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In this paper we construct asymptotically locally AdS and flat black holes in the presence of a scalar field
whose kinetic term is constructed out from a linear combination of the metric and the Einstein tensor. The
field equations as well as the energy-momentum tensor are second order in the metric and the field,
therefore the theory belongs to the ones defined by Horndeski. We show that in the presence of a
cosmological term in the action, it is possible to have a real scalar field in the region outside the event
horizon. The solutions are characterized by a single integration constant, the scalar field vanishes at the
horizon and it contributes to the effective cosmological constant at infinity. We extend these results to the
topological case. The solution is disconnected from the maximally symmetric AdS background, however,
within this family there exists a gravitational soliton which is everywhere regular. This soliton is therefore
used as a background to define a finite Euclidean action and to obtain the thermodynamics of the black
holes. For a certain region in the space of parameters, the thermodynamic analysis reveals a critical
temperature at which a Hawking-Page phase transition between the black hole and the soliton occurs. We
extend the solution to arbitrary dimensions greater than 4 and show that the presence of a cosmological
term in the action allows one to consider the case in which the standard kinetic term for the scalar it is not
present. In such a scenario, the solution reduces to an asymptotically flat black hole.
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I. INTRODUCTION

In many scenarios, the gravitational dynamics is suc-
cessfully described by Einstein’s theory of general rela-
tivity (GR), which has a large observational support [1].
However there is also a strong empirical motivation, mainly
associated with astronomical observations, that alternative
theories of gravity could be useful in order to describe
phenomena such as dark matter and dark energy, or the
process of inflation suffered by the early Universe. Many of
these theories are based in the use scalar fields. The inclusion
of scalar fields in physics has a vital role. Scalar fields for
example appear in the Brans-Dicke theory as an attempt to
incorporate Mach’s principle in a gravitational theory [2], in
inflationary theories, and as a possible candidate of dark
matter. On the other hand in particle physics, the Higgs
boson is a fundamental piece of the standard model, and its
recent discovery gives a firm ground to the realization of
scalar fields in nature. Moreover, scalar fields are also
ubiquitous in string theory and Kaluza-Klein compactifica-
tions of higher dimensional theories.

The study of scalar-tensor theories have recently
attracted considerable attention due to the development
of Galileon theories and their applications [3]. In particular,
these ideas led the rediscovery of the most general scalar-
tensor theory which has second order field equations and
second order energy-momentum tensor; a problem that was
solved by Horndeski [4] in the early 1970s. In a curved
four-dimensional background, the most general Lagrangian
that can be constructed with these properties is given by

L ¼ β1δ
abdc
efhi R

ef
abR

hi
cd þ β2δ

acd
def∇aϕ∇dϕRef

cd þ β3δ
ab
cdR

cd
ab

þ Ξþ CϵabdcRp
qabRq

pcd; (1)

whereC is a constant, βi are arbitrary functions of the scalar
ϕ and Ξ is an arbitrary function of the scalar field and its
squared gradient, i.e. Ξ ¼ Ξð∇aϕ∇aϕ;ϕÞ. The first term is
a nonminimal coupling between the scalar and the four-
dimensional Gauss-Bonnet density, the second includes a
nonminimal coupling between the standard kinetic term
and the Einstein tensor, the third one is a nonminimal
coupling between the field and the Ricci scalar, while the
fourth term since it is defined by an arbitrary function might
include an additive term which may act as a cosmological
term in the action. The last term is just the Pointryagin term
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which is a boundary term and does not contribute to the
field equations.1 From here we see that it is possible to have
scalar field Lagrangians whose kinetic term has nonmini-
mal derivative couplings with the curvature.
Let us consider kinetic terms H which are quadratic in

the derivatives of the field in arbitrary dimension D.
Requiring second order energy-momentum tensor as well
as linear and second order equation for the field, restrictsH
to be a linear combination of the following basic terms:

HðnÞ ¼ EðnÞ
μν ∇μϕ∇νϕ; (2)

where EðnÞ
μν is the nth order Lovelock tensors2

EðnÞ ν
μ ¼ δνα1…α2n

μβ1…β2n
Rβ1β2

α1α2…Rβ2n−1β2n
α2n−1α2n : (3)

The standard kinetic term is recovered with n ¼ 0. Since

Eð1Þ
μν is proportional to the Einstein tensor, the first non-

standard term in (2) already includes a nonminimal kinetic
coupling of the scalar and the curvature.
In this paper we will consider the following action

principle:

I½gμν;ϕ� ¼
Z ffiffiffiffiffiffi

−g
p

dDx

�
κðR − 2ΛÞ

−
1

2
ðαgμν − ηGμνÞ∇μϕ∇νϕ

�
; (4)

where we have taken the Einstein-Hilbert action with a
cosmological term in the gravity sector, while the matter
sector is given by a real scalar field with a nonminimal
kinetic coupling (here κ ≔ 1

16πG). The possible values of the
dimensionful parameters α and η will be determined below
according with the positivity of the energy density of the
matter field.
Numerical solutions in the case when an electromagnetic

field is present were found in [7], where phase transitions to
charged black holes with complex anisotropic scalar hair
were explored. The first exact black hole solution to this
system, in the case of a vanishing cosmological termΛ, was
found by Rinaldi in [8]. There, the scalar field becomes
imaginary in the domain of outer communication, and the
weak energy condition (WEC) is violated outside the
horizon.
Here we extend the results of [8] and show that the

inclusion of a cosmological term in the action makes
possible finding a black hole with a real scalar field outside

the horizon. By a suitable regularization of the action, we
explore the thermal properties of the spherically symmetric
black holes. We show that for a region in the space of
parameters, there is a phase transition as in general
relativity with a negative cosmological constant We also
extend the solution to the topological case in arbitrary
dimension D ≥ 4 and show that the cosmological term
allows one to obtain a nontrivial solution when α ¼ 0.
In this case we obtain an asymptotically flat black hole.
The field equations for the metric and the scalar field are

Gμν þ Λgμν ¼
α

2κ
Tð1Þ
μν þ η

2κ
Tð2Þ
μν ; (5)

∇μ½ðαgμν − ηGμνÞ∇νϕ� ¼ 0; (6)

where3

Tð1Þ
μν ¼∇μϕ∇νϕ−

1

2
gμν∇λϕ∇λϕ;

Tð2Þ
μν ¼1

2
∇μϕ∇νϕR−2∇λϕ∇ðμϕRλ

νÞ−∇λϕ∇ρϕRμλνρ

−ð∇μ∇λϕÞð∇ν∇λϕÞþð∇μ∇νϕÞ□ϕþ1

2
Gμνð∇ϕÞ2

−gμν

�
−
1

2
ð∇λ∇ρϕÞð∇λ∇ρϕÞþ

1

2
ð□ϕÞ2−∇λϕ∇ρϕRλρ

�
:

We will consider a gauge fixed version of the most general,
cohomogeneity one, static spacetime (which is not a direct
product):

ds2 ¼ −FðrÞdt2 þ GðrÞdr2 þ r2dΣ2
K; (7)

where dΣK is the line element of a closed, (D − 2)-
dimensional Euclidean space of a constant curvatureK ¼ 0,
�1. ForK ¼ 1, the space ΣK is locally a sphere, forK ¼ 0 it
is locally flat and for K ¼ −1 it locally reduces to a
hyperbolic space. Hereafter we will consider a static and
isotropic scalar field, i.e. ϕ ¼ ϕðrÞ.
The outline of the paper is as follows: in Sec. II the

four-dimensional solution is given for arbitrary K. In order
to constraint the couplings, the weak energy condition is
imposed on the scalar field. In Sec. III, the geometry of the
spherically symmetric solution is described in detail as
well as its thermal properties. We compute the temperature,
the mass and the entropy following the Hawking-Page
approach, and show that the first law is satisfied. We prove
that further restrictions on the integration constant come
from requiring the black hole to have positive entropy, and
show that for a certain region in the space of parameters
there is a Hawking-Page phase transition. In Sec. IV, the
solution in arbitrary dimension D is given. Finally in
Sec. V, the solution in the special case α ¼ 0 is analyzed,
which gives rise to an asymptotically locally flat black hole.

1An interesting application of this Lagrangian in the cosmo-
logical setup has been given in [5] where it can be seen that a
particular case of Horndeski action provides a novel self-tuning
mechanism.

2Lovelock tensors are the most general rank-two symmetric
tensors which are divergency free and contain up to second order
derivatives of the metric [6]. 3We use a normalized symmetrization AðμνÞ ≔ 1

2
ðAμν þ AνμÞ.
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In this paper we use the signature ð−;þ;þ;þÞ, Greek and
Latin indices stand for indices in the coordinate basis.

