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The stress-energy tensor of the quantized massive fields in a spatially open, flat, and closed Friedman-
Robertson-Walker universe is constructed using the adiabatic regularization (for the scalar field) and the
Schwinger-DeWitt approach (for the scalar, spinor, and vector fields). It is shown that the stress-energy
tensor calculated in the sixth adiabatic order coincides with the result obtained from the regularized
effective action, constructed from the heat kernel coefficient a3. The behavior of the tensor is examined in
the power-law cosmological models, and the semiclassical Einstein field equations are solved exactly in a
few physically interesting cases, such as the generalized Starobinsky models.
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I. INTRODUCTION

As is well known the physical content of the quantum
field theory in curved background is encoded in its most
important observable—the renormalized stress-energy ten-
sor, Tab, evaluated in a suitably chosen state. Such a tensor
serves as the right-hand side of the semiclassical Einstein
field equations, “the source term,” allowing in principle to
determine the evolution of the system unless the (expected)
quantum gravity effect become dominant. This is its
principal role. On the other hand, the renormalized
stress-energy tensor of the quantized field(s) is interesting
in its own right, as it is crucial in analysis of the particle
production, vacuum polarization, energy conditions and
quantum inequalities. Unfortunately, because of the intrin-
sic difficulties of the problem, the exact stress-energy
tensor of the standard test fields is, despite the enormous
literature on the subject, known only for simple geometries
of high symmetry. It is therefore unavoidable that in order
to construct a more realistic Tab that depends functionally
on the wide class of metrics one has to invent some
approximations. Having in mind further applications it
seems that the most fruitful approach consists in construct-
ing the (regularized) effective action, WR, of the quantized
fields. By construction it depends functionally on the
metric and the stress-energy tensor can be calculated in
a standard way.
In its most general form, the effective action is expected

to be a nonlocal functional describing both particle creation
and the vacuum polarization effects. Such a general form
of the effective action of the quantized fields in curved
background is unknown. However, when the mass of the
field is sufficiently large, the creation of the real particles is

negligible and the effective action can be approximated by
its local, purely geometric part. This condition can be made
more precise by studying the ratio of the Compton length
associated with the field, λC, and the characteristic radius
of curvature, L. It is expected that when λC=L ≪ 1, the
vacuum polarization effects dominate and WR is given by
the Schwinger-DeWitt expansion [1–3]

WR ¼ 1

32π2
X∞
n¼3

ðn − 3Þ!
ðm2Þn−2

Z
d4xg1=2Tran; (1)

where m is the mass of the field, an are the Hadamard-
DeWitt coefficients and Tr is a supertrace. The Schwinger-
DeWitt expansion has been used in a number of cases
ranging from the black hole physics to cosmology. (See
e.g., Refs. [4–11] and the references cited therein).
The Schwinger-DeWitt approach certainly does not

exhaust the list of useful approximations. Indeed, there
is another very powerful method, namely the adiabatic
regularization, which is especially well suited for the study
of the quantized fields in cosmology and what is of great
importance to us here, the stress-energy tensor in the
Friedman-Robertson-Walker (FRW) universe with a scale
factor aðtÞ can be calculated within the framework of this
approximation. This (slightly more restrictive) approach to
the construction of the renormalized stress-energy tensor
consists in summing (integrating) the adiabatic approxi-
mations of the mode functions and their derivatives and
regularizing the thus obtained divergent expressions
[12–22]. This approach can be made more precise by
introducing the so-called slowness parameter and expand-
ing the mode functions and the stress-energy tensor in its
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inverse powers [23]. In four dimensions the first three terms
of the expansion of the stress-energy tensor are divergent
and the regularization consists in subtracting of the infinite
terms up to fourth adiabatic order. It is expected that
when _a=a, ä=a… ≪ ðm2a2 þ k2Þ1=2, where a dot denotes
differentiation with respect to the conformal time and
0 ≤ k < ∞, this procedure yields reasonable results [24].
In this paper, which extends the results of Refs. [18,25]

to the spatially curved FRW spacetime, we shall employ
both approaches. We construct the first order approxima-
tion to the regularized stress-energy tensor of the massive
scalar scalar field in a large mass limit in the FRW
spacetime within the framework of the adiabatic method.
On the other hand, we shall show that identical results
can be obtained using the Schwinger-DeWitt approach.
Moreover, using the latter approach we shall calculate the
stress-energy tensor of the massive spinor and vector fields.
Since the main emphasis is put on the derivation of the
regularized stress-energy tensor itself, we shall restrict
ourselves to the semiclassical Einstein field equations
which can be treated analytically and construct a family
of the self-consistent solutions that additionally satisfy
some simplifying assumptions.
The paper is organized as follows. The detailed calcu-

lations of the stress-energy tensor of the quantized massive
scalar field in the FRW cosmology within the framework of
the adiabatic approximation are presented in Sec. II. Some
of the intermediate (but important) calculations are rel-
egated to the Appendix. In Sec. III we calculate the stress-
energy tensor of the massive spinor, scalar and vector field
with the aid of the Schwinger-DeWitt method and dem-
onstrate the equality of the tensors obtained using both
methods. The results presented in Secs. II and III comprise
the core results of this paper. In Sec. IV we solve the
semiclassical Einstein field equations in a few exemplary,
physically motivated cases. The last section contains the
discussion and the final remarks. Throughout the paper the
natural units are chosen, and we follow the Misner, Thorne
and Wheeler conventions [26].

II. ADIABATIC APPROXIMATION OF THE
STRESS-ENERGY TENSOR

In this section we will be concerned with the neutral
scalar massive field satisfying the covariant Klein-Gordon
equation

−□ϕþ ðm2 þ ξRÞϕ ¼ 0; (2)

in the Friedman-Robertson-Walker (FRW) spacetime,
where R is the curvature scalar, ξ is the coupling parameter
and m is the mass of the field. The line element describing
FRW geometry can be written as

ds2 ¼ −dt2 þ a2ðtÞdσ2 (3)

with dσ2 ¼ hijdxidxj, where hij is the metric tensor on the
maximally symmetric three-dimensional spaces S3, E3 or
H3, and the two particularly useful representations of dσ2

can be written in the form

dσ2 ¼ dr2

1 − Kr2
þ r2dΩ2 (4)

and

dσ2 ¼ dχ2 þ f2ðχÞdΩ2; (5)

where dΩ2 is the metric on a unit sphere. Possible forms of
the function fðχÞ as well as the admissible values of K are
given respectively by

fðχÞ ¼
8<
:

sin χ for S3

χ for E3

sinh χ for H3

(6)

and

K ¼
(
1 for S3

0 for E3

−1 for H3.
(7)

