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Here we investigate the cosmic dynamics of Friedmann-Robertson-Walker universes—flat spatial
sections—which are driven by nonlinear electrodynamics (NLED) Lagrangians. We pay special attention
to check the sign of the square sound speed since, whenever the latter quantity is negative, the
corresponding cosmological model is classically unstable against small perturbations of the background
energy density. Besides, based on causality arguments, one has to require that the mentioned small
perturbations of the background should propagate at most at the local speed of light. We also look for the
occurrence of curvature singularities. Our results indicate that several cosmological models which are
based in known NLED Lagrangians, either are plagued by curvature singularities of the sudden and/or big
rip type, or are violently unstable against small perturbations of the cosmological background—due to the
negative sign of the square sound speed—or both. In addition, causality issues associated with
superluminal propagation of the background perturbations may also arise.
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I. INTRODUCTION

There are two problems that bother cosmologists more
than any other: (i) the initial cosmological—big bang—
singularity, and (ii) the current accelerated pace of the
cosmic expansion. While for the latter issue there are plenty
of models which have been more or less successfully tested
against the existing observational data [1,2]; for the former
problem there are only a few sound proposals which are
untested due to the lack of data about the primordial state of
the Universe. Among these models, perhaps the better
known are the pre-big bang cosmology scenario [3] and the
ekpyrotic universe [4].
Homogeneous and isotropic nonsingular Friedmann-

Robertson-Walker (FRW) cosmological models can be
obtained also by considering local covariant and
gauge-invariant Lagrangian generalizations of Maxwell
electrodynamics which have been dubbed as nonlinear
electrodynamics (NLED) theories [5–9]. In a cosmologi-
cal setting these theories have been explored mainly
within the so-called “magnetic universe” approximation.
According to this approximation, in the early universe,
at temperatures above and below—depending on the
model of inflation—the electroweak (EW) scale
[1012–1016 GeV], where the spacetime is filled with an
equilibrium primordial plasma of elementary particles
[10,11], we may assume that only the average of the

magnetic field squared B2 survives.1 It is known that
large enough magnetic fields (∼1022 G at temperatures
T ∼ 100 GeV) coherent on different scales may be generated
in the primordial universe due to several mechanisms, such
as2 first-order quark-hadron phase transition [13], EW phase
transition [14], primordial lepton asymmetry [11], para-
metric amplification of quantum vacuum fluctuations of
some primordial gauge field [15], breakdown of conformal
invariance due to coupling of the inflaton to the Maxwell
term in the chaotic inflationary model [16] (see also [17]),
and coupling of the photon either to the dilaton [18] or to the
graviphoton [19], among others. In this context the study of
a magnetic universe based in NLED theories looks like a
plausible possibility to seek for interesting cosmological
effects. A prototype of a NLED theory is provided by the
Born-Infeld (BI) Lagrangian [8]:

L ¼ −γ2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F=2γ2
q

− 1
�
; (1)

where γ is a free parameter and the electromagnetic
invariant3

F≡ FμνFμν ¼ 2ðB2 − E2Þ: (2)

The motivation of the authors was to have regular field
configurations without singularities. The gravitational field
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1This amounts to neglecting the bulk viscosity terms in the
electric conductivity of the primordial plasma [5].

2The presence of large scale magnetic fields in our observed
Universe is a well-established observational fact [12].

3The electromagnetic tensor is defined as Fμν ≔ Aν;μ − Aμ;ν.
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was not included in their analysis. If one introduces
gravitational effects through the theory of general relativity,
a drawback of Born-Infeld proposal unfolds: there is no
place for a regular cosmological scenario with the combined
effects of gravity and NLED.4

In Ref. [9], motivated by the original Born-Infeld idea
of having regular field configurations with the electromag-
netic (EM) field bounded—this time in a magnetic
universe—the authors focused in a modification of the
Lagrangian (1) by the inclusion of a term quadratic in the
field F within the square root

L ¼ −γ2W1=2; W ≔ 1þ F
2γ2

− α2F2; (3)

where α is another free constant and, as seen, the term ∝ γ2

in (1) has been removed. This modified theory does not
have the standard (classical) linear—weak field—Maxwell
limit, since at α → 0, γ → ∞, it includes the effects of the
(vacuum) zero-point fluctuations of the EM fields due to
the constant term in

L ≈ −
F
4
− γ2:

An alternative theory which does have the classical
Maxwell limit is given by the Lagrangian density

L ¼ −γ2ðW1=2 − 1Þ; (4)

with W defined as in Eq. (3).
Magnetic universes have been investigated also within

the context of NLED theories which are given by the much
simpler Lagrangian density [5]

L ¼ −
1

4
F þ αF2; (5)

where the nonlinear term ∝ F2 may cause the Universe to
bounce thus avoiding the initial (big bang) singularity.
Lagrangians with inverse powers of the electromagnetic
field F are interesting because the nonlinear electromag-
netic effects might become important not only at early
times in the cosmic evolution, but also at late times.
Actually, models with Lagrangian density of the form [6]

L ¼ −
1

4
F −

γ

F
(6)

may account for the late-time stage of accelerated expan-
sion of magnetic universes. A combination of positive and
negative powers of F have been also considered in [7]

L ¼ −
1

4
F −

γ

F
þ αF2: (7)

This toy model correctly describes the main stages of the
cosmic evolution and is free of the cosmological big bang
singularity: At early times the quadratic term ∝ F2—which
is responsible for a nonsingular bounce—dominates, while
the Maxwell term ∝ −F dominates in the radiation era. The
term ∝ F−1 dominates at late times causing the Universe
to accelerate.
Even if the above—very simplified—models of non-

linear electrodynamics coupled to general relativistic cos-
mology describe hypothetical systems reminiscent of the
fields in the real world, these models comprise interesting
dynamical behavior that is worthy of independent inves-
tigation. The question is, would any theoretically plausible
NLED-based EM Lagrangians provide viable cosmological
models?
Looking for an answer to the above question will reveal

that several such well-known models are to be rejected due
to violations of several fundamental principles of physics.
Actually, although experiment (observations) is the
supreme judge in deciding whether a given physical theory
is right or wrong, there are a few physical principles on
which the fundamental theories of physics are grounded,
which should be satisfied by any compelling model of our
Universe. Among them causality and classical stability play
a special role. One may think of these basic principles as a
kind of coarse filter for plausible theories, while exper-
imental/observational testing represents the finest possible
such filter.
In this regard, our goals in this paper will be
(1) to test the non-negativity of the square sound speed

looking for possible instability against small pertur-
bations of the background energy density,

(2) to look for possible violations of causality associated
with superluminal propagation of these small per-
turbations,5 and

(3) to seek for occurrence/absence of curvature singu-
larities of sudden and big rip types

in the NLED theories given by (1), (3), (4), (5), (6), and (7),
respectively. Additionally we shall check whether the
sufficient conditions for the bounce are met by the different
models.
These simple tests can give invaluable insight into the

NLED-based models. As a matter of fact our study will
show that the cosmological scenarios which are based in
the NLED Lagrangians (1), (3)–(7), either are plagued by
curvature singularities of the sudden and/or big rip type, or
are classically unstable against small perturbations of the
cosmological background due to negative sign of the square
sound speed, or both. Not to mention the causality issues

4See, however, Ref. [20] where it was demonstrated that the
Born-Infeld theory is singularity free in Bianchi spacetimes.