II. FOUR-DIMENSIONAL SOLUTION

For the static ansatz considered here, one has that the
equation for the field (6) admits a first integral, which
implies the relation

r
F0ðrÞ
FðrÞ ¼

�
Kþα

η
r2−

C0

η

GðrÞ
ψðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FðrÞGðrÞp �
GðrÞ−1; (8)

where C0 is an integration constant, ψðrÞ ≔ ϕ0ðrÞ, and ð0Þ
stands for derivation with respect to r. As in Ref. [8], in
order to obtain an exact solution we (arbitrarily) choose
C0 ¼ 0. Therefore, Eq. (8) in addition to the tt and rr
components of (5), provides a consistent system which for
K ¼ �1 and ηΛ ≠ α, has the following solution:

FðrÞ ¼ r2

l2
þ K

α

ffiffiffiffiffiffiffiffiffi
αηK

p �
αþ Λη
α − Λη

�
2 arctan ð

ffiffiffiffiffiffi
αηK

p
ηK rÞ

r

−
μ

r
þ 3αþ Λη

α − ηΛ
K; (9)

GðrÞ ¼ α2ððα − ηΛÞr2 þ 2ηKÞ2
ðα − ηΛÞ2ðαr2 þ ηKÞ2FðrÞ ; (10)

ψ2ðrÞ ¼ −
2r2κα2ðαþ ηΛÞððα − ηΛÞr2 þ 2ηKÞ2

ηðα − ηΛÞ2ðαr2 þ ηKÞ3FðrÞ ; (11)

where μ is an integration constant. Here we have defined
the effective (A)dS radius l by

l−2 ≔
α

3η
: (12)

In the case of a locally flat transverse section (K ¼ 0) the
solution reduces to a topological Schwarzschild solution
with locally flat horizons [9]:

FðrÞ ¼ r2

l2
−
μ

r
¼ 1

GðrÞ ; (13)

ψðrÞ2 ¼ −
2κðαþ ηΛÞ

αη

1

FðrÞ ; (14)

and can be obtained from the one with arbitraryK by taking
the formal limitK → 0. Note that in both cases, the solution
obtained by replacing μ → −μ is the same as the former if
we replace as well r → −r.
As mentioned above, from Eq. (11) one can see

explicitly that the sign of ψ2ðrÞ is determined by the sign

of the combination ðαþηΛÞ
αη , and therefore regardless the sign

of η=α, the inclusion of a cosmological term in the action
allows for the existence of asymptotically (A)dS black

holes with a real scalar field in the outer domain of
communication.
It can be seen that this solution is asymptotically locally

dS or AdS for α=η < 0 or α=η > 0, respectively, since when
r → ∞ the components of the Riemann tensor go to

Rμν
λσ ∼

r→∞
−

α

3η
δμνλσ ≕ −

1

l2
δμνλσ ; (15)

justifying our previous definition of the effective (A)dS
radius (12). The asymptotic expansion (r → ∞) of the
metric functions is

−gtt ¼
r→∞

r2

l2
þ3αþηΛ

α−ηΛ
K

þ
�
K
2α

ffiffiffiffiffiffiffiffiffi
αηK

p �
αþηΛ
α−ηΛ

�
2

πσ−μ

�
1

r
þOðr−2Þ; (16)

grr ¼
r→∞

r2

l2
þ 7αþ ηΛ
3ðα − ηΛÞK

þ
�
K
2α

ffiffiffiffiffiffiffiffiffi
αηK

p �
αþ ηΛ
α − ηΛ

�
2

πσ − μ

�
1

r
þOðr−2Þ; (17)

where σ is the sign of the combination ηK. For μ ≠ 0, there
is a curvature singularity at r ¼ 0 since for example the
Ricci scalar diverges as

R ¼
r→0

3ðαþ ΛηÞðα − ΛηÞ2
4ηKα2

μ

r
þOð1Þ: (18)

