
General relativistic hydrodynamics in curvilinear coordinates

Pedro J. Montero,1 Thomas W. Baumgarte,1,2 and Ewald Müller1
1Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1,

D-85748 Garching bei München, Germany
2Department of Physics and Astronomy, Bowdoin College, Brunswick, Maine 04011, USA

(Received 30 September 2013; published 9 April 2014)

In this paper we report on what we believe is the first successful implementation of relativistic
hydrodynamics, coupled to dynamical spacetimes, in spherical polar coordinates without symmetry
assumptions. We employ a high-resolution shock-capturing scheme, which requires that the equations be
cast in a flux-conservative form. One example of such a form is the “Valencia” formulation, which has been
adopted in numerous applications, in particular in Cartesian coordinates. Here we generalize this
formulation to allow for a reference-metric approach, which provides a natural framework for calculations
in curvilinear coordinates. In spherical polar coordinates, for example, it allows for an analytical treatment
of the singular r and sin θ terms that appear in the equations. We experiment with different versions of
our generalized Valencia formulation in numerical implementations of relativistic hydrodynamics for
both fixed and dynamical spacetimes. We consider a number of different tests—nonrotating and rotating
relativistic stars, as well as gravitational collapse to a black hole—to demonstrate that our formulation
provides a promising approach to performing fully relativistic astrophysics simulations in spherical
polar coordinates.
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I. INTRODUCTION

Solving many problems of great astrophysical interest,
including gravitational collapse to black holes, mergers of
a neutron stars with a binary companion, black-hole accre-
tion disks, and supernovae explosions, requires modeling
relativistic fluids in either fixed or dynamical spacetimes. A
key feature of inviscid fluids is the appearance of shocks
and contact discontinuities, i.e. the development of disconti-
nuities in the fluid variables. These discontinuities pose a
challenge to traditional numerical methods, for example
finite-difference or spectral methods, so that special numeri-
cal algorithms have been developed for fluid dynamics.
Many recent applications employ so-called high-resolution

shock-capturing (HRSC) methods [1–3]. At the core of these
methods are Riemann solvers that produce either exact or
approximate solutions to Riemann problems and use these
solutions to update the fluid variables in each grid cell (see,
e.g., [4,5] for an introduction; see also [6,7] for reviews).
The application of such HRSC methods requires that the
equations of hydrodynamics be cast in flux-conservative
form. A commonly used flux-conservative form of the
equations of relativistic hydrodynamics is the so-called
“Valencia” formulation [8]. This form of the equations
has been used successfully in a large number of simulations.
Some of these simulations hold the spacetime fixed, others
adopt some approximation method to evolve the gravita-
tional fields, while others yet evolve the relativistic gravi-
tational fields self-consistently together with the fluid.
To date, most self-consistent calculations that do not make

any symmetry assumptions adopt Cartesian coordinates (see

[9–18] for some examples; see also [19,20] for a multipatch
implementation, and the CoCoNut code [21] for an imple-
mentation in spherical polar coordinates using a conformal-
flatness approximation for the gravitational fields). While
Cartesian coordinates have some desirable properties for
some applications, other applications benefit from spherical
polar or other curvilinear coordinates. Specific examples
include simulations of gravitational collapse, supernovae,
and accretion disks.
In [22] we have recently introduced a new approach for

the evolution of gravitational fields in spherical polar
coordinates. Our method adopts the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation [23–25] in a covar-
iant, reference-metric approach [26,27] (see also [28–30])
and evolves the resulting equations using a partially
implicit Runge-Kutta (PIRK) time integration method
[31,32]. The reference-metric approach introduces several
desirable features; in particular it plays a crucial role in
casting the equations in a form that allows for an analytical
treatment of the singular r and sin θ terms that appear in
spherical polar coordinates. This analytical treatment of
the singular terms, in turn, allows for stable numerical
simulations without the need to regularize the equations.
The purpose of this paper is twofold. We first generalize

the Valencia formulation of relativistic hydrodynamics
to allow for such a reference metric. An attractive feature
of this generalization, besides the fact that the resulting
equations mesh well with those for the gravitational fields
expressed in a reference-metric approach, is that all
hydrodynamical quantities, their fluxes and source terms,
are now defined as proper tensorial quantities (of weight
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zero). We derive this formalism in general and without
specializing to any coordinate system, but highlight
some specific advantages of the reference-metric approach
for numerical simulations in spherical polar coordinates.
We then report on successful numerical implementations
of these equations coupled to Einstein’s equations for the
gravitational fields, in three spatial dimensions, and without
the need of regularization. We refer to [22] for details of our
approach for the evolution of Einstein’s equations in
spherical polar coordinates.1

We experiment with different combinations of using the
equations of hydrodynamics with and without the refer-
ence-metric approach and find that, while the reference-
metric or some other accommodation of the spherical polar
coordinates is indeed crucial in the Euler equation, numeri-
cal errors are smaller if the continuity and energy equation
are left in the original version. We perform several tests for
nonrotating and rotating relativistic stars as well as collapse
to black holes. Our results demonstrate that our formulation
and methods provide a promising approach to performing
fully relativistic simulations in spherical polar coordinates,
and that they are well suited for future applications in
simulations of supernovae, gravitational collapse and other
objects of interest in relativistic astrophysics.
Our paper is organized as follows. In Sec. II we briefly

review the 3þ 1 decomposition of Einstein’s field equa-
tions, introduce the notion of a reference metric, and present
those expressions that are needed in the rest of the paper.
In Sec. III we rederive the equations of relativistic hydro-
dynamics, generalizing the approach of the Valencia for-
malism to allow for a general reference metric. We compare
with the original Valencia formalism and highlight advan-
tages of our formalism in curvilinear coordinates. In Sec. IV
we describe our numerical implementation of these equa-
tions. In Sec. V we present numerical results in spherical
polar coordinates; in particular we show results for non-
rotating and rotating relativistic stars, with and without
Cowling approximation [33], Oppenheimer-Snyder dust
collapse and the collapse of a marginally stable static star
to a black hole. We briefly summarize our findings in
Sec. VI. Throughout this paper we adopt geometric units
in which G ¼ c ¼ M⊙ ¼ 1. However, we express time in
milliseconds for the simulations of spherical and rotating
stars, and for the Oppenheimer-Snyder dust collapse we use
units G ¼ c ¼ 1 to ease the comparison with the literature.