5Causality and the light-cone structure in NLED has been
analyzed in [21].
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that may arise as a consequence of superluminal propaga-
tion of such small perturbations of the background.
The paper has been organized in the following form.

In the next section we expose the essentials of NLED
coupled to general relativity. The basic cosmological
equations are discussed in Sec. III. Section IV is dedicated
to discussing the stability and causality issues which are
associated with violations of the bounds 0 ≤ c2s ≤ 1 on the
square sound speed. The NLED-based cosmological mod-
els which are depicted by the Lagrangian densities (5), (6),
and (7) are studied in detail in Secs. V, VI, and VII,
respectively. Meanwhile the more complex BI model (1)
and its modifications (3), and (4) are investigated in
Sec. VIII. The discussion of the results together with brief
conclusions will be provided in the final Sec. IX.

II. NONLINEAR ELECTRODYNAMICS COUPLED
TO GENERAL RELATIVITY

The four-dimensional (4D) Einstein-Hilbert action of
gravity coupled to NLED is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ Lm þ LðF;GÞ�; (8)

where R is the curvature scalar, Lm is the background
perfect fluid’s Lagrangian density, and LðF;GÞ is the
gauge-invariant EM Lagrangian density which is a function
of the electromagnetic invariants F defined in Eq. (2), and

G≡ 1

2
ϵαβμνFαβFμν ¼ −4E · B:

Standard (linear) Maxwell electrodynamics is given by
the Lagrangian L ¼ −F=4. The corresponding field equa-
tions can be derived from the action (8) by performing
variations with to the spacetime metric gμν, to obtain

Gμν ¼ Tm
μν þ TEM

μν ;

where

Tm
μν ¼ ðρm þ pmÞuμuν − pmgμν;

TEM
μν ¼ gμν½LðFÞ −GLG� − 4FμαFν

αLF; (9)

with ρm ¼ ρmðtÞ, pm ¼ pmðtÞ the energy density and
barotropic pressure of the background fluid, respectively,
while LF ≡ dL=dF, LFF ≡ d2L=dF2, etc. Variation with
respect to the components of the electromagnetic potential
Aμ yields the electromagnetic field equations6

�
FμνLF þ 1

2
ϵαβμνFαβLG

�
;μ

¼ 0: (10)

Since the observations have shown that the current
Universe is very close to a spatially flat geometry [22],
a result which is quite natural within primordial inflation
scenarios [23], in this paper we shall consider a homo-
geneous and isotropic FRW universe with flat spatial
sections, which is described by the metric

ds2 ¼ dt2 − aðtÞ2δijdxidxj;

where aðtÞ is the cosmological scale factor, and the latin
indexes run over three-space. Since the spatial sections of
the FRW spacetime are isotropic, the EM fields can be
compatible with such a universe only if an averaging
procedure is performed.7 Following the standard approach
[24] (for details see also [5–7] and references therein) we
define the volumetric spatial average of a quantity X at the
time t by

X̄ ≡ lim
V→V0

1

V

Z
d3x

ffiffiffiffiffiffi
−g

p
X; (11)

where V ¼ R d3x ffiffiffiffiffiffi−gp
and V0 is a sufficiently large time-

dependent three-volume. Besides, for the electromagnetic
field to act as a source for the FRW model we need to
impose that8

Ēi ¼ 0; B̄i ¼ 0; EiBj ¼ 0;

EiEj ¼ −
1

3
E2gij; BiBj ¼ −

1

3
B2gij: (12)

Additionally it has to be assumed that the electric and
magnetic fields being random fields have coherent lengths
that are much shorter than the cosmological horizon scales.
Under these assumptions the energy-momentum tensor of
the EM field associated with the Lagrangian density
L ¼ LðF;GÞ can be written in the form of the energy-
momentum tensor for a perfect fluid:

TEM
μν ¼ ðρEM þ pEMÞuμuν − pEMgμν; (13)

where

ρEM ¼ −LþGLG − 4LFE2;

pEM ¼ L −GLG −
4

3
ð2B2 − E2ÞLF;

6Here the comma denotes a partial derivative with respect to
the spacetime coordinates while the semicolon denotes a covar-
iant derivative instead.

7In particular, the energy density and the pressure of the NLED
field should be evaluated by averaging over volume.

8The averaging procedure is independent of the equations of
the EM field so it can be safely applied in the NLED case [5].
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E2 and B2 being the averaged electric and magnetic fields
squared, respectively. In this paper we shall restrict to the
case of nonlinear theories defined by L ¼ LðFÞ [7], so that

ρEM ¼ −L − 4LFE2;

pEM ¼ L −
4

3
ð2B2 − E2ÞLF: (14)

In what follows, to simplify the analysis, we shall
consider a flat FRW universe which is filled with a
“magnetic fluid,” i.e., the electric component (squared)
E2 will be assumed vanishing—only the average of the
magnetic field squared B2 is nonvanishing—a case which is
dubbed in the bibliography as the “magnetic universe.”
This case turns out to be relevant in cosmology as long as
the averaged electric field E is screened by the charged
primordial plasma, while the magnetic field lines are frozen
[25]. Even this simplified picture can give important
physical insights.

