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We compute quantum corrections to the Raychaudhuri equation by replacing classical geodesics with
quantal (Bohmian) trajectories and show that they prevent focusing of geodesics and the formation of
conjugate points. We discuss implications for the Hawking-Penrose singularity theorems and curvature
singularities.
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I. INTRODUCTION

The celebrated Hawking-Penrose singularity theorems in
general relativity, which show that most reasonable space-
times are incomplete or singular in a certain precise sense
[1], crucially depend on the validity of the Raychaudhuri
equation, via the existence of conjugate points that the latter
predicts [2]. This equation, although being quite general,
nevertheless is completely classical in nature and so are the
singularity theorems. However, we know that classical
mechanics is an approximation of an underlying quantum
world characterized by measurement uncertainties and
the absence of particle trajectories. As a result, when the
trajectories, or geodesics, and their congruences in the
Raychaudhuri equation are replaced with less classical/
more quantum entities, one expects corrections to the
equation and a modification of its consequences. In
particular, one may hope quantum effects to smooth the
sharp focusing of geodesics, the formation of conjugate
points and caustics, and ultimately the spacetime
singularities.
In this article, we show that by replacing the classical

velocity field used in the Raychaudhuri equation, by a
quantum velocity field, a first order guiding equation, and
the additional quantum potential that comes into play, this
focusing is indeed prevented. We discuss its implications
for the singularity theorems and curvature singularities.
Throughout, we assume a fixed (classical) background
spacetime, a four-dimensional differentiable manifold with
Lorentzian signature ðþ;−;−;−Þ.
Starting from a congruence of timelike geodesics (for

simplicity, our results easily generalize to null geodesics as
well) with tangent vector (“the velocity field”) uaðxÞ
parametrized by an affine parameter λ along the geodesics,
and by s for neighboring geodesics with the deviation
vector (or Jacobi field) ηa (connecting neighboring geo-
desics), it is straightforward to compute the derivative of
ua;b along a geodesic, as follows:

dua;b
dλ

¼ ua;b;cuc ¼ ½ua;c;b þ Rcba
dua�uc

¼ ðua;cucÞ;b − uc;bua;c þ Rcba
ducud

¼ −uc;bua;c þ Rcbaducud: (1)

Rabcd and Rab are the Riemann and Ricci tensors respec-
tively, and we have used the geodesic equation ua;cuc ¼ 0,
to arrive at the last line. As usual, defining the three-metric
hab ¼ gab − uaub, and θ ¼ habua;b (trace), ωab ¼ u½a;b�
(antisymmetric part), σab ¼ uða;bÞ − 1

3
habθ (traceless sym-

metric part) such that ua;b ¼ 1
3
θhab þ σab þ ωab, the trace

of Eq. (1) yields the Raychaudhuri equation

dθ
dλ

¼ −
1

3
θ2 − σabσ

ab þ ωabω
ab − Rcducud: (2)

For hypersurface orthogonal geodesics (i.e. ωab ¼ 0), and
when the strong energy condition via the Einstein equations
Rcducud > 0 is satisfied, the rhs of Eq. (2) is negative,
and it follows that if the congruence is initially converg-
ing [θ0 ≡ θð0Þ < 0], the geodesics will focus, and a
caustic will develop within finite value of the affine
parameter, λ ≤ 3=jθ0j.
To better illustrate certain points, we first take the

nonrelativistic limit of Eq. (2) by replacing λ → t
(the coordinate time), uaðxÞ → vað~x; tÞ, (a ¼ 1, 2, 3),
u0 ¼ 1, and Rcducud → ∇2V, where Vð~x; tÞ is the
Newtonian gravitational potential, to obtain1

dθ
dt

¼ −
1

3
θ2 − σabσ

ab þ ωabω
ab −∇2V: (3)

Using the Poisson equation ∇2V ¼ 4πGρ ≥ 0, it is easy to
show that analogous focusing of particle trajectories takes
place for Eq. (3). Akin to using the geodesic equation to
derive Eq. (2), in the above, we used Newton’s second law
for each particle following the flow of the velocity field
~vð~x; tÞ,
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1The Raychaudhuri equation in the context of Newtonian
gravity has also been discussed in [6].
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d~v
dt

