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We describe a UV complete asymptotically fragile Lorentz-invariant theory exhibiting superluminal
signal propagation. Its low energy effective action contains “wrong” sign higher dimensional operators.
Nevertheless, the theory gives rise to an S matrix, which is defined at all energies. As expected for
a nonlocal theory, the corresponding scattering amplitudes are not exponentially bounded on the
physical sheet, but otherwise are healthy. We study some of the physical consequences of this S matrix.
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I. INTRODUCTION

A number of interesting apparently consistent low energy
effective theories giving rise to long distance modifications
of gravity has been constructed over the past decade [1–5].
Explaining the observed acceleration of the Universe follow-
ing this path, which was one of the major motivations for
these developments, remains a long shot. Nevertheless, these
models are of definite interest from both theoretical and
phenomenological points of view. In particular, they give rise
to a number of striking observational signatures, including
anomalous precession of the Moon perihelion [6,7], a strong
monochromatic gravitational line from a massive graviton
[8], hairy supermassive black holes [9], an exotic cosmic
microwave background B-mode spectrum [10], or a viola-
tion of the equivalence principle for compact astrophysical
objects [11].
On the theoretical side, all these models are effective field

theories with a very low cutoff scale and it remains to be seen
whether any of them can be UV completed into a micro-
scopic theory with acceptable physical properties. There is a
common underlying physical reason why finding a UV
completion for these models is hard. One of the prices (or
gains, depending on a viewpoint) to pay for affecting gravity
at long distance scales is the possibility of superluminal
signal propagation. This results in a tension between locality
and causality making it impossible to construct a conven-
tional UV completion [12]. The tension is especially severe
in long distance modifications of gravity possessing a
Poincaré invariant ground state, as required for applying
the arguments of [12]. A somewhat related tension in
Lorentz-violating scenarios arises in the presence of black
hole horizons [13].
The simplest toy model, where the arguments of [12]

apply, describes a single Goldstone boson X with an
effective Lagrangian of the form

L ¼ 1

2
ð∂XÞ2 þ c

Λ4
ð∂XÞ4 þ � � � : (1)

It is straightforward to construct a UV completion for this
model if the constant c is positive (we work in the mostly
“−” signature). On the other hand, despite its benign
appearance, this simple effective field theory cannot be
UV completed into a consistent local microscopic quantum
theory for negative values of c. The physical reason for this
is the existence of classical backgrounds (such as X ∝ t)
exhibiting superluminal propagation of small perturbations.
At this stage two viewpoints are possible. The conservative

conclusion is that this problem signals an incurable pathology
and effective field theories with wrong sign operators should
be discarded. However, an adventurous person may argue
that superluminality simply indicates that one should look for
a UV completion beyond the realm of conventional quantum
field theories. Of course, to justify the second viewpoint one
needs to construct an example of such a UV completion, so
that itbecomespossible to judgewhether itsphysicalproperties
are acceptable. The goal of this paper is to provide a first
example of this kind and to study its physical properties.
A disclaimer is in order. All of our construction operates

in two space-time dimensions. Two-dimensional theories are
special in many respects. In particular, unlike in higher
dimensional theories, in two dimensions superluminality
does not allow one to construct smooth backgrounds exhib-
iting closed timelike curves. Somewhat related to this, in two
dimensions it is possible to introduce an alternative causal
structure, which is compatible with Lorentz symmetry, yet
allows for superluminal (in fact, instantaneous) signal propa-
gation. Based on this observation examples of UV complete
Lorentz-invariant superluminal theories have already been
constructed in the past [14,15]. However, the setup consid-
ered here relies on peculiarities of two-dimensional physics
to a much lesser extent and the possibility of its extension
to higher dimensional models appears more likely.

II. DESCRIPTION OF THE SETUP

Our construction is based on recent progress achieved
in understanding the dynamics of long strings [16,17].