III. COSMOLOGICAL EQUATIONS

Here we shall consider magnetic universes which are
driven by EM Lagrangian densities that depend on the
invariant F ¼ 2B2 only. In this much simpler case, the
cosmological equations can be written in the following
form:

3H2 ¼ ρm − L; 2 _H ¼ −γmρm þ 4

3
FLF;

_ρm þ 3Hγmργ ¼ 0; _F þ 4HF ¼ 0; (15)

where H ¼ _a=a is the Hubble parameter, γm is the
barotropic index of the background’s perfect fluid
[pm ¼ ðγm − 1Þρm], while

ρEM ¼ ρB ¼ −L; pEM ¼ pB ¼ L −
4

3
FLF;

⇒ ρB þ pB ¼ −
4

3
FLF; (16)

and, as already mentioned, we are considering F ¼ 2B2.
For simplicity, in the rest of this paper we shall assume a
purely magnetic universe, i.e., the cosmic dynamics is
fueled by the magnetic fluid alone:

3H2 ¼ ρB; _F þ 4HF ¼ 0;

2 _H ¼ −ðρB þ pBÞ ¼
4

3
FLF; (17)

where ρB and pB are given in Eq. (16).
An interesting aspect of several cosmological models

based in NLED—assuming a magnetic universe—is that
the cosmological scale factor a ¼ aðtÞ attains a minimum
value during the course of the cosmic evolution. At this

point a bounce occurs. At the bounce, since the scale factor
is a minimum while H changes sign (contraction turns
into expansion), then H ¼ 0. In general, the sufficient
conditions for a bounce are [26]

_a ¼ 0; ä ≥ 0 ⇔ H ¼ 0; _H ≥ 0; (18)

where the above quantities are evaluated at the bounce.
Hence, it is customary to check whether the conditions (18)
for the bounce are met by a given cosmological model
which is based in NLED.
Of particular interest for the bouncing cosmologies is the

behavior of the background energy density. At the bounce
at t ¼ tb, since HðtbÞ ¼ 0, then the continuity equation
yields that _ρBðtbÞ ¼ 0, i.e., the energy density of the
magnetic field is a critical value at the bounce. On the
other hand, since ρB ¼ ρBðFðtÞÞ, one has

_ρB ¼ dρB
dF

_F; ρ̈B ¼ d2ρB
dF2

_F2 þ dρB
dF

F̈: (19)

It follows that ρB can have extrema with respect to both F
and the cosmic time t. In general, these not need to
coincide. Actually, at tb the field invariant is a maximum
FðtbÞ ¼ Fb, so that _FðtbÞ ¼ 0, while F̈ðtbÞ < 0. Suppose
that ρB is a maximum at some Fc ≠ Fb. Two situations
may arise:
(1) Fc < Fb, where

Fc ¼ Fðt−c Þ ¼ Fðtþc Þ; t−c < tb < tþc :

In this case, since

dρB
dF

ðFcÞ ¼ 0;
d2ρB
dF2

ðFcÞ < 0;

just prior to the bounce and just after it (at t−c and tþc
respectively), the energy density of the magnetic
field is a maximum as well [check Eq. (19)]:

_ρBðt�c Þ ¼ 0; ρ̈Bðt�c Þ < 0:

Meanwhile, at the bounce (t ¼ tb), since dρB=
dF < 0, _F ¼ 0, and F̈ < 0, then ρ̈BðtbÞ > 0, i.e.,
the energy density of the magnetic field is a local
minimum.

(2) Fc > Fb. In this case dρB=dF > 0, i.e., with respect
to F, ρB is a monotonic growing function in the
interval 0 ≤ F ≤ Fb < Fc. Then the energy density
of the magnetic field has only one extremum at
t ¼ tb, where ρB is a maximum:

_ρBðtbÞ ¼
dρB
dF

_FðtbÞ ¼ 0; ρ̈B ¼ dρB
dF

F̈ðtbÞ < 0:
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IV. THE SQUARE SOUND SPEED

Another quantity of cosmological importance is the
adiabatic square sound speed which, for the cases of
interest in this paper, can be written as

c2s ≔
dpB

dρB
¼ dpB=dF

dρB=dF
¼ 1

3
þ 4LFF

3LF
F: (20)

If we consider small perturbations of the background
energy density ρBðt;xÞ ¼ ρBðtÞ þ δρBðt;xÞ, the conserva-
tion of energy-momentum Tμν

;ν ¼ 0 leads to the wave
equation [27] δρ̈ ¼ c2s∇2δρ, whose solution for positive
c2s > 0 is

δρB ¼ δρB0 expð−iωtþ ik · xÞ;
while, for negative c2s < 0, it is

δρB ¼ δρB0 expðωtþ ik · xÞ:
Here ω ¼ kcs, where k ¼ 2π=λ is the wave number of the
perturbation (a=k is the physical wavelength of the per-
turbation). In the case when c2s < 0, the energy density
perturbations uncontrollably grow resulting in a classical
instability of the cosmological model. The increment of
instability is inversely proportional to the wavelength of
the perturbations, and the models where c2s < 0 are
violently unstable, so that these should be rejected [28].
Consequently, it is very important to check the sign of
the square sound speed for the different cosmological
models.

A. Causality and the speed of sound

Even if c2s is a positive quantity, a causality issue may
arise whenever the square sound speed is greater than the
local speed of light (for a critical review on this issue see
[29]). As a matter of fact, it is usually assumed that cs ≤ 1,
while the complementary bound cs > 1 is used as a
criterion for rejecting theories [30,31]. In particular,
low-energy effective field theories—even when these are
based in Lorentz-invariant Lagrangians—have been
rejected if they admit superluminal fluctuations [32].
Notwithstanding, there can be found arguments which
challenge the most widespread viewpoint (see, for instance,
Ref. [33]). A related illustration can be found in Ref. [7],
where it was argued that nonlinear photons do not move on
the light cone of the background metric gμν, but instead,
these follow the null rays of the effective metric

geffμν ¼ LFgμν − 4LFFFμ
σFσν; (21)

so that, according to [7], this fact may “introduce a new
look into causality.” It follows that the signature of the
effective metric geffμν is undefined. Take as an example,
the Lagrangian density (5). In this case 0 ≤ F ≤ 1=4α. The

energy density of the magnetic field ρB ¼ Fð1 − 4αFÞ=4 is
a maximum at Fc ¼ 1=8α (ρmax

B ¼ 1=64α). Since LF ¼
ð8αF − 1Þ=4, then

geffμν ¼
�
8αF − 1

4

�
gμν − 8αFμ

σFσν:

In the FRW magnetic universe, for the (0, 0) component of
the metric one has geff00 ¼ ð8αF − 1Þ=4. Hence, at the
maximum of the energy density (F ¼ 1=8α) a signature
change occurs. While for 1=8α < F ≤ 1=4α the signature
of the effective metric geffμν coincides with that of the
gravitational metric gμν, for 0 ≤ F < 1=8α these have
different signature. The signature change of the effective
metric is awful for causality to be satisfied for all 0 ≤ F ≤
1=4α if one considers geffμν to be the “arbiter of causality”
instead of the gravitational metric.
In general, as discussed in [29], the sound cones for any

given fluid can be represented by an appropriate effective
(hyperbolic) metric tensor

geffμν ¼ gμν þ
1 − c2s
c2s

hμν ¼
1

c2s
½gμν þ ð1 − c2sÞuμuν�;

where hμν ¼ gμν þ uμuν projects into the rest space at each
event, and uμ is the matter four-velocity. When c2s > 1 the
sound cones will lie outside the light cones. In this case for
both metrics gμν and geffμν , the interior of the light cones
consists of timelike vectors. According to the unorthodox
viewpoint, in the casewhen the sound speed is superluminal,
one can safely redefine the physical metric to be geffμν , and
there will be no problem with causality. This viewpoint is
totally wrong since, following the line of reasoning of [29],
one could find that the sound metric geffμν is in some places
superluminal and in others subluminal. Hence, at least at
some events and in some directions, part of the light cone
could lie outside the sound cone. As a consequence
gravitons, for instance, could propagate acausally relative
to the sound metric. As a matter of fact, if one wants to
preserve the principle that the effects of gravity are encoded
in the spacetime curvature, then one may not abandon the
spacetime metric gμν as the arbiter of causality [29].