II. THE 3þ 1 DECOMPOSITION

We assume that the spacetime M can be foliated by a
family of spatial slices Σ that coincide with level surfaces of
a coordinate time t. We denote the future-pointing unit
normal on Σ with na and write the spacetime metric gab as

ds2 ¼ gabdxadxb

¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; (1)

where α is the lapse function, βi the shift vector, and γij the
spatial metric induced on Σ,

γab ¼ gab þ nanb: (2)

Here and in the following indices a; b;…, run over
spacetime indices, while indices i; j;…, run over space
indices only. In terms of the lapse and shift, the normal
vector na can be expressed as

na ¼ ð−α; 0; 0; 0Þ or na ¼ ð1=α;−βi=αÞ: (3)

We adopt a conformal decomposition of the spatial
metric γij

γij ¼ e4ϕγ̄ij; (4)

where ψ ¼ eϕ ¼ ðγ=γ̄Þ1=12 is the conformal factor and γ̄ij
the conformally related metric.
For applications in curvilinear coordinates it is conven-

ient to introduce a reference metric γ̂ij. Wewill specialize to
spherical polar coordinates in Sec. IV, but for now the only
assumption that we will make for γ̂ij is that its determinant
γ̂ is independent of time. Even this assumption would be
easy to relax, for example for applications in cosmology.
Associated with the different types of metrics are differ-

ent covariant derivatives. In the following we denote the
covariant derivative associated with the spacetime metric
gab by ∇a, that associated with the spatial metric γij with
Di, the covariant derivative associated with the conformally
related metric γ̄ij with D̄i, and finally the covariant
derivative associated with the reference metric γ̂ij with D̂i.
We also denote the corresponding connection symbols with
ð4ÞΓa

bc, Γi
jk, Γ̄i

jk and Γ̂i
jk, respectively. We define

ΔΓi
jk ≡ Γ̄i

jk − Γ̂i
jk (5)

and note that, unlike the connection symbols themselves,
these differences are tensors, and that they can be computed
from

ΔΓi
jk ¼

1

2
γ̄ilðD̂jγ̄lk þ D̂kγ̄lj − D̂lγ̄jkÞ: (6)

If the reference metric is chosen to be the flat metric in
Cartesian coordinates, the covariant derivative D̂i reduces
to the partial derivative ∂i, all Γ̂i

jk vanish, and ΔΓi
jk ¼ Γ̄i

jk.
We assume that a numerical solution for the spacetime

metric gab is constructed by evolving the spatial metric γij
forward in time. Such an evolution also involves the
extrinsic curvature Kij

Kij ≡−γikγjl∇knl: (7)

1By “regularization” we mean a reformulation of the equations
in which all singular terms are eliminated with the help of a new
set of dynamical variables.
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The extrinsic curvature can also be expressed as

Kij ¼ − 1

2α
∂tγij þDðiβjÞ; (8)

which highlights its role as the time derivative of the spatial
metric.

III. RELATIVISTIC HYDRODYNAMICS WITH
A REFERENCE METRIC

The equations of relativistic hydrodynamics are based on
conservation of rest mass, expressed by the continuity
equation

∇aðρ0uaÞ ¼ 0; (9)

and conservation of energy momentum,

∇bTab ¼ 0: (10)

Here ρ0 is the rest-mass density, ua the fluid four-velocity,
and Tab the stress-energy tensor

Tab ¼ ρ0huaub þ pgab; (11)

where h≡ 1þ ϵþ p=ρ0 is the enthalpy, where p is the
pressure, and where ϵ is the specific internal energy. The
quantities ρ0, p, ϵ and the fluid velocity vi defined in
Eq. (20) below form the so-called primitive fluid variables.
In most recent applications, the above equations are

brought into flux-conservative form, so that HRSC
schemes can be used to find accurate numerical solutions.
In the process, a new set of hydrodynamic variables,
namely the conserved variables, are introduced. An exam-
ple of such a flux-conservative form is the “Valencia” form
of the equations (see, e.g., [6,17]). While these equations
are fully covariant, they are, in their original form, not yet
well suited for applications in curvilinear coordinates, as
we will explain in more detail below. In the following we
derive an alternative version of these equations that is based
on a reference metric approach. In Sec. V we will experi-
ment with numerical implementations of this new formu-
lation, and will find that it has significant advantages in
curvilinear coordinates, at least for the Euler equation
derived in Sec. III B.

