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We explore how the stability of metric perturbations in higher-derivative theories of gravity depends on
the energy scale of the initial seeds of such perturbations and on a typical energy scale of the gravitational
vacuum background. It is shown that, at least in the cases of specific cosmological backgrounds,
the unphysical massive ghost which is present in the spectrum of such theories is not growing up as a
physical excitation and remains in the vacuum state until the initial frequency of the perturbation is close to
the Planck order of magnitude. In this situation, the existing versions of renormalizable and super-
renormalizable theories can be seen as very satisfactory effective theories of quantum gravity below the
Planck scale.
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I. INTRODUCTION

The situation in quantum gravity (QG) has always been
shadowed by the conflict between renormalizability and
unitarity. From one side, general relativity, which seems to
be the theory of classical gravity, leads to a nonrenorma-
lizable quantum theory [1–3]. One can achieve renormaliz-
ability by including general four-derivative covariant terms
in the action [4], but such terms lead to unphysical ghost
excitations in the particle spectrum of the theory. Trying to
remove these ghosts from the physical spectrum violates
the unitarity of the gravitational S matrix. So, the renor-
malizable QG is nonunitary without ghosts, while the
unitary version of QG is nonrenormalizable. As a result
of this conflict, the idea of quantum gravity went far
beyond the conventional approach of perturbatively quan-
tizing the gravitational field. However, there is an important
remaining question: to which extent one should be afraid
of higher-derivative ghosts, which are the source of the
difficulty?
The problem of higher derivatives and related instabil-

ities has attracted a lot of attention for a long time. Already
in 1850, Ostrogradski described these exponential-type
instabilities [5]. Later on, in 1963, Veltman discussed a
process of quantum scattering of a large-mass, negative-
energy particle and a much lighter, positive-energy particle
[6]. In a simplified qualitative form, the net result of this
study is that typically, the negative-energy particle (massive
ghost) gains even more negative kinetic energy, and
consequently, the positive-energy particle gains more
positive kinetic energy. In the case of higher-derivative
gravity, even if we do not observe the ghost due to its huge
mass, there should be intensive graviton emission, which

can destroy the “pacific” classical solution. More recently,
the subject was treated both in the framework of QG
[7–11,14], in classical gravity [15–22], and for the sim-
plified model theories, mainly based on higher-derivative
oscillators [23–27].
One can note that the mentioned approaches are in fact

very different. The QG-based approaches [7,9,14] are
related to the assumption that the ghost pole gains a
gauge-dependent imaginary contribution at the quantum
level, leading to the unitary S matrix. Unfortunately, the
one-loop result [28–31] is not sufficient for checking
whether this desirable quantum effect really takes place.1

Another “quantum” proposal [11] can be described as an
idea to modify quantum field theory formalism such that
the ghost will always be treated together with the graviton
and is not regarded as an independent particle. For a while,
it was not clear how to put this idea into practice.
The classical approaches [16,17,19,20] are related to the

exploration of stability for a given (cosmological or black
hole) solution. In the cosmological case, it is reduced to the
stability with respect to the perturbations of the conformal
factor of the metric (see also Refs. [33,34]) and also to
the stability for the gravitational-wave-type perturbations
[35–39]. It is remarkable that the perturbations in higher-
derivative theories do not show, actually, such strong
instabilities as one would expect in the theory with unphys-
ical ghosts. It is important to notice that the mentioned works
do not deal just with the linear perturbations, because the
latter propagate on a nontrivial metric background.
The purpose of the present contribution is to consider the

relation between the presence of ghosts and gravitational
instabilities in a spirit of effective quantum field theory. Our
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1In our opinion, the situation is qualitatively similar also for the
existing nonperturbative methods (see, e.g., Ref. [32]), but the
existence of such methods looks very promising.

PHYSICAL REVIEW D 89, 084054 (2014)

1550-7998=2014=89(8)=084054(17) 084054-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.084054
http://dx.doi.org/10.1103/PhysRevD.89.084054
http://dx.doi.org/10.1103/PhysRevD.89.084054
http://dx.doi.org/10.1103/PhysRevD.89.084054


consideration will be simple, purely classical, and to some
extent close to that of Refs. [20] and [26]. We are going to
present some arguments in favor of the idea that the
behavior of the gravitational perturbations is closely related
to the presence of ghosts, but only if the energy scale is
sufficient to generate such a ghost. Our consideration will
be based on the linear perturbations on a nontrivial
gravitational background. Our results will not be conclu-
sive and should be seen, hopefully, as a contribution for
further investigation of the problem.
The paper is organized as follows: In the next section,

we shall briefly review the reasons to introduce higher-
derivative terms, and consequently massive unphysical
ghosts, in the quantum theory. Section III includes the
derivation of the equation for a low-energy gravitational
wave on an arbitrary low-energy gravitational background
and qualitative discussion about the possible effect of such
a background on the time evolution of the gravitational
wave modes. In Sec. IV, the analysis of the metric per-
turbations is performed in the relatively simple cases of the
cosmological background for renormalizable and super-
renormalizable versions of the higher-derivative theory of
gravity. We show that the explosive nature of ghosts really
takes place, but only for the initial frequencies of the Planck
order of magnitude. At the same time, nothing like this can
be observed for smaller energies of gravitational perturba-
tions. Finally, in Sec. V, we draw our conclusions and
discuss possible continuations of this work.

II. GENERAL SITUATION WITH MASSIVE
UNPHYSICAL GHOSTS

One can start by formulating a few general questions
concerning higher-derivative ghosts, e.g., as follows:
(i) Can we survive without them? (ii) What is really bad
about these ghosts? (iii) Can we somehow get rid of them?
Let us start from the beginning and show that the answer to
the first question (i) is negative.

A. Can quantum theory survive without
gravitational higher derivatives?

In order to understand why we need higher derivatives in
the gravitational action, one has to start with the relatively
simple situation in which only matter fields are quantized
and gravity is a classical background. In this semiclassical
theory, one has to introduce the action of vacuum, which is
a functional of the external classical metric. It has been well
known for a long time [40] (for general proofs see, e.g.,
Refs. [41–43]) that such a theory may be renormalizable,
but only if one introduces the following terms into the
classical action of vacuum:

Svac ¼ SEH þ SHD; (1)

where

SEH ¼ − 1

16πG

Z
d4x

ffiffiffiffiffiffi−gp fRþ 2Λg (2)

is the Einstein-Hilbert term with a cosmological constant,
and

SHD ¼
Z

d4x
ffiffiffiffiffiffi−gp fa1C2 þ a2Eþ a3□Rþ a4R2g (3)

includes higher-derivative terms. Here we use the notations

C2 ¼ R2
μναβ − 2R2

αβ þ
1

3
R2;

E ¼ RμναβRμναβ − 4RαβRαβ þ R2 (4)

for the square of the Weyl tensor and for the Lagrange
density of the Gauss-Bonnet topological term (Euler
density) in d ¼ 4, respectively.
The sufficiency of the higher-derivative terms [Eq. (3)]

for renormalizability has been consequently proved in a
formal way (see, e.g., Ref. [44] for an introduction and
further references). The most difficult part is to prove that
the diffeomorphism invariance is preserved at the quantum
level, and this can be done, including the case in which
noncovariant gauges are used for the background metric
gμν ¼ ημν þ hμν [43]. Furthermore, one has to remember
that all possible UV counterterms are local expressions.
After that, the problem reduces to the evaluation of the
superficial degree of divergence in the diagrams with
internal lines of matter fields and external lines of hμν.
The theory which is renormalizable in flat space-time has
only mass dimension-4 logarithmic divergences. An impor-
tant observation is that adding external lines of hμν does not
increase the degree of divergence (see, e.g., Ref. [45] for
more detailed consideration). Therefore, only dimension-4
divergences will emerge in the same theory, even in curved
space. This means one has to introduce all such terms at the
classical level; that is why we need all terms of Eq. (1) in
the vacuum action.
One has to note the great importance of higher-derivative

terms [Eq. (3)] for the most important applications of
semiclassical theory. For example, the Hawking radiation
[46] and the general version of Starobinsky inflation [33] can
be derived from the conformal anomaly [47], and the latter
results from the renormalization of the terms in Eq. (3).
In quantum gravity, the higher-derivative term with C2 in

