq0; p0Þ
Jðq0; p0Þ ¼ d ~ωðq; pÞ

Jðq; pÞ ; (29)

which ensures that the deformed phase space volume (11)
is invariant under the time evolution of the system and
consequently the Liouville theorem is satisfied in the
deformed phase space ~Γ. This result is very essential for
our forthcoming arguments. We note that our general
results obtained in this section include the results obtained
in special cases studied previously [18,19].

III. THERMOSTATISTICS

The volume of the phase space determines the number of
microstates in the semiclassical regime and according to the
Liouville theorem it should be invariant under the time
evolution. Now we are able to formulate the statistical
mechanics in noncommutative phase space since the
deformed density of states (10) is invariant under the time
evolution through relation (29). Moreover, one should also
be careful about the definition of the bosons and fermions
due to the loss of the Lorentz invariance in a noncommu-
tative spacetime [25]. Here we suppose that fermions and
bosons are defined in the same way as in the standard
quantum mechanics but within the coherent state picture of
noncommutativity which considers a particle as a smeared
object rather than a pointlike particle. In other words,
bosons and fermions save their quantum mechanical
properties as in the standard quantum mechanics but the
effect of the noncommutativity of space is implemented by
a substitution rule: The pointlike structure of these particles
is assumed to be replaced by a smeared, Gaussian profile.
In this formalism, the particle mass M, instead of being
completely localized at a point, is distributed throughout a
region of linear size

ffiffiffi
θ

p
(see part 2 of the Appendix). The

implementation of this argument leads to the substitution of
a position Dirac-delta function (which describes pointlike
structures) with a Gaussian profile describing smeared
structures [7,8,26]. As has been shown in Ref. [27], the
space noncommutativity enhances the negative statistical
correlation between fermions and enhances the positive
statistical correlation between bosons. Also, there is
residual “attraction potential” between bosons and residual
“repulsion potential” between fermions in the high temper-
ature limit. So, in a noncommutative space the usual
knowledge in statistical mechanics is still true, say the
Bose-Einstein or Fermi-Dirac distributions with a modified
density of states for smeared particles. With these points in
mind, in what follows we treat the thermostatistics of
bosons and fermions in this setup.

A. The method

The issue of the noncommutativity can be included in the
phase space by two equivalent pictures [28]: (i) Working
with the deformed commutation relation, such as (1),
together with the nondeformed Hamiltonian function,
(ii) finding canonical variables on the noncommutative
phase space which satisfy the commutative algebra but the
Hamiltonian function now gets modified to ensure that the
Hamilton’s equations (13) are the same in the two pictures.
Mathematically, these two pictures are related to each other
by the Darboux transformation. According to the Darboux
theorem, it is always possible to find canonical coordinates
on the symplectic manifold which satisfy commutative
algebra. So, it is always possible to find a transformation
that transforms any noncommutative Poisson algebra such
as (1) to the commutative ones [29]. Of course, the
Hamiltonian function gets modified when one transforms
the noncommutative algebra to the commutative ones to
ensure that the trajectories on the phase space remain the
same in the two pictures. However, working within the first
picture is more significant in statistical mechanics since in
this picture noncommutativity only affects the number of
microstates through the deformed density of states.
The number of particles N and pressure P of a statistical

system with volume V at temperature T is given by the
standard definitions

N ¼
X
ε

ðz−1eε=T∓1Þ−1; (30)

and

PV ¼ ∓T
X
ε

lnð1∓ze−ε=TÞ; (31)

respectively, where z is the fugacity of the system and signs
ð−Þ and ðþÞ hold for bosons and fermions, respectively.
The energy of the microstates ε should be determined only
by quantized theory. In usual statistical mechanics, ε is the
solution of the Schrödinger equation. Here it should be a
solution of the full quantum gravity equations for the
corresponding statistical system. But, one can replace
summation over ε by the integral over all phase space
variables by means of the density of states (10) asP