A. The continuity equation

The covariant divergence of a vector Va can be expressed
as

∇aVa ¼ 1ffiffiffiffiffijgjp ∂að
ffiffiffiffiffi
jgj

p
VaÞ (12)

[see, e.g., Problem 8.16 (c) in [34], or Problem 7.7 (g) in
[35]], which holds for any metric and its associated

covariant derivative. In the following, we will use this
identity twice: once for the spacetime metric gab, and once
for the reference metric γ̂ij.
We start by applying (12) for the spacetime metric, for

which jgj ¼ −g, to the continuity equation (9) to obtain

0 ¼ ∇aðρ0uaÞ ¼
1ffiffiffiffiffiffi−gp ∂að

ffiffiffiffiffiffi−gp
ρ0uaÞ

¼ 1ffiffiffiffiffiffi−gp ð∂tð
ffiffiffiffiffiffi−gp

ρ0utÞ þ ∂jð
ffiffiffiffiffiffi−gp

ρ0ujÞÞ: (13)

We now use Eqs. (1) and (4) to expand the determinant of
the spacetime metric as

ffiffiffiffiffiffi−gp ¼ α
ffiffiffi
γ

p ¼ αe6ϕ
ffiffiffī
γ

p
(14)

and write the spatial terms in (13) as

∂jðαe6ϕ
ffiffiffī
γ

p
ρ0ujÞ ¼ ∂jð

ffiffiffî
γ

p
αe6ϕ

ffiffiffiffiffiffiffi
γ̄=γ̂

p
ρ0ujÞ

¼
ffiffiffî
γ

p
D̂jðαe6ϕ

ffiffiffiffiffiffiffi
γ̄=γ̂

p
ρ0ujÞ: (15)

Here we have used the identity (12) for the reference metric
γ̂ij in the last step. Inserting this last result into (13) we
obtain

∂tðe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
DÞ þ D̂jðfDÞj ¼ 0; (16)

where we have defined the density as seen by a normal
observer

D≡Wρ0 (17)

and the corresponding flux

ðfDÞj ≡ αe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
Dðvi − βi=αÞ: (18)

Here

W ≡−naua ¼ αut (19)

is the Lorentz factor between the fluid and a normal
observer, and

va ≡ γab

�
ub

W
þ βb

α

�
(20)

is the fluid velocity as measured by a normal observer. We
note that we have assumed in Eq. (16) that γ̂ is independent
of time; as we said before, this could be generalized quite
easily.
The form of (16) is exactly as in the original Valencia

formulation, except for the appearance of the factors
ffiffiffî
γ

p
in

(16) and (18), and the covariant derivative with respect to
the reference metric, D̂j, in (16). Choosing a flat metric in
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Cartesian coordinates reduces the former to unity and the
latter to a partial derivative, so that the corresponding
equation in the Valencia formulation is recovered. We also
note that we can derive equation (16) from the correspond-
ing Valencia equation directly by inserting a factor 1 ¼ffiffiffî
γ

p
=

ffiffiffî
γ

p
into the flux term ðfDÞi, and then using the product

rule for the partial derivative.
In a numerical implementation the covariant derivative in

(16) should be evaluated in terms of partial derivatives and
connection symbols [rather than the identity (12)]. Since
ðfDÞj is a tensor density of weight zero, we obtain

∂tðe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
DÞ þ ∂jðfDÞj ¼ −ðfDÞjΓ̂k

jk: (21)

Here Γ̂k
jk ¼ ∂j ln

ffiffiffî
γ

p
can be evaluated analytically from the

known reference metric.

B. The Euler equation

The divergence of a mixed-index second-rank tensor Aa
b

can be expressed as

∇bAa
b ¼ 1ffiffiffiffiffiffi−gp ∂bð

ffiffiffiffiffiffi−gp
Aa

bÞ − Ac
bð4ÞΓc

ba (22)

[see Problem 7.7 (h) in [35]], which again holds for any
metric and its associated covariant derivative.
We now derive the Euler equation by applying (22) for

the spacetime metric to a spatial projection of Eq. (10),

0 ¼ γib∇aTab ¼ gib∇aTab ¼ ∇aðgibTabÞ

¼ 1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi−gp

Ti
aÞ − Ta

bð4ÞΓa
ib

¼ 1ffiffiffiffiffiffi−gp ð∂tð
ffiffiffiffiffiffi−gp

Ti
tÞ þ ∂jð

ffiffiffiffiffiffi−gp
Ti

jÞÞ − Ta
bð4ÞΓa

ib; (23)

Using (14) we now expand

∂jð
ffiffiffiffiffiffi−gp

Ti
jÞ ¼ ∂jð

ffiffiffî
γ

p
αe6ϕ

ffiffiffiffiffiffiffi
γ̄=γ̂

p
Ti

jÞ
¼

ffiffiffî
γ

p
D̂jðαe6ϕ

ffiffiffiffiffiffiffi
γ̄=γ̂

p
Ti

jÞ þ αe6ϕ
ffiffiffī
γ

p
Tk

jΓ̂k
ij;

(24)

where we have used the identity (22) for the reference
metric γ̂ij in the last step. We now insert this result into (23)
to obtain

∂tðe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
SiÞ þ D̂jðfSÞij

¼ αe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
ðTa

bð4ÞΓa
bi − Tk

jΓ̂k
jiÞ; (25)

where we have defined the momentum density as seen by a
normal observer

Si ≡ αTi
t ¼ αgicTct ¼ αρ0hutgicuc ¼ W2ρ0hvi (26)

and its flux

ðfSÞij ≡ αe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
Ti

j

¼ αe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
ðW2ρ0hviðvj − βj=αÞ þ pδijÞ: (27)

In the above manipulations we have used

gicuc ¼ Wvi: (28)

We now evaluate the source terms on the right-hand side
of Eq. (25)

Ta
bð4ÞΓa

bi − Tk
jΓ̂k

ji ¼ Tcbð4ÞΓcbi − TcjgkcΓ̂k
ji (29)

by expanding the sums over the indices of Tab into terms
that contain only the time component T00, only mixed
components T0j, and only spatial components Tjk. The
time component picks up contributions from the spacetime
connection symbol only,