B. Bounds on c2s
In this paper, following the most widespread point of

view, we shall consider c2s > 1 as a criterion for rejecting a
given cosmological model, as long as causality is violated
in it. Our choice is based on solid long-standing arguments
which are comprised in well-tested and theoretically
beautiful physical theories. Hence, a given cosmological
model which is intended to describe the present Universe
has to meet the following bounds on the speed at which
small perturbations of the background energy density
propagate:
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0 ≤ c2s ≤ 1: (22)

This is one of the aspects of the NLED-based theories
(1)–(7) which we shall meticulously check.

V. SECOND-ORDER NLED: BOUNCING
MAGNETIC UNIVERSE?

We start our investigation with the toy model generali-
zation of Maxwell EM Lagrangian which contains terms up
to second order in the field invariant F, and was proposed in
Ref. [5] (see also [7]). This model is based in the
Lagrangian density (5). The corresponding associated
energy density of the magnetic field

ρB ¼ Fð1 − 4αFÞ=4 (23)

is non-negative in the interval 0 ≤ F ≤ 1=4α. At
F ¼ 1=8α, it is a maximum ρmax

B ¼ 1=64α. The corre-
sponding parametric pressure

pB ¼ Fð1 − 20αFÞ=12 (24)

is a negative quantity for F > 1=20α.
Taking into account (23), the Friedmann equation

H ¼ ffiffiffiffiffiffiffiffiffiffi
ρB=3

p
, and the continuity equation _F ¼ −4HF,

one can find that

aðtÞ ¼ ðF0=3Þ1=4ðt2 þ 12αÞ1=4;

FðtÞ ¼ 3

t2 þ 12α
; ρB ¼ 3t2

4ðt2 þ 12αÞ2 : (25)

As seen, the scale factor is a minimum at t ¼ 0 [dotted
curve in the right-hand panel (RHP) of Fig. 1]

amin ¼ að0Þ ¼ ð4αF0Þ1=4;

i.e., the magnetic universe in this NLED model is in a stage
of contraction until it reaches a minimum size at t ¼ 0 (time
of the bounce), and then starts expanding. In terms of the
cosmological time, the energy density of the magnetic field
(solid curve in the RHP of Fig. 1) is a vanishing minimum
ρmin
B ¼ 0 at the bounce (t ¼ 0), while it is a maximum
ρmax
B ¼ 1=64α at t ¼ �2

ffiffiffiffiffiffi
3α

p
. Notice in between that at

t ¼ 0 the field invariant F ¼ 2B2 is a maximum. This
means that at the bounce the nonlinear effects are maximal
(of the same order as the Maxwellian effects), but con-
tribute a negative fraction to the magnetic field energy
density, so that these cancel the contribution to the field
energy density coming from standard Maxwell EM theory.
The vanishing minimum of the energy density—together
with positivity of _H—is one of the sufficient conditions for
the occurrence of a bounce at t ¼ 0.
The bad news for this model comes from the behavior of

the square sound speed c2s during the cosmic history.
Actually, in this case c2s is given by

c2s ¼
1

3

�
1 − 40αF
1 − 8αF

�
¼ 1

3

�
t2 − 108α

t2 − 12α

�
: (26)

It is a non-negative quantity whenever either 0≤F≤1=40α,
or 1=8α < F ≤ 1=4α. However, in the interval 1=40α <
F < 1=8α, c2s is negative. At F ¼ 1=8α it has a vertical
asymptote. In terms of the cosmic time the square sound

FIG. 1 (color online). In the left-hand panel a plot of F—solid curve—and of the square sound speed c2s—dashed curve—vs the
cosmic time t is shown for an arbitrarily chosen α ¼ 0.01, for the model (5) [L ¼ −F=4þ αF2]. For the same theory a plot of
X ¼ fρBðtÞ—solid; HðtÞ—dash; _HðtÞ—dash dot; aðtÞ—dotsg is shown in the right-hand panel. Occurrence of a bounce at t ¼ 0 is
evident from this latter figure.
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speed—dashed curve in the left-hand panel (LHP) of
Fig. 1—has vertical asymptotes at t� ¼ �2

ffiffiffiffiffiffi
3α

p
. It is a

negative quantity whenever

−6
ffiffiffiffiffiffi
3α

p
< t < −2

ffiffiffiffiffiffi
3α

p
;

during the contracting phase, and

2
ffiffiffiffiffiffi
3α

p
< t < 6

ffiffiffiffiffiffi
3α

p
;

in the expanding stage of the cosmic evolution. This means
that during the contraction, just before the moment
t− ¼ −2

ffiffiffiffiffiffi
3α

p
, and after the moment tþ ¼ 2

ffiffiffiffiffiffi
3α

p
in the

expanding phase, there are intervals of cosmic time
Δt ¼ 4

ffiffiffiffiffiffi
3α

p
, where the square sound speed is negative,

signaling an insurmountable instability of the cosmic
evolution. Besides, since

_c2s ¼
192t

3ðt2 − 12αÞ2 ;

at the bounce (t ¼ 0) the square sound speed is a minimum
given that c̈2sð0Þ ¼ 192=432α > 0. At the minimum
c2sð0Þ ¼ c2s;b ¼ 108=36 > 1, i.e., at the bounce—where the
nonlinear EM effects dominate the cosmic evolution—
the superluminal propagation of the small fluctuations of
the background energy density violates causality.
The details of this can be seen from Fig. 1, where the plot

of the main cosmological parameters [F, a, c2s , ρB,H, _H] vs
t is shown for an arbitrarily chosen value of the free
parameter α ¼ 0.01. It is seen that, as the cosmic evolution
proceeds from the past (negative t-s), the Universe transits
from a stage of contraction—through a bounce at t ¼ 0—
into a stage of cosmic expansion. Besides, as one
approaches the bounce from the past, the square sound
speed c2s gets increasingly negative [jc2s j → ∞, c2s < 0],
and at t ¼ −2

ffiffiffiffiffiffi
3α

p
—when the energy density of the

magnetic field becomes a maximum right before the
bounce—c2s approaches to a vertical asymptote

t → −2
ffiffiffiffiffiffi
3α

p
⇒ c2s → −∞:

As one leaves behind the bounce at t ¼ 2
ffiffiffiffiffiffi
3α

p
—where the

second maximum of ρB arises—there is a second asymptote
to the right of which another stage of the cosmic evolution
with negative c2s < 0 occurs.
The intervals of cosmic time Δt ¼ 4

ffiffiffiffiffiffi
3α

p
before the

bounce at t ¼ 0 and after it are critical and decide the fate
of this model. Actually, since to the left of t− ¼ −2

ffiffiffiffiffiffi
3α

p
and to the right of tþ ¼ 2

ffiffiffiffiffiffi
3α

p
, jc2s j is very large and

negative, these periods of cosmological time are charac-
terized by insurmountable instabilities against small
fluctuations of the background. This means that, even if
this is a regular cosmological model which is free of

curvature singularities,9 as the Universe transits from the
past—through the bounce—into the future, it will not
survive contraction behind t−. For the same reason the
cosmic evolution predicted by this model will not survive
expansion after the bounce past tþ. This is not to mention
the causality issue that arises due to the fact that the speed
of sound exceeds the speed of light [c2s > 1] in between
the asymptotes.

VI. NLED-DRIVEN ACCELERATED EXPANSION?

In Ref. [6], in order to take account of the late-time
accelerated stage of the cosmic expansion—without invok-
ing the cosmological constant, unobserved scalar fields, or
modifications of general relativity—the authors proposed
the gauge-invariant Lagrangian density (6) which, besides
the standard Maxwell term, contains a negative power
of the field invariant F. At high values of F the dynamics
will be that of Maxwell driving a standard radiation-
dominated stage of the cosmic evolution plus corrections
which are regulated by the parameter γ, while at small
values of F it is the 1=F term which dominates, driving the
late-time accelerated stage of the cosmic expansion [6] (see
also [7]). We want to notice at this point that—as
appropriately discussed in [6]—this model lacks a standard
Maxwellian weak field limit, but other more profound
problems will be revealed soon.
The energy density associated with the Lagrangian

density (6) is given by

ρB ¼ F2 þ 4γ

4F
; (27)

and is always a positive quantity, i.e., the EM invariant F
can take values in the whole (non-negative) real line
(0 ≤ F < ∞). The energy density of the EM field is a
minimum ρmin

B ¼ ffiffiffi
γ

p
at F ¼ 2

ffiffiffi
γ

p
. The parametric pressure

pB ¼ F2 − 28γ

12F
(28)

is negative for 0 ≤ F <
ffiffiffiffiffiffiffi
28γ

p
.

The square sound speed is given by

c2s ¼
F2 þ 28γ

3ðF2 − 4γÞ : (29)

It is a negative quantity for 0 ≤ F < 2
ffiffiffi
γ

p
, and at

F ¼ 2
ffiffiffi
γ

p
—where ρB is a minimum—it has a vertical

asymptote.
Taking into account the continuity equation _F ¼

−4HF ⇒ F ¼ F0a−4, the Friedmann equation can be
integrated to obtain

9The addition of other kinds of matter—including their ultra-
relativistic states—does not modify the regularity of the corre-
sponding solutions [5].
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t ¼ tðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
3

2i
ffiffiffi
γ

p
s

F

 ffiffiffiffiffiffiffiffiffiffiffi
2i

ffiffiffi
γ

p
F0

s
a2; i

!
; (30)

where Fðz; kÞ is the elliptic integral of the first kind10

Fðz; kÞ ¼
Z

z

0

dξffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2ξ2

p ;

and i is the imaginary unit. In principle Eq. (30) can be
inverted to get a ¼ aðtÞ, but in practice this is a very
difficult task and only numeric investigation may help.
Nevertheless, as seen from the LHP of Fig. 2, the scale
factor is a monotonically increasing—smooth and continu-
ous—function of the cosmic time. Hence, in this subsection
instead of the cosmic time t we can use the scale factor as a
time ordering variable, i.e., we will study the dynamics of
the field variables F, ρB, _H, c2s , etc., with respect to the
scale factor a:

ρB ¼ F2
0 þ 4γa8

4F0a4
; pB ¼ F2

0 − 28γa8

12F0a4
;

_H ¼ −
F2
0 − 4γa8

6F0a4
; c2s ¼

F2
0 þ 28γa8

3ðF2
0 − 4γa8Þ : (31)

This will amount to a great simplification of the analysis.
Another relevant aspect of the plot tðaÞ—which is

evident from the LHP of Fig. 2—is the fact that there is
a finite time duration Δt of the cosmic expansion in the
model (6). In Fig. 3 a plot of Δt vs the free parameter γ

is shown. As clearly seen, the smaller γ is, the larger Δt.11

The finite time duration of the cosmic history—into the
future—signals a big rip-type singularity since the scale
factor blows up within a finite time interval [34]. As seen
also from Fig. 2, the energy density of the magnetic field is
a minimum [ρmin

B ¼ ffiffiffi
γ

p
] at the value of the scale factor

a� ¼ ðF0=2
ffiffiffi
γ

p Þ1=4. Notice also that as the scale factor
grows up above a�, the energy density of the field starts
increasing in such a way that

a → ∞ ⇒ ρB → ∞:

In other words, in the NLED model (6) the magnetic field
behaves like a phantom field, but without actual phantom
matter. Within the finite time taken by the Universe to go
from a size ∼a� to an infinite size, the energy density of the
magnetic field grows up from ρmin

B to an infinite density
universe, while _H goes from negative values into infinite
positive values. This is why the fate of the cosmic evolution
in this model is a catastrophic big rip singularity.
Summarizing, in the model of Ref. [6]—see also [7]—
there occur two curvature singularities: (i) the initial big
bang singularity,12 and (ii) the final big rip singularity. The
entire cosmic history interpolates between these two
curvature singularities. The above-mentioned features have
been appropriately discussed in Ref. [6].

FIG. 2 (color online). Plots for the model (6) [L ¼ −F=4 − γ=F] for an arbitrarily chosen value of the parameter γ ¼ 0.1. In the
left-hand panel the plot of the cosmic time t vs the scale factor a is shown, while in the right-hand panel we have plotted
X ¼ fFðaÞ—solid; ρBðaÞ—dash; _HðaÞ—dash dot; c2s—dotsg.

10Do not confound with the EM invariant F.

