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We define and investigate a quantization of null hypersurfaces in the context of loop quantum gravity on
a fixed graph. The main tool we use is the parametrization of the theory in terms of twistors, which has
already proved useful in discussing the interpretation of spin networks as the quantization of twisted
geometries. The classical formalism can be extended in a natural way to null hypersurfaces, with the
Euclidean polyhedra replaced by null polyhedra with spacelike faces, and SU(2) by the little group ISO(2).
The main difference is that the simplicity constraints present in the formalism are all first class, and the
symplectic reduction selects only the helicity subgroup of the little group. As a consequence, information
on the shapes of the polyhedra is lost, and the result is a much simpler, Abelian geometric picture. It can be
described by a Euclidean singular structure on the two-dimensional spacelike surface defined by a foliation
of spacetime by null hypersurfaces. This geometric structure is naturally decomposed into a conformal
metric and scale factors, forming locally conjugate pairs. Proper action-angle variables on the gauge-
invariant phase space are described by the eigenvectors of the Laplacian of the dual graph. We also identify
the variables of the phase space amenable to characterize the extrinsic geometry of the foliation. Finally, we
quantize the phase space and its algebra using Dirac’s algorithm, obtaining a notion of spin networks for
null hypersurfaces. Such spin networks are labeled by SO(2) quantum numbers and are embedded
nontrivially in the unitary, infinite-dimensional irreducible representations of the Lorentz group.
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I. INTRODUCTION

Null hypersurfaces play a pivotal role in the physical
understanding of general relativity. We are interested in
understanding how null hypersurfaces can be described
within loop quantum gravity (LQG) and their dynamical
properties. Research in the dynamics of loop quantum
gravity is mostly concerned with the evolution of spacelike
hypersurfaces, in the spirit of the Arnowitt-Deser-Misner
(ADM) canonical approach it is rooted on. It is commonly
described by the spin foam formalism, or its embedding in
group field theory. One considers transition amplitudes
between fixed graphs, and then refines or sums over the
graphs. The boundary data assigned on the graphs are
typically taken to be spacelike; however, the spin foam
formalism is completely covariant, and in principle one can
consider arbitrary configurations. Some results on timelike
boundaries have appeared in [1,2], but null configurations
have received little attention so far.1 To extend the descrip-
tion to null boundary data, the first step is to understand
what null data mean from the viewpoint of LQG variables
on a fixed graph. In this paper, we point out a natural
answer suggested by the recent description of LQG in terms
of twistors and twisted geometries [4–12].

Twistors describing LQG in real Ashtekar-Barbero var-
iables satisfy a certain incidence relation [11], determined by
the time-like vector used in the 3þ 1 splitting of the
gravitational action. Such constrained incidence relation is
the twistor’s version of the discretized (primary) simplicity
constraints presenting in the Plebanski action for general
relativity. The idea of this paper is to describe discrete null
hypersurfaces by taking the vector appearing in the incidence
relation to be null. The first consequence of this choice is that
the usual group SU(2) is replaced by ISO(2), the little group
of a null vector. Furthermore, the primary simplicity con-
straints are all first class, and only the SO(2) helicity
subgroup survives the symplectic reduction: the translations
are pure gauge. This fact has an appealing counterpart in
particle theory: as well-known, the representations of mass-
less particles only depend on the spin quantum number, the
translations being redundant gauges. In our setting, the
gauge orbits have the geometric interpretation of shifts
along the null direction of the hypersurface.
In the next section, we briefly review polyhedra with

spacelike faces in null hypersurfaces, and how they can be
described in terms of bivectors satisfying the closure and
simplicity constraints. In particular, we provide a gauge-
invariant set of variables allowing us to reconstruct a unique
null polyhedron starting from its bivectors. Because of the
special isometries present due to the existence of null
directions, such gauge-invariant variables are a little more
subtle than the scalar products that one may immediately
think of by analogy with the Euclidean case. In Sec. 3, we
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describe the phase space of Lorentzian spin foam models
with the null simplicity constraints and its description in
terms of twistors, and show how the null polyhedra are
endowed in this way with a symplectic structure. We then
proceed to study the symplectic reduction, interpret geo-
metrically the orbits of the simplicity constraints and
identify the global isometries as well as the transformations
changing the shapes of the polyhedra. The latter are also
first class; thus the reduced phase describes only an
equivalence class of null polyhedra, determined only by
the areas and their time orientation.
The geometry of the two-dimensional spacelike surface

can be parametrized in purely gauge-invariant terms and
describes a Euclidean singular structure (see e.g. [13])
with scale factors associated with the faces of the graph,
instead of the nodes. These data are less than those
characterizing a two-dimensional Regge geometry, again
a peculiarity of the large amount of symmetry in the
system. For planar graphs, the reduced Poisson brackets
evaluate to the Laplacian matrix of the dual graph.
Therefore proper gauge-invariant action-angle variables
can be identified in terms of its eigenvectors. For non-
planar graphs the situation is slightly more complicated,
as the matrix of Poisson brackets has off-diagonal ele-
ments of both signs. Finally, we comment on the possible
role played by secondary constraints that future studies of
the dynamics may unveil; in particular, we identify the
kinematical degrees of freedom amenable to describing
the extrinsic geometry of the foliation.
In Sec. 5, we quantize the system and find an ortho-

normal basis for the reduced Hilbert space. Such null spin
networks are labeled by SO(2) quantum numbers, and are
naturally embedded in the lightlike basis of homogeneous
functions used for the unitary, infinite-dimensional repre-
sentations of the Lorentz group. The basis diagonalizes the
oriented areas, and the (complex exponentials of the) deficit
angles act as spin-creation operators. This paper is only a
first, preliminary step toward understanding the dynamics of
null surfaces in loop quantum gravity, and in the conclusions
we comment on some next steps in the program, as well as
desired applications. Finally, the Appendix contains details
and conventions on the Lorentz algebra and its ISO(2)
subgroup.

II. SIMPLE BIVECTORS AND NULL POLYHEDRA

In this section, we describe how null polyhedra can be
described in terms of bivectors. By null polyhedra, we will
mean polyhedra with spacelike faces living in a three-
dimensional null hypersurface of Minkowski spacetime.
Consider a bivector BIJ in Minkowski spacetime, orthogo-
nal to a given direction NI ,

NIBIJ ¼ 0: (1)

The condition implies that the bivector is simple; namely it
can be written in the form BIJ ¼ 2u½IvJ�. The proof is
straightforward and valid for any signature ofNI .2 Provided
u and v are linearly independent, the simple bivector
identifies a plane, as well as a scale B2 ≔ BIJBIJ=2.
When NI is null, the two vectors u and v can then be
either null or spacelike. If they are both null, they both must
be proportional to NI , and thus the bivector is “degenerate”
and does not span a plane. In this paper we focus our
attention on the case of spacelike bivectors.
Such simple bivectors can always be parametrized as

BIJ ¼ 1

2
ϵIJKLN

KbL; b2 ¼ 0; B2 ¼ ðb · NÞ2: (2)

We further denote A ≔ jBj, and b · N ¼ −εA, with ε ¼ �.
Next, take a collection of bivectors Bl, all lying in the

same hypersurface determined by NI, and further con-
strained by the closure conditionX

l

Bl ¼ 0: (3)

In the case of a timelike NI , a theorem by Minkowski
proves that the set defines a unique, convex, and bounded
polyhedron, with areas Al and dihedral angles determined
by the scalar products among the bivectors. This fact plays
a key role in the interpretation of loop quantum gravity in
terms of twisted geometries. See [7] for details and the
explicit reconstruction procedure. An application of
the same theorem to the case of null NI implies that the
polyhedron now lies in the null hypersurface orthogonal to
NI , which includes NI itself. A null hypersurface has a
degenerate induced metric, with signature ð0;þ;þÞ, and
therefore the metric properties of the polyhedron are
entirely determined by its projection on the spacelike
two-dimensional surface.3 In fact, one can arbitrarily
translate the vertices of the polyhedron along the null
direction without changing its intrinsic geometry. Using
this symmetry, the polyhedron can always be “squashed”
on the two-dimensional spacelike surface, where it will
look like a degenerate case of a Euclidean polyhedron. It is
indeed often helpful to visualize a null polyhedron as an
ordinary polyhedron in coordinate space, endowed with a
degenerate metric.
Using the parametrization (2) of simple bivectors, the

closure condition can be equivalently rewritten as

2An arbitrary bivector BIJ can be written as BIJ ¼
a½IbJ� − c½IdJ�. If (1) holds, then ða · NÞb − ðb · NÞa−
ðc · NÞdþ ðd · NÞc ¼ 0, which implies that the four vectors
are linearly dependent. Simplicity immediately follows, inde-
pendent of the signature of NI .

3This does not mean that the null direction never plays a
geometric role: it will acquire a geometrical meaning, if ones
embeds the three-dimensional null hypersurface in a nondegen-
erate ambient spacetime.
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VI ≔
X
l

bIl ¼ αNI; α ∈ R: (4)

These are three independent equations, since α is arbitrary,
and therefore the space of F simple, closed bivectors has
3F − 3 dimensions. In particular, contracting both sides
with NI we obtain the “area closure,”

−N · V ¼
X
l

εlAl ¼ 0: (5)

This condition is also satisfied by a degenerate Euclidean
polyhedron squashed on a two-dimensional plane, and it
allows us to identify Al with the areas of the null
polyhedron’s faces. Furthermore, assuming once and for
allNI to be future pointing, and the normals outgoing to the
faces, the sign εl measures whether the face l is future or
past pointing. While (5) plays a predominant role, one
should not forget that the complete closure condition
satisfied by the bivectors has two extra equations, contained
in (3) or (4). It is also interesting to note that (4) allows us to
map the space of null polyhedra with F faces to the space of
null polygons with F þ 1 sides, with one direction held
fixed, but we will not further pursue this interpretation here.
Another peculiarity of null polyhedra is to have a larger

isometry group than their Euclidean brothers. Clearly,
global (i.e. acting on all bivectors) Lorentz transformations
belonging to the little group of NI , which is the Lie group
ISO(2), do not affect the intrinsic geometry. But there is an
additional isometry due to the degeneracy of the induced
metric: boosts along the NI direction do not change the
intrinsic geometry of the polyhedron, because the induced
metric is degenerate along that direction. Therefore, the
isometry group has four dimensions, and the space of
shapes of null polyhedra has 3F − 7 dimensions.
An interesting question is how to parametrize the intrinsic

shapes of null polyhedra. In the Euclidean case, we are used
to do so using the scalar products between the normals
within the hypersurface, which fully respect the isometries.
However, this is not the case for null polyhedra, where it is
the common normal NI to lie in the hypersurface, while the
null normals bIl characterizing the individual faces do not lie
in the hypersurface, and need not respect the isometries. For
instance, translating a vertex of the polyhedron along the null
direction is an isometry, but this transformation does not
preserve the scalar product between the null normals bIl .
Conversely, while individual simple bivectors define planes,
the intersection of planes cannot be defined in a degenerate
metric. Therefore, the characterization of the intrinsic shapes
cannot be done solely in terms of the bl; one must resort to
the full Minkowski spacetime and its nondegenerate metric.
To fix ideas, consider the foliation of Minkowski spacetime
generated by N and N̂ , the null hypersurfaces defined,
respectively, by NI and its parity transformed N̂I ¼ PNI ,
satisfying N̂ · N ¼ −1. See Fig. 1.

