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The thermodynamic equilibrium states of a static thin ring shell in a (2þ 1)-dimensional spacetime with
a negative cosmological constant are analyzed. Inside the ring, the spacetime is pure anti–de Sitter, whereas
outside it is a Bañados-Teitelbom-Zanelli spacetime and thus asymptotically anti–de Sitter. The first law of
thermodynamics applied to the thin shell, plus one equation of state for the shell’s pressure and another for
its temperature, leads to a shell’s entropy, which is a function of its gravitational radius alone. A simple
example for this gravitational entropy, namely, a power law in the gravitational radius, is given. The
equations of thermodynamic stability are analyzed, resulting in certain allowed regions for the parameters
entering the problem. When the Hawking temperature is set on the shell and the shell is pushed up to its
own gravitational radius, there is a finite quantum backreaction that does not destroy the shell. One then
finds that the entropy of the shell at the shell’s gravitational radius is given by the Bekenstein-Hawking
entropy.
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I. INTRODUCTION

Due to the long-range interaction of the gravitational
field, gravitating systems have important and interesting
thermodynamic properties, such as negative specific heat,
making the systems unstable with consequent gravitational
collapse or energy loss through evaporation. This happens
both in Newtonian gravitation and in general relativity. A
well-known instance of this fact is given by the black hole
system, whose thermodynamic properties were understood
by Bekenstein [1] and put on a firm basis by Hawking, by
discovering that through quantum effects it radiates at a
definite temperature [2]. Refinement of the study of black
hole thermodynamics appeared in many guises, in particu-
lar by the introduction of a formalism useful for studying
general relativistic systems in a canonical ensemble [3,4].
Another gravitating system in general relativity prone to

a thermodynamic study is a thin shell and the spacetime it
generates. Spurred by the interest in black hole thermo-
dynamics, some studies have analyzed the thermodynamics
of thin shells in black hole spacetimes [5], or of pure thin
shells in 3þ 1 spacetimes, notably in [6], where several
thermodynamic quantities of thin shells are discussed and a
stability analysis of them is performed. Other studies on the
thermodynamics of thin shells are [7,8]. For related studies
of thermodynamics of gravitating matter, especially quasi-
black holes, i.e., stars on the verge of becoming a black
hole, see [9,10]. All of these works are in the usual 3þ 1
dimensions.

Now, in many senses, it is interesting to reduce the spatial
dimension by 1 and study general relativity in 2þ 1

dimensions. This plays an important role in the under-
standing of systems in curved spacetime, as the decrease in
dimensionality with respect to the usual 3þ 1 spacetime
reduces the degrees of freedom to a few. This leaves possible
complications aside and keeps the essential physical fea-
tures. The interest in (2þ 1)-dimensional general relativity
underwent a boost after a black hole solution was found in
spacetimes with negative cosmological constant Λ, i.e.,
spacetimes with an anti–de Sitter (AdS) background
[11,12]. This (2þ 1)-dimensional black hole, the
Bañados-Teitelbom-Zanelli (BTZ) black hole, belongs to
a family of solutions, which, depending on the parameters of
the solution, includes the BTZ black holes themselves,
positive mass naked singularities, the AdS spacetime, and
negative mass naked singularities. The BTZ black hole, the
most important solution in the family, is a black hole solution
in its simplest form. The singularity it hides is not a curvature
singularity, but rather is a much milder topological singu-
larity, akin to the conical singularities [11,12].
In the realm of thermodynamics and its connection to the

quantum world, the BTZ black hole has a Bekenstein-
Hawking entropy SBH ¼ 1

4
Ah
lp
, where Ah is the horizon area,

or in 2þ 1 dimensions a circumference with Ah ¼ 2πrþ,
where rþ is the horizon radius, and lp is the Planck length
given by lp ¼ G3ℏ, G3 being the three-dimensional gravi-
tational constant and ℏ Planck’s constant, and a Hawking

temperature given by TH ¼ lp
2πG3l2

rþ [11], were l is the AdS

length defined through −Λ ¼ l
l2. (We put kB ¼ 1 and
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c ¼ 1.) The thermodynamic and entropy properties of the
BTZ black hole have been further explored in, e.g.,
[13–16].
In 2þ 1 dimensions, as in the 3þ 1 case, it is also