It is advantageous to introduce the new time coordinate, η,
defined as

dη
dt

¼ a−1ðtÞ (8)

and to consider the transformed line element

ds2 ¼ a2ðηÞð−dη2 þ dσ2Þ: (9)

Now, making use of the (formal) transformation,

r → ir aðηÞ → iaðηÞ; (10)

or equivalently,

χ → iχ aðηÞ → iaðηÞ; (11)

one obtains the metric with the signature (þ, þ, þ, þ), i.e.,
the Euclidean version of the line element. It should be noted
that for S3 and H3, the transformations (10) and (11)
effectively change the type of geometry, what is seen from
the Table I, where the left column describes the Lorentzian
geometries, whereas in the right column we have listed
their Euclidean counterparts after the transformation.
The stress-energy tensor of the scalar field satisfying (2)

can be written as

Tab ¼ ∇aϕ∇bϕ − 1

2
gabð∇cϕ∇cϕþm2ϕ2 − 2ξ∇c∇cϕ2Þ

þ ξGabϕ2 − ξ∇a∇bϕ2; (12)
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where Gab is the Einstein tensor. In the FRW spacetime
described by the line element (9) the ðη; ηÞ component of
the tensor Tab assumes the form

T00 ¼
1

2
_ϕ2 þ 6ξHϕ _ϕ −

�
2ξ − 1

2

�
hij∂iϕ∂jϕ − 2ξϕΔð3Þϕ

þ 3ξH2ϕ2 þ 3ξKϕ2 þ 1

2
m2a2ϕ2; (13)

where H ¼ _a=a and Δð3Þ is the Laplacian associated with
the tensor hij. Similarly, the trace of the tensor may be
written in the form

Ta
a ¼

1

a2
ð1 − 6ξÞð _ϕ2 − hij∂iϕ∂jϕÞ þ 2ð3ξ − 1Þm2ϕ2

þ 1

a2
6ξð6ξ − 1Þ

�
K þ ä

a

�
ϕ2: (14)

It is expected that in a state that reflects the symmetries
of the maximally symmetric three-dimensional space, the
component T00 should be independent of spatial coordi-
nates, what in practice means that one can perform suitable
averaging [13]. Making use of the relation�Z ffiffiffi

h
p

dσ

�−1 Z
hij∂iϕ∂jϕ

ffiffiffi
h

p
dσ ¼ −ϕΔð3Þϕ; (15)

one gets

T00 ¼
1

2
_ϕ2 − 1

2
ϕΔð3Þϕþ 6ξHϕ _ϕþ 3ξH2ϕ2 þ 3ξKϕ2

þ 1

2
m2a2ϕ2; (16)

where, for notational simplicity, the braces denoting aver-
aging have been omitted. Similar calculations carried out
for the trace of the tensor Tab yield

Ta
a ¼

1

a2

�
ð1 − 6ξÞ½ _ϕ2 þ ϕΔð3Þϕ� þ 2ð3ξ − 1Þm2a2ϕ2

þ 6ξð6ξ − 1Þ
�
K þ ä

a

�
ϕ2

�
: (17)

Numerous analyses (for a comprehensive list relevant
references see Ref. [24]) show that for the Laplace-
Beltrami operator Δð3Þ on a three-dimensional homo-
geneous space, one has

Δð3Þϕ ¼ −ðk2 − KÞϕ; (18)

where k ¼ 1; 2; 3;…. for K ¼ 1 and 0 ≤ k < ∞ for
K ¼ −1 or 0.
One expects that Tab should satisfy the covariant

conservation equation, ∇aTab ¼ 0, that for the problem
on hand reduces to

Tx
x ¼ T0

0 þ
a
3_a

_T0
0; (19)

where

Tx
x ≡ T1

1 ¼ T2
2 ¼ T3

3: (20)

It follows then that, because of the spatial symmetries, it
suffices to calculate the energy density of the field,
ρ ¼ −T0

0, as the remaining components can be obtained
with practically no effort from (19) and (20). Other
methods may, therefore, serve as a useful check of the
calculations.
Now, let us introduce the function μðxÞ defined as

ϕðxÞ ¼ μðxÞ
aðηÞ : (21)

Equations (2), (16) and (17) have, respectively, the form

μ̈þ ½k2 þm2a2�μþ
�
ä
a
ð6ξ − 1Þ þ ð6ξ − 1ÞK

�
μ ¼ 0; (22)

T00 ¼
1

2a2
½ð1 − 6ξÞH2μ2 þ ð6ξ − 1ÞKμ2 þ k2μ2 þm2a2μ2

þ 2Hð6ξ − 1Þμ _μþ _μ2� (23)

and
Ta
a¼

1

a4

�
ð6ξ−1Þð2Hμ _μ− _μ2−H2μ2Þþðk2−KÞμ2ð6ξ−1Þ

þ2ð3ξ−1Þm2a2μ2þ6ξð6ξ−1Þ
�
ä
a
þK

�
μ2
�
: (24)

One can decompose the field ϕ into modes

μðxÞ ¼
Z

dΩðkÞ½μkðηÞYkðxÞak þ μ�kðηÞY�
kðxÞa†k�; (25)

where the functions YkðxÞ satisfy

Δð3ÞYkðxÞ ¼ −ðk2 − KÞYkðxÞ; (26)

TABLE I. The Lorentzian and Euclidean version of the FRW
metric. The right column is obtained from the left by means of
transformation (10) and (11).