Using both normals, one can make sense of the inter-
section of two faces, say l and l0, withinN , and characterize
it by the (pseudo)vector

~EI
ll0 ¼ ϵIJKLNJðϵKMPQN̂

MBPQ
l ÞðϵLRSTN̂RBST

l0 Þ: (6)

With this formula, one can explicitly reconstruct the intrinsic
shape of the null polyhedron starting from the bivectors. To
show this, let us first consider the case of a tetrahedron, and
then a general polyhedron.
The simplicity of the tetrahedral case lies in its trivial

adjacency matrix: any two faces identify an edge of the
tetrahedron, and the intrinsic shapes can be described by
any three edge vectors meeting at one vertex, by providing
the lengths and the angles among them. The existence of a
null direction will show up explicitly in the fact that only
two of the angles are linearly independent, and thus the
intrinsic shape is characterized by only five quantities.
Consider then three faces, say l ¼ 1; 2; 3, and the three
edges determined by their intersections. Let us first
assume that the three edge vectors are not coplanar in
N (the degenerate case will be dealt with later). Then, we
define

VcðBÞ4 ≔ −
1

64
ϵIJKLN̂

I ~EJ
13ðBÞ ~EK

21ðBÞ ~EL
32ðBÞ: (7)

The right-hand side is always positive and defines a
coordinate volume of the tetrahedron, analogous to the
definition of the Euclidean volume in terms of the triple
product. We can then normalize (6) and obtain the proper
edge vectors of the tetrahedron as

EI
ll0 ≔

1

6Vc

~EI
ll0 ¼ −

1

6Vc
ϵIJKLNJbKl b

L
l0 ; (8)

where we used (2). Finally, the edge lengths and angles of
the triple evaluate to

E2
ll0 ¼ −

2

ð6VcÞ2
ðbl · NÞðbl0 · NÞðbl · bl0 Þ; (9a)

FIG. 1. A foliation of spacetime by null hypersurfaces.
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Ell0 ·El0l00 ¼
1

ð6VcÞ2
½ðbl ·NÞðbl0 ·NÞðbl0 · bl00 Þ

þ ðbl0 ·NÞðbl00 ·NÞðbl · bl0 Þ þ ðbl0 ·NÞ2ðbl · bl00 Þ�:
(9b)

It is easy to check that we can always consistently pick
BIJ
l ¼ 2E½I

ll0E
J�
l00l, and that the triangles’ areas computed

from the edge vectors coincide with Al. Furthermore, the
oriented sum of the angles defined by (9b) vanishes, so
that only five quantities out of the six defined in (9) are
independent.
The formulas (9) provide the intrinsic shape of the null

tetrahedron in terms of simple bivectors. They are valid for
any time orientation of the faces and, as promised, are left
invariant when any of the vectors is translated along the null
direction NI . In particular, this makes the expressions for
edges and angles valid also in the special case when the
isometry is used to “squash” the tetrahedron down to the
spacelike surface S0. When this happens, the bIl are all
parallel, so their scalar products vanish, but also Vc

vanishes, and the ratio ðbl · bl0 Þ=V2
c remains finite.

Hence (9) are well defined also in the limit case when
the edge vectors are coplanar. We conclude that the intrinsic
geometry can be characterized in terms of the null vectors
bIl , using the scalar products bl · N as well as the ratios
ðbl · bl0 Þ=V2

c, of which only two out of three are indepen-
dent. On the other hand, notice that the scalar products
bl · bm are not good variables: they are not preserved by the

isometries, and different values can correspond to the same
intrinsic geometry.
The main difficulty to extend this construction to higher

polyhedra comes from the fact that the adjacency matrix is
not trivial anymore: the explicit values of the bivectors
themselves will determine whether two faces are adjacent
or not. A strategy to deal with this case is to use the
reconstruction algorithm already developed for the
Euclidean signature. To that end, we work in light-cone
coordinates defined by NI and N̂I. In these coordinates, the
closure constraint (13) identifies a closure condition for
three-dimensional vectors in a space with a degenerate
metric of signature ð0;þ;þÞ. If we replace this metric by
an auxiliary Euclidean metric, we can apply the
reconstruction procedure of [7] to the resulting
Euclidean polyhedron. In particular, compute its adjacency
matrix, and once this is known, apply (9a) and (9b) to the
existing edges to determine the null geometry of the
polyhedron. It would be interesting to know whether the
adjacency matrix of a null polyhedron can be reconstructed
directly from the bIl , without passing through the auxiliary
Euclidean reconstruction, but this is not needed for the rest
of the paper, and we leave it as an open question.
Finally, recall that the space of shapes of 3 d Euclidean

polyhedra has dimensions 3F − 6, and the 2F − 6 space of
shapes at fixed areas is a phase space [14], a result used in
the twisted geometry parametrization [7]. This turns out not
to be the case for null polyhedra, because as we show
below, the closure condition does not generate all the

FIG. 3. The deficit angle ð2π − ΦÞ and the scale J of the cone.

FIG. 2 (color online). From half links ðz; ~zÞ to links ðj; ξÞ and to loops ðJ;ΦÞ.
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isometries. While it is an interesting open question to
construct a phase space of shapes for null polyhedra, we
will see below that the phase space of loop gravity on a null
hypersurface does include a description of polyhedra, but
rather as equivalence classes, defined by their areas only.

III. NULL SIMPLICITY CONSTRAINTS IN LQG

Spin foams are based on the nonchiral Plebanski action
for general relativity,

SðωIJ; B;ψÞ ¼
Z

Tr

�
⋆þ 1

γ

�
B∧FðωIJÞ

þ ψ IJKLBIJ ∧BKL; (10)

where the fundamental variables are a Lorentz connection
ωIJ
μ , and a 2-form valued in the Lorentz algebra BIJ,

constrained by ψ IJKL to be simple, that is BIJ ¼ eI ∧ eJ.
Here γ is the Immirzi parameter, and we assumed a
vanishing cosmological constant. The canonical analysis
of this action has been studied in a number of papers (e.g.
[15]), and we refer the reader to the living review [16] for
details and an introduction to the spin foam formalism. The
phase space is described by the pullback of the Lorentz
connection and its conjugate momentum, that is the pull-
back of the 2-form

MIJ ¼
�
⋆þ 1

γ

�
BIJ; BIJ ¼ γ

γ2 þ 1
ð1 − γ⋆ÞMIJ:

(11)

In the following, we are interested in a discretized
version of this canonical structure, which is commonly
used in the construction of spin foam models [16]. The
discrete variables are distributional smearings along an
oriented graph Γ, say with L links and N nodes, where the
gravitational connection is replaced by holonomies hl
along the links, and the conjugate momentum by algebra
elements Ml, referred to as fluxes. The phase space
associated with a graph is

PΓ ¼ T�SLð2;CÞL; ðMl; hlÞ ∈ T�SLð2;CÞ; (12)

which notably comes with a noncommutativity of the fluxes.
This kinematical phase space appears in Lorentzian spin
foam models [17], as well as in covariant loop quantum
gravity [18]. We then consider two sets of constraints on the
B variables. The first is a discrete Gauss law, or closure
condition,

GIJ
n ¼

X
l∈n

BIJ
l ¼ 0: (13)

It is local on the nodes of the graph, and it imposes gauge
invariance. The second is a discrete version of the simplicity
constraints,

SJnl ¼ NnIBIJ
l ¼ 0; ∀ l ∈ n; (14)

where NI
n is a unit vector assigned independently to each

node n. This linear version of the discrete simplicity
constraints was introduced in [19], with NI timelike and
related to the hypersurface normal used in the 3þ 1
decomposition of the action. We denote SΓ the reduced
phase space obtained imposing the constraints (13)
and (14),

SΓ ¼ T�SLð2;CÞL==Fnl==Gn: (15)

When NI is timelike, it was shown in [11] that
SΓ ≡ T�SUð2ÞL==SUð2ÞN , where for any finite γ ≠ 0,
the relevant SU(2) subgroup is not the canonical subgroup
of the Lorentz group, but a group manifold nontrivially
embedded in T�SLð2;CÞ, capable in particular of probing
boosts degree of freedom. The interpretation of SΓ is that of
a truncation of general relativity to a finite number of
degrees of freedom [20], whose geometry can be described
by twisted geometries [4].
In this paper we investigate the consequences of taking

vector NI in (14) to be null and derive a geometric
description for the reduced space (15), in the spirit of
twisted geometries. Ideally, this should be related to a
formulation of the Plebanski action in which we perform a
standard 3þ 1 splitting and use the internal Minkowski
space to induce a noninvertible three-dimensional metric
with signature ð0þþÞ. The continuum canonical analysis
of (10) in this null setup, as well as studying the resulting
dynamical structure, will be investigated elsewhere.4 Our
goal here is simply to study (15) when N2 ¼ 0, its
geometrical interpretation, and its quantization.
Wewill proceed in two steps, motivated by the structure of

(15). First, we focus on a single link, studying the phase
space T�SLð2;CÞ and the pair of simplicity constraints (14),
which are local on the links. At a second stage, we consider
the full graph structure and the closure condition (13).