If the combination ðαþ ηΛÞ vanishes, one can see that
the scalar field reduces to a constant and the metric reduces
to the topological Schwarzschild-AdS solution of general
relativity.
For ðαþ ηΛÞ ≠ 0, the metric is disconnected from the

maximally symmetric AdS vacua, i.e. that in this case it is
not possible to set μ to some value such that the metric
reduces to AdS. Nevertheless for μ ¼ 0 it is possible to
show that all the components of the Riemann tensor Rab

cd
are finite when r → 0. All the algebraic curvature invariants
I , i.e. those constructed out from contractions of the
Riemann tensor without involving covariant derivatives,
can be written as linear combinations of products of
the components of the Riemann tensor with the index
structure Rab

cd without involving metric factor. Therefore,
the finiteness of the components of the Riemann tensor
with this index structure ensures the finiteness of all the
algebraic curvature invariants. For μ ¼ 0 the scalar field is
finite at the origin, therefore invariants of the form ϕp × I
will be finite for arbitrary p. This has important conse-
quences, because it suggests considering the spacetime
with μ ¼ 0 as a background to define a regularized
Euclidean action. As described below, the solution with
μ ¼ 0 actually defines a gravitational soliton.
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If ρðrÞ is the energy density, then the total energy E is
given by

E ¼ VðΣÞ
Z

r2
ffiffiffiffiffiffiffiffiffiffi
GðrÞ

p
drρðrÞ; (19)

where VðΣÞ stands for the volume of Σ. Therefore

T00 ¼ ρðrÞ ≔ FðrÞ−1Ttt; (20)

where T00 ¼ eμ0e
ν
0Ttt and eaμ is a local frame. Now, the tt

component of the energy momentum tensor reads

Ttt ¼ −
κ2ðαþ ΛηÞ

η

× FðrÞ
�
4Kη2ðα − ΛηÞ2ðαr2 þ ηKÞ
α2ððα − ΛηÞr2 þ 2ηKÞ3 FðrÞ þ 1

�
: (21)

As expected for a matter action that is quadratic in the
derivatives of the field, the positivity of the energy density
is in close relation with the reality of the scalar itself, which

is determined by the sign of the combination ðαþηΛÞ
αη as can

be seen from Eq. (11). In the following section we analyze
in detail the caseK ¼ 1 and compute the thermal properties
of these black holes.

III. SPHERICALLY SYMMETRIC CASE

In the spherically symmetric case, the metric functions
and the square of the derivative of the scalar field take the
form

FðrÞ¼ r2

l2
þ 1

α

ffiffiffiffiffi
αη

p �
αþΛη
α−Λη

�
2 arctanð

ffiffiffiffi
αη

p
η rÞ

r
−
μ

r
þ3αþΛη

α−Λη
;

(22)

GðrÞ ¼ α2ððα − ηΛÞr2 þ 2ηÞ2
ðα − ηΛÞ2ðαr2 þ ηÞ2FðrÞ ; (23)

ψ2ðrÞ ¼ −
2r2κα2ðαþ ηΛÞððα − ηΛÞr2 þ 2ηÞ2

ηðα − ηΛÞ2ðαr2 þ ηÞ3FðrÞ : (24)

Since the lapse function has a term including the combi-
nation

ffiffiffiffiffi
αη

p
, we can see that α and η need to have the same

sign; l−2 ≔ α
3η will be positive definite and therefore the

spacetime is asymptotically locally AdS. Without losing
generality, we consider α and η positive, since the solution
with both α and η negative is equivalent to the former by
changing μ → −μ.
The reality of the field in the asymptotic region implies

ðαþ ηΛÞ < 0, which in our case imposes Λ < − α
η < 0.

Under these conditions one can see that the solution
describes a black hole with a nondegenerate horizon for
μ > 0, which is located at r ¼ rþ. Since the horizon is

nondegenerate, FðrþÞ ¼ 0 while F0ðrþÞ ≠ 0, therefore
close to the horizon, we have

ψðrÞ ∼
r→rþ

ζ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rþ

p ⇒ ϕðrÞ ∼
r→rþ

ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rþ

p
;

for some constant ζ, which implies that the scalar field
vanishes at the horizon and it is nonanalytic there.
If ðαþ ηΛÞ ≠ 0, it is important to realize that it is not

possible to switch off the scalar field and therefore our
solution is not continuously connected with a globally
maximally symmetric background. Nevertheless it is pos-
sible to show, as it occurs in the Λ ¼ 0 case [8], that within
this family, the only regular spacetime is obtained by setting
μ ¼ 0. In this case the metric describes an asymptotically
AdS gravitational soliton. Near r ¼ 0, after a proper rescal-
ing of the time coordinate, the soliton metric reduces to

ds2soliton ∼r→0
−
�
1 −

Λ
3
r2 þOðr4Þ

�
dt2

þ
�
1 −

3αþ 2Λη
3η

r2 þOðr4Þ
�
dr2 þ r2dΩ2; (25)

therefore one can see explicitly that it has a regular origin.
The thermal version of such a spacetime can be con-

sidered as the background metric to obtain a regularized
Euclidean action along the lines of Hawking-Page [10], and
to obtain therefore the thermodynamics of the black holes.
This will be done in the next section.