Eq. (3) means a massive ghost, a spin-2 particle with
negative kinetic energy. This leads to the problem with
unitarity, at least at the tree level. But, in the semiclassical
theory, gravity is external, and the unitarity of the gravi-
tational S matrix may be not considered really important.
The consistency conditions in this case can include the
existence of physically reasonable solutions and their
stability under small metric perturbations. We shall discuss
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the relation of such a stability to the presence of massive
ghosts in what follows.
Let us now consider the situation in the quantum theory

of gravitational fields. Once again, one can prove that the
diffeomorphism invariance is preserved at the quantum
level (see, for example, the consideration in Ref. [4], which
can be generalized to a wide class of the theories of
gravity). The evaluation of the superficial degree of
divergence D for a Feynman diagram of the field hμν
can be performed by means of the general formula

Dþ d ¼
X
lint

ð4 − rlÞ − 4nþ 4þ
X
ν

Kν; (5)

with an additional topological relation

lint ¼ pþ n − 1: (6)

Here, d is the number of derivatives on external lines of the
diagram, rl is the power of momenta in the inverse
propagator of internal lines, n is the number of vertices,
and Kν is the power of momenta in a given vertex. In
Eq. (6), lint and p are the number of internal lines and loops,
correspondingly. The D ¼ 0 case corresponds to the
logarithmic divergences, and then d indicates the number
of derivatives in the requested counterterms.
For the quantum version of general relativity, we have

rl ¼ 2 and Kν ¼ ð2; 0Þ. It is easy to see from Eqs. (5)
and (6) that the final expression for the logarithmic
divergences is d ¼ 2þ 2p, and this means the theory is
not renormalizable.
If we start from the action in Eq. (1), which includes

fourth-derivative terms [Eq. (3)], then rl ¼ 4 and
Kν ¼ ð4; 2; 0Þ. It is easy to see that the maximal power
of derivatives in the logarithmic counterterms is d ¼ 4, so
this theory is renormalizable at all loop orders.
One can introduce more derivatives by considering the

action [49]

S ¼ SEH þ
Z

d4x
ffiffiffiffiffiffi−gp fa1R2

μναβ þ a2R2
μν þ a3R2 þ � � �

þ b1Rμναβ□Rμναβ þ b2Rμν□Rμν þ b3R□RþOðR3���Þ
þ c1Rμναβ□

kRμναβ þ c2Rμν□
kRμν þ c3R□kRþ � � �

þOðRkþ2��� Þg: (7)

For this theory, in the general case, we have rl ¼ 4þ 2k
and Kν ¼ ð0; 2;…; 4þ 2kÞ. By means of Eqs. (5) and (6),
for the logarithmic divergences one has d ¼ 4þ kð1 − pÞ.
This formula has three important consequences. First, the
theory is super-renormalizable for k ≥ 1, and only one-loop
divergences are present for k ≥ 3. Second, all divergences
are fourth-derivative ones or less. This means that most
of the terms in Eq. (7) are not renormalized. Third, the
zeroth-derivative, second-derivative, and fourth-derivative

counterterms depend on the choice of coefficients in the
highest-derivative terms. Let us note, incidentally, that the
power counting in the popular Hořava-Lifshits gravity [50]
is exactly the same as that described above. This means that
the fourth-derivative-in-time logarithmic divergences in
this theory are very likely to show up, but they can perhaps
be canceled by a special fine-tuning of highest-derivative
terms. Only explicit calculation can demonstrate whether
this really happens or not, and one-loop calculation would
be sufficient for k ≥ 3. Anyway, as far as a target is pure
QG, the Hořava-Lifshits gravity has a good chance. At the
same time, there is a more serious difficulty related to
the contribution of matter fields. If the Lorentz violation in
the matter sector is not assumed, these fields will always
produce covariant R2

μν-type divergences at all loop orders,
and hence it is unclear how one can construct a theory
without fourth-order time derivatives. Some support for this
consideration comes, also, from the direct calculations for a
scalar field in Ref. [51].
The massive ghosts are still present in the theory

[Eq. (7)]. For the case of real poles, we have [49]

G2ðkÞ ¼
A0

k2
þ A1

k2 þm2
1

þ A2

k2 þm2
2

þ � � � þ ANþ1

k2 þm2
Nþ1

; (8)

where the signs alternate,

Aj · Ajþ1 < 0; (9)

for any sequence with growing real masses:

0 < m2
1 < m2

2 < m2
3 < � � � < m2

Nþ1: (10)

In principle, it would be interesting to explore the cases of
imaginary and negative poles (e.g., looking for some kind of
a seesaw mechanism for the ghost poles), but we shall leave
such a consideration for future work. In the present paper,
our attention will be restricted by the case in Eq. (8), and we
shall discuss the relation between the presence of ghosts and
gravitational instabilities of the vacuum state of the theory.
Looking at the expression in Eq. (8), one can see that this

theory has one (in the case k ¼ 1) or more (for k ≥ 2) ghost
degrees of freedom in the tensor sector. We conclude that,
in general, the price of (super)renormalizability is the
presence of ghosts (see also additional discussion of this
issue and further references in Ref. [52]). However, from
the general perspective, the most important argument in
favor of higher derivatives comes from the quantization of
matter fields. Taking into account the importance of SHD in
Eq. (3) for constructing a renormalizable action of vacuum
for quantum matter fields, it is really difficult to see how
one can achieve a consistent theory without covariant
higher derivatives, so it is worthwhile to take the presence
of ghosts seriously and see how we can deal with them.
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B. Can one get rid of massive ghosts?

Massive ghosts are tensor (spin-2) massive states with
negative kinetic energy. The corresponding components of
the propagator do not depend on the gauge fixing and can
be seen as physical degrees of freedom. Creation of the
particle with negative kinetic energy from the vacuum state
is not protected by energy conservation; this means that in
the theory with ghosts, one should expect the continuous
creation of ghosts and a lot of high-energy gravitons
(remember that “our” ghost has Planck-order mass).
Even if we do not see the ghost itself, we are going to
observe a huge destructing outflux of gravitational energy,
which is supposed to explode any classical gravitational
solution (see, e.g., Ref. [25] for a recent review).
There were, as we have already mentioned in the

Introduction, several interesting attempts to get rid of the
massive ghosts. The most obvious idea is to assume that
the initial jini state in the classical scattering of gravita-
tional perturbations does not contain ghosts. The problem is
that, due to the nonpolynomial nature of gravity, ghosts
have infinitely complicated interactions with gravitons, and
as a result of this interaction, there should be ghosts in the
jouti state. Then the theory will be nonunitary. Let us
mention a recent work (Ref. [53]), where it was shown that
the theory without ghosts is unitary. In our opinion, this is
not a real solution, because the problem is exactly of how
one can remove the ghost from the spectrum.
One of the interesting ideas is related to the possible role

of quantum corrections on the unphysical massive pole
[7–9]. As we have already discussed in the Introduction, the
existing methods do not enable one to perform nonpertur-
bative analysis, which is needed to make a final conclusion
about this possibility [10]. Let us note that the situation can
be somewhat better in the super-renormalizable version of
the theory [Eq. (7)], where it is technically possible to
calculate exact β functions and thus arrive at the leading
approximation to the full quantum-corrected propagator.
We shall leave this possibility for future work and will
concentrate, instead, on a much simpler, direct approach to
the problem of ghosts and instabilities.
An interesting possibility has been suggested in Ref. [54]

and developed further recently in Refs. [55,56] (see further
references on classical applications therein). The idea is to
continue an expansion in Eq. (7) to the infinite order in
derivatives. The expectation is that one can achieve the
following form of the bilinear expansion of the classical
action (for simplicity, we take a flat background here, and
assume that an appropriate gauge-fixing term is included):