ε →
1

ð2πÞ3
R
V

R d3qd3p
Jðq;pÞ , where V is the volume of the

corresponding statistical system. In the early universe,
all the particles effectively are relativistic and the
Hamiltonian simplifies to HðpÞ ¼ p (where p is the norm
of the vector pi). We set also z ¼ 1 (the chemical potential
to be zero) as one usually assumes. Now, the number of
particles and pressure in the quantum gravity regime can be
obtained from relations (30) and (31) as

N∓ ¼ g∓
ð2πÞ3

Z
V

Z
ðep=T∓1Þ−1 d

3qd3p
Jðq; pÞ ; (32)
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P∓ ¼ ∓ g∓
ð2πÞ3

T
V

Z
V

Z
lnð1∓e−p=TÞ d

3qd3p
Jðq; pÞ ; (33)

where g− and gþ are the number of the relativistic degrees
of freedom for bosons and fermions, respectively. In the
above relations, the signs ð−Þ and ðþÞ hold for the bosons
and fermions, respectively. The usual results can be
recovered by setting J ¼ 1 which is corresponding to
the identity transformation with q ¼ Q and p ¼ P in
relation (7). The total number of particles and total pressure
is given by

N ¼ N− þ Nþ; (34)

and

P ¼ P− þ Pþ: (35)

The entropy density s and the energy density ρ of the
system can be obtained from the definitions

sðTÞ ¼ ∂P
∂T ; ρðTÞ ¼ T2

∂
∂T
�
P
T

�
: (36)

Now, the semiclassical statistical consideration is com-
pleted and one can obtain any thermodynamical quantities
in noncommutative phase spaces through relations (34),
(35), and (36).

B. Cosmological implications

Before considering particular examples of the noncom-
mutative phase space, we study some implications of our
setup on the thermodynamics of the early universe.
The dynamics of the Universe in the standard cosmology

is given by the Einstein equations, and the so-called
Friedmann and Raychaudhuri equations,�

_a
a

�
2

þ k
a2

¼ 8πG
3

ρ; (37)

ä
a
¼ −

4πG
3

ðρþ 3PÞ; (38)

where aðtÞ is the scale factor, ρ and P are the energy density
and pressure, respectively, and a dot denotes the derivative
with respect to the cosmic time. Here k marks the spatial
curvature which is normalized to zero, 1, and −1 for flat,
closed, and open universes, respectively. Furthermore, an
equation of state should be supplemented to complete this
set of equations. In fact, an equation of state parameter of
the form P ¼ Pðρ; sÞ determines whether the Universe is
accelerating or decelerating, through the Raychaudhuri
equation. In principle, the equation of state should be
obtained from the statistical considerations of the particles

in the early universe. So, the question is whether the
equation of state remains unchanged in the limit of high
temperature. From relation (33) and definition (36) for the
energy density, it is clear that the equation of state changes
when one includes quantum gravity effects. We find such a
modification to the equation of state in Snyder spaces in the
next section.
Furthermore, it is also important to note that the entropy

density (36) now changes since the pressure is modified
through relation (33). Consequently, the adiabatic condition

S ¼ sa3 ¼ cte:; (39)

where S is the total entropy of the Universe, gets modified
in quantum gravity regime. Such a modification to the
entropy density removes the big bang singularity in a
fascinating manner. We will see this feature explicitly in the
case of Snyder noncommutative space in the next section.