σ Lorentzian Euclidean

K 1 −1
0 0
−1 1

fðχÞ sin χ i sinh χ
χ iχ

sinh χ i sin χ
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with k defined as in (18). The measure (depending on
spatial curvature) is defined as in Appendix A of Ref. [12]
(see also Ref. [24] for a comprehensive list of references).
Making use of the standard commutation relations of the

field operator and the conjugate momentum one obtains the
relations for the operators ak and a†k

½ak; ak0 � ¼ ½a†k; a†k0 � ¼ 0;

½ak; a†k0 � ¼ δðk; k0Þ; (27)

where δðk; k0Þ satisfies
Z

dΩðkÞδðk; k0ÞfðkÞ ¼ fðk0Þ: (28)

The ground state of the field is defined as

akj0 >¼ 0 (29)

and the canonical commutators of ϕ and π lead to
commutation relations of ak and a†k provided the
Wronskian condition

μk _μ
�
k − _μkμ

�
k ¼ i (30)

is satisfied. Finally, with the aid of the formula

Z
dΩðkÞjYkðxÞj2fðkÞ ¼

1

2π2

Z
dωðkÞfðkÞ; (31)

where

Z
dωðkÞ ¼

8>><
>>:

R∞
0 dkk2 if K ¼ 0;−1;
P∞

k¼1 k
2 if K ¼ 1;

(32)

one can calculate the mean values of the components of the
stress-energy tensor. For the ðη; ηÞ component one has

T00 ¼
1

4πa2

Z
dωðkÞð _μk _μ�k þH2μkμ

�
k −Hμk _μ

�
k −H _μkμ

�
k

þ k2μkμ�k − 6H2ξμkμ
�
k þ 6Kξμkμ�k − Kμkμ

�
k

þ m2a2μkμ�k þ 6Hξ _μkμ
�
k þ 6Hξμk _μ

�
kÞ; (33)

and the whole procedure reduces to construction of the
mode functions μk and performing appropriate integrations
(summations).
In the adiabatic method one postulates that the solutions

of Eq. (22) can be written as

μk ¼
1

ð2WkÞ1=2
e−i

R
Wkdη: (34)

Such a form automatically guarantees that the Wronskian
condition (30) is satisfied. Now, substituting (34) into (22),
one obtains

W2
k ¼ k2 þm2a2 þ ð6ξ− 1Þ ä

a
þ ð6ξ− 1ÞKþ 3

4

_W2
k

W2
k

− 1

2

Ẅk

Wk
;

(35)

and the problem amounts to finding the solutions of the
above equation. In the adiabatic calculations one solves
Eq. (35) iteratively, taking the first two terms in its right-
hand side as the zeroth-order solution

Wð0Þ
k ¼ ðk2 þm2a2Þ1=2 ≡ β1=2: (36)

It should be noted that the parameter K which characterizes
the curvature of the spatial geometry is of the second
adiabatic order. The zeroth-order solution is then substi-
tuted into the right-hand side of Eq. (35), giving the second-
order approximation

Wð2Þ
k ¼ −m2aä

4β3=2
− ä
2

ffiffiffi
β

p
a
þ 3ξäffiffiffi

β
p

a
þ 5m4a2 _a2

8β5=2
−m2 _a2

4β3=2

− K
2

ffiffiffi
β

p þ 3Kξffiffiffi
β

p ; (37)

and this procedure may be repeated as many times as
needed. As the result one obtains the chain of approximate
solutions of Eq. (35) of ascending complexity. To simplify
calculations and to determine the actual order of the
constructed terms in complicated series expansions it is
useful to introduce the parameter ϵ (which will be set to 1 at
final stage of the calculation):

d
dη

→ ε
d
dη

and K → ε2K: (38)

To put it in other words, the number of “time” derivatives as
well as the power of K serve as the expansion parameter. In
the problem at hand, we need the sixth-order approxima-
tion, and since the resulting formulas are rather lengthy we
have relegated them to the Appendix. It should be noted
that although the form of WðiÞ

k functions is not unique and
depends on the simplification strategy, the resulting regu-
larized tensor is unique.
Having computed the mode functions we can go a step

further and construct the stress-energy tensor of the
quantized massive field. This, however, is divergent and
the standard procedure is to subtract the first three adiabatic
terms, i.e., the zeroth, second and fourth, from the full
sixth-order expression. It is important to subtract all the
terms of the given order; otherwise, there would be a
problem with the unique aspects of the final solution [23].
Now, inserting the thus obtained approximate mode
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functions μkðηÞ into the general formula (33), expanding
the resulting expression in powers of ε and subsequently
performing the regularization one obtains

TðRÞ
00 ¼ 1

4πa2

Z
dωðkÞtR00; (39)

where TðRÞ
00 is the regularized component of the stress-

energy tensor and tR00 is the regularized integrand of (33),
which (in our representation) consists of 518 terms. In what
follows we shall omit the superscript R as all the compo-
nents of the stress-energy tensor that we encounter are
already regularized.
The calculation of T00 is rather involved and for obvious

reasons it will not be presented here, fortunately the final
result is surprisingly simple. The integrations over k for
K ¼ 0 and K ¼ −1 present no problem. On the other hand

the sums over k for K ¼ 1 cannot be evaluated analytically
in a simple way. The usual approach is to use the Abel-
Plana formula, i.e., to change summations to integrations.
(See Refs. [27,28]). Unfortunately, one of the integrals
cannot be computed analytically and we are unable to
obtain a compact final result. In what follows we shall
concentrate on K ¼ −1 and K ¼ 0 geometries and post-
pone the K ¼ 1 case until the next section, which is
devoted to the Schwinger-DeWitt approach.
Let us return to the stress-energy tensor for K ≤ 0.

Simple integrations term after term give

T0
0 ¼

1

4π2a4
ðτ0 þ Kτ1 þ K2τ2 þ K3τ3Þ; (40)

where

τ0 ¼ − 3ξ2að3Þ2

8m2a4
þ 3ξað3Þ2

20m2a4
− 17að3Þ2

1120m2a4
þ 9ξ3ä3

m2a5
− 27ξ2ä3

4m2a5
þ 33ξä3

20m2a5
− 673ä3

5040m2a5
þ 7ξ _a6

20m2a8
−
3ξ2að5Þ _a
4m2a4

þ 3ξað5Þ _a
10m2a4

− 17að5Þ _a
560m2a4

þ 3ξ2að4Þä
4m2a4

− 3ξað4Þä
10m2a4

þ 17að4Þä
560m2a4

þ 6ξ2að4Þ _a2

m2a5
−
39ξ2að3Þ _a3

2m2a6
þ 79ξað3Þ _a3

10m2a6
− 683að3Þ _a3

840m2a6
þ 135ξ3 _a2ä2

2m2a6

þ 27ξ2 _a4ä
m2a7

− 423ξ2 _a2ä2

8m2a6
− 57ξ _a4ä

5m2a7
;þ 173_a4ä

140m2a7
− 1237_a2ä2

1120m2a6
− 27ξ3að3Þ _a ä

m2a5
þ 81ξ2að3Þ _a ä

4m2a5
− 99ξað3Þ _a ä

20m2a5

þ 673að3Þ _a ä
1680m2a5

−
12ξað4Þ _a2

5m2a5
þ 17að4Þ _a2

70m2a5
þ 533ξ _a2ä2

40m2a6
− 211_a6

2520m2a8
; (41)