PHYSICAL REVIEW D 89, 084044 (2014)

1550-7998=2014=89(8)=084044(6) 084044-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.084044
http://dx.doi.org/10.1103/PhysRevD.89.084044
http://dx.doi.org/10.1103/PhysRevD.89.084044
http://dx.doi.org/10.1103/PhysRevD.89.084044


One starts with a classical Nambu-Goto action, describing
ðD − 2Þ scalar fields Xi (transverse perturbations of a
string),

SNG ¼ −l−2
s

Z
d2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðηab − l2

s∂aXi∂bXiÞ
q

; (2)

where l−2
s is the string tension. This action is the result of

gauge fixing the covariant form of Nambu-Goto in a unitary
gauge, to avoid the complications that arise when defining an
S matrix for theories with constraints such as in conformal
gauge. At the quantum level this may be considered as an
effective theory similar to the Goldstone Lagrangian (1).
This theory is naively nonrenormalizable. Famously, how-
ever, it can be consistently quantized when the number of
flavors is equal to 24, giving rise to a critical bosonic
string [18].
The traditional treatment of string dynamics focuses on

the properties of short (open or closed) strings, which is
natural if the goal is to provide a target space-time
interpretation. However, for the purpose of this paper we
are mainly interested in a purely two-dimensional inter-
pretation of (2). From this perspective the most natural and
simplest set of observables to consider are the S matrix
elements for the scattering of world sheet perturbations of
an infinitely long string. Geometrically these represent
wiggles (or phonons) propagating along the string. As
explained in [17], in this language the critical string can be
defined by its exact S matrix. The theory is integrable and
reflectionless, so that the two-particle scattering is purely
elastic and is characterized by the phase shift of the form

e2iδðsÞ ¼ eisl
2
s=4; (3)

where s is the Mandelstam variable. Phase shifts for
multiparticle processes are obtained by summing pairwise
the phase shifts of all the colliding particles.
Despite its simplicity, the phase shift (3) exhibits a

number of remarkable properties, and corresponds to an
integrable theory of gravity rather than to a conventional
field theory. In particular, the UVasymptotics of this theory
are not controlled by a conventional fixed point. This is
clear from the form of the phase shift (3) which retains a
nontrivial dependence on the microscopic length scale ls at
arbitrarily high energies. Clearly, this is incompatible with
scale invariant behavior in the UV. This gives rise to a
number of unconventional features, and this type of
asymptotic behavior was called “asymptotic fragility.”
An asymptotically fragile phase shift (3) satisfies all the

properties expected from a healthy S matrix. In particular, it
is analytic and polynomially bounded everywhere on the
physical sheet, which is usually taken as a definition of
locality in the S-matrix language. On the other hand, it
exhibits an essential singularity at s → ∞, which prevents
one from defining local off-shell observables, corresponding

to (3). This is one of the reasons why this theory is
gravitational, rather than a conventional field theory.
Another gravitational property of the model is the universal
time delay proportional to the center of mass energy of the
collision,

δtdel ¼
1

2
El2

s ;

which may be considered as an integrable precursor of black
hole formation and evaporation.
Perhaps the most direct proof that the phase shift (3)

indeed defines a critical string comes from calculating the
finite volume spectrum of the theory using the thermody-
namic Bethe ansatz (TBA) technique [19,20]. This way one
exactly reproduces the spectrum of a critical bosonic string.
As a further check, it is straightforward to see that the

phase shift (3) agrees with the perturbative tree-level and
one-loop amplitudes following from the Nambu-Goto
action (2) at D ¼ 26. However, the action (2) is non-
renormalizable and presumably at higher loop order has to
be supplemented with an infinite set of scheme-dependent
counterterms to reproduce the phase shift (3).
Note, that the phase shift (3) defines a consistent