IV. THE SNYDER UNIVERSE

The Snyder noncommutative spacetime was first intro-
duced by Snyder [9]. The corresponding noncommutative
phase space has recently been developed in Ref. [10] by
means of an appropriate structure with the following
noncommutative commutation relations (as has been
shown by Mignemi in [10], this is actually the Snyder
space on a sphere):

fqi; qjg ¼ β2Jij; fpi; pjg ¼ α2Jij;

fqi; pjg ¼ δij þ α2qiqj þ β2pipj þ 2αβpipj; (40)

where i; j ¼ 1; 2; :::; D and Jij ¼ qipj − qjpi are the gen-
erators of the rotation in D dimensions. The deformation
parameters α and β induce the IR and UV cutoffs,
respectively. We need the Jacobian (9) corresponding to
the Snyder algebra (40) to study the thermodynamics in this
framework by using relations (34), (35), and (36). In the
Appendix we have calculated the Jacobian for the Snyder
space which is

Jðq; pÞ ¼ 1þ 3jαqþ βpj2; (41)

where we have set D ¼ 3 for single-particle states and q
and p are the three-vectors associated to the qi and pi,
respectively. In the Appendix we have shown that the
Jacobian (41) also supports the other approaches to the
noncommutativity such as the coherent state approach
[7,8]. The Jacobian (41) contains the UV/IR mixing effect
which is a common feature of the noncommutative spaces.
Both the IR and UV cutoffs are essential for the renorm-
alization of the quantum fields in curved spaces.
Substituting the Jacobian (41) in relation (33) gives the
pressure for the bosons and fermions as
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P∓ ¼ ∓ g∓
ð2πÞ3

T
V

Z
V

Z
lnð1∓e−p=TÞ × ð1 − 3α2q2 − 3β2p2 − 6αβq.pÞd3qd3p

¼ ∓ g∓
ð2πÞ3

T
V

�Z
V
d3q ×

Z
lnð1∓e−p=TÞd3p − 3α2

Z
V
q2d3q ×

Z
lnð1∓e−p=TÞd3p

− 3β2
Z
V
d3q ×

Z
lnð1∓e−p=TÞp2d3p − 6αβ

Z
V

Z
q.p lnð1∓e−p=TÞd3qd3p

�
; (42)

where we have expanded the Jacobian up to the second
order of the deformation parameters α and β. Only the last
term in the right-hand side of the above relation includes
both of the deformation parameters α and β. Now we
calculate this UV/IR mixing term. Writing the three-vectors

q and p in the spherical coordinates as q ¼ ðq; θ1;φ1Þ and
p ¼ ðp; θ2;φ2Þ with q ¼ jqj and p ¼ jpj, the inner product
will be q.p¼qpðcosθ1cosθ2þsinθ1 sinθ2cosðφ1−φ2ÞÞ
and the last term in relation (42) becomes

−6αβ
Z
V

Z
q.p lnð1∓e−p=TÞd3qd3p¼−6αβ

Z
∞

0

dpp3 lnð1∓e−p=TÞ
Z þ1

−1
dðcosθ2Þ

Z
2π

0

dφ2

×
Z

R

0

dqq3
Z þ1

−1
dðcosθ1Þ

Z
2π

0

dφ1ðcosθ1 cosθ2þsinθ1 sinθ2cosðφ1−φ2ÞÞ¼0

(43)

where we have used the integrals
Rþ1
−1 dðcos θ1Þ cos θ1 ¼ 0

and
R
2π
0 dφ1 cosðφ1 − φ2Þ ¼ 0. So, the last term in relation

(42) vanishes. The integral over coordinates simply givesR
V d

3q ¼ V,
R
V q

2d3q ¼ 4π
5
R5 ¼ 3

5
ð 3
4πÞ2=3V5=3 where R is

the radius corresponding to the volume of the system under
consideration. Performing the integrals over momentums
by using the identity

R
∞
0

xn−1dx
exþ1

¼ ð1 − 1
2n−1

Þ R∞0 xn−1dx
ex−1 gives

the pressure for the bosons and fermions, respectively, as

p− ¼ g−
π2T4

90

�
1 − 9

5

�
3

4π

�2
3

α2V
2
3 − 24

7
β2π2T2

�
;

pþ ¼ 7

8
gþ

π2T4

90

�
1 − 9

5

�
3

4π

�2
3

α2V
2
3 − 186

49
β2π2T2

�
; (44)

where as usual g− and gþ are the number of relativistic
degrees of freedom for bosons and fermions, respectively.
The natural choice for the IR deformation parameter is
the square root of the cosmological constant with
α ∼ 10−24cm−1, and for the UV deformation parameter
β ¼ β0lP ¼ β0T−1