interesting to study the thermodynamics of self-gravitating
thin shells, since the BTZ black hole can form from the
gravitational collapse of such thin shells [17–19] which,
when static, can be stable or unstable according to their
intrinsic parameters [20]. In 2þ 1 dimensions, the thermo-
dynamics of thin shells in spacetimes with zero cosmo-
logical constant has been studied [21]. Motivated in part
by this study [21] and also from the fact that in 2þ 1
dimensions in general relativity with a cosmological con-
stant there are BTZ black holes with interesting thermo-
dynamic properties, we want to study in this article the
thermodynamics of static thin matter shells in 2þ 1
dimensions. In particular, we intend to find the shell’s
entropy and analyze their thermodynamic stability, as well
as scrutinize the limit when the radius of the shell R goes
into its own gravitational radius. To find the spacetime
solution we employ the junction conditions formalism for a
thin shell [22], where in this 2þ 1 case the shell is simply a
ring. One can then determine the pressure and the mass
density of the shell in order for it to be static in a spacetime
with a negative cosmological constant, in which the interior
to the shell is pure AdS and the exterior is asymptotically
AdS. Employing the first law of thermodynamics and using
the formalism for the usual thermodynamic systems [23],
which was developed by Martinez to apply to thin matter
shell systems in 3þ 1 general relativity [6] (see, also,
[3,4]), one finds then the entropy for these gravitating
systems, the desired thermodynamic properties, and the
quasiblack hole limit.
The paper is organized as follows. In Sec. II, we compute

the components of the extrinsic curvature of the ring shell
that leads to the shell’s linear density and pressure. We also
discuss the no-trapped-surface condition and the dominant
energy condition. In Sec. III we review the thermodynamics
of the shell. We use the entropy representation and assume
that the state variables are the proper mass of the shell
and its perimeter, or radius. We then use the first law of
thermodynamics for a one-dimensional system to display
the integrability and the stability conditions of the thermo-
dynamic system. In Sec. IV we present the equation of state
for the pressure in terms of the proper mass and radius of the
shell, and we derive the equation of state for the temperature
of the shell as a function of the state variables. In Sec. V we
use the previously obtained integrability conditions for the
first law of thermodynamics in order to simplify the entropy
differential of the shell. This allows us to obtain an
expression for the entropy up to an arbitrary function of
the gravitational radius. In Sec. VI we consider a phenom-
enological expression for the arbitrary function, consisting
in a power law of the gravitational radius, which allows us to
obtain an explicit expression for the entropy. We then

analyze the thermodynamic stability of the system by
calculating the permitted intervals of the free parameters
in order for the shell to remain thermodynamically stable.
In Sec. VII, the arbitrary function will be equated to the
inverse Hawking temperature, and it will be found that the
Bekenstein-Hawking entropy of the BTZ black hole natu-
rally arises when the shell is pushed up to its gravitational
radius. Finally, in Sec. VIII we draw some conclusions.

II. THE THIN SHELL SPACETIME

Einstein’s equation in 2þ 1 dimensions is written as

Gαβ − Λgαβ ¼ 8πG3Tαβ; (1)

where Gαβ is the Einstein tensor, Λ is the cosmological
constant, gαβ is the spacetime metric, 8πG3 is the coupling
with G3 being the gravitational constant in 2þ 1 dimen-
sions, and Tαβ is the energy-momentum tensor. We keep
units where the velocity of light is c ¼ 1, and thus G3 has
units of the inverse of mass. Greek indices are spacetime
indices and run as α, β ¼ 0, 1, 2, with 0 being the time
index. Since we want to work in an AdS background where
the cosmological constant is negative, we define the AdS
length l through the equation

−Λ ¼ 1

l2
: (2)