A. Phase space structure

We saw in Sec. 1 that a set of bivectors satisfying closure
and simplicity defines polyhedra. The polyhedra can be
endowed with the symplectic structure of T�SLð2;CÞ via
(11) and (12), as follows. Picking a specific time direction
tI ¼ ð1; 0; 0; 0Þ, we identify boosts, rotations and chiral
left-handed generators, respectively, as

Ki ≔ M0i; Li ¼ −
1

2
ϵijkMjk;

Πi ¼ 1

2
ðLi þ iKiÞ ¼ iσiABΠB

A:

4In particular, the analysis is expected to reveal the presence of
secondary constraints, which should play an important role in the
identification of the extrinsic geometry, as we will discuss below.
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Here A;B ¼ 0; 1 are spinorial indices, raised and lowered
with the antisymmetric symbol ϵAB, and σAB the Pauli
matrices. See the Appendix for a complete list of conven-
tions, notations and background material. We parametrize
T�SLð2;CÞ via the pair ðΠA

B; hABÞ, with h a group element
in the fundamental ð1=2; 0Þ representation, and symplectic
potential Θ ¼ TrðΠhdhÞ þ cc. The Π are left-invariant
vector fields, and ~Π ¼ −hΠh−1 right-invariant ones. We
can equivalently use the parametrization ðΠ; ~ΠÞ and the
complex angle TrðhÞ. In this way, we can associate a
generator, and thus a bivector B through (11), with both
source and target nodes of a link. Hence, we can consider the
topological polyhedra defined by a cellular decomposition
dual to the graph, and associate a bivector B with each face
within each frame. By construction, a face inherits two
bivectors and unique norm, B2 ¼ ~B2, and we notice that the
closure condition (13) is equivalent to closure for the
generators.
The simplicity conditions (1) introduce a preferred

direction viaNI, thus reducing the initial Lorentz symmetry
to its little group. For a null vector, the Lie group ISO(2). To
fix ideas, we take from now on the specific null vector
NI ¼ ð1; 0; 0; 1Þ= ffiffiffi

2
p

, with the normalization chosen for
later convenience. Its little group ISO(2) is generated by

L3; P1 ≔ L1 − K2; P2 ≔ L2 þ K1;

and the simplicity constraints (14) read

γL3 þ K3 ¼ 0; Pa ¼ 0; a ¼ 1; 2: (16)

There are two important differences with respect to the
timelike case. First of all, the constraints impose the
vanishing of part of the little group itself, thus effectively
selecting its helicity SO(2) subgroup. Second, by themselves
they form a completely first class system, unlike in the
timelike case, as can be verified trivially. These facts have
important consequences for the geometric interpretation of
the reduced phase space. To study the symplectic reduction
and its geometric interpretation, we use the twistorial para-
metrization introduced and studied in [5,8–11].

B. Twistorial description

A twistor can be described as a pair of spinors,5

Zα ¼ ðωA; iπ̄ _AÞ ∈ C2⊕ C̄2� ≕ T . The space then carries
a representation of the Lorentz algebra, which preserves the
complex bilinear πAωA ≡ πω. To describe the symplectic
manifold T�SLð2;CÞ on an oriented link, we consider a
pair ðZ; ~ZÞ associated, respectively, with the source and
target nodes of the link, and equip each twistor with
canonical Poisson brackets,

fπA;ωBg ¼ δBA ¼ f ~πA; ~ωBg: (17)

We then impose the following area-matching condition:

C ¼ πω − ~ω ~π ¼ 0: (18)

This is a first class complex constraint generating the scale
transformations ðω; π; ~ω; ~πÞ↦ ðezω; e−zπ; ez ~ω; e−z ~πÞ. The
twelve-dimensional manifold obtained by symplectic
reduction by (18) coincides with T�SLð2;CÞ, with holon-
omies and fluxes that can be parametrized as

ΠAB ¼ 1

2
ωðAπBÞ; hAB ¼ ~ωAπB þ ~πAωBffiffiffiffiffiffi

πω
p ffiffiffiffiffiffiffi

~ω ~π
p ; (19)

and

~ΠA
B ¼ 1

2
~ωðA ~πBÞ ≡ −hACΠC

Dh−1DB: (20)

As it is apparent from (19), the parametrization is valid
provided πω and ~π ~ω do not vanish. The submanifold where
this occurs can be safely excluded: it would correspond to
null bivectors, whereas we are restricting attention to
spacelike bivectors. Notice also that the parametrization
is 2-to-1, as it is invariant under the exchange of spinors,

ðω; π; ~ω; ~πÞ↦ ðπ;ω; ~π; ~ωÞ: (21)

See [11] for further details.6 To write the simplicity
constraints, we introduce a canonical basis in C2,
ðoA ¼ δA0 ; ι

A ¼ δA1 Þ. The chosen null vector reads
NA _A ¼ ioAō _A, and (1) becomes

NA _AΠ
ABϵ _A _B ¼ eiθNA _Aϵ

ABΠ̄ _A _B; eiθ ≡ ðγ þ iÞ=ðγ − iÞ:
(22)

Notice that the matrix δoA _A ≔ oAō _A defines an Hermitian
scalar product, jjωjj2 ¼ jω1j2, preserved by the little
group ISO(2). The above conditions can be conveniently
separated as

F1 ¼ ReðπωÞ − γImðπωÞ ¼ 0;

F2 ¼ oAō _Aω
Aπ̄ _A ¼ ω1π̄1 ¼ 0; (23)

where F1 is real and Lorentz invariant, whereas F2 is
complex and only ISO(2) invariant. In particular, F2

5The presence of an i differs from the standard Penrose
notation, and it is just a matter of convenience to bridge with
the conventions used in loop quantum gravity.

6Note, however, that the conventions here are slightly different.
This change, consistent with other upcoming papers [21,22], is
motivated by the desire of having the same Poisson brackets for
source and target twistors. The burden of keeping track of the link
orientation is put on the holonomy, which transforms the basis
with a minus sign, hω ¼ ~ω; hπ ¼ − ~π. This conveniently “flips”
the orientation of the C2 basis in a way consistent with the usual
convention of orienting all normals as locally outgoing.
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imposes Pa ¼ 0, and on-shell of this condition F1 reduces
to the first condition in (16). The structure is very similar to
the timelike case of [11]: in particular, the Lorentz-invariant
part F1 is the same and can be solved posing

πω ¼ ðγ þ iÞεj; ε ¼ �; j ∈ Rþ: (24)

With this parametrization, ε determines the sign of the
twistor’s helicity: ε ¼ þ for positive helicity. Notice that
the Z2 symmetry (21) of the twistorial parametrization flips
this sign, and therefore it is possible to fix ε ¼ 1 without
loss of generality in parametrizing T�SLð2;CÞ. F2 ¼ 0 has
two solutions, ω1 ¼ 0 and π1 ¼ 0. Both branches are
needed to describe the reduced phase space, introducing
a slightly awkward notation, where the reduced phase space
is parametrized partly by ωA and partly by πA. It is
convenient to avoid this by exploiting the Z2 symmetry,
since (21) switches between the two branches. It then turns
out to be convenient to keep the ε sign in (24) free and pick
a single branch of F2 ¼ 0. Let us assume ω1 ≠ 0, and pick
the solution π1 ¼ 0.
The five-dimensional surface of simple twistor solutions

of (23) can be parametrized by ðωA; jÞ, and

πA ¼ −reiθ2δoA _Aω̄ _A; r ¼ εj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
jjωjj2 : (25)

On this surface, the simplicity constraints generate the
following gauge transformations:

fF1;ωAg ¼ 1þ iγ
2

ωA; fF2;ωAg ¼ 0;

fF̄2;ωAg ¼ −δA0 ω̄1; fF1; jg ¼ fF2; jg ¼ 0: (26)

For the nontrivial ones, the finite action is

efαF1;·gωA ¼ e
1þiγ
2
αωA; efαF̄2;·gωA ¼ ωA − αδA0 ω̄

1:

(27)

We see that ω0 is pure gauge and that ω1 contains a
dependence on the gauge generated by F1. The gauge
invariant reduced space has two dimensions and can be
parametrized by the following complex variable:

z ¼
ffiffiffiffiffi
2j

p
jjωjjiγþ1

ω1; jzj2 ¼ 2j; (28)

plus the sign ε. Notice that shifting the phase of z by π has
the same effect as switching the sign of ε. Hence, with our
choice of parametrization argðzÞ ∈ ½0; πÞ, to avoid covering
twice the same space. In this way we identify the positive
complex half-plane with positive helicities, and the neg-
ative half-plane with negative helicities. The reduced
symplectic potential evaluates to

Θred ¼ −
i
2
εzdz̄þ cc; fz; z̄g ¼ iε; (29)

so the sign of the helicity determines the sign of the Poisson
brackets. In conclusion, the symplectic reduction gives
T==F ¼ T�S1, with the circle parametrized by two half-
circles via argðzÞ ∈ ½o; πÞ; ε ¼ �.
To better understand the geometric meaning of the orbits

of the simplicity constraints, it is useful to look at the
bivectors BIJ. These are given by (11) in terms of the
algebra generators MIJ, whose spinorial form reads, from
(19), MIJ ¼ −ωðAπBÞϵ _A _B þ cc. Introducing the following
doubly null reference frame,

lI ¼ iωAω̄ _A; kI ¼ iπAπ̄ _A; mI ¼ iωAπ̄ _A;

m̄I ¼ iπAω̄ _A; l · k ¼ −jπωj2 ¼ −m · m̄; (30)

we can rewrite the bivectors as

BIJ ¼ γ

1þ γ2
2

jπωj2 ½ðγI − RÞl½IkJ� þ iðγRþ IÞm½Im̄J��

≈
2iεγ

jð1þ γ2Þm
½Im̄J�; (31)

where ≈ means that the equality holds on the constraint
surface. The last equation defines a spacelike plane, and a
scale B2 ¼ γ2j2, which represent the spacelike projection
of the polyhedron’s face. Comparing (31) and (2), we
derive a parametrization of the normal null vector bI in
terms of spinors,

bI ¼ εγj
∥ω∥2

lI; b · N ¼ −ϵγj: (32)

Hence, we can also identify the helicity sign in (24) with
the sign of the time component of the face normal in (5),
and since we are doing this identification for the “untilded”
variables, it means that it holds provided the link is oriented
outgoing from the node.
It is straightforward to see that the orbits of F1 leave the

bivector BIJ as well as bI invariant. On the other hand, F2

changes bI , and its action can be used to always align this
null vector with N̂I ¼ 1=

ffiffiffi
2

p ð1; 0; 0;−1Þ. Hence, the orbits
of F2 allow us to project the face on the spacelike surface
S0 orthogonal to both NI and N̂I . This action becomes even
clearer if we look at the spacelike vectors spanning the
triangle,

ef−αF̄2−ᾱF2;·g ReðmÞI ≈ ReðmÞI þ εj½γ ReðαÞ þ ImðαÞ�NI;

(33a)

ef−αF̄2−ᾱF2;·g ImðmÞI ≈ ImðmÞI þ εj½ReðαÞ − γ ImðαÞ�NI:

(33b)
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If we do this globally on all links around a node, that is we
take αl ≡ α, ∀l, we obtain the isometry corresponding to
shifting the vectors along the null direction, and this action
can be used to project all the faces to S0. On the other hand,
acting independently on each link will genuinely deform
the polyhedron and can in principle break it open. We will
come back to this important point below in Sec. 4. The
geometric meaning of the action of F1 will become clear
next, when we discuss the reduction on the holonomy.
Let us conclude this section with a side comment, on the

exact relation between the null simplicity constraints and
the usual twistor incidence relation. To that end, it is more
convenient to look at the other solution of F2 ¼ 0, that is
ω1 ¼ 0. This solution is equivalent to the one π1 ¼ 0 in the
sense that this solution can be obtained from the Z2

symmetry (21). In this case, the simplicity conditions
can then be packaged as the following constrained inci-
dence relation:

ωA ¼ iXA _Aπ̄γ_A; XA _A ¼ −
εj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
jjπjj2 nA _A;

π̄γ_A ¼ ei
θ
2π̄ _A: (34)

From the point of view of twistor theory, (34) implies that
(i) the twistor is γ null [21], namely that it is isomorphic
to a null twistor, the γ-dependent isomorphism being
ðω; πÞ↦ ðω; πγ ≔ e−iθ=2πÞ; and that (ii) the null ray
XA _A described by the associated null twistor is aligned
with nI and “truncated”: a simple twistor describes a
specific null vector, and not anymore a null ray.