P is relevant to ensure that the UV effects
only become important around the Planck scale. The
numerical constant β0 ∼Oð1Þ should be fixed only with
experiment [32]. The total pressure of the system can be
obtained from relations (35) and (44) as

PðTÞ ¼ g⋆
π2T4

90

�
1 −

9

5

�
3

4π

�2
3

α2V
2
3 − χðT=T

P
Þ2
�
; (45)

where g⋆ ¼ ðg− þ 7
8
gþÞ and χ ¼ 24π2

7
ðg−þ31

32
gþ

g−þ7
8
gþ
Þβ20. We are

interested in the early universe implications and the IR term

in relation (45) is negligible in the high temperature limit.
Nevertheless, the very small IR effects play an essential role
for the renormalization of the quantum fields in the curved
space. Therefore, the total pressure in the high temperature
limit will be

PðTÞ ¼ g⋆
π2T4

90
ð1 − χðT=T

P
Þ2Þ: (46)

The corresponding energy density can be obtained through
definition (36) as

ρðTÞ ¼ g⋆
π2T4

30

�
1 −

5

3
χðT=T

P
Þ2
�
: (47)

A. Energy conditions and equation of state parameter

The results (46) and (47) show that the pressure and
energy density are not always positive definite in Snyder
space. So one cannot use these results in the Einstein
equations (37) and (38) without considering the energy
conditions for them. While both of the pressure and energy
density get negative values in the limit of high temperature
T → ∞, the energy conditions give a correct picture for
these thermodynamical quantities. In Table I, we represent
the temperature intervals for the validity of the dominant
energy condition (DEC), weak energy condition (WEC),
and strong energy condition (SEC). The pressure always is
positive for the temperature T < 1ffiffi

χ
p , so all of the intervals in

Table I are the subset of the domain of validity of DEC,
WEC, and SEC. In what follows, we consider the
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thermodynamics of the Snyder space in different energy
conditions separately.
The energy density as a function of the temperature is

shown in Fig. 1. Interestingly, the infinite energy density
which appears in the standard big bang model now is
removed and the energy density behaves differently in the
high energy regime. We will show that this result emerges
because the big bang singularity is removed in the
Snyder space.
The equation of state parameter w ¼ P=ρ becomes

wðTÞ ¼ 1 − χðT=TPÞ2
3 − 5χðT=TPÞ2

: (48)

The above relation correctly reduces to the usual radiation
dominated case in the limit of low temperatures
wðT → 0Þ ¼ 1

3
. This form of the equation of state is very

similar to the one obtained in Ref. [30,31], where the authors
proposed a noncommutative inflation in the framework of
the varying speed of light theories. Clearly, the condition

w ¼ −1 is now possible for the temperature T ¼
ffiffiffiffi
2
3χ

q
TP

where only the SEC is satisfied. While the SEC is satisfied in
this temperature, the energy density (47) becomes negative
for this temperature (see also Fig. 1). In this situation the
condition w ¼ −1 does not give accelerating expansion
since gravity is always attractive when the SEC is satisfied.
The temperature evolution of the equation of state parameter
is shown in Fig. 2. The equation of state parameter varies in
the range of 1

3
≤ w ≤ 1when all of the DEC, WEC, and SEC

simultaneously are satisfied. It varies in the range w ∈
½1;þ∞Þ when both the WEC and SEC are satisfied. The
negative values for the equation of state parameter w ∈
ð−∞;−1� are allowed when only the SEC is satisfied.