τ1 ¼
27ξ3ä2

2m2a4
− 33ξ2ä2

4m2a4
þ 67ξä2

40m2a4
− 9ä2

80m2a4
þ 15ξ2 _a4

2m2a6
− 57ξ _a4

20m2a6
þ 4_a4

15m2a6
− 27ξ3að3Þ _a

m2a4
−
67ξað3Þ _a
20m2a4

þ 9að3Þ _a
40m2a4

þ 108ξ3 _a2ä
m2a5

− 66ξ2 _a2ä
m2a5

þ 67ξ _a2ä
5m2a5

− 9_a2ä
10m2a5

þ 33ξ2að3Þ _a
2m2a4

; (42)

τ2 ¼
81ξ3 _a2

2m2a4
− 87ξ2 _a2

4m2a4
þ 31ξ _a2

8m2a4
− 11_a2

48m2a4
(43)

and

τ3 ¼ − 9ξ3

2m2a2
þ 9ξ2

4m2a2
− 3ξ

8m2a2
þ 1

48m2a2
: (44)

It can be easily shown that for the spatially flat FRW
spacetime the resulting tensor reduces to the tensor calcu-
lated in Refs. [18,25]. To the best of our knowledge, the
results for K ¼ −1 are new. On the other, hand the case
K ¼ 1 can be treated numerically. Finally, making use of
Eq. (19) one easily gets the spatial component of the stress-
energy tensor. Equivalently, one can start with the trace
equation and repeat the steps that lead to Eq. (40). Both
approaches give the same result and to avoid proliferation
of lengthy equations, the spatial components of the tensor

(for scalar, spinor and vector field) will not be presented
here. We postpone further analysis of the stress-energy
tensor (40)–(44) until Sec. IV and concentrate on the
Schwinger-DeWitt approach.

III. THE STRESS-ENERGY TENSOR IN
SCHWINGER-DEWITT APPROACH

In the four dimensions, the first-order approximation to
the one-loop effective action of the quantized massive field
in a large mass limit, WR, is the (integrated) linear
combination of eight curvature invariants of background
dimensionality six, constructed form the Riemann tensor
and its covariant derivatives. However, in the Weyl-flat
spacetimes, where the Weyl tensor Cabcd identically van-
ishes, the action can be further simplified. Since our main
task in this section is to construct the stress-energy tensor in
a FRWuniverse, we shall present the effective action in this
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simplified form. For general results the reader is referred to
Refs. [8,9].
Now, besides the scalar field satisfying Eq. (2) let us

consider the spinor field, ϕð1=2Þ, and the vector field , ϕð1Þ
a ,

described, respectively, by

ðγa∇a þmÞϕð1=2Þ ¼ 0 (45)

and

ðδab□ − ∇b∇a − Ra
b − δabm

2Þϕð1Þ
a ¼ 0; (46)

where γa are Dirac matrices and all symbols have their
usual meaning. The simplified Schwinger-DeWitt approxi-
mation of the one-loop WR for the massive scalar, spinor
and vector fields can be written as [25]

WR ¼C¼0 1

192π2m2

Z
d4xg1=2ðaðsÞ1 R□Rþ aðsÞ2 Rab□Rab

þ aðsÞ3 R3 þ aðsÞ4 RRabRab þ aðsÞ5 Rb
aRc

bR
a
cÞ; (47)

where the spin-dependent coefficients are tabulated in
Table II. We have eliminated the terms with the
Riemann tensor from the action making use of the
equations constructed from CabcdCcd

ij C
ijab, RCabcdCabcd

and Cabcd□Cabcd. For the chosen class of geometries the
functional derivatives of such (integrated) invariants vanish.
It should be noted that the general action can be used

in any geometry, provided the Compton length associated
with the mass of the field is much smaller than the
characteristic radius of the curvature. Consequently, using
the Schwinger-DeWitt method one can construct the stress-
energy tensor in FRW spacetime not only for the quantized
fields of various spins, but also for a nonvanishing value
of the parameter K. There is another subtlety that should
be discussed in more detail: the effective action has been
derived with the assumption that the metric is positively
defined. It means that one should perform suitable trans-
formation, calculate the stress-energy tensor, and, finally,
transform it back to the physical space. From Table I, one
concludes that the Euclidean metric with K ¼ −1 is related
by the transformations (10) and (11) to the Lorentzian
K ¼ 1 metric and, similarly, the Euclidean metric with
K ¼ 1 is related by the same transformation with the
Lorentzian K ¼ −1 case. Fortunately, the common
wisdom, which can be verified in the present problem, is

that computing the stress-energy tensor for the positively
defined metric and transforming it back to the Lorentzian
case, one obtains precisely the same results as if the
calculations had been performed in the physical metric
from the very beginning.
The stress-energy tensor can be calculated from the

standard relation

Tab ¼ 2

g1=2
δ

δgab
WR: (48)

Making use of the results of Refs. [8,9] one obtains the
desired tensor. The thus constructed stress-energy tensor
of the quantized massive scalar field is identical with the
tensor obtained in the previous section [see Eqs. (40)–(44)]
and will not be repeated here. It should be noted, however,
that now the tensor (40)–(44) can be calculated also for
K ¼ 1. The results for the spinor and vector fields are
listed below.
The stress energy tensor of the spinor field has a simple

form

TR0
0 ¼ 1

4π2a4
ðτð1=2Þ0 þ Kτð1=2Þ1 Þ; (49)

where

τð1=2Þ0 ¼ − 137_a6

2016a8m2
þ 5_a4ä
28a7m2

− 11_a3að3Þ

168a6m2
− 25_a2ä2

336a6m2

þ _a2að4Þ

70a5m2
þ _a ä að3Þ

42a5m2
− ä3

126a5m2
− _aað5Þ

560a4m2

þ äað4Þ

560a4m2
− að3Þ2

1120a4m2
(50)

and

τð1=2Þ1 ¼ − 7_a4

480a6m2
þ _a2ä
60a5m2

− _aað3Þ

240a4m2
þ ä2

480a4m2
:

(51)

For the vector field one has

TR0
0 ¼ 1

4π2a4
ðτð1Þ0 þ Kτð1Þ1 þ K2τð1Þ2 þ K3τð1Þ3 Þ; (52)

where

TABLE II. The spin-dependent coefficients of the simplified effective action WR.