We now consider a one-dimensional timelike shell, i.e., a
ring, with radius R in a (2þ 1)-dimensional spacetime. The
ring divides spacetime into two parts, an inner region V−
and an outer region Vþ. To find the corresponding
spacetime solution, we follow [22].
In the inner region V− (r ≤ R), inside the ring, we

consider a spherically symmetric AdS metric, with cos-
mological length l, given by

ds2− ¼ g−αβdx
αdxβ

¼ −
r2

l2
dt2 þ dr2

r2

l2
þ r2dϕ2; r ≤ R; (3)

where polar coordinates xα− ¼ ðt; r;ϕÞ are used. In the
outer region Vþ (r ≥ R), outside the shell, the spacetime is
described by the BTZ line element

ds2þ ¼ gþαβdx
αdxβ ¼ −

�
r2

l2
− 8G3m

�
dt2

þ dr2

ðr2l2 − 8G3mÞ þ r2dϕ2; r ≥ R; (4)

written also in polar xαþ ¼ ðt; r;ϕÞ coordinates. Here, m is
a constant which is interpreted as the Arnowitt-Deser-
Misner (ADM) mass, or energy. At r → ∞ the spacetime is
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asymptotically AdS. On the hypersurface itself, the induced
metric hab yields the line element

ds2Σ ¼ habdyadyb ¼ −dτ2 þ R2ðτÞdϕ2; (5)

where we have chosen ya ¼ ðτ;ϕÞ as coordinates on the
shell and where we have adopted the convention to use latin
indexes for the components on the hypersurface. The shell
ring is at radius R ¼ RðτÞ, and the parametric equations of
the ring hypersurface for both the V− and Vþ are r ¼ RðτÞ
and t ¼ TðτÞ. The induced metric hab is written in terms of
the metrics g�αβ as

h�ab ¼ g�αβe
α
�ae

β
�b; (6)

where eα�a are tangent vectors to the hypersurface viewed
from each side of it.
The formalism employed in [22] uses two conditions in

order to assure the smoothness of the metric across the
hypersurface. These are the junction conditions. The first
junction condition states that

½hab� ¼ 0; (7)

where the parentheses symbolize the jump in the quantity
across the hypersurface, here the induced metric. This
condition leads to the relation�

r2

l2
− 8G3m

�
_T2 −

_R2

ðr2l2 − 8G3mÞ

¼ r2

l2
_T2 −

�
r2

l2

�−1
_R2 ¼ 1; (8)

where a dot denotes differentiation with respect to τ. The
second junction condition makes use of the extrinsic
curvature Ka

b defined as

Ka
�b ¼ ∇βnαeα�ce

β
�bh

ca
� ; (9)

where ∇β denotes the covariant derivative and nα is the
normal to the shell. When the jump in this quantity is non-
null, there exists a thin matter shell with stress-energy
tensor Sab given by

Sab ¼ −
1

8πG3

ð½Ka
b� − ½K�habÞ; (10)

where K ¼ hbaKa
b. For the line elements (3) and (4), and

using Eq. (8), one can compute the nonzero components of
Ka

b. They are

Kτþτ ¼
R
l2 þ R̈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−8G3mþ R2

l2 þ _R2
q ; (11)

Kτ
−τ ¼

R
l2 þ R̈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

l2 þ _R2
q ; (12)

Kϕ
þϕ ¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8G3mþ R2

l2
þ _R2

s
; (13)

Kϕ
−ϕ ¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

l2
þ _R2

s
: (14)

Imposing that the shell is static, i.e., _R ¼ 0 and R̈ ¼ 0, one
finds the non-null components of the stress-energy tensor
for a static shell,

Sττ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8G3mþ R2

l2

q
− R

l

8πG3R
(15)

Sϕϕ ¼ 1

8πG3

R
l2

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−8G3mþ R2

l2

q −
1
R
l

1
CA: (16)

If, in addition, we consider the shell to be made of a fluid
with linear energy density λ and pressure p, the stress-
energy tensor will have the form

Sab ¼ ðλþ pÞuaub þ phab; (17)

where ua is the 3-velocity of a shell element. Thus, for such
a fluid, we find

Sττ ¼ −λ; (18)

Sϕϕ ¼ p: (19)