B. Entropy density and big bang singularity

As we have seen previously, the entropy density modi-
fies when one considers the quantum gravity effects in the
thermodynamics of the early universe through relations
(33) and (36). This different entropy density significantly
changes the adiabatic condition (39) which determines the
temperature evolution of the Universe. The entropy density
in high temperature limit can be obtained by substituting
relation (46) in (36)

TABLE I. Energy conditions in Snyder noncommutative space

Energy conditions Temperature

DEC, WEC, SEC 0 < T < 1ffiffiffiffi
2χ

p TP

WEC, SEC 0 < T <
ffiffiffiffi
3
5χ

q
TP

SEC 0 < T <
ffiffiffiffi
2
3χ

q
TP

ρ < 0;P ≤ 0 T ≥ 1ffiffi
χ

p TP

FIG. 1 (color online). The energy density versus the temper-
ature in the Snyder space. The deformation parameter is taken
to be β0 ¼ 1 and the number of relativistic degrees of freedom for
the bosons and fermions are taken as g− ¼ 2 and gþ ¼ 10,
respectively. In the limit of high temperature, the quantum gravity
effects become efficient and the energy density decreases and
consequently the infinite energy density in the big bang model
disappears. The domain of the validity of the energy conditions
are shown with cyan (first, wide strip from left), green (second
strip from left), and silver (third strip from left) colors.

FIG. 2 (color online). The equation of state parameter w which
becomes a function of temperature in the Snyder space. In the cyan
region (first, wide strip from left), all of the DEC, WEC, and SEC
energy conditions are satisfied and the equation of state parameter
is restricted to the range 1

3
≤ w ≤ 1. In the green region (second

strip from left), where WEC and SEC are satisfied, w ∈ ½1;þ∞Þ.
In the silver region (third strip from left) when only the SEC is
satisfied, w ∈ ð−∞;−1�. In this region the condition w ¼ −1 is
possible, however this holds for negative values of the energy
density and therefore doesn’t give an accelerating expansion.
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sðTÞ ¼ g⋆
2π2T3

45

�
1 −

3

2
χðT=TPÞ2

�
: (49)

Note that for w ¼ −1 we find sð
ffiffiffiffi
2
3χ

q
TPÞ ¼ 0 since the

definitions in (36) indicate that s ¼ ρþP
T . The temperature

behavior of the entropy density is shown in Fig. 3.
An important point here is that at the very high temper-

ature, the quantum gravitational effects dominate and the
modified entropy density (49) changes significantly the
adiabatic condition (39). In the usual radiation dominated
era, the entropy density is proportional to the temperature
as ∝ T3. As the temperature increases (toward the singu-
larity of the standard model), the usual (nondeformed)

entropy density increases and consequently the scale factor
should be reduced to respect the adiabatic condition (39).
But, the entropy density (49) behaves very differently in the
high temperature limit. As the temperature approaches the
Planck temperature, the second term on the right-hand side
of relation (49) dominates and consequently the entropy
density decreases instead of increasing (see Fig. 3).
Interestingly, the large entropy density problem is resolved
in this way. On the other hand, the scale factor can be
obtained from the adiabatic condition (39) as

aðTÞ ≈ ϑ

T

�
1þ χ

2
ðT=TPÞ2

�
; (50)

where ϑ3 ¼ 45S
2π2ðg−þ7

8
gþÞ is a numerical constant. The behav-

ior of the scale factor as a function of temperature is shown
in Fig. 4.
The scale factor in the standard radiation dominated era

can be obtained by setting χ to be zero in relation (50) as
aðTÞ ¼ ϑ

T which is shown in Fig. 4 by a red dashed line.
This scale factor has a singularity at the early time or
equivalently at the very high temperature. However, the
scale factor (50) has a nonzero minimum size a ¼
ð ffiffiffiffiffi

2χ
p

ϑÞlP at the temperature T ¼
ffiffi
2
χ

q
TP. From the

Table I it is clear that this minimum occurs in the region
that none of the energy conditions are satisfied. The
minimum size for the Universe when at least the WEC

is satisfied happens for temperature T ¼
ffiffiffiffi
3
5χ

q
TP and is

given by

amin ¼
�
13

2

ffiffiffiffiffi
χ

15

r
ϑ

�
lP: (51)

So, the big bang singularity is removed in this setup.