11For the chosen value γ ¼ 0.1, Δt ¼ 4.038, while for other
values one would have ðγ;ΔtÞ ⇒ ð1; 2.2707Þ, (0.1, 4.038), (0.01,
7.1808), (0.001, 12.7694), (0.0001, 22.7076), etc. For γ ¼ 0 one
would have an infinite time duration of the cosmic history
[Δt → ∞] as it should be for a universe fueled by Maxwell
EM fields.

12At a ¼ 0, since there is a big bang singularity, ρB, as well as
H, _H, and pB blow up.
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There are, however, other troublesome aspects of this
model which were not discussed in [6]. These are related
with the classical stability and with causality. Actually, as
seen from the RHP of Fig. 2, at a� ¼ ðF0=2

ffiffiffi
γ

p Þ1=4 where
ρB is a minimum, there is a vertical asymptote of c2sðaÞ
where the square sound speed blows up. To the right of the
asymptote [aðtÞ > a�] the square sound speed is a negative
quantity. Hence, starting at the Universe size where the term
1=F dominates—i.e., at the minimum of ρB—and up to the
end of the cosmic history, c2s < 0 in this model. This means
that a violent instability against small fluctuations of the
background is developed due to the term 1=F, which causes
the model to be unable to account for the accelerated phase
of the cosmic expansion. Additionally, as seen in the RHP
of Fig. 2, there is an F interval to the left of the asymptote at
a�, where the square sound speed generously exceeds the
local speed of light squared:

lim
a→a−�

c2s ¼ ∞:

This raises a not less important causality issue due to
superluminal propagation of the small fluctuations of the
background energy density around ρB ¼ ρmin

B .

VII. HYBRID COSMIC HISTORY

The authors of Ref. [7] proposed a hybrid model which
interpolates between (5) and (6). It was given by the
Lagrangian density (7), which is a combination of the above
Lagrangians. Here the quadratic term ∝ F2 dominates in

very early epochs, the Maxwell term ∝ −F dominates in the
radiation era, while the last term ∝ −F−1 is responsible for
the accelerated phase. As for the model (6), this model does
not have the standard linear weak field Maxwell limit [7].
The associated energy density of the magnetic field

ρB ¼ −
4αF3 − F2 − 4γ

4F
; (32)

while the corresponding parametric pressure

pB ¼ −
20αF3 − F2 þ 28γ

12F
: (33)

The energy density has extrema at F-s which are roots of
the algebraic equation

dρB
dF

¼ −
8αF3 − F2 þ 4γ

4F2
¼ 0;

F0 ¼
k2 þ kþ 1

24αk
;

F� ¼ −ðk − 1Þ2 � ffiffiffi
3

p
iðk2 − 1Þ

48αk
; (34)

where

k ¼ kðα; γÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3456γα2 þ 48α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3γð1728γα2 − 1Þ

q
3

r
:

Depending on the values of the free parameters α, γ there
can be two extrema of ρB—a maximum and a minimum—
or none. The sign of

d2ρB
dF2

¼ −
2αF3 − 2γ

F3
;

determines whether the given extremum—provided it
exists—is a maximum or a minimum. This is clearly
seen from the top panels of Fig. 4, where the energy
density of the magnetic field ρB is plotted against
F ¼ 2B2, for different choices of the free parameters
ðα; γÞ: (0.01, 0.1)—LHP, (0.1, 0.1)—center panel, and
(0.1, 0.01)—RHP. In the figure the model (5) is represented
by the solid curve, while the model (6) is depicted by the
dashed curve, and the dash-dotted curve is for the hybrid
model (7). In all cases the hybrid model interpolates
between (5) at large values of the EM invariant F, and
(6) at small F-s.
Since at large F-s the term ∝ 1=Fmay be neglected, then

in the model (7) there is also an upper bound on F which,
depending on the free parameters [α, γ], may or may not
coincide with the one for the model (5) [F ¼ 1=4α] but, in
any case, is very close to it. In the present case, as in (5),
there is a bounce at the upper bound of F, which is
correlated with a local maximum of the background energy

FIG. 3 (color online). Plot of the time duration of the cosmic
history Δt vs the free parameter γ, for the model (6)
[L ¼ −F=4 − γ=F]. Only the parameter interval γ ∈ ½0.001; 1�
is shown.
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density ρB. Basically, the behavior in the neighborhood of
the bounce—both prior to and after the bounce—is very
much like the one explained in Sec. V. However, in the
distant past before the bounce—during the contracting
phase—and in the future after it, the pace of the cosmic
evolution is dictated by the term ∝ F−1 (for details see
Sec. VI).13 Hence, although the hybrid model is free of the
big bang singularity, the cosmic evolution starts a finite
time in the past in a cosmological singularity which, for the
contracting Universe, is the mirror image of the big rip in
reversed time. Then the size of the Universe decreases until
the bounce occurs, to start growing until—a finite time into
the future—the big rip singularity described in Sec. VI
develops, meaning the catastrophic end of the cosmic
evolution [7].
Troublesome as they are, the above curvature

singularities—which bound the entire cosmic history into
a finite interval of time in the hybrid model (7)—are less

problematic than the insurmountable (classical) instabil-
ities against small perturbations of the background energy
density ρB, which develop whenever the square sound
speed c2s becomes a negative quantity, and the violations
of causality associated with superluminal propagation of
these perturbations. For the square sound speed in this
model one has

c2s ¼
40αF3 − F2 − 28γ

3ð8αF3 − F2 þ 4γÞ : (35)

In the bottom panels of Fig. 4, c2s in Eq. (35) is plotted
against F for the same values of the free parameters as
before. As seen, at small F-s, c2s in the hybrid model—
dash-dotted curve—is always a negative quantity. Besides,
right before the bounce (and after it), where in the model (6)
c2s—dashed curve—has a vertical asymptote, the square
sound speed (35) becomes a very large negative quantity.
In all cases there are intervals, both at small and at large
F-s, where c2s > 1, implying obvious violations of causality
in the model.

FIG. 4 (color online). Plot of the energy density of the magnetic field ρB vs F—top panels—and of the square sound speed c2sðFÞ—
bottom panels—for arbitrarily chosen ðα; γÞ [(0.01, 0.1)—left-hand panels, (0.1, 0.1)—center panels, and (0.1, 0.01)—right-hand
panels] for the different NLED models. The solid curve is for the model given by the Lagrangian density (5), while the dashed curve is
for the model (6), and the dash dot is for the hybrid model which is based in the Lagrangian density L of Eq. (7).