A. Thermodynamics of the spherically
symmetric black holes

The regularized Euclidean action is defined by

Ireg ¼ IE½gμν;ϕ� − IE½gð0Þμν ;ϕð0Þ�; (26)

where IE and gð0Þμν and ϕð0Þ are the metric and the scalar field
respectively for the gravitational soliton, which are obtained
by setting μ ¼ 0 in the black hole solution defined by the
functions (22) to (24). Removing the conical singularity at
the horizon of the Euclidean black hole solution requires the
period of the Euclidean time to be fixed as

β ¼ 4π

ffiffiffiffiffi
G0

F0

r ����
r¼rþ

¼ 4πηðα − ηΛÞrþ
αð2ηþ ðα − ΛηÞr2þÞ

: (27)

In order for Eq. (26) to define a regularized actionwe need to
consider a thermal gravitational soliton. If we denote the
period of the Euclidean time for the soliton by β0, we need to
impose the redshifted temperatures to match:

β2Fðr ¼ rc; μÞ ¼ β20Fðr ¼ rc; μ ¼ 0Þ; (28)

and then take the limit rc → ∞ in the regularized action.
Since in order to fulfill theweak energy conditionΛmust be
negative, we can define
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l0 ≔
ffiffiffiffiffiffiffiffi
−
3

Λ

r
: (29)

The divergences in the regularized action cancel and further
defining xþ ≔

ffiffi
α
η

q
rþ, the regularized action reduces to

Ireg ¼
8π2κ

9

l2xþ
l20ð2l20þðl2þ l20Þx2þÞ

½3ðl2− l20Þ2 arctanðxþÞ

þðl2−2l20Þðl2þ l20Þx3þþ3ðl40− l4þ2l2l20Þxþ�: (30)

In terms of l0 the WEC imposes the following constraint:

l2 > l20; (31)

this is, the AdS length of the asymptotic region (l) has to be
larger than the AdS length defined by the cosmological term
in the action (l0) given by (29).
As follows from the convention we are using defined in

[10], in the canonical ensemble we relate the Euclidean
action to the free energy by Ireg ¼ βF, therefore

M ¼ ∂Ireg
∂β and S ¼ β

∂Ireg
∂β − Ireg: (32)

Using our definition of the AdS radius l as well as the
definition of l0 given in (29), the temperature is given by

T ¼
ffiffiffi
3

p
xþ

4πl
þ

ffiffiffi
3

p
l20

2πlðl20 þ l2Þxþ
; (33)

while the mass reads

M ¼ 2

33=2
κπl

l20ð1þ x2þÞðl2 þ l20Þððl2 þ l20Þx2þ − 2l20Þ
× ½3ð1þ x2þÞðl2 − l20Þ2ððl2 þ l20Þx2þ − 2l20Þ arctanðxþÞ
− 2ðl2 − 2l20Þðl2 þ l20Þ2x7þ
− 2ðl2 þ 5l20Þðl2 − 2l20Þðl2 þ l20Þx5þ
þ ðl60 þ 7l4l20 − 13l2l40 − 3l6Þx3þ
þ 6l20ðl2 − 3l20Þðl2 þ l20Þxþ�

and the entropy reduces to

S¼ 8π2l2κx2þ
3l20

�ðl2þ l20Þðl2−2l20Þx4þþ l20ðl2− l20Þx2þþ2l40
ð1þx2þÞð2l20− ðl20þ l2Þx2þÞ

�
:

(34)