T00ð4ÞΓ00i ¼
1

2
T00∂ig00 ¼

1

2
T00∂ið−α2 þ γjkβ

jβkÞ: (30)

Here the expression in parenthesis may be interpreted as a
scalar on each spatial slice, so that we may replace the
partial derivative ∂i with the covariant derivative D̂i,

T00ga0ð4ÞΓa
0i ¼

1

2
T00ðβjβkD̂iγjk þ 2βkD̂iβ

k − 2αD̂iαÞ:
(31)

The mixed-components term may be written as

T0jðð4ÞΓ0ji þ ð4ÞΓj0i − βkΓ̂k
jiÞ

¼ T0jð∂iβj − βkΓ̂k
jiÞ ¼ T0jD̂iβj

¼ T0jD̂iðγjkβkÞ ¼ T0jðγjkD̂iβ
k þ βkD̂iγjkÞ

¼ T0jðgjkD̂iβ
k þ βkD̂iγjkÞ

¼ T0
kD̂iβ

k − T00βkD̂iβ
k þ T0jβkD̂iγjk: (32)

We note that the middle term in the last line of (32) will
cancel the middle term in (31) when we add these
expressions. Finally, we evaluate the purely spatial com-
ponents to find
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Tjkðð4ÞΓjki − γklΓ̂l
jiÞ ¼ TjkðΓjki − γklΓ̂l

jiÞ

¼ Tjk

�
1

2
∂iγkj − γklΓ̂l

ji

�

¼ Tjke4ϕ
�
2γ̄jk∂iϕþ 1

2
∂iγ̄kj − γ̄klΓ̂l

ji

�

¼ Tjke4ϕð2γ̄kj∂iϕþ γ̄jlðΓ̄l
ki − Γ̂l

kiÞÞ

¼ Tjke4ϕ
�
2γ̄jk∂iϕþ 1

2
D̂iγ̄jk

�

¼ 1

2
TjkD̂iγjk; (33)

where we have used Eqs. (5) and (6).
Collecting terms we now define

ðsSÞi ≡ αe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
ðTa

bð4ÞΓa
bi − Tk

jΓ̂k
jiÞ

¼ αe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p �
−T00α∂iαþ T0

kD̂iβ
k

þ 1

2
ðT00βjβk þ 2T0jβk þ TjkÞD̂iγjk

�
; (34)

where, in a numerical calculation, D̂iγjk can be computed
from

D̂iγjk ¼ e4ϕð4γ̄jk∂iϕþ D̂iγ̄jkÞ: (35)

Inserting the definition (34) into (25) we obtain the Euler
equation in the form

∂tðe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
SiÞ þ D̂jðfSÞij ¼ ðsSÞi: (36)

As for the continuity equation, this expression reduces to
the corresponding Valencia form of the equation if a flat
metric in Cartesian coordinates is chosen as the reference
metric. In a numerical application, we again express the
covariant derivative in terms of partial derivatives and
connection symbols, i.e.

∂tðe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
SiÞ þ ∂jðfSÞij

¼ ðsSÞi þ ðfSÞkjΓ̂k
ji − ðfSÞikΓ̂j

kj: (37)

C. The energy equation

To derive an equation for the internal energy, we consider
a projection along the normal na of the conservation of
energy momentum (10) and subtract the conservation of
rest mass (9),

na∇bTab − ∇aðρ0uaÞ ¼ 0; (38)

or

∇bðnaTab þ ρ0ubÞ ¼ Tab∇bna: (39)

On the left-hand side we again evaluate the divergence of
a vector. Proceeding exactly as in Sec. III A, applying the
identity (12) once for the spacetime metric gab and once for
the reference metric γ̂ij, we arrive at the form

∂tðe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
τÞ þ D̂jðfτÞj ¼ −αe6ϕ ffiffiffiffiffiffiffi

γ̄=γ̂
p

Tab∇bna; (40)

where we have defined the internal energy as observed by a
normal observer

τ≡W2ρ0h − p −D (41)

and the corresponding flux

ðfτÞj ≡ αe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
ðτðvj − βj=αÞ þ pvjÞ: (42)

To evaluate the right-hand side we use both (2) and (7)

Tab∇anb ¼ Tabgacgbd∇cnd

¼ Tabðγac − nancÞðγbd − nbndÞ∇cnd

¼ Tabð−Kab − γb
cna∂c ln αÞ; (43)

where the last term contains the acceleration of the normal
observer

aa ≡ nb∇bna ¼ γa
b∂b ln α: (44)

We also expand

TabKab ¼ TabgacgbdKcd

¼ T00βiβjKij þ 2T0iβjγikKjk þ TjkKjk (45)

and

Tabγb
cna∂c ln α ¼ −T00βi∂iα − T0i∂iα: (46)

Collecting terms we define

sτ ≡ αe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
ðT00ðβiβjKij − βi∂iαÞ

þ T0ið2βjKij − ∂iαÞ þ TijKijÞ (47)

and write Eq. (40) as

∂tðe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
τÞ þ D̂jðfτÞj ¼ sτ: (48)

As for the continuity equation (16) this equation should be
evaluated numerically by expanding the covariant deriva-
tive into a partial derivative and connection symbols,
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∂tðe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
τÞ þ ∂jðfτÞj ¼ sτ − ðfτÞkΓ̂j

jk: (49)

D. The generalized Valencia formulation

The continuity, Euler and energy equations can be cast in
a compact form by combining the conservative variablesD,
Si and τ, given by Eqs. (17), (26) and (41), into a vector