¼ − ~∇Vð~x; tÞ: (4)

Next, to obtain quantum corrections to the Raychaudhuri
equation, we first note that one now needs a quantum
velocity field. This is most easily obtained by writing the
wave function of a quantum fluid or condensate as [3]

ψð~x; tÞ ¼ ReiS; (5)

where ψð~x; tÞ is a normalizable wave function, and Rð~x; tÞ
and Sð~x; tÞ are real continuous functions [e.g. for a central
mass M and test particle mass m, these are just the
complete set of hydrogen atom wave functions, with
negative (bound states) or positive (scattering states)
energies, with e2=4πε0 → GMm, and unitary time evolu-
tion preserving the normalization of these solutions or a
superposition thereof [4,5]. One adopts a statistical inter-
pretation with ρ≡ jψ j2 identified with the density of
particles in the fluid (the dynamics guarantees that this
relation is preserved in time) and its velocity field as

~vð~x; tÞ ¼ d~x
dt

≡ ℏ
m
Im

� ~∇ψ
ψ

�
¼ ℏ

m
~∇Sð~x; tÞ: (6)

Note that this velocity field is irrotational, ~∇ × ~v ¼ 0, i.e.
ωab ¼ 0, unless S is singular, signifying the presence of
vortices. As usual, one assumes the wave function and
consequently ~v as single valued [5]. Substituting in the
complex Schrödinger equation yields two real equations

∂ρ
∂t þ ~∇ · ðρ~vÞ ¼ 0; (7)

m
d~v
dt

¼ −m~∇V þ ℏ2

2m
~∇
�
1

R
∇2R

�
: (8)

While Eq. (7) is simply the probability conservation
law, Eq. (8) resembles the classical Newton’s second
law of motion but with an extra quantum potential,
VQ ≡ − ℏ2

2m ð 1R∇2RÞ, in addition to the external (classical)
potential V, which could be gravitational, for example.
Clearly this vanishes in the ℏ → 0 limit recovering the
classical equations of motion and all related classical
predictions. Furthermore, although Eqs. (7) and (8) are
completely equivalent to the Schrödinger equation, they
can be interpreted as giving rise to actual trajectories of
particles (“quantal trajectories”) initially distributed
according to the density jψ j2, and in quantum equilibrium,
subject to the external potential Vð~x; tÞ, as well as the
additional quantum potential VQ. Indeed the latter repro-
duces the observed interference patterns in a double slit
experiment, the Aharonov-Bohm effect, the Stern-Gerlach-
type experiments, and all other observed quantum phe-
nomena, and so long as quantum mechanics is valid, no

experiments or observations can invalidate the above
picture [3]. Thus, we replace classical geodesics with these
quantal (Bohmian) trajectories. The Raychaudhuri equation
can be rederived for this velocity field but now with the
extra potential, i.e. V → V þ VQ=m, resulting in

dθ
dt

¼ −
1

3
θ2 − σabσ

ab −∇2V þ ℏ2

2m2
∇2

�
1

R
∇2R

�
: (9)

Now the expression for the quantum velocity field in
Eq. (6), and equivalently, the presence of the quantum
potential terms in Eqs. (8) and (9) ensure that the corre-
sponding trajectories do not cross, and there is no focusing
for any value of t. The easiest way to see this simple yet
important result is to note that Eq. (6) is first order in time,
and at any time t, its right-hand side, and therefore the
velocity field are uniquely defined at each point in space.
Therefore it gives rise to nonintersecting integral curves or
streamlines [3,7,8]. In the above, ψ itself evolves according
to the Schrödinger equation. Analytical as well as numeri-
cal studies indeed demonstrate such interaction between
wave packets, between a wave packet and a barrier etc., at
short distances, and that although they can come close to
each other, they never actually meet or cross [3,7–9]. One
may think of this as an effective repulsion between
trajectories at short distances, due to the quantum potential.
The latter of course vanishes, and the nonrelativistic
Raychaudhuri equation (3) is recovered in the ℏ → 0 limit.
Relativistic generalization follows. We start with a Klein-