Note that for a one-dimensional fluid with linear energy
density and pressure in a (2þ 1)-dimensional spacetime,
there are only two possible degrees of freedom to character-
ize the system. Therefore, the stress-energy tensor (17) is
the most general one that one can consider in this setting,
and it is thus seen to be the stress-energy tensor for a perfect
fluid. Equations (15) and (16) together with Eqs. (18)
and (19) yield

λ ¼ 1

8πG3R

0
B@R

l
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8G3mþ R2

l2

s 1
CA; (20)

p ¼ 1

8πG3

R
l2

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−8G3mþ R2

l2

q −
1
R
l

!
: (21)

Now, from Eq. (4), one finds that the gravitational radius
rþ of the shell is given by
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rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8G3m

p
l: (22)

It is useful to define a variable k as

k≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2þ
R2

r
: (23)

Then Eqs. (20) and (21) can be rewritten as

λ ¼ 1

8πG3l
ð1 − kÞ; (24)

p ¼ 1

8πG3l

�
1

k
− 1

�
: (25)

Note that when λ ¼ 0 and p ¼ 0, Eqs. (24) and (25) [or, if
one prefers, Eqs. (20) and (21)] give m ¼ 0, which from
Eq. (4) implies that the outside spacetime is pure AdS.
Since the inside is also pure AdS, there is no shell in this
case, only AdS spacetime.
Having treated the static problem and having found λ and

p, there are mechanical constraints on the shell that should
be imposed. One constraint is that the shell must be outside
any trapped surface, so that the spacetime defined by
Eqs. (3) and (4) makes sense. Imposing that there are no
trapped surfaces gives

R ≥ rþ; (26)

i.e., the shell is outside its own gravitational radius.
One can also see where the energy conditions lead to.
The weak energy condition is automatically satisfied as
we impose λ and p non-negative. On the other hand,
the dominant energy condition p ≤ λ is equivalent to

the relation k2 −
2þ l2

R2ffiffiffiffiffiffiffiffi
1þ l2

R2

q kþ 1 ≤ 0. This is satisfied for

1ffiffiffiffiffiffiffiffi
1þ l2

R2

q ≤ k ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

R2

q
. The right inequality is trivially

obeyed; the left inequality leads to

R ≥
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2þ

l2

q rþ; (27)

which is the equation the shell must obey in order that the
dominant energy condition holds. It is new. It is more
stringent than the no-trapped-surface condition Eq. (26).
The condition (27) is plausible on physical grounds.
Indeed, for large l, the spacetime is weakly AdS, and so
it is an almost flat spacetime, which in three dimensions
means no, or negligible, gravity. The condition Eq. (27)
gives then that R≳ rþ; i.e., any shell that makes sense, in
the sense of Eq. (26), is possible. As l decreases, the
spacetime becomes strongly AdS, there is strong

gravitational attraction, and the shell can satisfy the
dominant energy condition only for sufficient large R.
When l ¼ rþ, the shell has to have infinite radius in order
to obey the dominant energy condition and for even smaller
l there is no shell that obeys the dominant energy condition.
There are also stability conditions as Eiroa and Simeone
have shown [20]. Although not explicitly shown in [20],
presumably the radius R ¼ Rðrþ; lÞ at which the shell
becomes unstable is slightly larger than the R given
in Eq. (27).

III. THERMODYNAMICS AND STABILITY
CONDITIONS FOR THE THIN SHELL:

GENERICS

Now, we assume that the shell is a hot shell; i.e., it
possesses a temperature T as measured locally and has an
entropy S.
In the entropy representation, as stated in [23], the

entropy S of a system is given in terms of the state
independent variables. Following [23], when S is known,
the thermodynamical system is known. We consider as the
natural state independent variables the proper local massM
of the shell, and its size, here denoted by the perimeter of
the ring shell A. Thus, for the shell,

S ¼ SðM;AÞ: (28)

Thus, when S in Eq. (28) is known, the thermodynamical
properties of the system follow.
Using these variables, the first law of thermodynamics

can be written as

TdS ¼ dM þ pdA; (29)

where T and p are the temperature and the pressure
conjugate to A. In order to find S, one has to know the
equations of state for these quantities, i.e.,

p ¼ pðM;AÞ; (30)

and

β ¼ βðM;AÞ; (31)

where β ¼ 1=T is the inverse temperature.
Given Eq. (29), one can find its integrability condition

for the differential of the entropy. It is given by

�∂β
∂A
�

M
¼
�∂βp
∂M

�
A
: (32)