Sð2Þ ¼ 1

2
hαβfcM2

P□þ fð□Þghαβ; (11)

such that c ¼ const and fð□Þ is chosen such that the sum
cM2

P□þ fð□Þ is a specially designed entire function of
the argument □. It is assumed that the resulting theory is

(super)renormalizable and that the propagator of the
gravitational perturbation hαβ has a unique pole at
k2 ¼ 0. The idea looks very nice and beautiful, but there
are certain doubts about whether this scheme will work for
QG. First, in order to claim that the theory is (super)
renormalizable, one has to arrive at the Feynman rules for
hαβ, and to this end, one needs to perform quantization of
the theory. It is not clear how this can be done in a
nonpolynomial-in-derivatives theory like Eq. (11). Second,
in the theory in Eq. (11), one has both rl and Kν infinite.
Therefore, the evaluation of the superficial degree of
divergence [Eq. (5)] in this theory will produce an
indefinite ð∞ −∞Þ-type result, so it is unclear what one
can say about this theory being super-renormalizable,
renormalizable, or nonrenormalizable. In the present case,
the possibility of nonrenormalizable theory means, in
particular, that the form of the function fð□Þ may even-
tually change under quantum corrections, such that the
massive pole will come back to the theory. Starting from the
expression of the actions like

SiHD ¼
Z

d4x
ffiffiffiffiffiffi−gp fcRþRμνhð□ÞRμν þRh1ð□ÞRg; (12)

we arrive at the inverse propagator (in momentum space,
for the spin-2 sector) of the form

G−1ðkÞ ¼ c1k2 þ k4ψðk2Þ; (13)

where ψðk2Þ is an analytic function and c1 ≠ 0. One can
provide an absence of extra poles with k ≠ 0 (real or
complex) in such a case by setting, e.g.,

c1 þ k2ψðk2Þ ¼ c1e−k
2=M2

; (14)

or in some other similar way [54], but it is not obvious that
this form of the function will hold after quantum correc-
tions are taken into account. Finally, the proposal of
Ref. [54] is very interesting, but the statement that the
theory based on Eq. (11) really solves the conflict between
renormalizability and unitarity looks a little bit premature
and has not been clarified until now.
A qualitatively distinct approach has been suggested in

Ref. [11]. It is based on the observation that the ghost is not
an independent particle, but rather a companion of the
graviton in the linearized gravity. The separation of differ-
ent degrees of freedom in higher-derivative theories is a
nontrivial issue even in the case of linearized theories (see,
e.g., Ref. [57]). Needless to say, the situation should be
more complicated in gravity, which has a nonpolynomial
interaction structure. However, up to now it has not been
clear how one can put the proposal of Ref. [11] into practice
and how the new quantum theory of gravity should look.
Anyway, these two proposals show that the situation with
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ghosts is not completely hopeless and should be explored in
more detail.
Finally, let us mention the literature of avoiding the

ghosts in the models of massive gravity [12]. An alternative
approach here is to admit that the unphysical ghost may
exist, but it is harmless, because its interaction with the rest
of the particles is nonlocal and is suppressed by some large
parameter [13]. It looks tentative to find some mechanism
with similar final output for the much more relevant
(at least, in our opinion) case of higher derivatives. In
what follows, we consider the possibility that the corre-
sponding ghost exists only as a vacuum excitation but never
shows up as a physical particle, and therefore, may be
harmless at energies below the Planck scale.

III. GRAVITATIONAL WAVES ON AN
ARBITRARY BACKGROUND

Let us remember the assumptions which were made to
deal with the ghost problem in higher-derivative theory:

(i) One can draw conclusions about the gravity theory
by using linearized approximation. The S matrix of
gravitons should be the main object of our interest.

(ii) Ostrogradsky instabilities [5] or Veltman scattering
[6] are relevant independent of the energy scale; in
all cases, they produce runaway solutions and the
Universe explodes.

There is a simple way to directly check most of these
assumptions at once. Let us take a higher-derivative theory of
gravity and verify the stability with respect to the linear
perturbations on some physically interesting, classical sol-
ution. If the mentioned assumptions are correct, we will
observe rapidly growing modes even for the low-energy (i.e.,
low-curvature) background. However, if there are no growing
modes at the linear level, there will not be such modes even at
higher orders. Let us remember that the ghost problem is a
tree-level one, and therefore we do not need to worry about
loop effects. Moreover, according to the known mathematical
theorem [58], if the system is stable with respect to linear
fluctuations, it will be stable at the nonlinear level too, at least
for the sufficiently small amplitudes of perturbations.
Finally, our general purpose is to explore the time

dynamics of the gravitational waves on an arbitrary
“low-energy” background, in a higher-derivative theory of
gravity. In what follows, we shall start from the theory in
Eq. (1) on a general background and show that there are
some arguments in favor of its irrelevance for the sufficiently
low-energy fluctuations. In the consequent section, we shall
deal with the reduced problem and identify the relations
between the presence of growing modes and existence of
massive ghosts on the cosmological background.

A. Riemann normal coordinate expansions

Let us consider the fourth-derivative theory [Eq. (1)] and
set to zero the cosmological constant. This is justified when

we are interested in the behavior of the gravitational waves,
because the cosmological constant is irrelevant at distances
much smaller than the size of the Universe. The action
which we will deal with can be cast into the form

S4dQG ¼
Z

d4x
ffiffiffiffiffiffi−gp �

−M2
P

16π
Rþ a1C2 þ a2E

þ a3□Rþ a4R2

�
: (15)

The unique dimensional parameter in this theory is the
Planck mass MP, because all other coefficients are dimen-
sionless. Of course, the ak’s are arbitrary parameters, and
we can choose them to be as great as we like, but let us
make a moderate choice, assuming that the values of the
ak’s are close, in the orders of magnitude, to unity. Then the
Planck massMP defines the unique scale of the theory. This
means that all those quantities which are much smaller than
MP are very small in this theory. One can note that this
feature has been extensively used in establishing the
effective approach to QG [59].
The low-energy approach to the dynamics of gravita-

tional perturbations on an arbitrary metric background
means that the following inequalities are satisfied:

jRμναβj ≪ M2
P and k2 ≪ M2

P; (16)

where Rμναβ are components of the Riemann tensor of a
background and k is a wave vector for the perturbation.
The equation of our interest is

Hμν;αβh̄⊥αβ ¼ 0;where Hμν;αβ ¼ δ2S4dQG

δgμνδgαβ
: (17)

The gauge-fixing term is irrelevant, since we are interested
only in the traceless and completely transverse components
of the gravitational perturbation h̄⊥αβðxÞ, which will be
denoted hαβ in what follows. We will assume that hαβ
satisfies the constraints

hαβgαβ ¼ 0 and ∇αhαβ ¼ 0: (18)

As an illustration, let us write separately the zeroth-
order-in-curvature terms in Eq. (17) as

a1

�
□

2 − M2
P

32πa1
□

�
hαβ ¼ 0; (19)

which corresponds to the mass of the ghost,
m2 ¼ MP=

ffiffiffiffiffiffiffiffiffiffiffiffi
32πa1

p
.