~q ¼ e6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
ðD; Si; τÞ: (50)

We also define a corresponding flux vector

~fðjÞ ¼ ððfDÞj; ðfSÞij; ðfτÞjÞ (51)

from Eqs. (18), (27) and (42), as well as a source vector

~s ¼ ð0; ðsSÞi; sτÞ (52)

from Eqs. (34) and (47). The continuity equation (16), the
Euler equation (36) and the energy equation (48) can then
be combined into a single equation

∂t~qþ D̂j
~fðjÞ ¼ ~s: (53)

As expected, this flux-conservative form of the equations is
in complete analogy to that of the original Valencia
formulation. The latter can be recovered by choosing the
reference metric to be the flat metric in Cartesian coor-
dinates, so that

ffiffiffî
γ

p ¼ 1 and D̂i ¼ ∂i. Reversing the
process, our equations can be obtained from the original
Valencia formulation by (a) dividing every determinant of
the metric by that of the reference metric, and (b) replacing
every spatial partial derivative, both in the flux terms and
the source terms, with covariant derivatives with respect to
the reference metric.

E. Comparison with the original Valencia formulation

Before experimenting with our reference-metric formu-
lation in numerical simulations in spherical polar coordi-
nates in Secs. IV and V, it is useful to compare some of its
more general features with that of the original Valencia
formalism.
We first note that the equations of relativistic hydro-

dynamics, when expressed in a reference-metric approach,
mesh well with the equations for the gravitational fields, if
they are also expressed with the help of a reference metric.
For example, the covariant derivatives of the conformal
metric D̂iγ̄jk that appear in the flux term (34) are also used
to compute ΔΓi

jk in Eq. (6).
Another attractive feature of our formalism is that, in the

reference-metric approach, all conserved variables, fluxes
and source terms are defined as spatial, tensorial quantities.
In the original formulation, on the other hand, these
quantities transform as tensor densities with nonzero
weight.

We can also anticipate an important advantage of our
formalism in numerical applications. For simplicity, con-
sider a static and spherically symmetric star, for which the
momentum densities vanish, Si ¼ 0, and for whichD and τ
depend on the radius r only. We also assume βi ¼ 0, that
the spatial metric is expressed as γij ¼ e4ϕηij, where ηij is
the flat metric in spherical polar coordinates,

ηij ¼ diagð1; r2; r2sin2θÞ; (54)

and where ϕ, as well as the lapse function α, depend on r
only. Clearly we would like the momentum densities to
remain zero, ∂tSi ¼ 0. It is instructive to evaluate the θ
component of this equation in both the original and the
generalized Valencia formulation.
For the original Valencia formulation, we consider

Eq. (36) with γ̂ ¼ 1 and D̂i ¼ ∂i. The flux term (27)
can then be written

ðfSÞij ¼ α
ffiffiffi
γ

p
pδij; (55)

where
ffiffiffi
γ

p ¼ e6ϕ
ffiffiffī
γ

p ¼ e6ϕr2 sin θ in spherical symmetry.
Inserting this term into (36) we obtain for the θ component

∂jðfSÞθj ¼ αp∂θ
ffiffiffi
γ

p
; (56)

which is nonzero. Analytically, this term is canceled
exactly by the term

ðsSÞθ ¼
α

ffiffiffi
γ

p
2

Tjk∂θγjk ¼
α

ffiffiffi
γ

p
2

pγjk∂θγjk

¼ αp∂θ
ffiffiffi
γ

p
(57)

in the source term (34). Here we have used the identity
7.7 (d) of [35] in the last step. Numerically, however, the
two terms (56) and (57) are treated very differently. In an
HRSC scheme, the term (56) is evaluated from a derivative
of the fluxes at the cell interfaces, which are computed from
a suitable reconstruction method. The source term (57), on
the other hand, is computed at the cell centers. Therefore,
the two terms do not cancel exactly. We have confirmed in
our numerical simulations that the resulting numerical error
leads to an increasingly large momentum density Sθ
which breaks spherical symmetry and ultimately spoils
the numerical simulation.
In our generalized formulation, on the other hand, both

the flux and source terms vanish individually. The flux term
(27) is now

ðfSÞij ¼ α
ffiffiffiffiffiffiffi
γ=γ̂

p
pδij ¼ αe6ϕpδij; (58)

which no longer depends on θ. We then have
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D̂jðfSÞθj ¼ ∂jðfSÞθj þ ðfSÞθkΓ̂j
kj − ðfSÞkjΓ̂k

θj

¼ ∂θðαe6ϕpÞ þ αe6ϕpðΓ̂j
θj − Γ̂j

θjÞ ¼ 0: (59)

The source term ðsSÞθ also vanishes identically since we
now replace ∂θ with D̂θ in (57). Using (35) we have

D̂θγjk ¼ e4ϕD̂θηjk ¼ 0: (60)

As a consequence, the generalized formalism no longer relies
on a numerical cancellation between flux and source terms.
We have found that this makes a dramatic difference in
numerical simulations, as we will describe in Sec. V below.
This problem has been recognized before, of course.

In general relativistic hydrodynamics this issue has been
addressed by [36,37]. In particular, [36] presented a
generalization of the general relativistic hydrodynamics
equations to handle this pressure term in a similar fashion.
In the simulations of [38–40], which adopt spherical polar
coordinates, a factor of r2 sin θ is factored out from at least
some terms in the Euler equation. This approach is also
implemented in some versions of the CoCoNut code [21].
In fact, the same issues arise in Newtonian hydrodynamics,
and similar solutions have been used in Newtonian sim-
ulations [41]. Our approach is more general in that it allows
for an (almost) arbitrary reference metric, and it goes
beyond just factoring out one term, in that it treats all
terms as tensorial objects in a reference-metric framework.
The resulting formalism has all the advantages that we
describe above.