αðsÞ1 αðsÞ2 αðsÞ3 αðsÞ4 αðsÞ5

s ¼ 0 1
40
½1þ 4ξð5ξ − 2Þ� − 1

70
23

4536
− ξ

180
½13þ 90ξð2ξ − 1Þ� − 1

84
− ξ

30
2
63

s ¼ 1
2

7
360

− 23
420

211
22680

− 19
280

151
1260

s ¼ 1 29
360

− 22
105

73
7560

− 19
140

38
105
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τð1Þ0 ¼ − 449_a6

840a8m2
þ 211_a4ä
140a7m2

− 481_a3að3Þ

840a6m2
− 2327_a2ä2

3360a6m2

þ 9_a2að4Þ

70a5m2
þ 127_a ä að3Þ

560a5m2
− 127ä3

1680a5m2
− 9_aað5Þ

560a4m2

þ 9äað4Þ

560a4m2
− 9að3Þ2

1120a4m2
; (53)

τð1Þ1 ¼ − _a4

20a6m2
þ _a2ä
30a5m2

− _aað3Þ

120a4m2
þ ä2

240a4m2
; (54)

τð1Þ2 ¼ _a2

48a4m2
(55)

and

τð1Þ3 ¼ 1

48a2m2
: (56)

Once again we stress that the results obtained within the
framework of the Schwinger-DeWitt approximation should
be valid in any spacetime provided the Compton length
associated with a field is smaller than the characteristic
curvature of the spacetime geometry. Having established
that for the scalar field propagating in the FRW (K ≤ 0)
spacetimes the Schwinger-DeWitt approach gives the same
result as the adiabatic method, the natural question is
whether it is also true for higher spins. In our earlier work
[25] we reported on calculations of the regularized stress-
energy tensor of the massive spinor and vector fields in
spatially flat (K ¼ 0) cosmologies. We extended the results
presented in Ref. [29] and calculated the renormalized
tensor Tab of the scalar, spinor and vector field. It can be
shown that for such geometries the tensors obtained in any
of the methods discussed above are identical. We hypoth-
esize that the same is true for K ¼ −1 case.

IV. SEMICLASSICAL EINSTEIN
FIELD EQUATIONS

Although quite simple in its basic concepts, the stress-
energy tensor is not very easy to comprehend. At this point
we can ask an important question: Having the stress-energy
tensor of the quantized massive fields at our disposal, how
do we use it? This question is even more important as the
semiclassical equations involve higher-order derivatives.
Of course, the detailed analysis of the equations requires
numerical analysis that is beyond the scope of this paper.
Here we shall concentrate on a few problems that can be
treated analytically.
We shall start with the stress-energy tensor itself and to

gain some insight into its nature let us analyze the power-
law cosmological models with a scale factor given by

aðtÞ ¼
�
t
t0

�
q

(57)

and with K ¼ 0. Simple manipulations give

Tx
xðtÞ ¼

q − 2

q
Tt
tðtÞ; (58)

or with a natural interpretation of the components of the
stress-energy tensor

pðtÞ ¼ 2 − q
q

ρðtÞ; (59)

where

ρð0Þξ¼0¼
H6

20160q4π2m2

× ð3060−7498qþ105q2þ5328q3þ370q4Þ; (60)

ρð0Þξ¼1=6 ¼ − H6

5040q4π2m2

× ð−30þ 79q − 42q2 − 9q3 þ 2q4Þ; (61)

ρð1=2Þ ¼ − H6

40320q4π2m2

× ð−360þ 878q − 441q2 − 108q3 þ 31q4Þ (62)

and

ρð1Þ ¼ − H6

6720q4π2m2

× ð−540þ 1282q − 455q2 − 372q3 þ 50q4Þ (63)

for the scalar, spinor and vector fields, respectively. Here
HðtÞ is the Hubble parameter. First, observe that for q > 2
the energy density and the pressure have opposite signs and
the coefficient of proportionality, say α, in the equation of
state satisfies −1 < α. Further, depending on spin (and the
parameter ξ) there are the regions where energy density is
negative. Since all roots of Eqs (60)–(63) are different and
real, for each spin one has five regions with the property
that any two adjacent regions have the opposite sign of the
energy density.
Having constructed the stress-energy tensor of the

quantized massive fields one can attempt to solve the
semiclassical Einstein field equations with the right-hand
side being a sum of the quantum and the classical part.
Usually, the semiclassical equations are studied in their
simplest form, i.e., with the assumption that the renormal-
ized (“observed”) coupling parameters κ1, κ2 in the
quadratic part of the total gravitational action,

Sq ¼
Z

d4x
ffiffiffiffiffiffi−gp ðκ1RabRab þ κ2R2Þ; (64)
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identically vanish. However, it is a well-known fact that the
quadratic terms (or more generally four-derivative theory)
may lead to many interesting solutions and phenomena (see
e.g., [30–36]) and in this section we will show that this is
indeed the case. It should be noted, however, that for the
Weyl-flat (Cabcd ¼ 0) line element, the functional deriva-
tives of the quadratic curvature invariants are not indepen-
dent. In this case (and only in this case) one can add the
term [34]

κ3H
ð3Þ
ab ¼ κ3

�
− 1

12
R2gab þ RcdRcadb

�
(65)

to the left-hand side of the semiclassical equations without
spoiling the logic of the quadratic theory. It should be
emphasized that the tensor (65) is conserved only in the
conformally flat spacetimes. For the general parameters κ1,
κ2 and κ3 the semiclassical Einstein field equations assume
the standard form [34]

Gab½g�þ κ1H
ð1Þ
ab þ κ2H

ð2Þ
ab þ κ3H

ð3Þ
ab þΛgab¼ 8πTðtotalÞ

ab ½g�;
(66)

where TðtotalÞ
ab ¼ TðclassÞ

ab þ Tab; i.e., the right-hand side of
(66) is a sum of the classical and quantum stress-energy
tensor and

Hð2Þ
ab ¼ − 1ffiffiffiffiffiffi−gp δ

δgab

Z
d4x

ffiffiffiffiffiffi−gp
R2; (67)

Hð1Þ
ab ¼ − 1ffiffiffiffiffiffi−gp δ

δgab

Z
d4x

ffiffiffiffiffiffi−gp
RijRij: (68)

Moreover, since

Hð2Þ
ab − 3Hð1Þ

ab ¼ 0; (69)

one can put, say, κ1 ¼ 0 and consider simplified system.
Before proceeding further, let us observe that the quantum
part of the total stress-energy tensor can be made large
simply by taking large number of the quantum fields.
Indeed, for N fields of a given spin, s with masses mi the
lowest order approximation to the renormalized effective
action is still of the form (47) with