The full equation includes the terms in Eq. (19) and also
terms linear and quadratic in curvature. One can easily
obtain this equation from the works on higher derivative
quantum gravity (HDQG), e.g., Ref. [44] or Ref. [31]. In
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the first order in curvature and taking into account Eq. (18),
this equation has the form of Eq. (17) with2

Hμν;αβ ¼ − a1
2
δμν;αβ□

2 þDρλ
μν;αβ∇ρ∇λ þWμν;αβ; (20)

where

Dρλ
μν;αβ ¼ 2a1gνβRα··μ

ρλ þ a1gρλð2gνβRαμ − RμανβÞ

þ
�
M2

P

64π
− a1

6
R − a4

2
R

�
gρλδμν;αβ;

Wμν;αβ ¼
M2

P

64π
ðRμανβ þ 3Rμαgνβ − Rδμν;αβÞ: (21)

The reason to keep only linear terms in curvature is due
to our interest in the behavior of metric perturbations in
Eq. (17) when both the background and the perturbations
have typical energies much smaller that the Planck scale.
This means, in particular, that we can ignore all OðR2���·Þ
terms. Of course, it would be interesting to explore higher
orders at some point, but in the present work we will try to
make calculations as simple as possible.
It is natural to use some technique which enables one to

treat curvature tensor components as small perturbations.
The covariant formalism of this kind is based on the
Riemann normal coordinates [60]. This approach is tradi-
tionally used for describing the propagator [61], in our case
for gravitons. The method is also useful in other situations,
mainly related to the evaluation of loop effects [62,63], but
now we intend to discuss only the tree-level approximation.
The normal coordinates method assumes an expansion

around a chosen point in the space-time—let us call it
Pðx0μÞ. The quantities corresponding to this point will be
labeled by small zeros; for instance, the metric is g

o
αβ. Also,

we shall need the curvature tensor and its covariant
derivatives at this point. The nice feature of normal
coordinates is that the coordinate lines are specially
designed geodesic lines, and an expansion can be done
covariantly with respect to the point P. The deviation from
the point P is parameterized by the quantities
yμ ¼ xμ − x0μ, which are zero at P. As far as we consider
the components of the curvatures to be small, the consid-
eration can be restricted by the first-order terms. For the
sake of generality, we shall also perform part of the
expansion until the second order; the corresponding results
are settled in Appendix A.
The expansion for the metric has the form

gαβðyÞ ¼ g
o
αβ − 1

3
R
o

μανβyμyν þ � � � : (22)

One can always choose the metric in the expansion point to
be the Minkowski one, g

o
αβ ¼ ηαβ. For the Christoffel

symbol, one has

Γλ
αβ ¼

2

3
R
o λ
·ðαβÞνyν þ � � � :

Let us start from the normal coordinate expansion for
□hαβ. The expansion represents a power series in both

curvature components R
o
λ
·αβν and yμ. In what follows, we

label by AðnÞ the order n of the expansion in yμ for the
quantity A, for instance

□hαβ ¼ ð□hαβÞð0Þ þ ð□hαβÞð1Þ þ ð□hαβÞð2Þ þ � � � ; (23)

where the dots indicate the omitted terms of higher orders
in yμ and of higher orders in the curvature tensor and its
covariant derivatives at the point P. Direct calculation
yields the following results up to the second order in yμ:

ð□hαβÞð0Þ ¼ ημν
�
∂μ∂νhαβ − 1

3
R
o α
.νλμhλβ − 1

3
R
o β

.νλμhαλ
�
;

(24)

ð□hαβÞð1Þ ¼ − 4

3
ημν½Ro α

.ðνλÞτ∂μhλβ þ R
o β

.ðνλÞτ∂μhαλ�yτ; (25)

ð□hαβÞð2Þ ¼ 1

3
R
o μ
· τ
ν

·ρð∂μ∂νhαβÞyτyρ: (26)

B. Zeroth-order approximation

The next step would be to make a Fourier transformation
in the spatial sector,

hμνðr; tÞ ¼
Z

d3k
ð2πÞ3 hμνðk; tÞe

ik·r: (27)

As a useful approximation, we can treat the wave vector k as
constant and will be therefore interested only in the time
evolution of the perturbation hμν. The validity of such a
treatment is restricted to the long-wave perturbations, where
we assume that the modes hμνðk; tÞ have independent time
dynamics. This treatment enables one to trade the compli-
cated partial differential equation [Eq. (17)] for the much
simpler ordinary differential equations for individual modes.
Since in the theory under discussion the unique scale
parameter is given by the Planck mass, a long wavelength
is just one which is larger than the Planck length.
Let us now see what the approximation of independent

modes hμνðk; tÞ means, from the practical side. Looking at
Eqs. (24), (25), and (26), it is clear that the Eq. (17) has two
complications: those related to the derivatives like
∂hαβðr; tÞ=∂yμ, and those related to the factors of yμ.
Obviously, ∂hαβðr; tÞ=∂yμ reduces, after using Eq. (27),

2In these expressions, the symmetrization over the pairs of
indices ðμνÞ and ðαβÞ is assumed. The complete forms including
second-order terms can be found in Ref. [31].
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to ikμhαβðk; tÞ. The treatment of the factors of yμ is a bit
more complicated and goes as follows:

Z
d3k
ð2πÞ3 y

μhαβðk; tÞeik·r ¼
Z

d3k
ð2πÞ3 h

αβðk; tÞ ∂
i∂kμ e

ik·r:

(28)

One can integrate by parts in the last expression. The
surface term at infinity can be neglected, because we can
assume hαβðjkj → ∞Þ → 0, since all perturbations are
suppressed beyond the Planck scale. In this way, we arrive
at the relation

Z
d3k
ð2πÞ3 y

μhαβðk; tÞeik·r ¼
Z

d3k
ð2πÞ3 e

ik·r ∂
i∂kμ h

αβðk; tÞ:

(29)

At that point, we conclude that the expansion in normal
coordinates yμ means an expansion of modes hαβðk; tÞ in
the series in kμ. In the simplest possible approximation, we
assume that the modes do not depend on kμ—that is,
hαβðk; tÞ ¼ hαβðtÞ. This means we can restrict our consid-
eration to the zeroth-order approximation in yμ in Eq. (17).
For the □

2 term, one can write

ð□2hαβÞð0Þ ¼ ημν
�
½∂μ∂νð□hαβÞ�ð0Þ − 1

3
R
o
α
ντμð□hτβÞð0Þ

− 1

3
R
o β

ντμð□hατÞð0Þ
�
: (30)

Let us introduce the following notations for the expansions
in Eqs. (25) and (26)3:

ð□hαβÞð1Þ ¼ Δαβ
χy χ ;

ð□hαβÞð2Þ ¼ Λαβ
χωy χyω: (31)

After a very small amount of algebra, we obtain

ð□2hαβÞð0Þ ¼ ημν∂μ∂νð□hαβÞð0Þ þ ημν
�
2∂νΔαβ

μ þ 2Λαβ
νμ

− 1

3
R
o
α
ντμð□hτβÞð0Þ − 1

3
R
o
β
ντμð□hατÞð0Þ

�
; (32)

where ð□hαβÞð0Þ has been defined in Eq. (24). Taking this
together with Eq. (21), we arrive at the expression

Hμν;αβ ¼ −a1
2
δμν;αβð□2hαβÞð0Þ þ 2a1ηνβR

o

α··μ
ρλ ∂ρ∂λ

þ
��

a1
6
R
o þ a4

2
R
o þ M2

P

64π

�
δμν;αβ

þ 2a1ηνβR
o

αμ − a1R
o

μανβ

�
□

þ M2
P

64π
ðRo μανβ þ 3ημαR

o

νβ − R
o
δμν;αβÞ: (33)

By incorporating Eq. (32) into the last formula, we obtain
the equation for the metric perturbation in the zeroth-order
approximation in yμ:

□2hμν − 1

3
ðRo λμ□hλν þR

o

λν□hλμÞ þ
4

3
ðRo λρτ···μ∂ρ∂τhνλ

þR
o λρτ
···ν ∂ρ∂τhμλÞ− 2R

o

λ··μ
ρτ∂ρ∂τhλν − 2R

o

λ··ν
ρτ ∂ρ∂τhλμ

− 2R
o

τμ□hτν − 2R
o

τν□hτμ þ 2R
o

μρντ□hρτ

þ 2

3
R
o ρτ∂ρ∂τhμλ þ

a1 þ 3a4
a1

R
o
□hμν

− M2
P

32πa1
½ð□−R

o Þhμν þ ðRo μλντ þ 3ημλR
o

ντÞhλτ� ¼ 0:

(34)