Gordon-type equation of the following form, in a fixed
classical background, with or without symmetries and with
or without or matter,

�
□þm2c2

ℏ2
− ϵ1R − ϵ2

i
2
fcdσcd

�
Φ ¼ 0; (10)

where the ϵ1R, R being the curvature scalar term admits of
the conformally invariant scalar field equation (ϵ1 ¼ 1=6,
and m ¼ 0), as well as that obtained from the Dirac
equation in curved spacetime (ϵ1 ¼ 1=4) [10,11]. This
term does not contradict observations for ray propagation
in curved spacetimes, since normally the R ¼ 0, the
Schwarzschild solution is used. The additional term
−ði=2Þfabσab, where σab ¼ ð1=2Þ½γa; γb�, γa being the
Dirac matrices, and fab an antisymmetric matrix, can also
be present in the second order equation derived from the
Dirac equation in curved spacetimes (ϵ2 ¼ 1 for fermions
and 0 for bosons) [11]. Once again, the wave function Φ is
nomalizable and single valued, as required for a quantum
description of the system (again, for example for some of
the well-studied spacetimes with curvature singularities,
such as the Schwarzschild and Reissner-Nordström met-
rics, these could be the wave functions in [[12,13]] or the
ones used in [14] in the context of Bohmian trajectories)
and expressible as in Eq. (5). Note that here one has Φ on a
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fixed (nondynamical) background spacetime, and not part
of a coupled Einstein-scalar field system, in which both the
field and the metric are dynamical. Now the 4-momentum,
four-velocity field and “coordinate velocity” are defined
respectively as [15–17]

ka ¼ ∂aS; (11)

ua ¼ c
dxa
dλ

¼ ℏka
m

; (12)

~v ¼ d~x
dt

¼ −c2
~∇S
∂0S

: (13)

As before, one may replace the classical relativistic velocity
field with the above, which would correctly predict all
observations. Substituting Eq. (5) in Eq. (10) now yields the
two equations

∂aðR2∂aSÞ ¼
ϵ2
2
fcdσcdR2; (14)

k2 ¼ ðmcÞ2
ℏ2

− ϵ1Rþ□R
R

; (15)

where again, Eq. (14) is the conservation equation, while
Eq. (15) yields the modified geodesic equation with the
relativistic quantum potential term VQ ¼ ℏ2

m2
□R
R ,

ub;aua ¼ −
ϵ1ℏ2

m2
R;b þ ℏ2

m2

�
□R
R

�
;b
: (16)

Then the quantum corrected Raychaudhuri equation takes
the form

dθ
dλ

¼ −
1

3
θ2 − σabσ

ab − Rcducud

−
ϵ1ℏ2

m2
habR;a;b −

ℏ2

m2
hab

�
□R
R

�
;a;b

: (17)

In this case too, the first order equation (13), the uniqueness
of the velocity field at each point in space, and the quantum
potential in Eqs. (16) and (17) ensure that the trajectories
(geodesics) do not cross, again resulting in no focusing and
no conjugate points for any finite value of the affine
parameter. Again, it can be seen that the quantum potential
vanishes, and the classical Raychaudhuri equation (2) is
recovered in the ℏ → 0 limit. Generalization to null geo-
desics and to Maxwell fields is straightforward (the m will
not enter when these equations are derived for null geo-
desics from first principles) [15]. Note that the exact form
of the wave equation and its various modifications are not
important for the argument. All that one needs to assume is
the existence of such a theory, and the first order equations

of the form (13), and the no-crossing result continues
to hold.