1

m2
→

XN
i¼1

1

m2
i
: (70)

For the Friedman-Robertson-Walker metric the semi-
classical equations with the right- hand side given by the
renormalized stress-energy tensor in a large mass limit are
analytically intractable, and consequently one has to refer
to approximations or accept some additional, physically
motivated assumptions imposed on the scale factor. To this
end, let us consider the function aðtÞ which also satisfies
the additional relation [31,37]

a0ðtÞ ¼ ðc1anðtÞ − KÞ1=2; (71)

where t is the “ordinary” time coordinate related to η by
Eq. (8), c1 is a constant that should be determined and a
prime denotes differentiation with respect to t. On general
grounds, one expects that n ¼ 2 and the problem at hand
reduces to substitutions of

að2iþ1ÞðtÞ ¼ ci1ðc1aðtÞ2 − KÞ1=2 (72)

and

að2iÞ ¼ ci1aðtÞ; (73)

(i ¼ 0; 1; 2;…) into the semiclassical equations. Let us
return to our constraint equation (71) and list the temporal
evolution scenarios of the model that are admissible.
Simple analysis shows that if c1 > 0, one has

aðtÞ ¼ c−1=21 coshðc1=21 ðt − t0ÞÞ; (74)

aðtÞ ¼ c−1=21 sinhðc1=21 ðt − t0ÞÞ (75)

and

aðtÞ ¼ aðt0Þ expðc1=21 ðt − t0ÞÞ; (76)

for K ¼ 1, K ¼ −1 and K ¼ 0, respectively. On the other
hand, for c1 < 0 one has only one solution,

aðtÞ ¼ jc1j−1=2 sinðjc1j1=2ðt − t0ÞÞ; (77)

with K ¼ −1. Finally, for c1 ¼ 0, one has a static universe
with the constant scale factor.
With the condition (71) being satisfied, one has further

simplification of the semiclassical equations as both Hð1Þ
ab

and Hð2Þ
ab vanish. Upon calculating the stress-energy tensor

in the ðt; r; θ;ϕÞ coordinates from the very beginning or
transforming the equations (66) to the standard coordinates
and making use of (71), one obtains

−3c1 þ 3τc31 − 3κ3c21 þ Λ ¼ −8πρ (78)

and

−3c1 þ 3τc31 − 3κ3c21 þ Λ ¼ 8πp; (79)

where

τ ¼ 1

3πm2

8>><
>>:

37
252

− 29
10
ξþ 18ξ2 − 36ξ3; for s ¼ 0

− 31
5040

; for s ¼ 1=2

− 5
84
; for s ¼ 1:

(80)

The Tx
x component can be calculated from the covariant

divergence equation, which has the form (19) with the dot
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(differentiation with respect to η) substituted by a prime. It
should be noted that that the stress-energy tensor depends
on the spin of the field but is independent of the parameter
K. The type of the spatial geometry enters the result
through the constraint equation (71). Inspection of
Eqs. (78) and (79) shows that ρ ¼ −p, and, consequently,
the evolution of the model is described by one independent
equation with the effective cosmological term Λeff ¼
Λþ 8πρ. In the absence of Λeff and with κ3 ¼ 0 one has
either the trivial solution c1 ¼ 0 or c21 ¼ 1=τ. It can be
demonstrated that for the massive scalar field with the
arbitrary curvature coupling, the quantity τ is positive for
ξ < ξcrit ¼ 0.1023. Consequently, there is no solution for
the conformally coupled (ξ ¼ 1=6) scalar field. Restricting
to the physical choices of ξ one concludes that the self-
consistent solution is possible for the minimal coupling
(ξ ¼ 0). Similarly, there are no self-consistent solutions
of the simplified semiclassical equations for the quantized
massive spinor and massive vector fields. This behavior is
identical to that observed previously in the spatially flat
FRW universe [25].
Now, (still with Λeff ¼ 0) let us allow for a small but

otherwise general coefficient κ3 and look for a positive
solution. For τ > 0 one has

c1 ¼
κ3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4τ þ κ23

p
2τ

(81)

for any κ3. Similarly, for τ < 0 one has either (81) or

c1 ¼
κ3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4τ þ κ23

p
2τ

; (82)

provided κ3 < 0 and 4τ þ κ23 > 0.
Finally, since the general solutions of the full semi-

classical equation (78) is not particularly illuminating, we
shall construct its approximation for small Λeff and vanish-
ing κ3. Simple manipulations give

c1 ≈
Λeff

3

�
1þ Λeff

9
τ

�
; (83)

c1 ≈
1ffiffiffi
τ

p − Λeff

3
(84)

and

c1 ≈ −
�

1ffiffiffi
τ

p þ Λeff

3

�
: (85)

The approximate solution (83) is valid for any τ whereas
(84) and (85) require τ > 0. The above solutions properly
combined with the formulas (74)–(77) describing temporal
evolution of the scale factor yield quite rich family of sef-
consistent solutions of the semiclassical Einstein field
equations.
Let us return to Eqs. (66) with Λ ¼ 0 and ρ ¼ 0. Putting

v ¼ a2a02 þ Ka2 and restricting to the minimally coupled
scalar field, one gets

v¼−κ3 v
2

a4
− ~κ

�
3Kv0

a
− 2vv0

a3
− v02

4a2
−Kv00 þvv00

a2

�
þ 1

1680πm2

�
844v3

9a8
− 692v2v0

a7
− 320Kv2

3a6
þ 1366v2v00

3a6
þ 1237vv02

4a6

þ 3034Kvv0

3a5
−
136vð3Þv2

a5
þ 673v03

36a5
− 1081vv0v00

6a5
− 2182Kvv00

3a4
− 4577Kv02

12a4
þ 17vð4Þv2

a4
þ 51vv002

4a4
þ 17vð3Þvv0

a4
− 17v02v00

4a4

− 255K2v0

a3
þ 238Kvð3Þv

a3
þ 1183Kv0v00

6a3
þ 255K2v00

a2
− 34Kvð4Þv

a2
− 51Kv002

4a2
− 17Kvð3Þv0

a2
þ 17K2vð4Þ− 102K2vð3Þ

a

�
; (86)

where ~κ ¼ 2ðκ1 þ 3κ2Þ and a prime denotes differentiation
of v with respect to the scale factor a. With the quantum
fields absent, one obtains the equation in the form
considered previously by Starobinsky [31], and from
Eq. (78) one has c1 ¼ −1=κ3 with κ3 < 0. On the other
hand, with the quantum fields present, simple calculation
shows that