V. CONCLUSIONS

The Universe comes from the singularity when one uses
the classical general relativity equations to describe the
cosmic evolution. It is natural to expect that the big bang
singularity will be removed when one uses the yet unknown
full quantum gravitational equations. While there is no full
quantum gravity theory today, some candidates such as the
string theory and loop quantum gravity revealed some
aspects of the ultimate quantum gravity theory. The
minimal measurable length and minimal momentum,
which induce, respectively, the UV and IR cutoffs in the
corresponding theory, are the common addresses of all
promising candidates of the quantum gravity proposal. In
this paper we first constructed a general deformed phase
space with UV and IR cutoffs by means of the deformed
commutation relations. We have shown that the Liouville
theorem is satisfied in this framework which ensures that
the number of microstates remains unchanged under the

FIG. 3 (color online). Entropy density variation versus the
temperature in the Snyder space. The unusual behavior of the
entropy density simultaneously resolves the large entropy density
problem and the big bang singularity.

FIG. 4 (color online). The scale factor versus the temperature in
the Snyder space. The scale factor has a nonzero minimum size
which leads to a nonsingular universe.
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time evolution in the deformed phase space. Then we
formulated a general statistical physics which contains the
UV and IR cutoffs. We have studied the effects of the
noncommutativity on the energy density and pressure of
the statistical system in the Snyder space and we have
treated the energy conditions in this framework since now ρ
and P are not always positive definite. We have shown that
the equation of state parameter is temperature dependent in
the UV sector of the theory which opens a possible window
for the natural realization of the inflation in this setup. The
energy density of the Universe becomes finite when the
DEC and WEC are satisfied and the condition P ¼ −ρ is
possible in the SEC; however, this gives no accelerated
expansion since gravity is always attractive when SEC is
satisfied. Furthermore, the adiabatic condition sa3 ¼ cte
changes in this setup since the entropy density gets
modified when one considers quantum gravity effects.
While the usual entropy density always increases as the
temperature increases, the deformed entropy density
behaves very differently in the Snyder space. The modified
entropy density decreases with temperature in the high
energy regime and the adiabatic condition implies that the
scale factor gets a minimum size as a ∝ lP, where lP is the
Planck length. Consequently, the big bang singularity will
be removed in this framework. As the final remark, we note
that Einstein’s equations should be modified in the high
energy regime where the noncommutative effects are
important. Some attempts have been made in this direction
(see for instance [7,33]), but no complete noncommutative
general relativity has been formulated yet.
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APPENDIX: JACOBIAN IN
NONCOMMUTATIVE SPACES

In this appendix, we consider three different approaches
to the issue of the noncommutative geometry: Snyder
noncommutative spaces, the coherent state approach, and
the Moyal product law.

1. Snyder spaces

We calculate the Jacobian (9) for the Snyder algebra (40)
in this section. For the small deviation from the canonical
Poisson algebra (20), equivalent to β, α → 0 in relation
(40), one can use the approximate relation (21) (see the
Appendix of Ref. [16]). In this case, the corresponding
Jacobian becomes

Jðq; pÞ ¼ ð1þ jαqþ βpj2Þ × .. × ð1þ jαqþ βpj2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dtimes

¼ ð1þ jαqþ βpj2ÞD; (A1)

where q and p are the D-vectors associated to qi and pi,
respectively. Expanding the above relation in the limit of α,
β → 0, up to the quadratic order of the deformation
parameters, the Jacobian becomes

Jðq; pÞ ¼ 1þDjαqþ βpj2: (A2)

Having the Jacobian in hand, one can study the thermo-
dynamics of the system through relations (32) and (33).