relativistic two-dimensional theory for an arbitrary number
of flavors. However, for D ≠ 26 the one-loop amplitude
following from the Nambu-Goto action differs1 from (3) by
a rational annihilation term (the Polchinski-Strominger
interaction [22]). To reproduce (3) for D ≠ 26 the action
(2) needs to be supplemented with a counterterm, which
cancels this effect. This counterterm is perfectly consistent
from two-dimensional perspective, but incompatible with
nonlinearly realized target space Poincaré symmetry.
A further discussion of this family of integrable models

can be found in [16,17]. Here, instead, let us move directly
to the main point and describe the superluminal setup.
The basic idea is very simple and motivated by the

following observation. Note that, unlike what one may be
used to in more sophisticated quantum theories, the pertur-
bative low energy expansion for the phase shift (3) is not
asymptotic. It has an infinite radius of convergence and the
phase shift is given simply by the sum of all perturbative
terms. This suggests that flipping the sign of the coupling
constant, l2

s , may also result in a well-defined theory.
So, inspired by the success of this approach for a world

sheet theory of a bosonic string, let us try to define a new
integrable theory by its exact scattering phase shift δn of
the form

e2iδnðsÞ ¼ e−isl
2
s=4; (4)

where, as before, we assume l2
s > 0. When expanded at

low energies this scattering amplitude violates the positivity

1D ¼ 3 is another interesting exceptional case, cf. [21].
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condition of [12]. It can be reproduced from the action (2),
with l2

s → −l2
s , and supplemented with the same set of

scheme-dependent counterterms as required to reproduce
the conventional phase shift (3). Geometrically this action
describes an infinitely long string in a space-time with
ðD − 1Þ time coordinates and a single spatial coordinate.
The target space interpretation of such a system is highly
obscure, but for our purposes we do not need it and will
consider the system from a purely two-dimensional point
of view.
In agreement with general arguments of [12] this theory

is even more nonlocal than the world sheet theory of a
conventional string (3). Namely, not only does the phase
shift (4) exhibit an essential singularity at the infinity, it is
also polynomially unbounded on the physical sheet.
This represents an interesting step forward compared to
the usual situation with superluminal effective theories.
Conventionally, these theories are nonrenormalizable, and
one simply concludes that superluminality indicates the
absence of the UV completion. Here, the theory is non-
renormalizable, but we managed to construct finite on-shell
scattering amplitudes. We still are not able to determine
local off-shell observables, but the same situation holds for
the conventional string world sheet theory, which is known
nevertheless to be an interesting and healthy physical
system. So an interesting question arises to compare the
two models and to characterize in what sense the “wrong”
sign theory is pathological as compared to its “right” sign
cousin, if this is really the case.
In the rest of the paper we will make several steps in this

direction, by probing some of the physics following from
the superluminal phase shift (4). At the technical level all of
our calculations are close counterparts of the corresponding
steps in the analysis of the “right” sign theory (3).
Essentially, they can be performed by flipping the sign
of l2

s in the formulas of [17]. Nevertheless, as we will see,
the resulting physics turns out to be quite different.

III. CLASSICAL TIME ADVANCE

Let us start by illustrating superluminal properties of the
phase shift (4) as seen in the classical limit. For simplicity,
let us consider a single flavor case, so that the correspond-
ing classical action is

S ¼ l−2
s

Z
dτdσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

sð∂XÞ2
q

: (5)

In agreement with the discussion in the Introduction,
superluminality is manifest when considering a classical
background of the form

Xcl ¼
vτ
ls

:

Namely, the quadratic action for small perturbations
π around this background takes the form

S2 ¼
Z

dτdσ

�
1

2ð1þv2Þ1=2 ð∂πÞ
2−

v2

2ð1þv2Þ3=2 ð∂τπÞ2
�
:

This gives rise to a linear dispersion relation

ω ¼ csk

with a superluminal velocity

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
:

Related to this superluminality the phase shift (4) gives
rise to a time advance

δtad ¼
1

2
El2

s (6)

for scattering processes around the trivial background
X ¼ 0. It is instructive to see how this time advance comes
out at the classical level. For this purpose let us consider
a purely left-moving field configuration, which is always
a classical solution for the action (5),