IV. NUMERICAL IMPLEMENTATION IN
SPHERICAL POLAR COORDINATES

A. BSSN equations in covariant form

In spherical polar coordinates, the evolution of the
gravitational fields can be accomplished by adopting the
BSSN formalism [23–25] in a covariant, reference-metric
approach [26], and by using a PIRK time integration
method [22,31,32] that handles the coordinate singularities
very effectively (these singularities appear both at the
origin, where r ¼ 0, and on the axis where sin θ ¼ 0).
We note that an additional challenge is that inverse

factors of r and sin θ appear through the dynamical
variables themselves, and it is therefore important to treat
these appearances of r and sin θ analytically [22]. In the
implementation used in this paper we represent all tensorial
quantities in an orthonormal frame so that the correct
powers of r and sin θ are absorbed in the unit vectors, as
suggested in footnote 2 of [22]. In addition to the spatial
conformal metric γ̄ij and the conformal factor exponent ϕ,
the BSSN equations evolve the trace of the extrinsic
curvature, K, the conformal traceless part of the extrinsic
curvature, Āij, and the vector Λ̄i that plays the role of the
“conformal connection functions” Γ̄i in the original BSSN

formulation. We refer to [22] for the explicit form of the
BSSN equations that is implemented in the numerical code.
Before the BSSN equations can be integrated, we have to

specify coordinate conditions for the lapse α and the shift
βi. We will adopt a “nonadvective” version of what has
become the “standard gauge” in numerical relativity codes
using the BSSN formulation. Specifically, in all dynamical
spacetime simulations we use the “1þ log” condition for
the lapse [42] in the form

∂tα ¼ −2αK; (61)

and the “Gamma-driver” condition for the shift [43] in the
form

∂tβ
i ¼ Bi; (62a)

∂tBi ¼ 3

4
∂tΛ̄

i; (62b)

where Bi is an auxiliary vectorial quantity.

B. Time integration

The code uses a second-order PIRK method to integrate
the evolution equations in time. The PIRK scheme is
applied to the hydrodynamic and BSSN evolution equa-
tions as follows. First, the hydrodynamic conserved quan-
tities, the conformal metric components γ̄ij, the conformal
factor ϕ, the lapse function α and the shift vector βi are
evolved explicitly; second, the traceless part of the extrinsic
curvature, Āij, and the trace of the extrinsic curvature K are
evolved partially implicitly, using updated values of α, βi, ϕ
and γ̄ij; then, the Λ̄

i are evolved partially implicitly, using
the updated values of α, βi, ϕ, γ̄ij, Āij and K. Finally, Bi is
evolved partially implicitly, using the updated values of the
previous quantities. Lie derivative terms and matter source
terms are always included in the explicitly treated parts. We
refer to Appendix B in [22] for the expressions of the
source terms included in the PIRK operators.
We have implemented two versions of the reference-

metric approach to the general relativistic hydrodynamic
equations. In the first version, which we call the full
approach, we apply the reference-metric approach to all
five equations, that is the continuity equation (21), the Euler
equation (37) and the energy equation (49). In an alternative
partial approach, we apply the reference-metric approach
only to the Euler equation (37) while the continuity equation
and the energy equation are left in the original Valencia form.
We note that the partial approach casts the equations in a
form that is closer to the modifications proposed by [36,37]
than the full approach.

C. Numerics

We adopt a cell-centered grid. Specifically, we divide the
physical domain covered by our grid, 0 < r < rmax, 0 <

GENERAL RELATIVISTIC HYDRODYNAMICS IN … PHYSICAL REVIEW D 89, 084043 (2014)

084043-7



θ < π=2 and 0 < φ < 2π into Nr × Nθ × Nφ cells with
uniform coordinate size

Δr ¼ rmax=Nr; Δθ ¼ π=2Nθ; Δφ ¼ 2π=Nφ: (63)

We refer to Fig. 1 in [22] for a schematic representation of
our cell-centered grid structure in spherical polar coordi-
nates (note, however, that we adopt equatorial symmetry
here, while no symmetry condition was adopted in [22]).
Because of our fourth-order finite differencing scheme we
need to pad the interior grid with three layers of ghost
zones. Except at the outer boundary, each ghost zone
corresponds to some other zone in the interior of the grid
(with some other values of θ and φ), so that these ghosts
zones can be filled by copying the corresponding values
from interior grid points. We again refer to [22] for a more
detailed discussion.
For the solution of the BSSN equations we adopt a

centered, fourth-order finite differencing representation of
the spatial derivatives. For each grid point, the finite-
differencing stencil therefore involves the two nearest
neighbors in each direction. An exception from our
centered, fourth-order differencing is advective derivatives
along the shift, for which we use a fourth-order (one-sided)
upwind scheme. At the outer boundary we also require two
ghost zones. We impose a Sommerfeld boundary condition,
which is an approximate implementation of an outgoing
wave boundary condition, to fill these ghost zones. We also
adopt equatorial plane reflection symmetry conditions to
reduce the computational cost of the simulations but we
note that our code can run without this assumption. As in
[22] we use Kreiss-Oliger [44] dissipation to suppress the
appearance of high frequency noise at late times.
We use a HRSC scheme to solve the general relativistic