We note that Eq. (34) is a flat-space differential equation,
which depends on the curvature tensor components in a

given point P, R
o α
·βμν. In particular, here we assume a flat

d’Alembertian operator, □ ¼ ηρτ∂ρ∂τ. Of course, the
complete expression is an infinite-series expansion in both

kμ and R
o

μναβ, so Eq. (34) is just the lowest-order nontrivial
approximation to it. Equation (34) is a generalization of the
basic equation (19), and the difference between the two is
represented by the terms linear in curvature which are
partially hidden and partially omitted in Eq. (19). The
investigation of the time dynamics of hμν with a constant k
can be performed on the basis of Eq. (34). One can expect
that the nonlinearities, presented by a nontrivial back-
ground, will be responsible for relatively small corrections
to the dynamics of Eq. (19) in flat space. This statement can
be correct or not, and at the moment we are unable to give a
definite answer on the basis of Eq. (34). Instead, we shall
perform partial verification of this statement for the case of
the cosmological background, in the next section.
Equation (34) contains relevant information about the

evolution of the traceless and transverse mode of the metric

perturbation in the regime jRo αβτλj ≪ M2
P. We postpone the

analysis of this complicated equation for future work. In the
next section, we shall consider another approximation,
which is not related to the expansion around the flat space.
To some extent, the results of this consideration will justify

3Higher-order expressions for Δαβ
χ and Λαβ

χω can be found in
Eqs. (A5) and (A6) in Appendix A.
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the system of approximations which were used in
deriving Eq. (34).

IV. PERTURBATIONS ON THE COSMOLOGICAL
BACKGROUND

Let us now turn to a very different approach and consider
the cosmological background metric. In this case, the
consideration is not related to the weak curvature approxi-
mation, but the background is of course a very special one.
Anyway, this consideration can be useful in collecting
evidence in favor of (in)stability of the background in
higher-derivative gravity theory. One has to note that
classical cosmological solutions can be very different,
and hence the problem is technically not completely trivial.
The consideration of metric perturbations in higher-

derivative theories on a cosmological background has been
previously studied in Refs. [35–37] for the particular case
of an inflationary (dS) background, and recently in
Ref. [39] for more general cosmological metrics, namely
radiation- and dust-dominated cases. In all these works, the
equations were derived on the basis of higher-derivative
theory with semiclassical corrections, and in all cases no
instabilities were detected. Here we restrict our attention to
the purely classical theory [Eq. (15)]. Compared to the
previous publications, we shall extend the set of initial
conditions and finally discover the unstable case, in exactly
the situation which will confirm the main assumptions
formulated in the previous sections.
We consider the perturbations

gμν ¼ g0μν þ hμν (35)

over an isotropic and homogeneous cosmological
background,

g0μν ¼ diagf1;−δija2ðtÞg: (36)

One pertinent observation is in order here. The action in
Eq. (15) without a cosmological constant has only one term
which can affect the solution for the scale function aðtÞ of
the cosmological background. Remember that the Weyl
tensor is zero for the metric in Eq. (36), and the Gauss-
Bonnet term does not contribute to the equations of motion
in d ¼ 4. At the end of the day, the only relevant higher-
derivative term for the background is4 a4R2. Then, as long
as we consider the low-energy situation with jRj ≪ M2

P, the
classical solutions of GR can be seen as precise approx-
imations for the theory in Eq. (15). For this reason, we shall
consider the metric perturbations over the background
[Eq. (36)], with aðtÞ corresponding to the standard cos-
mological solutions of GR, such as a matter-dominated or

radiation-dominated Universe, and to the exponential case.
In the last case, the accelerated expansion is due to the
cosmological constant only.
The initial conditions for the perturbations will be chosen

to originate from the fluctuations of free quantum fields.
The spectrum is identical to a scalar quantum field in
Minkowski space (see, e.g., Ref. [64]),

hðx; ηÞ ¼ hðηÞe�ik:r; hðηÞ ∝ e�ikηffiffiffiffiffi
2k

p ; (37)

where we employ the conformal time η, aðηÞdη ¼ dt, k is
the wave-number vector, and k ¼ jkj. A normalization
constant is not necessary for the case of linear perturba-
tions. Initial amplitudes are supposed to have a quantum
origin and depend on k according to

h0 ∝
1ffiffiffiffiffi
2k

p ; _h0 ∝
ffiffiffi
k
2

r
; ḧ0 ∝

k3=2ffiffiffi
2

p ; h
���
0 ∝

k5=2ffiffiffi
2

p ;

(38)

where the derivatives are taken with respect to the cosmic
time. Let us stress that the vacuum stability is related to the
asymptotic behavior of perturbations at t → ∞, and there-
fore the choice of initial conditions is, to a great extent,
irrelevant. However, all plots presented below correspond
to Eq. (38).
In order to study the time dynamics of hðt; rÞ, one can

perform a Fourier transform,

hkðtÞ ¼
1

ð2πÞ3=2
Z

hðt; rÞeik·rd3x: (39)

Now we are ready to analyze the presence (or not) of
growing modes for the particular cases. We shall present
only the final form of the equations; more details can be
found in the previous works [38,39]. In Ref. [38], similar
equations were obtained for the pre-big-bang scenario.
To derive the wave equations, we will use the conditions

(where μ ¼ 0,i ¼ 0, 1, 2, 3)

∂ihij ¼ 0 and hkk ¼ 0; (40)

together with the synchronous coordinate condition
hμ0 ¼ 0.

A. Stability analysis

In this section, we will begin to analyze if there is (or is
not) stability for the cosmological solutions in the theory
according to Eq. (15). The consideration will be based on
the combination of semianalytical and numerical methods,
where the latter is mainly used for control and illustration
purposes.
The basis of the semianalytical method is as follows:

After applying Eq. (39), we obtain a fourth-order ordinary

4It is interesting that the a1C2 term is much more relevant for
the metric perturbations than the a4R2 term, so the situations for
the background and for metric perturbations are just opposite.
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differential equation for the tensor part of metric perturba-
tions. One can easily transform it into the system of four
first-order equations, and then the problem is reduced to the
analysis of eigenvalues of the corresponding characteristic
equation. The details are briefly described in Appendix B;
the reader can also consult Ref. [39]. It is easy to see that
one always has to calculate the quantity Δ, given in
Eq. (B7) based on the ancient Cardano approach [67].
This quantity contains all relevant information about the
asymptotic behavior of the solution.
One can distinguish the following cases:
(1) Δ < 0. The three roots are real and distinct. Then we

have one of the following situations:
(a) All roots are negative: Stable solution.
(b) Some root is positive: Unstable, and instability

generally increases with an increasing number of
positive roots; in a sense, one needs more severe
initial conditions to avoid instability.

(2) Δ ¼ 0. The roots are real, and two or three are
equal. Then
(a) All roots are either negative or have negative real

parts: Stable.
(b) Some root has a positive real part: Unstable, and

this instability increases with an increasing
number of such positive roots.

(3) Δ > 0. One real root and two complex roots.
(a) All roots are negative or have negative real parts:

Stable.
(b) Some root has a positive real part: Unstable.

In what follows, we shall perform the analysis separately
for each case, namely for flat space-time, exponential
expansion, radiation, and matter in fourth-derivative
theory, and we shall also consider the flat case for a
super-renormalizable theory. In each case, we shall con-
sider many different values of k and will try to see in which
range of frequencies the growing modes will show up.