There is then the possibility of studying the local
intrinsic stability of the shell at a thermodynamical level,
which is guaranteed as long as the inequalities
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� ∂2S
∂M2

�
A
≤ 0; (33)

�∂2S
∂A2

�
M
≤ 0; (34)

� ∂2S
∂M2

��∂2S
∂A2

�
−
� ∂2S
∂M∂A

�
2

≥ 0; (35)

are satisfied. For a derivation of this type of equations,
see [23].

IV. THE TWO EQUATIONS OF STATE:
EQUATION FOR THE PRESSURE AND
EQUATION FOR THE TEMPERATURE

A. The two independent thermodynamic variables

In order to find the entropy, one needs to have the
equations of state p ¼ pðM;AÞ and β ¼ βðM;AÞ [see
Eqs. (30) and (31)], with M and A being the independent
variables.
Note, however, that

A ¼ 2πR; (36)

so that the perimeter A and the radius R can be swapped at
will as the independent variables. The definition of the
shell’s rest mass M is

M ¼ 2πRλ; (37)

where λ is given above in Eq. (24), and so

M ¼ R
4G3l

ð1 − kÞ: (38)

We should now put some of the basic quantities, m, rþ,
and k, in terms of M and R. Equation (38) together with
Eqs. (22) and (23) implies that the ADMmassm is given in
terms of the shell’s proper mass M and radius R by

mðM;RÞ ¼ −2G2
3M

2 þ G3M
R
l

G3

; (39)

so that when there is no shell, i.e., M ¼ 0, one has that the
ADM mass of the spacetime is zero, m ¼ 0. Also now
Eq. (22) should be written as

rþðM;RÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8G3mðM;RÞ

p
l; (40)

where mðM;RÞ is given in Eq. (39), and k should be also
seen as k ¼ kðM;RÞ, i.e.,

kðM;RÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2þðM;RÞ
R2

r
; (41)

where rþðM;RÞ is given in Eq. (40).

B. The pressure equation of state

With this rationale in mind, and following the notation of
Eq. (30), we write the equation for the pressure (21) in the
form

pðM;RÞ ¼ 1

8πG3l

�
1

kðM;RÞ − 1

�
: (42)

It is clear that Eq. (25) yields the equation we aimed for as
an equation of state for the shell. This equation is an
exclusive effect of the gravitational equations, and the
junction conditions on the ring, and it does not depend on
the essence of the fields of matter composing the shell. In
brief, it is compulsory that the matter fields obey this
equation of state so that mechanical equilibrium is
maintained.

C. The temperature equation of state

Now we turn to the other equation of state, Eq. (31), the
equation for pðM;RÞ. Inserting Eq. (42) and the differential
of Eq. (38) into the first law (29), using Eq. (36), and
changing variables from ðM;AÞ to ðrþ; RÞ to simplify the
calculations, where rþ is the gravitational radius of the ring
given in Eq. (40), we obtain

dS ¼ βðrþ; RÞ
rþ

4G3lRk
drþ; (43)

where now S can be seen as S ¼ Sðrþ; RÞ, and the same for
β, βðrþ; RÞ≡ 1=Tðrþ; RÞ. Equation (43) is integrable as
long as an appropriate form for β is given. To find this
appropriate form for β we use the integrability condition
Eq. (32), which upon changing to the ðrþ; RÞ variables
reads �∂β

∂R
�

rþ
¼ β

Rk2
; (44)

where k is envisaged now as k ¼ kðrþ; RÞ; see Eq. (41). It
can be shown that Eq. (44) has the following analytic
solution:

βðrþ; RÞ ¼
R
l
kðrþ; RÞbðrþÞ; (45)

where bðrþÞ is an arbitrary function of the gravitational
radius rþ. Note that bðrþÞ has units of inverse temperature
and can be interpreted as the inverse of the temperature
the shell would possess if located at R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r2þ

p
, as

can be seen from Eq. (45). Equation (45) follows from the
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integrability condition for the entropy and is directly related
to the equivalence principle for systems at a temperature
different from zero. It is the Tolman relation for the
temperature in a gravitational system.
Note that b is forced to depend on the state variables