One can further check that with these expressions the first
law of black hole thermodynamics,

dM ¼ TdS; (35)

is fulfilled.
For any positive xþ, there is a horizon and therefore from

Eq. (34) one sees that requiring S to be positive might

induce some restrictions on the couplings and xþ. Let us
define the constant

ξ ≔
l2

l20
− 1; (36)

which must be strictly positive if wewant to have a nontrivial
real scalar field outside of the horizon. The region in the plane
ξ vs xþ in which the entropy is positive is depicted in Fig. 1.
We see that for ξ > 1 there is an upper bound on the radii of
the black holes with positive entropy. For ξ < 1, there is a gap
on the possible radii of the black holes with positive entropy.
As it occurs for Schwarzschild-AdS in vacuum,

the expression for the temperature given in (33) has a
minimum at

xþ ¼ x0 ≔
2l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l20 þ l2

p ; (37)

where the temperature takes its minimum value

T0 ≔
ffiffiffi
3

p
l0

πl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l20 þ 2l2

p : (38)

Therefore there are no black holes with T < T0, while for a
given temperature T > T0 there are two possible black holes.
In the canonical ensemble the most probable configu-

ration is the one with the lowest Helmholtz free energy F.
Figure 2 shows the four possible behaviors of the free
energy in terms of the temperature divided by the minimum
temperature (T=T0) for the large (continuous line) and
small (dashed line) black holes.

S 0

S 0

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

x

Region for positive entropy

FIG. 1 (color online). The grey region corresponds to the region
with positive entropy in the plane ξ ≔ l2

l2
0

− 1 vs xþ, while the
white region stands for negative entropy. For ξ > 1, requiring
S > 0 implies an upper bound on the black holes radii while for
0 < ξ < 1 there is a gap on the possible radii of black holes with
positive entropy.
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For ξ ¼ 0, the metric reduces to Schwarzschild-AdS;
therefore the situation is like the one described by Hawking
and Page in [10]. Small black holes always have positive
free energy, while for large black holes there is a critical
temperature above which the free energy becomes negative
and the thermal AdS (the thermal soliton with ξ ¼ 0) is less
probable than the black hole. For 0 < ξ < 1 Figs. 2(b)
and 2(c) show that small black holes always have positive
free energy and therefore they are less probable than the
thermal soliton, nevertheless there is a range of temper-
atures for which the small black holes are more probable
than large black holes. Above such temperature (which
fulfills a transcendental equation in terms of ξ) there is a
range in which the situation is like in GR in vacuum and
therefore large black holes suffer a phase transition at some
critical temperature above which the thermal soliton would
tend to tunnel to black hole configurations. For ξ ≥ 1, both
the small and large black holes have positive free energy;
therefore both are less probable than the corresponding
thermal soliton, nevertheless large black holes are less
probable than small black holes, again in opposition to
what occurs in GR in vacuum.

IV. EXTENDING THE SOLUTION TO
ARBITRARY DIMENSIONS D

If one considers the theory defined in the action principle
(4) in arbitrary dimensions, one can see that the metric

ds2 ¼ −FðrÞdt2 þGðrÞdr2 þ r2dΣ2
K;D−2 (39)

defines a solution with the following metric functions:

FDðrÞ¼−
μ

rD−3þ
�
ðD−2ÞKη−

2ηΛ
ðD−1Þr

2

þ ðαþηΛÞ2
ðD−3ÞðD−2ÞðDþ1ÞKη

r42F1

�
1;
Dþ1

2
;
Dþ3

2
;

−
2α

ðD−3ÞðD−2ÞKηr
2

��
; (40)

GDðrÞ ¼
AðrÞ
BðrÞ

1

FDðrÞ
; (41)

ψ2
DðrÞ ¼ −

4κðΛηþ αÞr2
ηð2αr2 þ ηðD − 2ÞðD − 3ÞKÞGDðrÞ:

FIG. 2. The free energy for large (continuous) and small (dashed) black holes in terms of T
T0
, for ξ ¼ 0 (a), ξ ¼ 0.5 (b), ξ ¼ 0.9 (c) and

ξ ¼ 1.1 (d).
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Here we have defined

AðrÞ ≔
�
K2η3ðDþ 3ÞðD − 3Þ2ðD − 2Þ2ððD − 2ÞðD − 3ÞK − 2r2ΛÞ

þ r2ðαþ ηΛÞ2ðD − 2ÞðKηðD − 2ÞðD − 3ÞðDþ 3Þ 2F1

�
1;
Dþ 1

2
;
Dþ 3

2
;−

2αr2

ðD − 3ÞðD − 2ÞKη

�

− 4α 2F1

�
2;
Dþ 3

2
;
Dþ 5

2
;−

2αr2

ðD − 3ÞðD − 2ÞKη
���

;