C. Symplectic reduction, T�ISOð2Þ and T�SOð2Þ
To study the symplectic reduction on the link phase

space, we consider two twistors Z and ~Z, and impose the
simplicity constraints (23) on both, in agreement with (14),
as well as the area-matching condition (18). The complete
system is first class and partially redundant: C ¼ 0 ¼ F1

implies ~F1 ¼ 0. The simplicity constraints in the “tilded”
sector can be solved in the same way,

~πA ¼ −~reiθ2δoA _A ~̄ω _A; ~r ¼ ~ε ~|
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
jj ~ωjj2 : (35)

The area matching (18) then imposes ~ε ~| ¼ −εj, which we
solve fixing ~| ¼ j and ~ε ¼ −ε. The opposite sign between ε
and ~ε keeps track of the sign difference between Π and ~Π in
(20). As a consequence, a face which is future pointing in
the frame of the source node is past pointing in the frame of
the target node: following the same steps leading to (32),
we find ~b · ~N ¼ −~εγj ¼ εγj. In other words, ε coincides
with the time orientation in the frame of the source node,
and with its opposite in the frame of the target node.
On the seven-dimensional surface C ⊂ T�SLð2;CÞ,

where the simplicity constraints hold, fluxes and holono-
mies are

ΠA
B ≈

ðγ þ iÞεj
4

�
−1 2ω0=ω1

0 1

�
;

~ΠA
B ≈ −

ðγ þ iÞεj
4

�
−1 2 ~ω0= ~ω1

0 1

�
; (36a)

hAB ≈
�
ω1= ~ω1 ~ω0=ω1 − ω0= ~ω1

0 ~ω1=ω1

�
: (36b)

As expected, the generators are restricted to those of the
little group (up to the phase introduced by the Immirzi
angle). The group element is also restricted, to a form
which includes the little group ISO(2) as well as the extra
isometry generated by a boost along the null direction (K3

with our gauge choice for NI). We can conveniently
parametrize it as

h ≈ e
1
2
Ξσ3u; u ¼ e

1
2
Ξσ3e−i

1
2
ðξ−γΞÞσ3Tðω0; ~ω0Þ ∈ ISOð2Þ;

(37)

where the boost rapidity is

Ξ ≔ ln
jjωjj2
jj ~ωjj2 ; (38)

and we also defined

ξ≔ − 2 argðzÞ − 2 argð~zÞ ∈ ½0; 4πÞ: (39)

Finally, the translational part

Tðω0; ~ω0Þ ¼
�
1 ~ω0=ω1 − ω0= ~ω1

0 1

�
(40)

vanishes when ω0 and ~ω0 do, a fact that plays an important
role below.
A key aspect of this result is that the boost rapidity Ξ

enters also the rotational part of h. This is a consequence of
the mixing between rotations and boosts introduced by the
Immirzi parameter [see (11)], and it is presented also in the
timelike case [11]: it is the discrete equivalent of the mixing
in the real Ashtekar-Barbero connection defined by
Ai
a ¼ ωi

a þ ðγ − iÞKi
a, where ωi

a is the anti-self-dual part
of the Lorentz connection and Ki

a the (triad projection of
the) extrinsic curvature. Loosely speaking, the mixing
allows us to probe the Lorentzian phase space through a
smaller subgroup, SU(2) in the timelike case and ISO(2)
here. But while in the timelike case the holonomy on the
constraint surface is still a generic SLð2;CÞ element [11], in
the present null case it is a restricted group element, missing
the algebra directions P̂a capable of changing the direction
of the vector NI, a fact whose consequences will show up
below. Concerning the Poissonian structure of C, the
symplectic potential of T�SLð2;CÞ restricted by the sim-
plicity constraints contains a piece generating the canonical
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Poisson brackets of T�ISOð2Þ between Π and u, and a
degenerate direction. Therefore, C contains a proper sym-
plectic submanifold and can be identified at least locally
with the Cartesian product T�ISOð2Þ ×R, where the
additional dimension corresponds to boosts along NI .
The cotangent bundle of the little group thus appears at
the level of the constraint surface. However, a good part of
it is just gauge, as we now show.
The next stage of the symplectic reduction is to divide by

the gauge orbits. The gauge orbits of F1 and F2 have been
studied in the previous sections: they amount to linear shifts
of ∥ω∥ and ω0, respectively. The latter are thus good
coordinates along the orbits, and the gauge invariant part is
the complex variable z introduced in (28). The situation is
analogous for the tilded variables, corresponding to the
twistor associated with the second half of the link. In this
case, we parametrize the reduced variable as

~̄z ¼
ffiffiffiffiffi
2j

p
jj ~ωjjiγþ1

~ω1; j~zj2 ¼ 2j; f~z; ~̄zg ¼ iε: (41)

Notice the extra complex conjugation appearing here, a
convention taken to preserve the same sign of the brackets
of ~z as for z. Proceeding in this way we have reduced by
both F1 and ~F1, and thus by part of the area-matching con-
straint (18). The remaining part is Cred ≔ jzj2 − j~zj2 ¼ 0,
which is already satisfied by the fact that we took in (41) the
same j as in (28). Its gauge transformations generate
opposite phase shifts,

fCred; argðzÞg ¼ −ε ¼ −fCred; argð~zÞg: (42)

Hence, argðzÞ − argð~zÞ is a good coordinate along the
orbits, and ξ ¼ −2 argðzÞ − 2 argð~zÞ previously defined is
gauge invariant. The two-dimensional reduced phase space
on a link is thus spanned by the pair ðεj; ξÞ, which turns out
to be canonical,

fεj; ξg ¼ 1: (43)

Eliminating the gauges from (36), we see that the
reduced link phase space coincides with T�SOð2Þ,

XA
B ¼ ðγ þ iÞϵj

4

�−1 0

0 1

�
; gAB ¼

�
e−iξ=2 0

0 eiξ=2

�
;

~XA
B ¼ −

ðγ þ iÞϵj
4

�−1 0

0 1

�
: (44)

We notice that the translations are removed dividing by the
F2 orbits. The same happens in the representation of
massless particles, and here it has the nice geometric
interpretation of being shifts along a null direction. The
remaining algebra consists of the helicity generator L3,
which coincides with the oriented area of the bivector,

L3 ¼ εj ¼ − ~L3; fL3; ξg ¼ 1 ¼ −f ~L3; ξg: (45)

We conclude that T2==C==F ¼ T�SOð2Þ, parametrized by
its holonomies and fluxes, or directly by ðεj; ξÞ. After
symplectic reduction, the initial Lorentz algebra has col-
lapsed to the helicity subgroup SO(2) of NI . In particular, ε
is the sign of the helicity, consistent with its initial twistorial
definition, (24).
Let us also discuss the covariance of our construction.

Above we have fixed the same null vector for both source
and target nodes, NI ¼ ~NI ¼ ð1; 0; 0; 1Þ= ffiffiffi

2
p

, and the
reduction has led to the canonical little group. Any different
choice, say for the source, can be written as VN, where V is
a group element in the complement of the little group,
and similarly ~V ~N for the target normal. In this general
case, the resulting reduced phase space would be of the
form ðVXV−1; Vg ~V−1Þ, that is the canonical little group
embedded by the conjugate action. In this sense, our
construction is completely covariant.

IV. NULL TWISTED GEOMETRIES

We have so far described the constraint structure and the
symplectic reduction on a given link. We now move on to
consider the full graph and include the closure condition
(13) in the analysis. For simplicity, we take the same
canonical null vectorNI on each node. The case of arbitrary
NI can be dealt with via the adjoint action as explained
above and does not change the geometric interpretation
which is covariant by construction. The results of the
previous section show that the twistor phase space on the
graph, reduced by the null simplicity conditions (14) and
the area matching (18), is T 2L==Cl==Fnl ¼ T�SOð2ÞL, a
phase space of dimensions 2L, parametrized by ðεljl; ξlÞ.
This result used the fact that the simplicity constraints are
all first class by themselves. The situation slightly changes
when the closure condition (13) is included. On shell of the
simplicity and area-matching constraints, (13) reduces to

Gn ¼
X
l∈n

L3 ¼ 0; Îan ¼
X
l∈n

P̂a ¼ 0; a ¼ 1; 2:

(46)

Here P̂a are the translation generators of the little group of
N̂I ¼ PNI, the only generators changing NI.
These three conditions are equivalent to (4), in particular

the first is the area closure (5), as follows immediately from
(32) and (45). Taking into account the link orientations,
we have

Gn ¼
X
lþ∈n

L3 þ
X
l−∈n

~L3 ¼
X
lþ∈n

εljl −
X
l−∈n

εljl ¼ 0; (47)

where lþ are the links outgoing from the node, and l− the
incoming ones. This expression coincides with the area
closure (5), once we take into account that εl coincides with
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the time orientation for an outgoing link, and its opposite
for an incoming link, as discussed below (35). Therefore,
we can interpret the reduced phase space as a collection of
null polyhedra, dual to the nodes of the graph. The
polyhedra are glued along faces, sharing the same area
Al ∝ jl, and with opposite time orientation.
Notice that out of the closure conditions (46), only Gn

generates an isometry of the null plane. The other iso-
metries of the null hypersurface are not generated by the
closure condition, but by combinations of the simplicity
constraints, as can be deduced from their action inves-
tigated in the previous section, and to which we will come
back below. As it turns out, Îa do not generate symmetries
at all, as they form a second class system with part of the F2

simplicity constraints.7 To study the structure of the
constraints and bring this fact to the surface, we compute

the Dirac matrix associated with the graph. As variables on
different links commute, the matrix has a block structure, in
which each block is associated with a node. Since the
Lorentz-invariant constraints F1 commute with everything,
we leave them out of the analysis. Then for a node of
valencem, the F2 and closure constraints form a ð2mþ 3Þ-
dimensional system. On shell of the F1 constraints, it is
possible and convenient to replace for each link the
complex F2 constraints by the two real Pa. We then take
the basis of node constraints

ϕμ ¼ fP1
1; P

2
2;…; P1

m; P2
m; Î

1; Î2; Gg: (48)

On the constraint surface, the node’s block of the Dirac
matrix evaluates to

Dμν ≡ fϕμ;ϕνg ≈

0
BBBBBBBBBBBBBBBB@

0 0 � � � 0 0 −2γL3
1 2L3

1 0

0 0 � � � 0 0 −2L3
1 −2γL3

1 0

..