hydrodynamicequations.Inparticular,wehaveimplemented
a second-order slope limiter reconstruction scheme, the
monotonic centered limiter [45], to obtain the left and right
states of the primitive hydrodynamic variables at each cell
interface,andtheHarten-Lax-vanLeer-Einfeldtapproximate
Riemann solver [2,3].
An important ingredient in numerical simulations based

on finite difference schemes to solve the hydrodynamic
equations is the treatment of vacuum regions. The standard
approach is to add an atmosphere of very low density filling
these regions [46]. We follow this approach and treat the
atmosphere as a perfect fluid with a rest-mass density several
orders of magnitude smaller than that of the bulk matter. The
hydrodynamic equations are solved in the atmosphere region
as in the region of the bulk matter. If the rest-mass density ρ
or specific internal energy ϵ fall below the value set for the
atmosphere, these values are reset to have the atmosphere
value of the respective primitive variables.
Unless stated otherwise we adopt a Γ-law equation of state

P ¼ ðΓ − 1Þρϵ; (64)

where Γ ¼ 1þ 1=N and N is the polytropic index.

V. NUMERICAL EXAMPLES

We consider a number of test cases to demonstrate that it
is possible to obtain stable and robust general relativistic
hydrodynamic evolutions using spherical polar coordinates
following the reference-metric approach. Although the
initial data we consider are either spherically or axially
symmetric we do not apply any symmetry condition except
for the equatorial reflection symmetry. In Sec. VA we
follow the common approach of keeping the spacetime
fixed during the numerical evolution (known as the
Cowling approximation [33]) in order to assess the hydro-
dynamical evolution independently from the spacetime
evolution. In Sec. V B we relax this approximation and
present several tests in dynamical spacetimes, including
collapse to black holes. We believe that our results
represent the first successful, self-consistent general rela-
tivistic hydrodynamics simulations in spherical polar coor-
dinates, without the need for a regularization or symmetry
assumptions.

A. Fixed spacetime evolutions

1. Spherical stars

As a first test we consider a nonrotating relativistic star.
The initial data for the fluid, as well as the fixed spacetime
geometry, are given by the solution of the Tolman-
Oppenheimer-Volkoff (TOV) equations [47,48]. We focus
on a polytropic TOV star with Γ ¼ 2, and with a gravi-
tational mass of about 85% of the maximum-allowed mass.
For this model, the central density is about 40% of that of
the maximum mass model. In our code units, for which
M⊙ ¼ 1, the gravitational mass of this star is M ¼ 1.4 and
the central density is ρc ¼ 1.28 × −3. We adopt a numeri-
cal grid of size ð100N; 2; 2Þ with N ¼ 1, 2, 4 and place the
outer boundary at rmax ¼ 20, which equal approximately
2 times the radius of the star. We evolve the fluid using
both the full and partial approaches, as discussed in
Sec. IV B.
In Fig. 1 we show the time evolution of the difference

jρcðtÞ − ρcð0Þj for both approaches. The truncation errors
resulting from the finite difference representation of the
partial differential equations excite small periodic radial
oscillations which manifest themselves as periodic varia-
tions of the hydrodynamical quantities with respect to their
initial values. We obtain convergence of the numerical
results with increasing resolution with both approaches.
However, we observe that the initial phase is noisier in the
full approach than in the partial approach, and also that
there is a larger drift in the long term evolution of the rest-
mass density in the full approach (see also the upper panel
in Fig. 2 which displays the time evolution of the
normalized central density using a grid spacing of Δr ¼
0.05 for both approaches). We believe that these differences
are caused by the presence of source terms in the reference-
metric version of the continuity and energy equations;
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moreover, these source terms contain singular terms that
scale, e.g., with 1=r. These source terms increase the
truncation error in the evaluation of the right-hand side
of the continuity equation for r≃ 0. In fact, in the“full
approach,” the continuity equation is written as a “balance
law” rather than as a “conservation law” (e.g., [5]). While
our PIRK scheme is able to handle these singular terms in a
stable fashion, they do lead to a larger numerical error than
that found in the evolution with the partial approach (we
note that the partial approach is closer to the modifications
proposed by [36,37] than the full approach). We also
observe that the numerical error associated with the full
approach is larger for axisymmetric fluid configurations.
We therefore adopt the partial approach for the remainder
of the paper. We also stress that using the original version of
the Euler equation leads to much larger errors, and a
violation of spherical symmetry (see Sec. III E) that makes
the code crash after a short time. It is therefore crucial to
accommodate the spherical polar coordinates in the Euler
equation in some way. We have found that the reference-
metric formulation provides a both elegant and effective
approach to handling this issue.
The middle panel of Fig. 2 displays the time evolution of

the L1-norm ∥ρðtÞ − ρð0Þ∥
1

computed inside the star for
the partial approach. We define the L1-norm of a function
fðtÞ as

∥fðtÞ∥
1

¼ 1

NT

XNT

i¼1

jfiðtÞj; (65)

where NT is the total number of grid points inside the star.
We plot the L1-norm for different resolutions showing that
the error decreases with increasing resolution. We also
observe that the truncation errors at higher resolutions lead
to smaller oscillations, and that the damping of the periodic
oscillations remains small during the entire evolution,
which highlights the low numerical viscosity of the
implemented scheme. Finally, we show in the lower panel
that the convergence rate of the L1-norm ∥ρðtÞ − ρð0Þ∥

1

at
t ¼ 5 ms is approximately 2.03. While the order of
convergence of HRSC schemes reduces to first order at
the stellar center and surface, the convergence of ∥ρðtÞ −
ρð0Þ∥

1

appears to be dominated by the higher-order
convergence in the bulk of the star in this case.