B. Flat case

In order to fix the method, consider first the flat case,
when g0μν ¼ ð1;−δijÞ. The action of our interest [Eq. (15)]
can be presented as

SHDQG ¼ S0 þ S1 þ S3; (41)

where

S0 ¼ f0

Z
d4x

ffiffiffiffiffiffi−gp
R; S1 ¼ f1

Z
d4x

ffiffiffiffiffiffi−gp
C2;

S3 ¼ f3

Z
d4x

ffiffiffiffiffiffi−gp
R2: (42)

The metric perturbations are defined as

gμν ¼ g0μν þ hμν; (43)

and the synchronous and harmonic gauge-fixing conditions
[Eq. (40)] are imposed. Then the second variations of the
actions yield the following results (here h≡ h̄⊥ij):

Sð2Þ0 ¼ f0

�
hḧþ 3

4
_h _h− 1

4
h∇2h

�
;

Sð2Þ1 ¼ f1

�
1

2
ḧ2 þ 1

2
ð∇2hÞð∇2hÞ þ ḧ∇2hþ 2_h∇2 _h

�
;

Sð2Þ3 ¼ 0; (44)

where also∇ ¼ ∇k,k ¼ 1, 2, 3. As always, the R2 term does
not contribute to the tensor part of the gravitational pertur-
bation in the flat case. Taking the sum of the three terms in
Eq. (44), we arrive at the equation for perturbations,

f1h
���· − 2f1∇2ḧþ f1∇4hþ 1

2
f0ḧ − 1

2
f0∇2h ¼ 0; (45)

which is nothing else but the equation equivalent to
Eq. (19),5
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200
h t

h t
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k 0.50
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200

100

100

200

k 0.99

FIG. 1. The plots for the flat-space case. k is measured in units
of MP, and the growing modes appear for k close to 1.
Oscillations here mean that the eigenvalues with both positive
and negative real parts have imaginary components. For smaller
values of k, the amplitude greatly increases, but asymptotically it
goes to zero (out of the plot).

5We adopt the notations hlkh
k
l ¼ h2, hlk _h

k
l ¼ h _h and use

□hlk ¼ ḧlk − ∇2hlk.
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ðf1□2 þ f0□Þh ¼ 0: (46)

Let us present the results for the growing modes:
Semianalytical analysis: For a1 > 0, we find runaway
solutions for all values of k.
For a1 < 0 and k < 0.90, we have Δ < 0, and all
eigenvalues are real and negative. So, we have stability
in this case. For k > 0.90, we find two positive eigen-
values. Therefore, we can observe instability, i.e., runaway
solutions.
Numerical analysis: Using MATHEMATICA software [65],
we find that the growing modes show up from k ≥ 0.99.
The illustrating plots for the initial period of time are shown
in Fig. 1.
One can see that for a1 < 0, growing modes exist for the

magnitude of the wave vector being equal to or greater than
the Planck mass. For much smaller frequencies k, we do not
observe the effect of a ghost, probably because its mass is
too large. It is important for our general understanding that
for a1 > 0 there are exponentially growing modes for all
values of k. In this case, the massless mode (graviton) is
actually a ghost, so there is no energy gap for generating the
runaway solutions. Obviously, a huge energy gap exists for
the a1 < 0 case.
Let us make one more observation concerning the

marginal value of k, starting from which the growing
modes are observed. According to Eq. (19), this value
depends on the ratio MP=

ffiffiffiffiffiffiffiffi−a1p
. In the consideration

presented above, we have used a1 ¼ −1 and consequently
found that the marginal value of k is close to MP.

C. Cosmological solutions

Let us now consider the dynamics of the gravitational
waves on the cosmological background. It proves useful to
present the action of Eq. (15) using different notations.
After performing some integrations by parts, we arrive at

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

L; (47)

where

L¼
X5
s¼0

fsLs ¼ ðf0Rþ f1RαβμνRαβμνþf2RαβRαβ þ f3R2Þ;

(48)

and the coefficients f0;...;3 are defined according to

f0 ¼ −MP
2

16π
;

f1 ¼ a1 þ a2;

f2 ¼ −2a1 − 4a2;

f3 ¼
a1
3
þ a2: (49)

As one should expect, the coefficient a2 of the Gauss-
Bonnet topological term does not affect the equations.
Let us consider the background cosmological solution

g0μν ¼ f1;−δija2ðtÞg. Then, one can arrive at the following
expressions for the bilinear parts of the partial Lagrangians
from Eq. (48):

L0 ¼ a3f0

�
h2
�
3

2
_H þ 3H2

�
þ hḧþ 4Hh _hþ 3

4
_h2 − h

4

∇2h
a2

�
þOðh3Þ;

L1 ¼ a3f1

�
_h2ð2H2 − 2 _HÞ − hḧð4H2 þ 4 _HÞ − h2ð3 _H2 þ 6 _HH2 þ 6H4Þ − h _hð8H _H þ 16H3Þ þ ḧ2

þ 4H _h ḧþ
�∇2h

a2

�
2

þ 2_h
∇2 _h
a2

þ ðH2h − 2H _hÞ∇
2h
a2

�
þOðh3Þ;

L2 ¼ a3f2

�
−h _hð12 _HH þ 24H3Þ − _h2

2

�
5 _H þ 18

4
H2

�
− h2ð3 _H2 þ 9 _HH2 þ 9H4Þ − hḧð4 _H þ 6H2Þ þ ḧ2

4
þ 3

2
H _h ḧ

þ 1

4

�∇2h
a2

�
2 − 1

2
ðḧþ 3H _h − _Hh − 3H2hÞ∇

2h
a2

�
þOðh3Þ;

L3 ¼ −6a3f3ð _H þ 2H2Þ
�
h2
�
3

2
_H þ 3H2

�
þ 2hḧþ 8Hh _hþ 3

2
_h2 − h

2

∇2h
a2

�
þOðh3Þ; (50)

Omitting higher-order terms Oðh3Þ in the expressions of Eq. (50) and taking a variational derivative with respect to hμν,
we arrive at the equation for tensor mode6:

6Which is, in fact, a part of the more complicated equation with quantum corrections that was explored in Ref. [39].
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�
2f1 þ

f2
2

�
h
���·
þ ½3Hð4f1 þ f2Þ�h

���
þ
�
3H2

�
6f1 þ

f2
2
− 4f3

�
þ 6 _Hðf1 − f3Þ þ

1

2
f0

�
ḧ − ð4f1 þ f2Þ

∇2ḧ
a2

þ
�
−21H _H

�
1

2
f2 þ 2f3

�
− Ḧ

�
3

2
f2 þ 6f3

�
− 9H3ðf2 þ 4f3Þ þ

3

2
Hf0

�
_h −Hð4f1 þ f2Þ

∇2 _h
a2

− ½ð36 _HH2 þ 18 _H2 þ 24HḦ þ 4H
��� Þðf1 þ f2 þ 3f3Þ�hþ f0½2 _H þ 3H2�hþ

�
H2ð4f1 þ 4f2 þ 12f3Þ

þ 2 _Hðf1 þ f2 þ 3f3Þ − 1

2
f0

�∇2h
a2

þ
�
2f1 þ

1

2
f2

�∇4h
a4

¼ 0: (51)

This equation can be used for different cosmological solutions. In what follows, we consider three examples, namely the
exponential expansion, and the radiation- and matter-dominated epochs.

1. Exponential expansion

Semianalytical analysis: For a1 > 0, there are runaway
solutions for all k values.
In the case a1 < 0, for k < 0.036 we have Δ < 0
and all eigenvalues are real and negative; hence there are
no instabilities in this case. For k > 0.036, there is one
positive eigenvalue. So, starting from this frequency, one
can observe instability (i.e., runaway solutions) for the
exponential expansion of the Universe.

Numerical analysis: The result described above is perfectly
well confirmed by numerical analysis by using MATHE-

MATICA software. For the exponential expansion, the
growing modes emerge only when k ≥ 0.036, as is illus-
trated in Fig. 2. For smaller frequencies, there are no
runaway solutions.
We can see that the effect of the nontrivial background

manifests itself mainly in the small modification of the
marginal value of k, after which we observe growing
modes. In view of the consideration in Sec. III, this is
an expected result, because we saw that the weak
(compared to the Planck scale) background will produce
only small corrections to Δ, and hence to the growing
modes. Let us see whether the situation is the same for other
cosmological solutions.