13There are quite short stages before the bounce and after it,
where the Maxwellian term drives a standard radiation era.
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VIII. BORN-INFELD THEORY AND ITS
MODIFICATIONS

Here we shall show that the BI Lagrangian (1) and its
modifications (3) and (4) are also problematic and that no
compelling cosmological model can be obtained out of
them. We start with the Lagrangian (1). This was studied in
[8] with emphasis in a static electric field with spherical
symmetry—corresponding to a charged body—generating
a regular electric field configuration without singular
behavior. The gravitational contribution was not considered
by the authors. However, as long as gravity is involved, as it
is the case in cosmological settings, and magnetic universes
are considered, the Lagrangian (1) itself is not of interest
since—as long as F ∝ a−4, and given that F is unbounded
in the theory (1)—the big bang singularity develops in the
corresponding cosmological model. An appropriate—and
subtle—modification of (1) can be given by the following
Lagrangian density:

L ¼ −γ2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F=2γ2

q �
: (36)

This theory has the correct linear weak field Maxwell limit
and the field invariant F is a bounded quantity:
0 ≤ F ≤ 2γ2. This amounts to removing the big bang
singularity from the corresponding cosmological model.
The energy density of the magnetic field ρB and the

corresponding parametric pressure pB are given by

ρB ¼ γ2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F=2γ2

q �
; pB

¼ γ2
�

1 − F=6γ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F=2γ2

p − 1

�
: (37)

While ρB in (37) has no extrema, in the interval 0 ≤ F ≤
2γ2 it is a bounded quantity 0 ≤ ρB ≤ γ2. The fact that ρB is
always a finite quantity—as well as H2—does not mean
that the cosmological model based in (36) is free of
curvature singularities. Actually, at the upper bound
F� ¼ 2γ2—where the energy density of the magnetic field
attains also an upper bound ρ�B ¼ γ2—the parametric
pressure pB blows up. Besides, at F� the scale factor is
a finite quantity aðtÞ ¼ a� ¼ ðF0=2γ2Þ1=4. This means that
at F� a sudden curvature singularity develops.
The square sound speed for the model (36) is

c2s ¼
1

3

�
2γ2 þ F
2γ2 − F

�
:

As long as F ≤ 2γ2 in this model, c2s is always a positive
quantity so that the stability issue does not arise. However,
at F� the square sound speed is a vertical asymptote, i.e., as
F → 2γ2, c2s → ∞, it grows up without bounds. This fact
may raise serious causality issues in the F domain where

the nonlinear effects are supposed to be dominating in this
theory.
A modification of the BI Lagrangian (1) was proposed in

Ref. [9]. With the hope to adequate the BI theory to the case
of a magnetic universe with the field invariant F bounded,
the authors added a term quadratic in F within the square
root in (1) and, besides, removed the term ∝ γ2 resulting in
the following Lagrangian density:

L ¼ −γ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F=2γ2 − α2F2

q
:

As clearly seen this theory does not contain the classical
linear Maxwell limit, since at weak field

L ≈ −γ2 − F=4:

Even if the dynamics of the classical EM fields is not
modified by the term ∝ −γ2, quantum aspects related with
the zero-point (vacuum) fluctuations of these fields are
indeed included, which amount to a cosmological constant
in a cosmological context. Since W in Eq. (3) is to be real,
then the EM invariant F is constrained to take values in the
finite interval 0 ≤ F ≤ Fþ, where

Fþ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16α2γ4

p
4α2γ2

:

The energy density of the magnetic field in this model
ρB ¼ −L vanishes at F ¼ Fþ hence, the field invariant F
takes values in the finite interval 0 ≤ F ≤ Fþ. Since
F ¼ F0=a4, the above means that the scale factor of the
Universe never vanishes, i.e., there is no big bang singu-
larity in this model. The energy density of the magnetic
field is a maximum at

F ¼ Fc ¼
1

4α2γ2
⇒ ρmax

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16α2γ4

p
4α

;

while at vanishing F ¼ 0, it is nonvanishing [ρBð0Þ ¼ γ2],
due to inclusion of the energy density of vacuum field
fluctuations through the term −γ2 in the Lagrangian
density. The parametric pressure

pB ¼ −
γ2

3

ð3þ F=2γ2 þ α2F2Þ
W1=2 ;

where W ¼ 1þ F=2γ2 − α2F2 was defined in (3), is
always negative. Notice that, at vanishing F ¼ 0,

pB ¼ −γ2 ¼ −ρB;

i.e., the magnetic fluid behaves as a cosmological constant.
This was expected in this model since, as explained above,
at the linear weak field limit the present theory behaves as
Maxwell theory plus a cosmological constant. At the upper

NO COMPELLING COSMOLOGICAL MODELS COME OUT OF … PHYSICAL REVIEW D 89, 084047 (2014)

084047-11



bound F ¼ Fþ, where the nonlinear effects dominate the
dynamics of this model, sinceW ¼ 0, then the pressure pB
blows up—see Fig. 5—while the scale factor of the
Universe at this field value

Fþ ¼ F0

a4
⇒ a ¼

�
4α2γ2F0

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16α2γ4

p �
1=4

is a finite quantity. This means that a sudden curvature
singularity—not better than the big bang—develops due to
the nonlinear effects in this theory. But this is not the worst
news for this model.
The square sound speed is given by

c2s ¼
1

3γ2

�
γ2 −

ð1þ 16α2γ4ÞF
Wð1 − 4α2γ2FÞ

�
: (38)

It is seen from this expression that at vanishing field
F ¼ 0, c2s ¼ 1=3. In general, while for 0 ≤ F ≤ Fr, where
Fr is the positive real root of the cubic equation

8α4γ4F3 − 6α2γ2F2 − ð1þ 40α2γ4ÞF þ 2γ2 ¼ 0;

the square sound speed meets the required bounds
1 > 1=3 ≥ c2s ≥ 0, for Fr < F < Fc ¼ 1=4α2γ2 it is a
negative quantity. Another important feature seen from
Eq. (38) is that the square sound speed has vertical
asymptotes: (i) at F ¼ Fc, where the energy density of
the magnetic field is a maximum, and (ii) at the upper
bound F ¼ Fþ. This is illustrated in the RHP of Fig. 6,
where a plot of c2s vs F is shown for arbitrarily chosen
values of the free parameters. As one approaches the

asymptote at F ¼ Fc from the left—while F takes values
in the interval Fr < F < Fc—the square sound speed takes
increasingly negative values,

lim
F→F−

c

c2s ¼ −∞;

thus causing insurmountable classical instability of small
perturbations of the background. In the interval between the
asymptotes (Fc < F < Fþ) the square sound speed is
positive and always exceeds the local speed of light squared
(c2s > 1).14 This may raise serious causality issues [29].
A modification of the BI Lagrangian (1) which keeps the

spirit of (3) but which—unlike this latter Lagrangian—does
actually have the classical linear weak field Maxwell limit,
is the Lagrangian density (4). The energy density of the
magnetic field in this case is given by

ρB ¼ γ2ðW1=2 − 1Þ: (39)

It vanishes at vanishing field [F ¼ 0] as it should be for an
EM theory which respects the linear Maxwell limit. The

FIG. 5 (color online). Plots of the parametric pressure of the magnetic field pB vs F, for the models (3)—solid curve, and (4)—dashed
curve, for chosen values of the free parameters ðα2; γ2Þ ¼ ð0.01; 1Þ. In the right-hand panel only pB ¼ pBðFÞ for the model (3) is
plotted. For the model (4), since 0 ≤ F ≤ 1=2α2γ2 ¼ 50, at the upper bound of the F invariant (F ¼ 50), the pressure is a finite
(negative) quantity. As shown in the right-hand panel, for the model (3), since 0 ≤ F ≤ Fþ ¼ 51.9258, as one approaches to Fþ the
absolute value of the (negative) pressure jpBj unboundedly grows up.