vðaÞ ¼ c1a4 (87)

solves Eq. (86), provided c1 satisfies a simplified version
of Eq. (78). Now, in order to analyze the stability of the
solutions, let

vðaÞ ¼ c1a4ð1þ ΔðaÞÞ (88)

with jΔj ≪ 1. Retaining only the linear terms in Δ, one
obtains a fourth-order differential equation, which is
intractable and requires numerical assistance. Since the
numerical analysis of the general backreaction problem is
beyond the scope of this paper we shall look for simpli-
fications. First, let us restrict to the minimally coupled
scalar field in the spatially flat Universe. It can be easily
shown that c1 ¼ 6m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21π=37

p
and

1480Δ
153a4

− 1552Δ0

51a3
þ 1142Δ00

51a2
þ 12Δð3Þ

a
þ Δð4Þ ¼ 0: (89)

This equation can be easily integrated to give

ΔðaÞ ¼ C1a−3=2−q1 þ C2a−3=2þq1 þ C3a−3=2−q2

þ C4a−3=2þq2 ; (90)
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where q1 ≈ 1.78 and q2 ≈ 3.6, and Ci are integration
constants. We have omitted the standard form of the roots
expressed in terms of surds and give their approximate
values. Restricting our general solution to the solutions that
remain close to (76) in the past one concludes that there are
no solution that remains close as t → ∞. This result is quite
general and can be extended to include quadratic terms.
Indeed, the ΔðaÞ function satisfies

X4
i¼0

pi
ΔðiÞ

a4−i
¼ 0; (91)

where the numerical coefficients pi depend on the type of
the field and the coupling constants κ1, κ2 and κ3, whereas
the ΔðiÞ denotes the ith derivative with respect to a. The
general solution of the differential equation (91) can always
be constructed by solving the fourth-order polynomial
equation. It should be noted, however, that for K ≠ 0 the
differential equation is far more complicated and is ana-
lytically intractable.

V. FINAL REMARKS

In this paper, which is a generalization of Refs. [18,25],
we have constructed the stress-energy tensor of the quan-
tized scalar, spinor and vector fields in a large mass limit in
the Friedman-Robertson-Walker spacetime. For the mas-
sive scalar field with arbitrary coupling constant ξ, the
stress-energy tensor has been calculated within the frame-
work of the adiabatic and Schwinger-DeWitt approxima-
tions. In the calculationally more involved case of spinor
and vector fields, only the Schwinger-DeWitt method has
been used. It is expected, however, that both methods
should give the same results also for the s ¼ 1=2 and s ¼ 1
fields. Since the constructed tensor depends functionally on

the scale factor one can attempt to solve the semiclassical
Einstein equations. Unfortunately, in general, the resulting
higher-order equations are too complicated to be solved
analytically and to make them tractable additional simpli-
fying assumptions are needed. Here, after the analysis of
the stress-energy tensor in the power-law cosmological
models we solved, with the assumption that Eq. (71) with
n ¼ 2 is satisfied, the semiclassical equations in a self-
consistent way. This may be considered as a generalization
of the Starobinsky model to include the massive fields.
The results of this paper, with some additional effort, can

be extended to the D-dimensional cosmological models
(D > 4). It is interesting to analyze how the self-consistent
solutions depend onD and study their behavior under small
perturbations [25,38,39]. The second line of investigations
concerns numerical solutions of the semiclassical equations
both with and without the classical matter fields (for
example along the lines of Refs. [32,33,39]). Finally, we
observe that the influence of the quantized field on the
evolution of the model can be studied perturbatively. This
set of problems, however, lies beyond the scope of this
work and we intend to report on such calculations in future
publications. We conclude with the remark that both
adiabatic and Schwinger-DeWitt approximations are the
powerful computational methods and they still are the
source of new findings and fresh ideas.

APPENDIX

In this Appendix we list the functionsWð2iÞ
k for i ¼ 2 and

3, valid for all three values of the parameter K. The zeroth
and the second-order terms is given by (36) and (37),
respectively. The fourth-order terms are given by

Wð4Þ
k ¼ m2aað4Þ

16β5=2
þ að4Þ

8β3=2a
− 3ξað4Þ

4β3=2a
− 19m4a2ä2

32β7=2
− 3m2ä2

16β5=2
þ 9m2ξä2

4β5=2
− ä2

4β3=2a2

−
1105m8a4 _a4

128β11=2
þ 221m6a2 _a4

32β9=2
− 19m4 _a4

32β7=2
− 7m4a2að3Þ _a

8β7=2
− 3m2að3Þ _a

8β5=2
þ 15m2ξað3Þ _a

4β5=2

þ 221m6a3 _a2ä

32β9=2
− 9m4a _a2ä

4β7=2
− 75m4ξa _a2ä

8β7=2
þm2 _a2ä

4β5=2a
− 3m2ξ _a2ä

2β5=2a
þ _a2ä

4β3=2a3
− 3ξ _a2ä

2β3=2a3

−
9ξ2ä2

2β3=2a2
þ 9ξä2

4β3=2a2
− að3Þ _a
4β3=2a2

þ 3ξað3Þ _a
2β3=2a2

− K

�
3m2aä

8β5=2
− 9m2ξaä

4β5=2
þ ä

4β3=2a

þ 9ξ2ä

β3=2a
− 3ξä

β3=2a
− 25m4a2 _a2

16β7=2
þ 75m4ξa2 _a2

8β7=2
þ 3m2 _a2

8β5=2
− 9m2ξ _a2

4β5=2

�
− K2

�
1

8β3=2
þ 9ξ2

2β3=2
− 3ξ

2β3=2

�
: (A1)