2. Radiation-dominated epoch

Semianalytical analysis: We find runaway solutions for all
k values for radiation when a1 > 0, exactly as in the
exponential expansion case.
If we choose a1 < 0, we have Δ < 0 for k < 0.50, and all
eigenvalues are real and negative. Thus, we have stability
for this frequency range. But for k > 0.50, we find
extremely large values of hðtÞ and two positive eigenvalues,
so we have growing modes.
Numerical analysis: Again, the results found in the semi-
analytical method agree perfectly with the analysis done by
the MATHEMATICA software. For the case of radiation, as
we can see in Fig. 3, we have runaway solutions only when
k ≥ 0.44. For smaller frequencies, we do not have this kind
of solution.

3. Matter-dominated epoch

Semianalytical analysis: Once again, for a1 > 0, we have
runaway solutions for all values of k. For a1 < 0, we have
Δ < 0 for the k values up to k ¼ 0.80, and all eigenvalues
are real and negative; therefore, we have stability. But for
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FIG. 2. Some plots of hðtÞ for the exponential case,
aðtÞ ¼ a0eH0t. The solution with growing modes appears only
starting from k ¼ 0.036.
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k > 0.80, we find two positive eigenvalues, indicating the
presence of growing modes.
Numerical analysis: Using the MATHEMATICA software,
one can see that runaway solutions appear starting from the
frequencies k ≥ 1, in good agreement with the semian-
alytical analysis. The illustrative plots are shown in Fig. 4.
One can see that the runaway solutions take place for

smaller values of k in the case of exponential expansion
than for radiation or, finally, for the dust (matter). The
marginal values satisfy the inequalities

kInflationrunaway < kRadiationrunaway < kMatter
runaway (52)

However, in all cases, the growing modes appear only when
we have k close to the Planck scale, for a negative a1.

D. Super-renormalizable theory

In order to check our understaning of the relation
between the energy gap for the runaway solution and
the presence of massive unphysical ghosts with the Planck-
order mass, let us consider the simplest possible example of
the super-renormalizable theory of gravity [Eq. (7)] by
including two next-order terms compared to the fourth-
derivative theory:

S ¼ SEH þ
Z

d4x
ffiffiffiffiffiffi−gp fa1R2

μν þ a2R2 þ � � �

þ b1Rμν□Rμν þ b2R□Rþ b4;5;̈
OðR3���Þ þ � � �

þ b3;4;̈
OðR3���Þg: (53)

As we have already mentioned in Sec. II, this theory has
exactly the same amount of ghosts as the fourth-derivative
theory [Eq. (15)], because an extra spin-2 degree of
freedom has positive kinetic energy, and also Planck-order
mass. Then one should expect that the conditions of
stability in the two theories [Eqs. (53) and (15)] should
be very similar.
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FIG. 4. Graph for hðtÞ perturbation as a function of time
analyzed for matter, when aðtÞ ¼ a0t3=2.
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FIG. 3. Graph for hðtÞ perturbation as a function of time
analyzed for radiation, when aðtÞ ¼ a0t1=2. Starting from
k ∼ 0.50, the solutions become “violent”, as one can see on
the last plot. However, below this value, there are no growing
modes.
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The consideration presented above is valid for the
structure of poles in the spin-2 sector, according to

G2ðkÞ ¼
A0

k2
þ A1

k2 þm2
1

þ A2

k2 þm2
2

; (54)

with growing real masses of poles,

0 < m2
1 < m2

2: (55)

In this case, we have A0 > 0 and A2 > 0, while A1 < 0,
according to Eq. (9). This feature indicates that the first
massive particle, with a negative sign of A1, is a ghost,
while the second massive particle, with a positive sign of
A2, is just a positively defined spin-2 particle with a huge
mass. From the physical side, the presence of such an extra
particle cannot lead to any extra instability, and this is what
we intend to check here.
The first question is how to provide this structure of

poles. Let us first establish the necessary conditions for the
coefficients a1 and b1 in the action. Making the expansion
gμν ¼ ημν þ hμν, we can easily derive the bilinear terms of
this action (the spin-2 part only, of course) in the form

Sð2Þ2 ¼
Z

d4xhμν

�
M2

P

64π
□ − a1

2
□

2 − b1
2
□

3

�
hμν: (56)

For the inverse propagator, we meet the expression

G−1
6 ðkÞ ¼ b1

2
k2
�
k4 − a1

b1
k2 − M2

P

32πb1

�
: (57)

The two relevant observations can be done at this moment.
First, if we want to have a positive-energy graviton, the
sign of b1 should be positive. This is clear already from
Eq. (56). Second, if we want the Planck mass to be the
unique scale-defining parameter of the theory, then the
coefficient b1 should be taken as b1 ¼ B1=M2

P, with B1

being a dimensionless parameter of the order 1.
With these choices, we arrive at the following

representation:

G−1
6 ðkÞ ¼ b1

2
k2ðk2 −m2

1Þðk2 −m2
2Þ; (58)

where

m2
1=2 ¼ M2

P

"
a1
2B1

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

32πB1

þ a21
4B2

1

s #
: (59)

Obviously, one has to choose, in order to achieve the
structure of poles of Eq. (54), the positive sign of a1, which
is the opposite to the four-derivative case. Furthermore, the
inequality

a21 >
B1

8π
(60)

is requested to provide positive real poles for the propa-
gator. It is obvious that all these conditions can be satisfied
if we choose, for example, a1 ¼ B1 ¼ 1. This will be our
choice for the given theory; with it we shall explore the time
dynamics of the gravitational perturbations in the flat case.
The choice of the flat background is natural, since it is the
simplest one, and hence we avoid complications in the
comparison of the stability limits for the theories in
Eqs. (53) and (15).
The analysis of stability performs exactly as in the

fourth-derivative case, so we can directly go to the results.
Semianalytical analysis. If we choose b1 < 0, we find, for
k < 0.90, that Δ < 0 and all eigenvalues are real and
negative. So, we have stability in this case. For
k > 0.90, we find two complex eigenvalues with positive
real parts, indicating instability. For a1 > 0, we find
runaway solutions for all values of k.
Numerical analysis: Again, as in the cases which were
considered before, the semianalytical method agrees with
the numerical results. In both cases, there are growing
modes when k ≥ 0.90. For Eq. (58), the plot is shown in
Fig. 5. The conditions and the behavior of the perturbations
look very much like those in the case of the theory
in Eq. (15).
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FIG. 5. Once again, growing modes appear only close to the
Planck scale.
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V. CONCLUSIONS

We considered the stability of higher-derivative gravity
theories under the gauge-independent part of metric per-
turbations. It was shown that at least cosmological sol-
utions are stable. Due to the similarity with the general
situation as it is described in Sec. III, it might happen that
this is true for any classical solution. The perturbations
which we have dealt with were taken at the linear level, but
over the nontrivial metric background, so according to the
known theorems [58], the linear stability should be a
sufficient condition of the stability even beyond the linear
approximation, if the amplitude of initial perturbations is
sufficiently small.
One can ask two natural questions concerning this

situation:
First, as we have already mentioned in the Introduction,

any kind of classical solution is obviously not protected by
energy conservation from a process in which one massive
ghost and a large amount of gravitons are created at the
same time. So, the first question is how one can reconcile
this with the stability properties. Let us confess that we
have no definite answer to this question. At the same time,
physical intuition tells us that the situation in which we
need to accumulate a Planck-order energy density of
gravitons in the vicinity of a certain space-time point,
where the ghost should be created, means that we should go
to the physics at the Planck anergy scale. As long as we
intend to have a consistent QG theory at the energy scale a
few orders beyond MP, there is a hope to achieve a
consistent solution to this discrepancy. For example, in
recent papers [66], one can find a discussion of the possible
limits on the occupation number of gravitons in a
gravitational field. It might happen that such limits can
be very useful for understanding the situation with the
creation of ghosts from vacuum in higher-derivative QG.
Furthermore, we cannot rule out that the solution of the
problem can be achieved even for the Planck scale of
energy, if we better understand the physical principles
behind such limits.
Second, are the cosmological solutions sufficiently

general to draw general conclusions? In our opinion, the
answer is negative. We mainly dealt with these solutions
because they are the simplest ones and the technique of
corresponding perturbations is better developed. At the
same time, it would be very interesting to explore, using
effective framework, the stability of the static black hole
metric, where we have contradicting results (Refs. [16] and
[17]). It would be very important to have certain results on
the stability of this and other relevant solutions, e.g., for the
Kerr metric.
Finally, let us note that one single definite example of

an unstable physically relevant solution in the theory
with higher derivatives would mean that the situation
with the (in)stability of vacuum in this theory becomes
definitely negative. In view of the great relevance of

higher derivatives, especially for the quantization of
matter fields on a curved background, this would mean
the necessity of some dramatic changes in our under-
standing, starting from the semiclassical approach to
gravity. However, after considerations presented in this
work, we have an expectation that the situation with
higher derivatives in a theory based on a unique Planck
scale can be resolved.
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APPENDIX A: SECOND-ORDER EXPANSIONS

The expansion for the metric has the form

gαβðyÞ ¼ g
o
αβ − 1

3
R
o

μανβyμyν − 1

3!
R
o

μανβ;σyμyνyσ

þ 1

5!