BðrÞ ≔ ðDþ 3ÞηK2ðD − 2ÞðD − 3Þ2ððD − 3ÞðD − 2ÞKηþ 2αr2Þ:

The constant μ is the only integration constant of the
solution and 2F1 is the hypergeometric function. In order to
obtain this solution we had set to zero the integration
constant appearing in the first integral of the equation of the
field as in four dimensions. Let us define the dimensionless
coordinate ρ by

ρ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α

ðD − 3ÞðD − 2ÞKη

s
r: (42)

The hypergeometric function appearing in Eq. (40) can be
rewritten in terms of elementary functions in the following
manner. For even dimensions D ¼ 2n, we have

2F1

�
1; nþ 1

2
; nþ 3

2
;−ρ2

�

¼ ð−1Þnð2nþ 1Þρ−2n−2
�
ρ arctan ρþ

Xn
j¼1

ð−1Þj
2j − 1

ρ2j
�
;

(43)

while for odd dimensions D ¼ 2nþ 1, we use

2F1ð1; nþ 1; nþ 2;−ρ2Þ

¼ ð−1Þnðnþ 1Þρ−2n−2
�
ln ðρ2 þ 1Þ þ

Xn
j¼1

ð−1Þj
j

ρ2j
�
:

(44)

As in four dimensions, it can be seen that these metrics
describe asymptotically locally AdS black holes with real
scalar fields in the domain of outer communication.

V. ASYMPTOTICALLY FLAT BLACK HOLES
SUPPORTED BY THE EINSTEIN-KINETIC

COUPLING

Here we will show that the inclusion of a cosmological
term in the action allows finding a new asymptotically
locally flat black hole. In this case we will consider that the
matter sector is given only by the kinetic term of the scalar
field which is constructed with the Einstein tensor, namely
we shall consider the action (4) with α ¼ 0. Thus, the
action reduces to

I½gμν;ϕ� ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
κðR − 2ΛÞ þ η

2
Gμν∇μϕ∇νϕ

�
:

(45)

In the same manner as before, the equation for the field
allows a first integral which brings in an integration
constant. If we set to zero such integration constant, then
we find that for K ≠ 0, the following metric defines a
solution of the system:

ds2 ≔ −HðrÞdt2 þ 15ðΛr2 − 2KÞ2
K

dr2

HðrÞ þ r2dΣ2
K;2;

(46)

provided

HðrÞ ≔ ð60K2 − 20ΛKr2 þ 3Λ2r4Þ − μ

r
; (47)

and the derivative of the scalar field is given by

ψ2
0ðrÞ ≔ −

30κΛr2ðΛr2 − 2KÞ2
ηK2HðrÞ : (48)

The following comments are in order:
(i) As in the previous cases, at a possible nondegenerate

horizon r ¼ rþ the lapse function HðrþÞ vanishes,
and therefore the scalar field vanishes but it is
nonanalytic at that point.

(ii) For vanishing Λ, the scalar field itself vanishes
and the solution reduces to the topological
Schwarzschild solution in flat space, which repre-
sents a black hole only in the spherically symmetric
case (K ¼ 1).

(iii) This solution is asymptotically locally flat since

Rμν
λρ ∼

r→∞
0: (49)

(iv) In order to have a real scalar field in the region where
HðrÞ is positive, i.e. outside a possible event
horizon, we need to impose Λ=η < 0.

(v) For nonvanishing μ, the metric has a singularity at
the origin.
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(vi) When K and Λ have the same sign, there is a
curvature singularity at a finite radius r ¼ rs ≔ffiffiffiffiffiffiffiffiffiffiffiffi
2K=Λ

p
, for any value of μ.

(vii) For μ ¼ 0, the point r ¼ 0 is a symmetric center and
therefore the range of the radial coordinate is r ≥ 0.
If even more in this case K=Λ < 0 the metric is
regular everywhere and therefore describes an
asymptotically locally flat gravitational soliton.

(viii) When K=Λ < 0 the singularity at r ¼ rs disappears
and the singularity at the origin is surrounded by an
event horizon provided μ > 0. In this case the
solution represents an asymptotically locally flat
black hole.

(ix) For K=Λ > 0 the singularity at r ¼ rs > 0 is sur-
rounded by an event horizon provided μ > μc for a
certain critical value of μ. In this case as well, the
spacetime represents an asymptotically locally flat
black hole.