The sixth-order terms are more complicated and can be written in the form

Wð6Þ
k ¼ W

ð0Þ
k þ KW

ð1Þ
k þ K2W

ð2Þ
k þ K3W

ð3Þ
k; (A2)
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where

W
ð0Þ

k ¼
414125a6 _a6m12

1024β17=2
− 248475a4 _a6m10

512β15=2
− 248475a5 _a4äm10

512β15=2
þ 34503a2 _a6m8

256β13=2

þ 36465ξa3 _a4äm8

128β13=2
þ 107491a3 _a4äm8

256β13=2
þ 1055a4 _a3að3Þm8

16β13=2
− 631_a6m6

128β11=2
− 631a3ä3m6

128β11=2

−
4353a2 _a2ä2m6

64β11=2
− 663ξa _a4äm6

8β11=2
− 8471a _a4äm6

128β11=2
− 3315ξa2 _a3að3Þm6

32β11=2
− 479a2 _a3að3Þm6

16β11=2

−
1391a3 _a ä að3Þm6

64β11=2
− 815a3 _a2að4Þm6

128β11=2
þ 399ξaä3m4

32β9=2
þ aä3m4

2β9=2
þ 1575ξ2 _a2ä2m4

16β9=2

þ 919_a2ä2m4

128β9=2
þ 69a2að3Þ2m4

128β9=2
þ 399ξ _a4äm4

32β9=2a
− 133_a4äm4

64β9=2a
þ 55_a3að3Þm4

16β9=2
þ 957ξa _a ä að3Þm4

16β9=2

þ 59a _a ä að3Þm4

64β9=2
þ 663ξa _a2að4Þm4

32β9=2
− 31a _a2að4Þm4

64β9=2
þ 55a2äað4Þm4

64β9=2
þ 27a2 _aað5Þm4

64β9=2

þ 51ξä3m2

8β7=2a
− 19ä3m2

32β7=2a
þ 315ξ2 _a2ä2m2

8β7=2a2
− 393ξ _a2ä2m2

16β7=2a2
þ 3_a2ä2m2

β7=2a2
− 21ξað3Þ2m2

8β7=2
þ 9að3Þ2m2

32β7=2

þ 69ξ _a4äm2

8β7=2a3
− 23_a4äm2

16β7=2a3
− 69ξ _a3að3Þm2

8β7=2a2
þ 23_a3að3Þm2

16β7=2a2
− 225ξ2 _a ä að3Þm2

4β7=2a
þ 219ξ _a ä að3Þm2

8β7=2a

−
3_a ä að3Þm2

β7=2a
þ 69ξ _a2að4Þm2

16β7=2a
− 23_a2að4Þm2

32β7=2a
− 9ξäað4Þm2

2β7=2
þ 33äað4Þm2

64β7=2
− 21ξ _aað5Þm2

8β7=2

−
aað6Þm2

64β7=2
þ 27ξ3ä3

2β5=2a3
− 27ξ2ä3

2β5=2a3
þ 9ξä3

2β5=2a3
− 7ä3

16β5=2a3
þ 153ξ2 _a2ä2

8β5=2a4
− 105ξ _a2ä2

8β5=2a4
þ 53_a2ä2

32β5=2a4

þ 45ξ2að3Þ2

8β5=2a2
− 21ξað3Þ2

8β5=2a2
þ 9að3Þ2

32β5=2a2
þ 9ξ _a4ä

2β5=2a5
− 3_a4ä

4β5=2a5
− 9ξ _a3að3Þ

2β5=2a4
þ 3_a3að3Þ

4β5=2a4
− 99ξ2 _a ä að3Þ

4β5=2a3

þ 57ξ _a ä að3Þ

4β5=2a3
− 27_a ä að3Þ

16β5=2a3
þ 9ξ _a2að4Þ

4β5=2a3
− 3_a2að4Þ

8β5=2a3
þ 27ξ2äað4Þ

4β5=2a2
− 57ξäað4Þ

16β5=2a2
þ 13äað4Þ

32β5=2a2

−
3ξ _aað5Þ

4β5=2a2
þ _aað5Þ

8β5=2a2
þ 3ξað6Þ

16β5=2a
− að6Þ

32β5=2a
− 5967ξa2 _a2ä2m6

32β11=2
þ 34503a4 _a2ä2m8

256β13=2

−
477ξ _a2ä2m4

32β9=2
− 135ξ2ä3m2

8β7=2a
þ 11_aað5Þm2

32β7=2
(A3)

W
ð1Þ

k ¼
36465ξa4 _a4m8

128β13=2
− 12155a4 _a4m8

256β13=2
− 5967ξa2 _a4m6

32β11=2
þ 1989a2 _a4m6

64β11=2
− 5967ξa3 _a2äm6

32β11=2

þ 1989a3 _a2äm6

64β11=2
þ 399ξ _a4m4

32β9=2
− 133_a4m4

64β9=2
þ 399ξa2ä2m4

32β9=2
− 133a2ä2m4

64β9=2
þ 1575ξ2a _a2äm4

8β9=2

þ 231ξa _a2äm4

16β9=2
− 63a _a2äm4

8β9=2
þ 147ξa2 _aað3Þm4

8β9=2
− 49a2 _aað3Þm4

16β9=2
− 135ξ2ä2m2

4β7=2
þ 135ξä2m2

16β7=2

−
15ä2m2

32β7=2
þ 45ξ2 _a2äm2

2β7=2a
− 15ξ _a2äm2

2β7=2a
þ 5_a2äm2

8β7=2a
− 225ξ2 _aað3Þm2

4β7=2
þ 15ξ _aað3Þm2

β7=2
− 15_aað3Þm2

16β7=2

þ 5aað4Þm2

32β7=2
þ 81ξ3ä2

2β5=2a2
− 27ξ2ä2

β5=2a2
þ 45ξä2

8β5=2a2
− 3ä2

8β5=2a2
þ 27ξ2 _a2ä

2β5=2a3
− 9ξ _a2ä

2β5=2a3
þ 3_a2ä

8β5=2a3

þ 9ξ _aað3Þ

2β5=2a2
− 3_aað3Þ

8β5=2a2
þ 27ξ2að4Þ

4β5=2a
− 9ξað4Þ

4β5=2a
þ 3að4Þ

16β5=2a
− 15ξaað4Þm2

16β7=2
− 27ξ2 _aað3Þ

2β5=2a2
(A4)
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W
ð2Þ

k ¼ − 15m2aä

32β7=2
− 135m2ξ2aä

8β7=2
þ 45m2ξaä

8β7=2
− 3ä

16β5=2a
þ 81ξ3ä

2β5=2a
− 81ξ2ä

4β5=2a
þ 27ξä

8β5=2a

þ 1575m4ξ2a2 _a2

16β9=2
− 525m4ξa2 _a2

16β9=2
− 15m2 _a2

32β7=2
− 135m2ξ2 _a2

8β7=2
þ 45m2ξ _a2

8β7=2
þ 175m4a2 _a2

64β9=2
(A5)

and

W
ð3Þ

k ¼ − 1

16β5=2
þ 27ξ3

2β5=2
− 27ξ2

4β5=2
þ 9ξ

8β5=2
: (A6)
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