14It is not difficult to show that, for F-s in the interval
Fc < F < Fþ, c2s is a minimum at the real positive root F ¼
Fmin of the cubic equation 8α2γ2F3 − 3F2 − 1=α2 ¼ 0:
c2s;min ¼ c2sðFminÞ. It can be shown that

lim
αγ2→0

c2s;min ¼ 17=3 > 1; lim
αγ2→∞

c2s;min ¼ 5=3 > 1:

This means that, for Fc < F < Fþ, independent of the values of
the free parameters α, and γ, the minimum value of the square
sound speed always exceeds the speed of light.
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energy density of the magnetic field in Eq. (39) is non-
negative in the interval

0 ≤ F ≤
1

2α2γ2
< Fþ:

Hence the field F is bounded to this interval in this model.
The scale factor of the Universe never vanishes, meaning
that the model is free of the big bang singularity.
The parametric pressure of the magnetic field is depicted

by the following equation:

pB ¼ −γ2ð
ffiffiffiffiffi
W

p
− 1Þ þ ð1 − 4α2γ2FÞF

3
ffiffiffiffiffi
W

p :

It is always a finite quantity since the upper bound on the
values F can take in this model [F ¼ 1=2α2γ2] is always
below the value Fþ, at which W vanishes. Hence, this
model is also free of curvature singularities of the sudden
type. Nevertheless, it is not free of the serious stability and
causality problems originated from violations of the bounds
0 ≤ c2s ≤ 1. Actually, in this model c2s exactly coincides
with the one for the model (3) which is given by Eq. (38).
These only differ in that the vertical asymptote at
F ¼ Fþ—which is present in the model (3)—in this case
does not arise. Notwithstanding, the asymptote at Fc ¼
1=4α2γ2 is still there, and the problem with negativity
of the square sound speed—for F-s to the left of the
asymptote—still stands, as well as the causality problem
associated with c2s > 1 to the right of the asymptote. Just
like in the case of (3).

IX. DISCUSSION AND CONCLUSIONS

Although experiment (observations) is the one who
ultimately decides whether a given physical theory is right
or wrong, there are a few physical principles on which
the fundamental theories of physics are grounded, which—
conventional wisdom states—should be always satisfied.
Among them causality plays a special role. Besides,
physical theories which are intended to describe our present
Universe should be stable against small perturbations of the
background since, otherwise, the world as we see it would
be the result of pure chance and not of the joint synchron-
ized action of the fundamental laws of physics. One may
think of these basic principles as a kind of coarse filter for
plausible theories, while experimental/observational testing
represents such finest possible filter. In a cosmological
context one has, for instance, the type Ia supernovae and
HðzÞ data tests [35]. Any feasible cosmological model
has to pass these tests (among others). But, what if prior
to testing a given cosmological model by means of the
sophisticated techniques which are involved in the data
analysis (see, for instance, [36,37]), one performs a simple
check of the mentioned basic principles? The result might
be unexpected.
In the present paper we have performed a simple check

of stability and causality of several NLED-based theories,
and we have shown that none of them can be a plausible
cosmological model. Since, under the assumptions made
here, the magnetic universe can be pictured as a homo-
geneous and isotropic FRW spacetime filled with a purely
magnetic fluid, small perturbations of the background
should propagate at subluminal (at most luminal) local

FIG. 6 (color online). Plots of the energy density of the magnetic field ρB—left-hand panel—for the models (3)—solid curve, and
(4)—dashed curve, and of the square sound speed c2s (exactly the same for both models)—right-hand panel—for arbitrarily chosen values
of the free parameters ðα2; γ2Þ ¼ ð0.01; 1Þ. It is seen that, at F ¼ Fc, where the energy density of the magnetic field is a maximum, the
square sound speed has a vertical asymptote. To the left of the asymptote there is an intervalΔF, where c2s is a negative quantity. Besides, as
one approaches to Fc from the left, c2s → −∞. Between the asymptotes Fc < F < Fþ, the square speed of sound c2s > 1.
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speed if one wants to avoid violations of causality. Besides,
since one expects these cosmological models to be clas-
sically stable—otherwise they would not be feasible
cosmological models capable of describing a long-lasting
stage of the cosmic evolution—then, the small fluctuations
of the background energy density should obey the wave
equation δρ̈ ¼ c2s∇2δρ, with c2s ≥ 0. The following bounds
on the square sound speed are to be satisfied: 0 ≤ c2s ≤ 1.
It is surprising that such a simple and basic check can serve
to reject several cosmological models as unphysical, which,
otherwise, seem to be adequate models of our cosmos.
Take, for instance, the Born-Infeld Lagrangian (1) [8].

According to (20), the (square) speed at which small
fluctuations in a magnetic universe propagate is given by

c2s ¼
2γ2 − F

3ð2γ2 þ FÞ :

For F > 2γ2, i.e., at large field values (recall that in this
case the EM invariant F is unbounded from above), c2s < 0,
which means that the model is classically unstable. For
other modifications of BI theory (36), (3), and (4)—based
on the simple analysis of the square sound speed—not only
classical instability, but also obvious violations of causality

are present. A similar story takes place for other less
sophisticated Lagrangian densities (5)–(7). None of the
above-mentioned cosmological models (1)–(7) meets the
required bounds 0 ≤ c2s ≤ 1. Hence, these are to be rejected
as unphysical. Perhaps the addition of other cosmological
matter fields might improve this situation. We leave this for
further investigation.
Our conclusion is that, before pushing any further a

given cosmological model (experimental/observational
testing, study of physical implications, etc.), one should
perform a simple check of the basic principles of physics.
This can save time and effort.
It could be interesting to discuss the stability and

causality criteria illustrated in this paper also in the context
of other bouncing models which are not based on NLED as,
for instance, in the context of string cosmology models
where the bounce is due to a nonlocal dilaton potential [38].
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