The case K ¼ 0 (and α ¼ 0) integrates in a different
manner. As before, in order to have a vanishing integration
constant from the first integral of the equation of the field,
in addition to the field equations we need to impose
Grr ¼ 0. The field equations therefore imply that Λ has
to vanish and the metric and the derivative of the scalar field
[ψ0ðrÞ ¼ ϕ0ðrÞ] are given by

ds2 ¼ −
C
r
dt2 þ dr2

GðrÞ þ r2ðdx2 þ dy2Þ; (50)

ψðrÞ2 ¼ −
4κ

η
GðrÞ þ J

GðrÞ3=2ffiffiffi
r

p ; (51)

where C and J are integration constants and GðrÞ is an
arbitrary function. This is a degenerate case in which the
system is underdetermined since one of the metric func-
tions is completely arbitrary. Note that the function GðrÞ
cannot be absorbed by a diffeomorphism.

VI. DISCUSSION

We have found a new family of asymptotically AdS and
locally flat black holes supported by scalar field in arbitrary
dimensions. The theory we considered is a particular case
of Horndeski theory and therefore the field equations and
the energy-momentum tensor are of second order. For the
ansatz considered, the equation for the field allows for a
first integration giving rise to an integration constant.
Following the steps of Rinaldi’s work [8] we were able
to obtain an exact solution imposing such integration
constant to vanish. This imposes an extra constraint in
the geometry that turns out to open a new family of
nontrivial solutions. The inclusion of a cosmological term
in the action allowed us to find a solution with a real scalar
field outside the horizon, and allowed us to find asymp-
totically locally flat black hole solutions as well. It is
important to note that the cosmological constant at infinity

is not given by the cosmological Λ term in the action but in
terms of the couplings α and η that appear in the kinetic
term of the field [see (12)].
The solutions are not continuously connected with the

maximally symmetric AdS or flat backgrounds since the
scalar field cannot be turned off by setting the single
integration constant to some value. Nevertheless, since our
family of metrics contains a further integration constant, it
is possible to show that within such a family there is a
unique regular spacetime. Such spacetime is a gravitational
soliton and we use it in the four dimensional, spherically
symmetric case to defined a regularized Euclidean action
and explore the thermodynamics of the black hole solution.
A similar situation occurs with the AdS soliton, which can
be considered as the background for some topological AdS
black holes, as well as in gravity in 2þ 1 with scalar fields,
where the gravitational solitons are the right backgrounds
to consider to give a microscopic description of the black
hole entropies [11–13].
The thermodynamics of the asymptotically AdS black

holes depends strongly on the ratio between the AdS length
of the asymptotic region l which is determined by the
couplings of the scalar and the “bared” AdS length l0
constructed in terms of the cosmological term in the action
Λ. We have shown that in a certain region of the space of
parameters, the thermal soliton will tend to tunnel to large
black holes. In opposition to what occurs in general
relativity, there is also a range of temperatures for
which small black holes are more probable than large
black holes.
Even though it is probably not possible to give an exact,

closed form for the general static black hole solution of
Horndeski theory, there are some particular subsets of
theories that might offer the possibility of finding exact
solutions. For example, in dimensions higher than four,
since the Lovelock tensors are nontrivial, it would be
interesting to look for black holes with a scalar field in
which the kinetic couplings are constructed with such
Lovelock tensors. In some of those theories, the kinetic
term will be constructed with the field equations of a
gravity theory that has an extra symmetry [14], and this
might help in the integration of the field equations. Other
theories that belong to the Horndeski family are theories
with invariance under local Weyl rescaling. In Ref. [15] it
was shown that it is possible to construct theories that
generalize the usual conformally coupled scalar field,
including couplings of the scalar with Euler densities
of higher degree [e.g. ϕ4ðR2 − 4RμνRμν þ RαβγδRαβγδÞ].
This was done by introducing a four-rank tensor which
contains the curvature and derivatives of the field and
transforms covariantly under local Weyl rescaling.4 In

4In four dimensions a different approach for constructing
theories with nonminimal coupling has been recently given in
[16], allowing two scalar fields as well.
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[15] it was shown that restricting to Lovelock-like
combinations in such four-rank tensor ensures the field
equations and energy-momentum tensor to be of second
order and therefore those combinations are a subclass of
Horndeski’s theories, which in this case have an extra
local symmetry that might be useful in the integration of
the field equations.
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