�
16

3
R
o λ

·μανR
o

λρβσ − 6R
o

αμβν;ρσ

�
yμyνyρyσ þ � � � :

(A1)

One can always choose the metric in the expansion point to
be the Minkowski one, g

o
αβ ¼ ηαβ. For the Christoffel

symbol, one has

Γλ
αβ ≈

2

3
R
o λ

ðαβÞνyν þ
1

8

�
R
o λ

μνβ;α þ R
o λ

ανβ;μ þ 2R
o λ

βμα;ν

	
yμyν:

(A2)

Let us present the results of the expansions for□hαβ. We
will label by Að0Þ the order of expansion in yμ for the
quantity A, such that

□hαβ ¼ ð□hαβÞð0Þ þ ð□hαβÞð1Þ þ ð□hαβÞð2Þ þ � � � : (A3)

The direct calculation yields the following results in zeroth
and first order in the deviation yμ:

ð□hαβÞð0Þ ¼ ημν
�
∂μ∂νhαβ − 1

3
R
o α

νλμhλβ − 1

3
R
o β

νλμhαλ
�
(A4)

and
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ð□hαβÞð1Þ ¼ ημν
�
− 2

3

�
R
o α

νλχ þ R
o α

λνχ

	
∂μhλβ − 2

3

�
R
o β

νλχ þ R
o β

λνχ

	
∂μhαλ þ

1

4

�
R
o α

χμλ;ν þ R
o α

νμλ;χ þ 2R
o α

λχν;μ

	
hλβ

þ 2

3
R
o λ
μνχ∂λhαβ þ

1

4

�
R
o β

χμλ;ν þ R
o β

νμλ;χ þ 2R
o β

λχν;μ

	
hαλ

�
yχ ; (A5)

where a semicolon indicates a covariant derivative taken at the point P. Furthermore, in the second order in yμ, we meet

ð□hαβÞð2Þ ¼1

3
R
o μ

χ

ν

ω

�
∂μ∂νhαβ−1

3

�
R
o α

νλμ−R
o α

λνμ

	
hλβ−1

3

�
R
o β

νλμ−R
o β

λνμ

	
hαλ

�
yχyω

þημν
�
1

8

�
R
o α

χωλ;νþR
o α

νωλ;χþ2R
o α

λχν;ω

	
∂μhλβþ

1

8

�
R
o β

χωλ;νþR
o β

νωλ;χþ2R
o β

λχν;ω

	
∂μhαλ

−1

8

�
R
o λ

χωλ;μþR
o λ

μων;χþ2R
o λ

νχμ;ω

	
∂λhαβ−2

9
R
o λ

μνχ

h�
R
o α

λτωþR
o α

τλω

	
hτβþ

�
R
o β

λτωþR
o β

τλω

	
hατ

i
þ1

8

�
R
o α

χωλ;μþR
o α

μωλ;χþ2R
o α

λχμ;ω

	
∂νhλβþ

1

9

�
R
o α

μλχþR
o α

λμχ

	h�
R
o λ

ντωþR
o λ

τνω

	
hτβþ

�
R
o β

ντωþR
o β

τνω

	
hλτ

i
þ1

9

�
R
o β

μλχþR
o β

λμχ

	h�
R
o λ

ντωþR
o λ

τνω

	
hατþ

�
R
o α

ντωþR
o α

τνω

	
hλτ

i
þ1

8

�
R
o β

χωλ;μþR
o β

μωλ;χþ2R
o β

λχμ;ω

	
∂νhαλ

�
yχyω:

(A6)

Altogether, we find

□hαβ ¼ ð□hαβÞð0Þ þ ð□hαβÞð1Þ þ ð□hαβÞð2Þ þ � � � ; (A7)

where the dots indicate the terms of higher orders in yμ and
terms of higher orders in the curvature tensor and its
covariant derivatives at the point P.

APPENDIX B: BACKGROUNDS OF OUR
SEMIANALYTICAL METHOD

We found the following type of fourth-order differential
equation for tensor perturbations:

b4h
���·
þ b3h

���
þ b2ḧþ b1 _hþ b0h ¼ 0; (B1)

where b0, b1, b2, b3, and b4 are the coefficients of
this equation. One can reduce this fourth-order equation
to a system of four first-order equations. Changing the
variables, we have

h0 ¼ h; h1 ¼ _h0 ¼ _h;

h2 ¼ _h2 ¼ ḧ; h3 ¼ _h2 ¼ h⃛: (B2)

Now, we can rewrite these as

_h3 ¼ − 1

b4
ðb3h3 þ b2h2 þ b1h1 þ b0h0Þ;

_h2 ¼ h3;

_h1 ¼ h2;

_h0 ¼ h1:

Rewriting the differential equation, we arrive at

_h3 ¼ − 1

b4
ðb3h3 þ b2h2 þ b1h1 þ b0h0Þ;

_h2 ¼ h3;

_h1 ¼ h2;

_h0 ¼ h1:

We can rewrite this linear system of four equations in a
matrix form and easily compute the eigenvalues and
eigenvectors. Thus, we can write in simplified form

_hk ¼ Al
khl; (B3)

where k ¼ 0, 1, 2, 3, and the matrix A ¼ Al
k has the form
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A ¼

0
BBB@

0 1 0 0

0 0 1 0

0 0 0 1

d0 d1 d2 d3

1
CCCA;

where we have called dk ¼ −bk=b4. We need to find the
eigenvalues of A, and for this end we consider

det

0
BBB@

−λ 1 0 0

0 −λ 1 0

0 0 −λ 1

d0 d1 d2 ðd3 − λÞ

1
CCCA ¼ 0: (B4)

The algebraic equation is

λ4 − d3λ3 − d2λ2 − d1λ1 − d0 ¼ 0: (B5)

After some algebraic operations due to Cardano [67], one
can reduce this fourth-order equation to the second-order
one,

z2 þ ξ1zþ ξ2 ¼ 0; (B6)

where the most important quantity is given by

Δ ¼ ξ1 þ
4

27
ξ32 ¼ 4

��
ξ1
2

�
2

þ
�
ξ2
3

�
3
�
: (B7)

The value of Δ will tell us the nature of these roots, as
explained in the text. To find Eq. (B7), we use the fact that

ξ1 ¼
−α
3

þ β and ξ2 ¼
�
2α3

27
þ 3γ − βγ

3

�
;

α ¼ 5

2
p; γ ¼ 1

8
ðq2 − 4p2 þ 4prÞ; and

β ¼ 2p2 − r; p ¼ − 39

8
d23 þ d2;

q ¼ d23
8
− d3d2

2
þ d1; and

r ¼ − 3d43
256

þ d2d23
16

− d2d1
4

þ d0; (B8)

where bk=b4 ¼ −dk, and the bk’s are the coefficients of the
fourth-order differential equation.
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