Xcl ¼ Xðτ þ σÞ:
Understanding the scattering of a small right-moving
perturbation off this background amounts to studying the
null geodesics propagating in the metric induced by the
classical solution

ds2 ¼ ðηab þ l2
s∂aX∂bXÞdσadσb

¼ ð1þ l2
sX02Þdτ2 þ 2l2

sX02dσdτ − ð1 − l2
sX02Þdσ2:

The null geodesic equation is given by

dτ
dσ

¼ −l2
sX02 þ 1

l2
sX02 � 1

;

where the upper sign corresponds to a right-moving
excitation which experiences a nontrivial time shift. We
see this is a time advance since τ0 < 1. Note that τ0 can even
become negative for large enough X0. In this case the right
mover moves “back in time” at intermediate times, which
simply indicates that τ is not a good Cauchy time for such
a background. The time advance is given by

δtad ¼
Z

∞

−∞
dσð1 − τ0Þ

¼
Z

∞

−∞
dσ

2l2
sX02

l2
sX02 þ 1

¼
Z

∞

−∞
dσþl2

sX02ðσþÞ ¼ l2
sΔE; (7)

where ΔE is the energy of the classical solution relative to
the vacuum. This classical time advance exactly agrees with
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(6), following from the exact quantum S matrix, after one
takes into account that the expression (6) calculates the time
shift in the rest frame of the colliding wave packets, as
opposed to the “lab frame” time advance (7).

IV. THERMODYNAMICS AND FINITE
VOLUME SPECTRUM

An important piece of physical information, which
becomes accessible when the exact S matrix is known,
is the finite temperature equation of state of the system, i.e.
the free energy density as a function of temperature, fðTÞ.
For an integrable theory it can be extracted using the
(ground state) TBA [19]. Moreover, for a Lorentz-invariant
theory, free energy determines also the vacuum Casimir
energy E0ðRÞ on a circle of circumference R through

E0ðRÞ ¼ RfðR−1Þ:

The derivation of the ground state TBA equations for a
superluminal phase shift (4) is completely parallel to the
one presented in [17] for a conventional string. As
expected, the result is different only by a flip of a sign
in front of l2

s . Namely, the free energy density is given by

fðR−1Þ ¼ −l−2
s þ 1

2πR

XD−2

j¼1

Z
∞

0

dp0 ln ð1 − e−Rϵ
j
Lðp0ÞÞ

þ 1

2πR

XD−2

j¼1

Z
∞

0

dp0 ln ð1 − e−Rϵ
j
Rðp0ÞÞ;

where the “pseudoenergies” ϵL;R are determined from
a system of integral equations of the form

ϵiLðpÞ ¼ p

�
1 −

l2
s

2πR

XD−2

j¼1

Z
∞

0

dp0 ln ð1 − e−Rϵ
j
Rðp0ÞÞ

�

ϵiRðpÞ ¼ p

�
1 −

l2
s

2πR

XD−2

j¼1

Z
∞

0

dp0 ln ð1 − e−Rϵ
j
Lðp0ÞÞ

�
:

Just like for a conventional string, these equations are
straightforward to solve analytically. By picking up the
solution which approaches the free theory in the limit
l2
s → 0, we obtain

E0ðRÞ ¼ RfðR−1Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

l4s
þ 4π

l2s

D − 2

12

s
:

Not surprisingly, this expression closely resembles the
ground state energy of a bosonic string. One major differ-
ence however, is that the free energy is real at all temper-
atures. This means that the Hagedorn behavior is not
present in this theory. In a sense, the thermodynamics of

a superluminal theory is less pathological than that of a
conventional string.
Related to this the dependence of the energy density on

the pressure,

ρ ¼ p
1þ l2sp

; (8)

does not exhibit a singularity, which was present for a
conventional string.
The absence of the Hagedorn behavior is straightforward

to understand. From a two-dimensional perspective the
Hagedorn behavior arises as a consequence of a large
binding energy following from the phase shift (3). This
results in the fast growth of the density of states implying
the divergence of the heat capacity in the thermodynamic
limit of the theory. By flipping the sign of l2

s we replaced
attraction with repulsion, which eliminated the Hagedorn
behavior.
To confirm this interpretation let us take a look at the

spectrum of the excited states of the superluminal theory in
a finite volume. Following the derivation in [17] we obtain

EðN; ~NÞ ¼ −
�
4π2ðN − ~NÞ2

R2
þ R2

l4s
−
4π

l2s

×

�
N þ ~N −

D − 2

12

��
1=2

; (9)

where the positive integers N; ~N count the total left- and
right-moving Kaluza-Klein momentum of a state (in units
of 2π=R). For a conventional bosonic string these would be
called the levels of a state. It is straightforward to see now
that the two-particle binding energy is positive

ΔE ¼ Eð1; 1Þ − Eð0; 0Þ − 2ðEð1; 0Þ − Eð0; 0ÞÞ > 0

i.e., the interaction is repulsive.
A further inspection of the spectrum (9) reveals, how-

ever, that in spite of the absence of the Hagedorn behavior
for the ground state, this spectrum exhibits an even more
bizarre property. Namely, for any value of R there are
infinitely many states with imaginary energies. We illus-
trated this behavior in Fig. 1, where we have shown the
region of positive and negative E2 in the ðN; ~NÞ plane for
several values of D and R=ls. This property indicates that
the superluminal theory cannot be put in a finite volume, at
least in a conventional way.
Pathological at first sight, this behavior is straightfor-

ward to understand. Indeed, as a consequence of the time
advance (7) two points at the same constant time surface
become causally connected if the “string” between them is
excited to sufficiently high energy. Identification of these
two points is clearly a bad idea then, because it results in a
closed timelike curve. From (7) we can estimate that this
happen when
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l2
sΔE≃ 2πl2

sN
R

becomes of order R. This nicely matches what we observe
in Fig. 1, namely the E2 ¼ 0 curve with D ¼ 2 (which
corresponds to the classical answer for the spectrum)
touches the N axis at

Ncrit ¼
R2

2πl2
s
:

We see that the proliferation of states with imaginary energies
in the finite volume cannot be considered as a pathology of the
theory, but rather is a sign that we attempted to perform an
illegal action. It would be interesting to find whether the model
can nevertheless be consistently put in a finite volume.
Classically, this would require identification of points on
Cauchy slices, which are background dependent and in general
do not correspond to constant time surfaces. TBA, at least in its
standard form, is not an appropriate tool in such a situation, so
currently we do not know how to proceed in the quantum
theory. It is also puzzling that the TBA result exhibits an island
of apparently healthy E2 > 0 states with arbitrary large N >
Ncrit (see Fig. 1). Classically these contain a closed timelike
curve, so that their physical interpretation is obscure.

V. COSMOLOGY

Another interesting property of the conventional world
sheet theory is the presence of cosmological backgrounds
[17]. Let us see what these look like in the superluminal
theory. For simplicity, we restrict to a single field case. In a

ð1þ 1Þ-dimensional world isotropy is not a constraint, so
one is looking for homogeneous solutions. Imposing an
invariance under coordinate translations, σ → σ þ const
leaves one with only trivial vacuum solutions. Instead,
following [17], one can look for homogeneous solutions
where the isometry is generated by boosts. In fact, there is a
larger set of solutions, labeled by a continuous parameter γ,
such that the isometry is generated by the combination of a
boost and a shift of the field of the form

Xðσþ; σ−Þ → Xðð1þ ϵÞσþ; ð1þ ϵÞ−1σ−Þ − ϵγ; (10)

where σ� ¼ τ � σ. A general field configuration invariant
under (10) can be presented in the form

lsXðσþσ−Þ ¼ fðσþσ−Þ þ γ

2
log

σþ

σ−
: (11)

Then the field equation becomes

∂α2

 
α2∂α2fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2ð∂α2fÞ2 − γ2

4α2

q
!