. ..
. . .

. ..
. ..

. ..
. ..

. ..
.

0 0 � � � 0 0 −2γL3
m 2L3

m 0

0 0 � � � 0 0 −2L3
m −2γL3

m 0

2γL3
1 2L3

1 � � � 2γL3
m 2L3

m 0 0 0

−2L3
1 2γL3

1 � � � −2L3
m 2γL3

m 0 0 0

0 0 � � � 0 0 0 0 0

1
CCCCCCCCCCCCCCCCA

: (49)

The rank of this matrix is always 4, independent of the
valence of the node. Hence, the node algebra contains
2m − 1 first class constraints and two pairs of second class
contraints. Using this result, and reintroducing the F1’s
(one independent first class constraint per link), the
counting of dimensions of the reduced phase space SΓ
defined in (15) gives

12L − 2L − 4N − 2
X
n

ð2valencen − 1Þ ¼ 2L − 2N:

(50)

It is much smaller than in the timelike case, where one
obtains 6L − 6N, which we recall to the reader represents a
collection of Euclidean polyhedra plus an angle (ξ in the
literature) associated with each shared face. In the null case,
the reduced space is much smaller. Since we proved at the

beginning of the paper that a geometric interpretation in
terms of null polyhedra is still possible, we must conclude
that information on the intrinsic shapes of the polyhedra is
being lost in the reduction. In fact, recall from (33) that on
each face the orbit of F2 changes the value of bI . These
transformations can be distinguished in three types. First,
those corresponding to translations of the vertices in the
null direction, which correspond to isometries. Second,
those corresponding to translations of the vertices changing
the reconstructed angles (9b), and thus the intrinsic
geometry of the polyhedron. Third, those incompatible
with the closure condition (46) and thus breaking the
polyhedron apart. The first two types turn out to be first
class, while the third type is second class. Therefore, while
the interpretation in terms of closed polyhedra is valid,
because of the closure condition, the intrinsic shapes at
fixed areas are pure gauge, the variables ω0

l drop out, and
the reduced phase space contains only the conjugated
variables ðϵljl; ξlÞ, constrained by the first class constraint
Gn. Hence,

SΓ ¼ T�SOð2ÞL==Gn: (51)

We now prove these statements.

7Notice that in the timelike case, the covariant closure
condition is a first class constraint in the discrete theory, whereas
the continuous Gauss law in the time gauge has a second class
part corresponding to the complement to the little group. In this
sense, the null case considered here bears some interesting
similarities with the continuum theory.
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To diagonalize the Dirac matrix on each node, we first
observe that the combinations

Ca
ij ≔ L3

i P
a
j − L3

jP
a
i ¼ 0; (52)

Ia ≔
X
l∈n

Pa ¼ 0 (53)

are first class. Second, the set

Ca
1i; i ¼ 2; 3;…; m − 1; Pa

m; Ia (54)

is equivalent to all of the F2’s. Therefore, we can take out
of (48) the two pairs ðPa

m; Î
aÞ as the four second class

constraints, and the rest are first class, with Pa
1;…; Pa

m−1
replaced by (52) and (53). In particular, the first class
constraints contain the global isometry ISO(2) generated by
Ia and Gn,

8 as well as 2m − 4 additional first class
constraints. Their orbits can be used, together with the
four second class constraints, to eliminate all of the ω0

l from
the reduced phase space.
To see this explicitly, we compute the action of the first

class generators on the spinors, obtaining

ef−αjðiC
1
1j−C

2
1jÞ;•gω0

i ¼ ω0
i þ δijλjω

1
i ; λi ≔ αiðγ þ iÞεiji;

i ¼ 2;…; m − 1; (55)

and

ef−βðiI1−I2Þ;•gω0
i ¼ ω0

i þ βω1
i : (56)

Therefore, we can always set to zero all ω0
l , except when

l ¼ m. The remaining variable is, however, constrained by
the second class closure constraint in (46),

ω0
m ¼ −

zmjω1
mjiγþ1

εmj
3=2
m

Xm−1

i¼1

εij
3=2
i

ω0
i

zijω1
i jiγþ1

; (57)

and it is thus automatically vanishing with the previous
gauge choice.
Going back to the picture of the null tetrahedron, we see

that there are some constraints which generate the global
isometries, and others which can arbitrarily move around
the vertices of the polyhedron, while preserving the closure
and the individual areas. In doing so, we can squash the
polyhedron on the spacelike surface and wash away as
gauge all information on the intrinsic shapes. This becomes
manifest if we rewrite the null polyhedra in terms of the
reduced variables. To see this, we fix the F1 gauge jω1j ¼ 1
and write the spinors in terms of zl and the orbits of Ca

1i
and Ia,

ωA
i ¼ ððλi þ βÞei argðziÞ; ei argðziÞÞ; i ≠ 1; m; (58)

and the πAi are given by (25), assuming all the links are
outgoing. Let us consider the case of a 4-valent node, so we
do not have to deal with the reconstruction procedure, and
we can immediately apply the formulas (9). A straightfor-
ward calculation then gives

E2
12 ¼ γ

j1j2
3j3

j2λ2 þ λ3j2
Imðλ2λ̄3Þ

;

E12 · E23 ¼ −2γε1ε3j2
jλ2j2 þ jλ3j2 þ Reλ2λ̄3

Imðλ2λ̄3Þ
: (59)

The intrinsic shape of the null tetrahedron is determined by
the independent areas and also the gauge orbits of C1i,
while being invariant under the action of the isometries; in
particular β drops out.

A. Intrinsic geometry: Euclidean singular structures

We have seen above that the first-class constraints
eliminate the intrinsic shapes at fixed areas and we are
left with an Abelian reduced phase space T�SOð2Þ. The
remaining closure condition (47) can be solved explicitly,
and we are able to provide a complete set of gauge-invariant
observables, unlike in the non-Abelian case. This leads to a
very simple geometric picture, where the polyhedra give
way to a continuous, albeit singular, metric structure.
Consider a closed graph, the extension to an open graph

being straightforward. The dimension of the reduced phase
space is 2ðL − N þ 1Þ, where we took into account the fact
that on a closed graph one of the closure conditions is
redundant. The gauge invariant information can be asso-
ciated with the faces of the graph, up to moduli taking
into account the possible nonplanarity of the graph.
Consider first a planar graph. Its genus being zero,
2ðL − N þ 1Þ ¼ 2ðF − 1Þ, so it is enough to remove the
pair of variables associated with a specified face, say for
instance the external one in the Schlegel representation of
the graph. Denoting f ¼ 1;…; F − 1, we trade the ξl for
the gauge-invariant traces of the holonomies,

Φf ≔ 2arccos

�
1

2
Tr

�Y
l∈∂f

hl

��
≈
X
l∈∂f

ηlξl; fGn;Φfg ¼ 0;

(60a)

where ηl ¼ � depending on the consistency of the ori-
entation between the face and the link. The same faces can
be used to define an independent set of spins,

Jf ≔
X
l∈∂f

ηljl: (60b)

The reason to weigh the sum with the same signs is to
have a nice Poisson structure. In fact, for a planar graph the

8The remaining isometry of the null hypersurface, the boostsP
lK

3
l , is generated by the F1’s.
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faces can be consistently oriented so that each link is
traversed in opposite directions by the sharing faces. A
moment of reflection then reveals that the coordinates (60)
of the gauge-invariant phase space satisfy the brackets

fJf;Φf0 g ¼ Lff0 ; (61)

where Lff0 is the Laplacian of the dual graph.9 Proper
action-angle variables can then be readily found diagonal-
izing the Laplacian.
Since the intrinsic shapes of the polyhedra have been

gauged away, the reduced variables describe equivalence
classes characterized uniquely by the areas. However, the
same variables can be given a simpler and more direct
geometric interpretation. Recall that the intrinsic geometry
is fully determined by the projection on S0. One can then
describe a spacelike two-dimensional geometry using the
reduced variables. First of all, we observe that the reduced
gauge-invariant holonomies describe an SO(2) transforma-
tion on each face. For simplicity, consider first the case of a
trivalent graph dual to a triangulation. This structure alone
defines the conformal structure of a two-dimensional
Regge geometry, that is a collection of deficit angles
2π − Φf associated with the vertices dual to the faces.
Then, the positive real number Jf associates a scale with
each face, thus picking a representative of the conformal
class. If we pick a local complex coordinate on each face,
say ζf, chosen so that the origin is the location of the vertex,
we can write the face metric as

ds2 ¼ Jfjζfj−Φf=πdζ ⊗ dζ̄: (62)

The resulting geometry is a singular Euclidean structure
(e.g. [13]) on S0.
Notice that by assigning these variables we are speci-

fying fewer data than those required by a two-dimensional
Regge triangulation, which would be L ¼ 3ðF − 2Þ. A
Regge geometry would be specified uniquely if instead of
assigning a scale factor to each dual face, we would do so to
each triangle. Since a triangulation has more triangles than
vertices, our data are fewer and do not specify a unique
two-dimensional Regge geometry. On the other hand, it is
more general than a Regge geometry in the sense that it can
be extended to any graph and not just a dual to a
triangulation, and furthermore because the special case
Φf ¼ 2π, which in Regge would be a pathological infinite
spike, is a perfectly regular configuration, which can be
interpreted as hyperbolic triangles [13]. Finally, the
description has the pleasant features of a natural split into
a conformal metric plus scale factors, locally conjugated.
For nonplanar graphs, the situation is slightly different,

because more than the faces, one should look at the

independent cycles, and these cannot be oriented in such
a way that each link is traversed at most twice, in opposite
directions. Therefore evaluation of Poisson brackets gives a
matrix whose off-diagonal entries can have both signs. This
can a priori still be interpreted as a weighted Laplacian of
some dual graph, but one in which the weights have
an indefinite signature. For instance, in the case of the
4-simplex, the six independent cycles can be chosen so that
there is a single −1 entry in the adjacency matrix.10