ðM;RÞ through the specific function rþðM;RÞ. However,
the integrability condition does not yield a precise form for
b. As stated in [6] (see also [5]), this is expected on physical
grounds as the Euclideanized AdS geometry inside the ring
can be identified with any period in the partition function
stemming from a path integral approach, and thus the hot
AdS space inside the shell can have any temperature, not
fixing b a priori. Any specific function bðrþðM;RÞÞ must
resort to the specificity of the matter itself contained in the
shell. This state of affairs is common in thermodynamics. In
order to find the equation of state of a gas, one can resort to
generic and consistency considerations, and find for in-
stance that the temperature T is T ¼ Tðρ; p; VÞ quite
generally, where ρ, p, and V are the density, pressure,
and volume of the gas, respectively. To have then a concrete
form for the function T ¼ Tðρ; p; VÞ, one has to know
the specificities of the gas, whether it is an ideal gas or a
Van der Waals gas with its two specifying constants, or any
other gas; see, e.g., [23].

V. ENTROPY OF THE THIN SHELL

We are now in a position to find the entropy S of the thin
shell spacetime. Inserting Eq. (45) into Eq. (43), one is led
to the specific form for the differential of the entropy

dSðrþÞ ¼ bðrþÞ
rþ

4G3l2
drþ: (46)

Integrating Eq. (46) yields the following entropy:
SðrþÞ ¼ 1

4G3l2
R
bðrþÞrþdrþ þ S0, where S0 is an integra-

tion constant. By noting that a zero ADM mass shell, i.e.,
m ¼ 0 or equivalently rþ ¼ 0, should naturally have zero
entropy, for any regular integrand in the entropy formula
just given we must have Sðrþ → 0Þ → 0, i.e., S0 ¼ 0. So,

SðrþÞ ¼
1

4G3l2

Z
bðrþÞrþdrþ: (47)

In the same way as bðrþÞ, S is also forced to depend on the
state variables ðM;RÞ through the specific function
bðrþðM;RÞÞ. This dependence of S on rþðM;RÞ seen in
the formula (47) comes directly from the self-gravitating
nature of the setup. It is the result of the matching
conditions which determine the mass m and the pressure
p as in Eqs. (39) and (42), respectively, and of the
equivalence principle in the form of the redshift factor
of the Tolman temperature given in (45). As explained
above, a precise shape for the function bðrþðM;RÞÞ has to
emanate from definite, thermodynamic or otherwise, con-
figurations for the matter fields.

Equation (47) opens the possibility of studying the local
intrinsic stability of the shell at the thermodynamic level,
which is guaranteed as long as the inequalities (33)–(35)
are satisfied. It also permits us to study the spacetime
thermodynamics in the limit the shell approaches its own
gravitational radius.

VI. A SPECIFIC EQUATION OF STATE FOR THE
TEMPERATURE OF THE THIN MATTER SHELL:

ENTROPY AND STABILITY

A. The temperature equation and the entropy

In order to implement the calculation for the entropy, one
must resort to a specific fluid or a specific gas and give
exactly the function bðrþðM;RÞÞ. One could think of
many, and not wanting to treat here the specificities of
the matter, we resort to the most simple suggestion for
bðrþÞ as given in [6], i.e., a power law equation of the form

bðrþÞ ¼ 4αG3l2
raþ

lð2þaÞ
p

; (48)

where a is a free parameter, essentially a number, the factors
4G3, l2, and lp ¼ G3ℏ appear for dimensional and useful
reasons, with lp being the Planck’s length in a three-
dimensional spacetime, and ℏ Planck’s constant, and α is
another free parameter without units that can be some