¼ 0; (12)

where α2 ¼ σþσ−. The general solution then takes the
following form:

fðαÞ ¼ L log
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 − 4α2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 4α2

p �
þ γ log

α

γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 4α2

p
þ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 4α2

p þ C; (13)

whereC and L are the integration constants. The constantC
can be, so that the field X remains real. To get an insight
into the physics of these solutions it is instructive to inspect
the induced metric

gab ¼ ηab þ l2
s∂aX∂bX;

which determines the propagation of small perturbations.
One observes that this family of solutions splits into two
disconnected physical branches, A and B, where the field
takes real values. The A branch covers the region

4α2 > L2; γ2;

where one can introduce coordinates ðρ; λÞ defined as

σ� ¼ ρe�λ:

In these coordinates the induced metric becomes

ds2A ¼ 16ρ4 − L2γ2

ρ2ð4ρ2 − L2Þ dρ
2 þ 2

Lγ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρ2 − γ2

p
ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρ2 − L2

p dρdλ

− ð4ρ2 − γ2Þdλ2:

FIG. 1 (color online). Above is a plot of the region where
energy becomes imaginary. Blue and green are at D ¼ 2, R=ls ¼
10 and 20 respectively. Red and Yellow are atD ¼ 62, R=ls ¼ 10
and 20 respectively. The allowed region is the left of each curve.
The lines are blue, red, green, yellow as you move away from
the origin.
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By making a shift λ → λþ fðρÞ we can get rid of the off-
diagonal term in the metric, so that it takes the Friedmann-
Robertson-Walker form

ds2A ¼ 16ρ2dρ2

4ρ2 − L2
− ð4ρ2 − γ2Þdλ2

¼ dτ2 − ðτ2 þ L2 − γ2Þdλ2; (14)

where at the last step we introduced a new time coordi-
nate τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρ2 − L2

p
.

The B branch of solutions covers the region

4α2 < L2; γ2:

One can repeat all the same steps here, and obtain the
metric of the form

ds2B ¼ ðγ2 − L2 þ r2Þdλ2 − dr2;

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 4ρ2

p
.

We conclude that theA branch describes a cosmological
solution and the B branch corresponds to a static space-
time. For γ2 < L2 the cosmology is nonsingular, while the
static solution exhibits a curvature singularity. For larger
values of γ the singularity moves on the cosmological
branch. This does not appear very different from what one
finds for a conventional string. The solutions take the same
form there with the role of time and space interchanged.
There, for γ2 < L2 one finds a smooth static geometry and
for γ2 > L2 a nonsingular bouncing cosmology.

VI. DISCUSSION

To summarize, it is fair to admit that our results are
inconclusive at this point. We did not manage to identify a
clean pathology associated with a superluminal sign.
Definitely, this theory allows one to calculate a smaller
set of observables than a conventional renormalizable
quantum field theory, but the same holds also for the
conventional string world sheet theory. Nevertheless, the
latter definitely gives rise to a rich and healthy system.
The verdict for the former is not out yet. Both theories
exhibit a number of gravitational features. Gravitational
theories are expected to be less predictive than quantum
field theories by not allowing one to calculate local off-shell
observables. Perhaps the most interesting lesson from the
construction presented here, is that it raises the question
where is the proper place to stop on a slippery road between
conventional UV complete quantum field theories and
nonrenormalizable effective theories. The former allow
sharp prediction of both on-shell and off-shell observables.
The latter do not allow sharp predictions at all in the
mathematical sense, but often are quite adequate from
the practical point of view. Gravitational theories live in
the middle.
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