B. Extrinsic geometry: Ξ and the role of the embedding

The above description concerns the intrinsic geometry of
the hypersurface, which being null is equivalent to a two-
dimensional one. However the three-dimensional nature
should show up in the study of the extrinsic geometry. As
the reader familiar with loop quantum gravity knows,
information on the extrinsic geometries is also contained
in the reduced phase space, but it is mixed with the intrinsic
one. This is the trade-off for the use of real Ashtekar-
Barbero variables. It can be extracted once the solution to
the secondary simplicity constraint is known, for this
provides a specific (in general, nontrivial) embedding of
the reduced phase space into the Lorentzian one. The same
has been argued to happen in the discrete theory in [11],
and indeed shown at least for flat dynamics [22]. A similar
situation should happen in the present null case, and in
order to talk about extrinsic geometry, we need to first
understand the dynamics of our null twisted geometries,
which we plan to do in future work.
Here we limit ourselves to characterizing the kinematical

degrees of freedom suitable to describing the extrinsic
geometry. In the timelike case, this was identified on the
constraint surface as the (boost) dihedral angle between the
normals NI in adjacent nodes. However, as we stressed
above in (36b), in the null case the holonomy is a restricted
group element already at the level of the constraints surface,
and as a consequence, the angle between the normals NI

and ~NI on adjacent nodes vanishes,

9Notice that this graph is open, because of the redundancy of a
global closure condition and associated gauge.

10The cycles are e.g. 012, 103, 132, 402, 430, 413, and the
Poisson brackets evaluate to the following matrix:

0
BBBBBBBBBB@

3 −1 −1 −1 0 0

−1 3 −1 0 −1 −1

−1 −1 3 0 0 1

−1 0 0 3 −1 0

0 −1 0 −1 3 −1

0 −1 1 0 −1 3

1
CCCCCCCCCCA
: (63)

It can still be casted in the form D − A of a certain dual graph,
where D and A are, respectively, the degree and weighted
adjacency matrix, with the latter having also negative entries.
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~N · ΛðhÞN ¼ 0: (64)

The vanishing of this scalar product is consistent with the
fact that we are dealing with a null hypersurface, and in
order to specify a notion of extrinsic geometry, we need an
embedding in some nondegenerate four-dimensional space-
time. Indeed, considering also the null hypersurface
spanned by the parity transformed vector N̂I, we can
evaluate a nonzero scalar product, given by

P ~N · ΛðhÞN ¼ −eΞ; (65)

where Ξ is the boost rapidity previously defined, and
ΛðhÞN ¼ eΞN. The equation above suggests that Ξ should
be related to a discretization of a certain free coordinate
(denoted λ in [23]) used in the null formulation of general
relativity (GR) [23–25]. We postpone the comparison of
our discrete data to a discretization thereof to future work.
We expect that Ξ plays an important role in character-

izing the extrinsic geometry, as well as possibly the
intrinsic shapes of the null polyhedra. The fact that these
quantities have disappeared from the reduced phase space
has do to with the fact that in the constrained system
considered so far, the simplicity constraints were all first
class. Future studies of the dynamics may reveal the
presence of secondary constraints that could turn some
or all of the simplicity constraints into second class, e.g.
[26]. If that happens, the solutions to the secondary
constraints can be interpreted as providing specific, non-
trivial gauge fixing for the orbits, thus restoring a geometric
interpretation for Ξ and the intrinsic shapes through the
dynamical embedding.

V. QUANTIZATION AND NULL SPIN NETWORKS

Quantizing the above phase space and its Poisson
algebra introduces a notion of spin networks for null
hypersurfaces. The reduced phase space T�SOð2Þ with
its canonical algebra fm; ξg ¼ 1, m ¼ εj, can immediately
be quantized on the Hilbert space L2½SOð2Þ�, the space of
SO(2) unitary irreducible representations with eigenvalues
m ∈ Z=2, and operator algebra

ψ ½ξ�; ½m̂; eiξ̂=2� ¼ 1

2
eiξ̂=2: (66)

Since ξ ∈ ½0; 4πÞ, the eigenvalues of m̂ are half-integers,
and eiξ̂ acts as a raising operator,

m̂jmi ¼ mjmi; eiξ̂=2jmi ¼ jmþ 1=2i; (67)

the Abelian version of the holonomy-flux algebra. Finally,
a basis is given by Fourier modes on the (double cover of
the) circle,

ψm½ξ� ¼ hξjmi ¼ eimξ: (68)

This Hilbert space bears similarities with the more familiar
one of the harmonic oscillator in action-angle variables, the
main difference being that the “Hamiltonian” m̂ is not
bounded from below, and m ∈ Z=2.
The gauge-invariant Hilbert space HΓ, corresponding to

SΓ, is obtained by taking the tensor product of the states on
the links and imposing the closure condition (47) on the
nodes. The results are Abelian SO(2) spin networks, with
trivial intertwiners and flux conservation on the nodes,

ΨΓ;ml
½ξl� ¼⊗ l ψml

½ξl�
Y
n

δ

�X
lþ∈n

ml −
X
l−∈n

ml

�
: (69)

To appreciate how these simple states can represent
quantized null hypersurfaces, it is instructive to derive HΓ
following Dirac’s procedure, starting from a Hilbert space
for the twistor phase space and its algebra, and then
implement the quantized constraints. This procedure will
show how such Abelian spin networks are to be embedded
in the Lorentz group and identifym as the helicity quantum
number. While being necessary for future studies of
dynamics, it will also expose some of the covariance
properties of the states, as well as their integrability
properties with respect to the SLð2;CÞ Haar measure.
As in the classical reduction, we proceed in two steps:
we first consider the quantization of a single twistor phase
space, and the simplicity constraints it satisfies; then, we
look at the link phase space and impose the area-matching
condition.
For the twistorial Hilbert space we take wave functions

fðωÞ ∈ L2½C2; d4ω�, where

d4ω ¼ 1

16
dωA ∧ dωA ∧ cc; (70)

and a Schrödinger representation of the canonical Poisson
algebra (17),

½π̂A; ω̂B� ¼ −iℏδBA; ðω̂AfÞðωAÞ ¼ ωAfðωAÞ;

ðπ̂AfÞðωAÞ ¼ −iℏ
∂

∂ωA fðωAÞ: (71)

A convenient basis for these is provided by homogeneous
functions, since they diagonalize the dilatation operator
appearing in F1 and carry a unitary, infinite-dimensional
representation of the Lorentz group. In particular, since the
simplicity constraints are the vanishing of the ISO(2)
translation generators Pa, it is convenient to take a basis
diagonalizing the latter, called the null basis, instead of the
canonical basis labeled by the rotational subgroup SU(2).
Denoting pa the eigenvalues, and p ≔ − p2 þ ip1, the
null basis element are the wave functions
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fðρ;kÞp ðωAÞ ¼ 1

2π
ðω1Þ−k−1þiρðω̄_1Þk−1þiρ

× exp

�
i
2

�
ω̄_0

ω̄_1
pþ ω0

ω1
p̄

��
; (72)

where ðρ ∈ R; k ∈ Z=2Þ. Details about the SLð2;CÞ and
ISO(2) representations can be found in the Appendix.
To represent quadratic operators, we introduce the

normal ordering

∶π̂ω∶ ¼ 1

2
ðπ̂Aω̂A þ ω̂Aπ̂AÞ ¼ −iℏ

�
ωA ∂

∂ωA þ 1

�
: (73)

With this ordering, the spinorial simplicity constraints (23)
read

F̂1 ¼
ℏ
2

�
ðγ − iÞωA ∂

∂ωA − ðγ þ iÞω̄ _A ∂
∂ω̄ _A

− 2i

�
;

F̂2 ¼ iℏω̄1
∂

∂ω0
; ˆ̄F2 ¼ F̂†

2 ¼ iℏω1
∂

∂ω̄0
: (74)

Since on each link these constraints are first class, they can
be imposed as operator equations on states. An immediate
calculation then gives

F̂1f
ðρ;kÞ
p ðωAÞ ¼ 0 ⇒ ρ ¼ γk; (75)

F̂2f
ðρ;kÞ
p ðωAÞ ¼ ˆ̄F2f

ðρ;kÞ
p ðωAÞ ¼ 0 ⇒ p ¼ 0; (76)

so the solutions are the functions

fkðωAÞ≡ fðγk;kÞ0 ðωAÞ ¼ 1

2π
ðω1Þðiγ−1Þk−1ðω̄1Þðiγþ1Þk−1:

(77)

The formula (77) defines a state also for k ¼ 0, but this case
corresponds classically to πω ¼ 0, for which the twistorial
description of T�SLð2;CÞ breaks down. To complete the
quantization, we need to provide independently the missing
state. If we extrapolate (77) to k ¼ 0, we get a nontrivial
state, jω1j−2, which could pose problems with cylindrical
consistency. Hence, we fix instead

f0ðωAÞ ¼ 1: (78)

The first thing to notice is that in the p ¼ 0 sector Pa and
L3 commute; thus these functions are also eigenfunctions
of L3, with

L̂3fkðωAÞ ¼ ℏkfkðωAÞ; (79)

and thus k is the helicity eigenvalue. Next, the solutions can
be expressed in terms of the reduced phase space variable z
using (28), obtaining

fkðωAÞ ¼ 1

2πjω1j2
�
z̄
z

�
k
: (80)

Notice the leftover dependence on the non-F1-invariant
term jω1j. As the action generated by F1 is noncompact,
Dirac’s quantization does not lead to a proper subspace of
functions on the reduced phase space, but rather distribu-
tions. Proper function can be defined taking into account
the reduced measure.
The reduced measure can be obtained starting from (70),

imposing the constraints and dividing by the gauge orbits
generated by their Hamiltonian vector fields hFi

,

dμðzÞ ≔ 4πiιhFi ðd4ωÞjFi¼0; (81)

where ι denotes the interior product and 4πi is a normali-
zation motivated a posteriori. The Hamiltonian vector
fields are

hF1
≔ fF1; •g ≈

1

2
ð1þ iγÞω0

∂
∂ω0

þ iγω1
∂

∂ω1
þ cc;

hF2
≔ fF2; •g ≈ −2ω1

∂
∂ω0

: (82)