II. IMPLICATIONS FOR SINGULARITY
THEOREMS

Although the unboundedness of curvature scalars is
often regarded as a signature of singular spacetimes, this
is neither necessary (e.g. removing a wedge from
Minkowski space makes it singular) nor sufficient
(e.g. when they are reachable only in infinite proper
time, or the difficulties in specifying singularity as a
“place” for generic spacetimes). Therefore one equates
the incompleteness of geodesics (which is easier to
determine), equivalently the termination of existence of
a particle (or photon), to singular or pathological
spacetimes [1,18]. It can be shown that the focusing
of geodesics implies the existence of pairs of conjugate
points, where ~η vanishes for neighboring geodesics,
which in turn implies that sufficiently long geodesics
cannot be maximal length curves. The existence of
maximal geodesics is predicted on the other hand by
a set of global arguments for globally hyperbolic
spacetimes. This apparent contradiction is resolved by
requiring that sufficiently long geodesics cannot exist,
leading to geodesic incompleteness and “singular space-
times,” which is the essence of the singularity theorems
(as mentioned earlier, throughout this article, we omit
the finer distinction between timelike and null geo-
desics, since we expect our results to hold for either)
[18]. However, we know that in the quantum picture,
particles do not follow classical trajectories or geo-
desics; therefore the Hawking-Penrose singularity theo-
rems, although still valid, lose much of their original
motivation, and therefore need to be replaced by a
quantum version. As we have shown here, particles can
be thought of as following quantal (Bohmian) trajecto-
ries instead (as they correctly predict all observations);
therefore these are natural candidates for replacing
geodesics in the singularity theorems. However, since
these are complete (i.e. do not end) and do not have
conjugate points (i.e. ~η never vanishes), the resultant
“semiclassical” version of the singularity theorems now
do not predict the existence of singularities. Further-
more, as shown below, regions of unbounded curvature
are never reached by the quantal trajectories. Therefore,
either one would have to find another way to character-
ize singularities using quantum mechanics, and appli-
cable to a wide class of spacetimes, or would have to
conclude that singularities are in fact avoidable.

III. IMPLICATIONS FOR CURVATURE
SINGULARITIES

Next, consider the geodesic deviation equation modified
by the quantum potential term (we omit the ε1 term here)
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D2ηa

dλ2
¼ −

1

c2
Ra

bfcubucηf −
ℏ2

m2c2

��
□R
R

�
;a
�
;c
ηc: (18)

For spacetimes in which curvature scalars (such as the
Kretschmann scalar RabcdRabcd) blow up (e.g. at r ¼ 0 for
certain black holes), the deviation vector ~η → 0. Since the
quantum Raychaudhuri equation, as well as the additional
term in Eq. (18) above show on the other hand that ~η ≠ 0 at
all times, these extreme curvature regions are not acces-
sible, and observed curvature components and scalars
would also remain finite (albeit large) at all times.
To summarize, we have shown that replacing classical

trajectories or geodesics by their quantum counterparts gives
corrections to the Raychaudhuri equation, which naturally
prevents focusing and the formation of conjugate points.
Therefore, if one replaces classical geodesics with quantal
(Bohmian) trajectories in the singularity theorems, then the
quantum version of these theorems do not show that
spacetime singularities are inevitable. We reiterate that we
have simply rewritten regular quantum mechanics in a
convenient form, in which the no crossing of trajectories
due to the first order evolution equation becomes transparent.
Another way of looking at this is that the quantum potential,
although being small, causes deviations from classical
trajectories at short distances sufficient for trajectories to
not cross each other. Also, we have not assumed spherical or
any other symmetry in our analysis, and our results are valid
for all spacetimes. Our results hold for bosons as well as
fermions (note that we have included the Dirac equation),
although for fermions, one might encounter additional
exchange forces at small distances, further inhibiting the
focusing of geodesics. To our knowledge, this is the first time

that systematic quantum corrections to the Raychaudhuri
equation have been computed and its implications examined,
without using any specific formulation of quantum gravity or
invoking special symmetries. It is tempting to speculate that
for curved spacetimes, the quantum potential becomes
important, and the no convergence would be seen near
the Planck length, the latter being the natural scale in
quantum gravity. It would be interesting to investigate the
fate of these quantum trajectories for values of the affine
parameter near or exceeding 3=jθ0j. A combination of
analytical and numerical studies should shed more light
on these issues. Finally, it may be argued that our assumption
of a smooth background manifold may break down at small
scales, and especially in regions of high curvatures being
replaced by a more fundamental “quantum structure.” This is
certainly a possibility, although perhaps not compelling.
Furthermore, as remarked earlier, and as our Eq. (18)
suggests, regions of very high curvatures may in fact be
inaccessible.
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