2. The coherent states approach

The coherent state approach to the noncommutative
geometry was extended in Ref. [7] by means of the kernels
in the Feynman path integral approach in quantum field
theory. The noncommutativity affects the Feynman propa-
gator in momentum space as

Gθðp2;m2Þ ¼ 1

ð2πÞD
e−θp

2

p2 þm2
; (A3)

where θ is the noncommutativity parameter and p2 ¼
p2
1 þ p2

2 þ…þ p2
D
. The exponential term in the above

relation induces an UV cutoff in the high energy regime. A
more general case was extended in Ref. [8] that includes an
IR cutoff as well as an UV cutoff. They considered a toy
model in which the IR and UV terms appears as an
exponential term e−σq

2−θp2

, where σ is another deformation
parameter that induces an IR cutoff and q2 ¼
q21 þ q22 þ…þ q2

D
. This exponential term is effectively

equivalent to the inverse of the Jacobian in our study as

J−1 ¼ e−σq
2−θp2

: (A4)

Expanding the above relation in the limit of σ, θ → 0, up to
the first order of the deformation parameters gives

JðpÞ ¼ 1þ σq2 þ θp2 þOðσ2; θ2Þ; (A5)

which is clearly equivalent to the Snyder case (A2) by
identifying σ ¼ Dα and θ ¼ Dβ2. However, the Jacobian
(A2) include an extra mixing term which does not affect the
thermodynamics of the early universe through relation (42).

3. Moyal product law

The last approach to the noncommutative phase space is
described by the star product, known as the Moyal product
law, between two arbitrary functions of the position and
momentum as [34]

ðf�α gÞðxÞ¼ exp

�
1

2
αab∂ð1Þ

a ∂ð2Þ
b

�
fðx1Þgðx2Þ

����
x1¼x2¼x

; (A6)

such that

αab ¼
 θij δij þ σij

−δij − σij βij

!
; (A7)
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where the D ×D matrices θ and β are assumed to be
antisymmetric with 2D being the dimension of the classical
phase space, representing the noncommutativity in coor-
dinates and momenta, respectively. In contrast to the
Poisson brackets, the Moyal brackets can be written as

ff; ggα ¼ f �α g − g �α f: (A8)

A simple calculations shows that

fqi; qjgα ¼ θij; fqi; pjgα ¼ δij þ σij;

fpi; pjgα ¼ βij: (A9)

Now, consider the transformation (7) in the classical phase
space as

ðQi; PiÞ →
�
qi ¼ Qi −

1

2
θijPj; pi ¼ Pi þ

1

2
βijQj

�
:

(A10)

It is easy to show that the new phase space variables qi and
pi satisfy

fqi; qjg ¼ θij; fqi; pjg ¼ δij þ σij;

fpi; pjg ¼ βij; (A11)

with σij ¼ − 1
8
ðθki βkj þ βki θkjÞ. The commutation relations

(A11) are the same as (A9). So, transformation (7) trans-
forms commutative phase space to the Moyal noncommu-
tative ones. It is more convenient to work with Poisson
brackets (A11) than α-star Moyal brackets (A9). It is
important to note that the relations in (A9) are defined
in the spirit of the Moyal product given above. However, in
the relations defined by (A11), the new phase space
variables qi and pi are functions of Qi and Pi which obey
the usual Poisson bracket relations (8). So relations (A9)
and (A11) should be considered as distinct.
Now, we need only the Jacobian of this transformation

for our purpose. For a small deviation from the Poisson
algebra (θij ¼ βij ¼ σij ≈ 0), relation (21) is a good
approximation which gives the result

J ¼ 1þ σ
11
þ…þ σ

DD
¼ 1þ TrðσÞ: (A12)

Note that the Jacobian becomes constant since the defor-
mation parameters θij, βij, and σij are constant.
Consequently, the Moyal noncommutativity gives no sig-
nificant modification to the thermodynamical quantities
through relations (32) and (33) since it multiplies the
equations just by a constant numerical factor.
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