Evaluating the interior products gives

ιhF2 ιhF̄2 ½ðdωA∧ dωAÞ∧ cc:� ≈ −4jω1j2dω1 ∧ dω̄1 (83)

and

ιhF1 ðdω1 ∧ dω̄1Þ ≈ iγðω1dω̄1 − ω̄1dω1Þ: (84)

Putting these results together, and reintroducing z, we get

dμðzÞ ¼ −πijω1j4
�
dz̄
z̄
−
dz
z

�
: (85)

Notice that the dependence on γ has disappeared, and the
measure factor jω1j4 perfectly compensates the one in the
reduced functions (80).
Denoting argðzÞ ¼ −2ϕ, we have dμðzÞ ¼ 4πjω1j4dϕ,

and the proper reduced Hilbert space is given by

fkðϕÞ ¼ hϕjki ¼ 1

2π
e2ikϕ;

hk0jki ¼ 1

π

Z
π

0

dϕe2iðk−k0Þϕ ¼ δkk0 ; (86)

with k ∈ Z=2. This half-link Hilbert space already coin-
cides with L2½SOð2Þ�, with operator algebra

m̂jki ¼ kjki; exp

�
i
ϕ̂

2

�
jki ¼

����kþ 1

2

�
: (87)

The next step is to consider the two copies of this Hilbert
space associated with a link, and impose the area-matching
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condition, but this procedure will lead trivially to an
equivalent Hilbert space.11 In fact, the quantum version
of the area-matching condition on one link corresponding
to (18) is

Ĉ≡ ∶π̂ω∶þ ∶c~π ~ω∶; (88)

and imposing it strongly on a tensor product state
fkðωAÞ ⊗ f ~kð ~ωAÞ gives immediately k ¼ −~k. The state
simplifies to

FkðξÞ ¼
1

ð2πÞ2 e
ikξ; ξ ∈ ½0; 4πÞ: (89)

The appropriate link measure is also obtained trivially. We
have thus recovered the initial L2½SOð2Þ�, with holonomy-
flux algebra (66), and further we can identify the oriented
area operator m̂ with the helicity and its eigenvalues with
the label k of the Lorentz irreps.
Finally, gauge invariance can easily be implemented, and

the results are the Abelian spin networks (69). Just as
ordinary SU(2) spin networks can be interpreted as quan-
tized twisted geometries, the null spin networks represent
quantized null twisted geometries.12

The embedding allows us to define and evaluate generic
Lorentz operators on the reduced Hilbert space. For
instance, the first Casimir, classically the oriented area

A2 ¼ 1

2
BIJBIJ

¼ γ2

2ðγ2 þ 1Þ2 ½ðγ − iÞ2ðπωÞ2 þ ðγ þ iÞ2ðπ̄ωÞ2� ≈ γ2j2;

(90)

is the last equality holding onto the constraint surface. The
corresponding operator is

Â2 ≡ −γ2ℏ2

2ðγ2 þ 1Þ2
�
ðγ − iÞ2

�
ωA ∂

∂ωA þ 1

�
2

þ ðγ þ iÞ2
�
ω̄ _A ∂

∂ω̄ _A
þ 1

�
2
�
; (91)

and on the solution space spanned by (89) gives

Â2Fk ¼ ℏ2γ2k2Fk: (92)

VI. DISCUSSION

In this paper, we have exploited the parametrization of
LQG on a fixed graph in terms of twistors to describe null
hypersurfaces and their quantization in terms of spin
networks. Our construction is based on the fact that the
twistors appearing in LQG satisfy a restricted incidence
relation, in turn determined by the timelike vector appear-
ing in the 3þ 1 decomposition of the Plebanski action.
Taking this vector to be null forces the geometric inter-
pretation of the theory to lie on a null hypersurface, and the
result is a collection of null polyhedra with spacelike faces.
The first result of our paper concerns properties of the

geometry of null polyhedra. We provided a characterization
of the intrinsic shapes in terms of simple bivectors and
showed that the space of shapes at fixed external areas is
not a phase space obtained from bivectors and the action
generated by the closure constraint, as it is the case for
spacelike and timelike polyhedra, because in the null case
the reduced closure condition does not generate all of the
isometries, but only the helicity part of it. The rest of the
closure is second class. The remaining isometries are in
turn generated by the (global) action of the simplicity
constraints around a node. However, all the simplicity
constraints (compatible with the closure condition) are first
class, not just their total sum on a node, and their action
changes the intrinsic shapes of the null polyhedron.
Therefore, the phase space obtained by symplectic reduc-
tion is much smaller, algebraically described just by the
helicity subgroup, and geometrically an equivalence class
of null polyhedra determined only by the areas and their
time orientation.
The second result concerns the description of the gauge-

invariant phase space. As the helicity subgroup is Abelian,
the remaining closure condition can be solved explicitly
and proper action-angle variables given. For planar graphs,
these are given by the eigenvectors of the Laplacian of the
dual graph. The action-angle variables have a compelling
geometric interpretation, as a Euclidean singular structure
on the two-dimensional spacelike surface determined by a
null foliation of spacetime. In particular, it is naturally
decomposed into deficit angles and scale factors, locally
conjugated. We are not in a position to discuss the extrinsic
geometry and thus the three-dimensional picture of the null
twisted geometries, because this requires the discrete
analogue of the secondary simplicity constraints, and it
is thus referred to future work on the dynamics. However,
we identified the variables in the phase space susceptible of
carrying such information.
Finally, we quantized the phase space and its algebra,

introducing a notion of null spin networks. They are
Abelian spin networks, whose embedding the Lorentz
group permits one to identify the Abelian quantum number
with the helicity along the null direction of the hypersur-
face. We derived the spin networks by directly quantizing
the reduced phase space, and also by following Dirac’s

11This should not come as a surprise: the whole point of the
twistorial parametrization is to encode a nonlinear space (the
group manifold) into the solution to a quadratic equation of a
linear space (twistor space). But if the starting point is already
linear, as in this Abelian case, the procedure is clearly trivial.

12In other words, coherent states of (69) are peaked on a null
twisted geometry.
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procedure starting from a Hilbert space for twistors. Notice
that a loop-inspired quantization of null hypersurfaces has
appeared some time ago in [27]. The main difference is that
the approach of [27] is based on asymptotic quantities
defined at null infinity, whereas here we look at local
quantities associated with a fixed graph. Notwithstanding
this important difference, a comparison of the two
approaches would be valuable.
As such, our result are only a first, kinematical step

toward our goal of understanding the dynamics of null
surfaces in LQG. The applications are many and furnish
important motivations to our research program, from the
possibility of including dynamical effects in black hole
physics and isolated horizons [28], describing the near
horizon quantum geometry, to the use in the constraint-free
formulation of GR on null hypersurfaces. To that end, many
nontrivial steps are needed. First of all, our analysis needs
to be complemented with a continuum canonical analysis
of the Plebanski action on a null hypersurface [29]. Second,
our geometric description should be compared with the null
formulations of general relativity [23–25,30] and suitable
discretizations thereof, in particular, identifying the shear
degrees of freedom and completing the geometric picture
developed here with its extrinsic geometry. On a comple-
mentary level, one should also investigate what type of spin
foams can support the boundary data here studied (see e.g.
[3]). We expect this line of research to bring new tools and
results to LQG and to show us how deep the connection
with twistors goes.
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APPENDIX A: CONVENTIONS

We use A;B;C;…, for spinor indices in the left-handed
representation; _A; _B; _C;…, in the right-handed representa-
tion; I; J; K;…, the Minkowski indices; and i; j; k;…,
space indices running from 1 to 3. A bijection between
Minkowski space and spinors is given by

MA _A ¼ iffiffiffi
2

p MIσA _A
I ; (A1)

where σA _A
I ¼ ð1; ~σÞ and σAjB ¼ σA _A

j δB _A are Pauli matrices.
Notice that we are mapping vectors to anti-Hermitian
matrices consistently with Minkowski metric signature

ð−;þ;þ;þÞ. The normalization of the Levi-Cività tensor
is ϵ0123 ¼ 1. We raise and lower spinor indices with

ϵAB ¼
�

0 1

−1 0

�
¼ ϵAB; ϵABϵAC ¼ δBC;

ωA ¼ ϵABωB; ωA ¼ ϵBAω
B: (A2)

For the Lorentz algebra, we define

½Li; Lj� ¼ −iϵijkLk; ½Li; Kj� ¼ −iϵijkKk;

½Ki; Kj� ¼ iϵijkLk (A3)

in terms of rotations Li ≡ − 1
2
ϵ0ijkMjk and boosts

Ki ≡M0i. We also introduce left-handed (−, anti-self-dual)
and right-handed (þ, self-dual) projectors Pð�Þ, as

PIJ
ð�ÞKL ¼ 1

2

�
δ½IKδ

J�
L∓ i

2
ϵIJKL

�
; (A4)

and the left-handed generators are defined as

Πi ≔ iP0i
ð−ÞIJM

IJ ¼ 1

2
ðLi þ iKiÞ: (A5)

In general the spinorial form of a bivector is

BIJ ¼ BABϵ _A _B þ cc; (A6)

where the left-handed and right-handed parts are

Bi ¼ P0i
ð−ÞIJB

IJ ¼ 1

2
BABσiAB;

B̄i ¼ P0i
ðþÞIJB

IJ ¼ 1

2
B̄ _A _Bσ̄i_A _B

: (A7)

In terms of the self-dual quantities, the Immirzi shift (11)
reads

Πi ¼ γ þ i
γ

Bi; ΠAB ¼ −
1

2

γ þ i
iγ

BAB: (A8)

APPENDIX B: NULL LITTLE GROUP

The group ISO(2), sometimes denoted as E(2), is the
symmetry group of two-dimensional Euclidean spaceR2. It
is not compact nor semisimple. Its Lie algebra isoð2Þ has
three generators, J, P1 and P2, satisfying

½J; Pa� ¼ iϵabPb; ½Pa; Pb� ¼ 0; ða; b ¼ 1; 2Þ:
(B1)

J is the generator of rotations in R2, and Pa generate the
translations.
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This Lie group appears as the little group of a null
directionNI in Minkowski space, with generators related to
the Lorentz generators MIJ by

XI ¼ 1ffiffiffi
2

p ϵIJKLNJMKL: (B2)

Two canonical choices areNI
� ¼ ð1; 0; 0;�1Þ= ffiffiffi

2
p

. In these
two cases, the generators are, respectively,

L3; P1þ ≡ P1 ¼ L1 − K2; P2þ ≡ P2 ¼ L2 þ K1;