function of l=lp. For instance, one can choose α ¼ ᾱ
lð2þaÞ
p

lð2þaÞ,
with ᾱ a number, but many other choices are possible.
Boltzmann’s constant is taken as equal to 1. In order to
further justify the choice of the form of bðrþÞ in Eq. (48), we
recall that in many thermodynamic instances one recurs to
power law functions, most notably near or at a phase
transition point, where the temperature goes as the power
of the density (or the mass) of the fluid and a power of its
specific volume (or the volume itself), for instance. These
thermodynamic treatments do not even need to know the
details of the fine grain constituency of the fluid. Such power
laws are assumed and indeed represent well the fluid
behavior. Here, since the temperature, or what is the same,
b, cannot be any function ofM nor any function of R, and so
not a power of M times a power of R as one could be led to
think from the usual thermodynamic treatments, but has to
be a function such thatM and R appear through rþðM;RÞ, a
natural and simple choice for b is that bðrþðM;RÞÞ is a
power of rþðM;RÞ, as we have written in Eq. (48).
Inserting Eq. (48) into (47) and integrating, we get

SðrþÞ ¼
α

aþ 2

�
rþ
lp

�ðaþ2Þ
; (49)

valid for any a as long as we consider the case a ¼ −2 as
yielding a logarithmic function, SðrþÞ ¼ α ln rþ=l, as it
should. Using this formula for the entropy, one is able to
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analyze the stability conditions imposed on the free
parameters, and despite the fact that the values of the
parameters α and a do not have specific values as long as
some type of nature of the matter fields is not prescribed, it
is possible to constrain a nonetheless, such that thermo-
dynamic equilibrium states of the shell are possible.

B. The stability conditions for the
specific temperature ansatz

As for the stability equations, we leave the detailed
analysis for the Appendix and present here the main result.
It is then possible to show that Eqs. (33)–(35) altogether
applied to the temperature and entropy formulas, Eqs. (48)
and (49), respectively, imply that the shell is stable when

a ¼ −1 and
R
rþ

→ ∞; (50)

with rþ > 0.
Thus, the thermodynamic stability conditions for the

shell given in Eq. (50) are more restrictive than the
dominant energy condition Eq. (27) and the no-trapped-
surface condition Eq. (26) for the shell radius R.
When comparing the stability conditions given in Eq. (50)

with those for the Schwarzschild shell in 3þ 1 dimensions
given in [6], we see that the stability conditions for the 2þ 1
BTZ shell are much more confining, even though the
temperature and the entropy were considered to have a
power law dependence in rþ both for the Schwarzschild and
the BTZ shells. Different dependences on rþ will give
different values and ranges for the relevant parameters.

VII. THE ENTROPY OF THE THIN SHELL IN THE
BTZ BLACK HOLE LIMIT

A case of particular interest is the stable case a ¼ −1. In
this case, the inverse temperature bðrþÞ of the shell, taken
from Eq. (48), is

bðrþÞ ¼
4αG3l2

lp

1

rþ
; (51)

and the entropy of the shell, taken from Eq. (49), has the
explicit form

SðrþÞ ¼ α
rþ
lp

: (52)

This is valid for any radius R of the shell (R ≥ rþ), since
from the integrability condition the entropy does not
depend on the radius of the shell R.
In particular, if we take the limit R → rþ, then the shell

hovers at its own gravitational radius. One then expects that
quantum fields are present [2], and the backreaction will
diverge unless one chooses the matter to be at the Hawking
temperature [11]

TH ¼ lp
2πG3l2

rþ: (53)

This fixes the function b ¼ 1=TH to be

bðrþÞ ¼
2πG3l2

lp

1

rþ
; (54)

which means that α ¼ π=2 in Eq. (51). Then the entropy
(52) of the shell at its own gravitational radius is

SBH ¼ π

2

rþ
lp

: (55)

The area Ah of the horizon, which is actually a perimeter in
2þ 1 dimensions, is Ah ¼ 2πrþ. Therefore

SBH ¼ 1

4

Ah

lp
: (56)

This is precisely the Bekenstein-Hawking entropy of the
(2þ 1)-dimensional BTZ black hole [11], now derived
from the properties of the spacetime of the shell of matter
and from the fact that the shell is at its own gravitational
radius. At R ¼ rþ one has from Eq. (23) that k ¼ 0, and so
from Eqs. (24) and (25) one finds that λ ¼ 1

8πG3l
(i.e.,

M ¼ 1
4G3

rþ
l ) and p ¼ 1

8πG3l
1
k → ∞, characteristic of certain

quasiblack holes, objects which also yield the Bekenstein-
Hawking entropy [9,10]. Indeed, the shell at its own
gravitational radius is a quasiblack hole.