(B3)

L3; P1
− ≡ P̂1 ¼ L1 þ K2; P2

− ≡ P̂2 ¼ L2 − K1;

(B4)

and satisfy

½L3; Pa
�� ¼ iϵabPb

�; ½Pa
�; P

b
�� ¼ 0;

½Pa
�; P

b∓� ¼ 2iðϵabL3 � δabK3Þ: (B5)

On the fundamental representation ð1=2; 0Þ of slð2;CÞ,
the generators are

L3 ¼ 1

2

�
1 0

0 −1

�
; P1 ¼

�
0 −1
0 0

�
; P2 ¼

�
0 i

0 0

�
;

P̂1 ¼
�

0 0

−1 0

�
; P̂2 ¼

�
0 0

−i 0

�
: (B6)

Exponentiating the generators we get the respective group
elements,

gAB ¼
�
e
i
2
θ −p

0 e−
i
2
θ

�
; ĝAB ¼

�
e
i
2
θ 0

p̄ e−
i
2
θ

�
;

p ≔ − p2 þ ip1: (B7)

APPENDIX C: UNITARY IRREDUCIBLE
REPRESENTATION OF ISO(2) AND SLð2;CÞ
Unitary irreducible representations (irreps) of ISO(2) are

complex function f on C, with basis labeled by the
eigenvalues pa ∈ R of Pa,

fpðzÞ ¼
1

2π
e
i
2
ðz̄pþzp̄Þ; z ¼ −z2 þ iz1;

p≡ −p2 þ ip1; (C1)

½Pa ∘ fp�ðzÞ ¼ pafpðzÞ;
½L3 ∘ fp�ðzÞ ¼ ðz∂z − z̄∂ z̄ÞfpðzÞ: (C2)

The basis is orthogonal,

hfp; fp0 i ¼ i
2

Z
C
dz∧ dz̄ fpðzÞ fp0 ðzÞ

¼ i
8π2

Z
C
dz∧ dz̄e

i
2
z̄ðp0−pÞ−cc: ¼ δCðp0 − pÞ;

(C3)

and complete,

i
2

Z
C
dp∧ dp̄ fpðzÞ fpðz0Þ ¼

i
8π2

Z
C
dp∧ dp̄e

i
2
p̄ðz0−zÞ−cc:

¼ δCðz0 − zÞ: (C4)

Thanks to these properties, and the induced representations
theorem, irreps of SLð2;CÞ can be spanned by irreps of
ISO(2), with a faithful one-to-one map.
To make the map explicit, recall that irreps of SLð2;CÞ

are built from homogeneous functions on C2, f∶ C2 → C.
For the principal series, the homogeneity weights can be
conveniently parametrized by the pair ðρ; kÞ ∈ ðR;Z=2Þ as
follows:

∀λ ∈ C=f0g; fðλωAÞ ¼ λ−k−1þiρλ̄k−1þiρfðωAÞ; (C5)

and the unitary irrep DðgÞ of

gAB ¼
�
a b
c d

�
∈ SLð2;CÞ

is given by

½DðgÞ ∘ fðρ;kÞ�ðωAÞ ¼ fðρ;kÞðgABωBÞ: (C6)

Then, we define ω ¼ ω0=ω1, and

fðρ;kÞðωÞ ≔ fðρ;kÞ
�
ω0

ω1
; 1

�
¼ ðω1Þkþ1−iρðω̄1̄Þ−kþ1−iρfðρ;kÞðωAÞ: (C7)

By inverting this relation, each homogeneous function
fðρ;kÞðωAÞ ∈ Hðρ;kÞðωAÞ is uniquely determined by a
fðρ;kÞðωÞ, and picking in particular the basis (C1) for the
latter, we find

fðρ;kÞp ðωAÞ ¼ ðω1Þ−k−1þiρðω̄1̄Þk−1þiρfðρ;kÞp ðωÞ

¼ 1

2π
ðω1Þ−k−1þiρðω̄1̄Þk−1þiρe

i
2
ðω̄0̄
ω̄1̄
pþω0

ω1
p̄Þ
: (C8)

This defines the null basis for the principal series of
SLð2;CÞ irreps.
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The SLð2;CÞ action is

½DðgÞ ∘ fðρ;kÞ�ðωÞ ¼ ðcωþ dÞ−k−1þiρðcωþ dÞk−1þiρfðρ;kÞ
�
aωþ b
cωþ d

�
; (C9)

and the inner product

hf; hiðρ;kÞ ¼ i
2

Z
C
fðρ;kÞðωÞhðρ;kÞðωÞdω∧ dω̄ ¼ i

2

Z
PC2

fðρ;kÞðωAÞhðρ;kÞðωAÞωAdωA ∧ ω̄Ādω̄
Ā: (C10)

In particular,

hfðρ;kÞp ; fðρ;kÞp0 i ¼ δCðp0 − pÞ: (C11)

[1] S. Alexandrov and Z. Kadar, Classical Quantum Gravity 22,
3491 (2005).

[2] F. Conrady and J. Hnybida, Classical Quantum Gravity 27,
185011 (2010).

[3] Y. Neiman, arXiv:1212.2916.
[4] L. Freidel and S. Speziale, Phys. Rev. D 82, 084040 (2010).
[5] L. Freidel and S. Speziale, Phys. Rev. D 82, 084041 (2010).
[6] L. Freidel, K. Krasnov, and E. R. Livine, Commun. Math.

Phys. 297, 45 (2010).
[7] E. Bianchi, P. Dona, and S. Speziale, Phys. Rev. D 83,

044035 (2011).
[8] W.M. Wieland, Classical Quantum Gravity 29, 045007

(2012).
[9] M. Dupuis, L. Freidel, E. R. Livine, and S. Speziale,

J. Math. Phys. (N.Y.) 53, 032502 (2012).
[10] E. R. Livine, S. Speziale, and J. Tambornino, Phys. Rev. D

85, 064002 (2012).
[11] S. Speziale and W.M. Wieland, Phys. Rev. D 86, 124023

(2012).
[12] L. Freidel and J. Hnybida, Classical Quantum Gravity 31,

015019 (2014).
[13] M. Carfora, C. Dappiaggi, and A. Marzuoli, Classical

Quantum Gravity 19, 5195 (2002).
[14] M. Kapovich and J. J. Millson, J. Diff. Geom. 44, 479

(1996).

[15] S. Alexandrov, E. Buffenoir, and P. Roche, Classical
Quantum Gravity 24, 2809 (2007).

[16] A. Perez, Living Rev. Relativity 16, 3 (2013).
[17] J. Engle, E. Livine, R. Pereira, and C. Rovelli, Nucl. Phys.

B799, 136 (2008).
[18] S. Alexandrov and E. R. Livine, Phys. Rev. D 67, 044009

(2003).
[19] J. Engle, R. Pereira, and C. Rovelli, Phys. Rev. Lett. 99,

161301 (2007).
[20] C. Rovelli and S. Speziale, Phys. Rev. D 82, 044018 (2010).
[21] M. Langvik and S. Speziale, “Twisted Geometries, Twistors

and Conformal Transformations” (to be published).
[22] F. Anzá and S. Speziale, “Secondary Simplicity Constraints

and Shape Matching Conditions” (to be published).
[23] M. P. Reisenberger, arXiv:gr-qc/0703134.
[24] R. Sachs, J. Math. Phys. (N.Y.) 3, 908 (1962).
[25] M. P. Reisenberger, Phys. Rev. Lett. 101, 211101 (2008).
[26] S. Alexandrov, Phys. Rev. D 78, 044033 (2008).
[27] S. Frittelli, C. N. Kozameh, E. T. Newman, C. Rovelli, and

R. S. Tate, Phys. Rev. D 56, 889 (1997).
[28] A. Ashtekar, J. C. Baez, and K. V. Krasnov, Adv. Theor.

Math. Phys. 4, 1 (2000).
[29] S. Alexandrov and S. Speziale (to be published).
[30] S. Frittelli, C. Kozameh, and E. T. Newman, J. Math. Phys.

(N.Y.) 36, 4984 (1995).

SIMONE SPEZIALE AND MINGYI ZHANG PHYSICAL REVIEW D 89, 084070 (2014)

084070-18

http://dx.doi.org/10.1088/0264-9381/22/17/010
http://dx.doi.org/10.1088/0264-9381/22/17/010
http://dx.doi.org/10.1088/0264-9381/27/18/185011
http://dx.doi.org/10.1088/0264-9381/27/18/185011
http://arXiv.org/abs/1212.2916
http://dx.doi.org/10.1103/PhysRevD.82.084040
http://dx.doi.org/10.1103/PhysRevD.82.084041
http://dx.doi.org/10.1007/s00220-010-1036-5
http://dx.doi.org/10.1007/s00220-010-1036-5
http://dx.doi.org/10.1103/PhysRevD.83.044035
http://dx.doi.org/10.1103/PhysRevD.83.044035
http://dx.doi.org/10.1088/0264-9381/29/4/045007
http://dx.doi.org/10.1088/0264-9381/29/4/045007
http://dx.doi.org/10.1063/1.3692327
http://dx.doi.org/10.1103/PhysRevD.85.064002
http://dx.doi.org/10.1103/PhysRevD.85.064002
http://dx.doi.org/10.1103/PhysRevD.86.124023
http://dx.doi.org/10.1103/PhysRevD.86.124023
http://dx.doi.org/10.1088/0264-9381/31/1/015019
http://dx.doi.org/10.1088/0264-9381/31/1/015019
http://dx.doi.org/10.1088/0264-9381/19/20/312
http://dx.doi.org/10.1088/0264-9381/19/20/312
http://dx.doi.org/10.1088/0264-9381/24/11/003
http://dx.doi.org/10.1088/0264-9381/24/11/003
http://dx.doi.org/10.12942/lrr-2013-3
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.018
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.018
http://dx.doi.org/10.1103/PhysRevD.67.044009
http://dx.doi.org/10.1103/PhysRevD.67.044009
http://dx.doi.org/10.1103/PhysRevLett.99.161301
http://dx.doi.org/10.1103/PhysRevLett.99.161301
http://dx.doi.org/10.1103/PhysRevD.82.044018
http://dx.doi.org/10.1063/1.1724305
http://dx.doi.org/10.1103/PhysRevLett.101.211101
http://dx.doi.org/10.1103/PhysRevD.78.044033
http://dx.doi.org/10.1103/PhysRevD.56.889
http://dx.doi.org/10.1063/1.531210
http://dx.doi.org/10.1063/1.531210