VIII. CONCLUSIONS

In this paper we have considered the thermodynamics
and entropy of a (2þ 1)-dimensional shell, a ring, in an
AdS spacetime. Inside the ring, the spacetime is given by
the AdS metric, characterized by a negative cosmological
constant −Λ ¼ 1

l2, and outside it is given by the BTZ metric,
characterized by a mass m, by the same negative cosmo-
logical constant−Λ ¼ 1

l2, and by being asymptotically AdS.
The ring shell at radius R has a mass density λ (or
equivalently a mass M ¼ 2πRλ) and a pressure p asso-
ciated with it required to achieve a static equilibrium.
The first law of thermodynamics implies that we need

two equations of state: one for the pressure p of the shell
and another for its temperature T. The pressure p is given in
terms of the state variables M and R through the junction
conditions. The temperature T, or its inverse, is found to be
a function of the gravitational radius rþ of the system alone.
This rþ is itself a particular known function of the state
variables M and R. The entropy of the shell can then be
found as a function of rþ alone. To give an example of a hot
shell, inspired in several usual thermodynamics systems
which have the temperature as given in power laws of the
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state variables, we have chosen the inverse temperature b to
be proportional to a power law in rþ, raþ, for some number
a. The computation of the specific form of the entropy led
to an analysis of the parameter regions for which the ring is
thermodynamically stable. We have found that a ¼ −1 and
the shell must be located at infinity, R → ∞. This means
that the BTZ shell is much more restrictive than the
Schwarzschild shell in 3þ 1 dimensions for the same
power law of the entropy as a function of the shell’s
gravitational radius rþ.
In the case a ¼ −1, the shell can be chosen to have a

Hawking type temperature at the outset. One can then tune
the temperature to be precisely the Hawking temperature,
including all numerical factors, and push the shell up to
its gravitational radius, since at this temperature there is a
finite backreaction at the horizon that does not destroy the
solution. The entropy found is then the Bekenstein-
Hawking entropy as it is appropriate for a quasiblack hole.
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APPENDIX: ANALYSIS OF THE
STABILITY EQUATIONS

We use here the stability conditions Eqs. (33)–(35) in the
temperature and entropy formulas, Eqs. (48) and (49),
respectively, to show the results presented in Sec. VIB.
It is possible to show that Eq. (33) implies the inequality

a
aþ 1

R2 ≤ r2þ; (A1)

which, together with the condition that the shell is above or
at its own gravitational radius, i.e., r2þ ≤ R2, sets up the
restricted values for R relative to rþ, namely,

a
aþ 1

R2 ≤ r2þ ≤ R2: (A2)

For 0 ≤ a < ∞ this inequality always holds. If −1 ≤ a < 0,
the lower limit will assume negative values, but the inequal-
ity is satisfied nonetheless. For a < −1, the left half of the
inequality will exceed the right half and thus a < −1 is
excluded. Thus, Eq. (A2) restricts the interval of a to

−1 ≤ a < ∞: (A3)

Turning now to Eq. (34), it leads to the relation

r2þ ≥ 2R2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2þ

R2

r !
; (A4)

which after some manipulation yields

rþ
R

¼ 0: (A5)

Since, we want a system with a horizon, i.e., rþ > 0,
Eq. (A5) means that R obeys

R
rþ

→ ∞. (A6)

In addition, from Eq. (35) one obtains the inequality

aþ 1 ≤ 0. (A7)

Eqs. (A3) and (A7) together mean that

a ¼ −1. (A8)

In brief, the chosen thermodynamic system with a temper-
ature given in Eq. (48) and the entropy given in Eq. (49) is
stable when

a ¼ −1 and
R
rþ

→ ∞ (A9)

with rþ > 0.
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