2. Rotating stars

The numerical evolution of a rapidly rotating relativistic
star is a more demanding test than the previous one, as it
involves axisymmetric initial data in the strong gravity
regime. The initial data used for this test are the numerical

FIG. 1 (color online). Time evolution of the difference jρcðtÞ −
ρcð0Þj for the spherical relativistic star in the Cowling approxi-
mation, for both the full (lower panel) and partial approaches
(upper panel) using three different resolutions in the radial
direction such that the grid spacing varies as Δr ¼ 0.2, 0.1,
0.05. The full approach produces noisier results initially and leads
to a larger drift in the long term evolution of the central rest-mass
density than the partial approach. Overall, the error decreases
with increasing resolution in both approaches.

FIG. 2 (color online). We show in the upper panel the time
evolution of the normalized central density for the spherical
relativistic star using a grid spacing of Δr ¼ 0.05 for both the full
(dashed line) and partial approaches (solid line). As we also saw
for coarser grids, the drift in the time evolution of the central
density for the full approach is larger than for the partial
approach. The middle panel displays the time evolution of the
L1-norm ∥ρðtÞ − ρð0Þ∥

1

computed inside the star for different
resolutions for the partial approach. Finally, we show in the lower
panel the convergence rate of the L1-norm ∥ρðtÞ − ρð0Þ∥1 at
t ¼ 5 ms is approximately 2.03 for the partial approach.
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solution of a stationary and axisymmetric equilibrium
model of a rapidly and uniformly rotating relativistic star
[49], which is computed using the LORENE code [50].
We consider a uniformly rotating star with the same

Γ ¼ 2 polytropic equation of state as for the nonrotating
model of Sec. VA 1. Our particular model has the same
central rest-mass density as the nonrotating model, but
rotates at 95% of the mass-shedding limit (for a star of that
central density); the corresponding spin period is approx-
imately 0.7 ms. The ratio of the polar to equatorial
coordinate radii for this model is 0.67.
For this test we adopt four grids of sizes (100,8,2),

(100,8,8), (150,12,2) and (200,16,2), and impose the outer
boundary at 30, which equals approximately 3 times the
equatorial radius. In Fig. 3 (upper panel) we show the initial
and late-time profiles of the rest-mass density ρ, in a
direction both close to the equator and close to the axis.
Evidently, these remain very close to their initial values
throughout the evolution, as they should, and confirm the
long term stability of the simulation. The middle panel
displays the L1-norm ∥ρðtÞ − ρð0Þ∥

1

for two simulations
with Nr ¼ 100, Nθ ¼ 8, and Nφ ¼ 2, 8. We note that even
in the case for only Nφ ¼ 2, the two grid points in the φ
direction belong to the computational domain where the

hydrodynamic equations are actually evolved, and do not
represent ghost zones. We see that the error is almost the
same independently of Nφ for such an axisymmetric
configuration and small differences only show up at late
times. Such behavior highlights one of the advantages of
using a coordinate system well adapted to the geometry of
the fluid configuration. In the lower panel of Fig. 3, we
show the time evolution of the L1-norm ∥ρðtÞ − ρð0Þ∥

1computed inside the star for three grids of sizes (100,8,2),
(150,12,2), and (200,16,2), respectively, demonstrating that
the error decreases with increasing resolution. While, at late
times, the errors decrease with increasing resolution, some
of the perturbations at early times are triggered by numeri-
cal error originating at the stellar surface, where some of the
fluid and spacetime variables either are discontinuous or
have discontinuous derivatives. As expected, these errors
do not converge at the same rate as those for smooth
functions. We note that the order of convergence of the
HRSC scheme reduces to first order both at the center of
the star and at its surface. In addition, we use a static
atmosphere which is not corotating with the star (therefore
inducing a larger error than in the test of a spherical
nonrotating star). The treatment of the interface between
the fluid configuration and the vacuum region is one of the
most challenging aspects for hydrodynamic codes using
HRSC schemes; we refer to [51] for a recent discussion.

B. Dynamical spacetime evolutions

1. Spherical stars

As a first test of self-consistent evolutions of Einstein’s
equations coupled to the equations of relativistic hydro-
dynamics we return to the TOV solution. In particular, we
use the same TOV star as in Sec. VA 1, but now we evolve
the spacetime dynamically rather than keeping it fixed. We
adopt the 1þ log slicing condition (61) as well as the
Gamma-driver shift condition (61). As in the Cowling tests,
we choose a numerical grid of size ð100N; 2; 2Þ with
N ¼ 1, 2, 4 and place the outer boundary at rmax ¼ 20,
which equals approximately 2 times the radius of the star,
where we impose Sommerfeld boundary conditions for the
gravitational fields.
In Fig. 4 we show the time evolution of the difference

jρcðtÞ − ρcð0Þj using three different resolutions in the radial
direction such that the grid spacing varies as Δr ¼ 0.2, 0.1,
0.05. As expected, the difference jρcðtÞ − ρcð0Þj decreases
with increasing resolution. The small value of the error
demonstrates the ability of the code to maintain the
equilibrium configuration. This is better shown in
the middle panel where we plot the time evolution of the
L1-norm ∥ρðtÞ − ρð0Þ∥

1

computed inside the star and in
the lower panel that displays the L1-norm at a late time
(t ¼ 15 ms) versus the radial grid spacing. The slope of
approximately 2.04 indicates that the convergence is
second-order inside the star.

FIG. 3 (color online). Upper panel: Snapshots of the rest-mass
density ρ at the initial time t ¼ 0 and at a later time t ¼ 5 ms for
the evolution of a uniformly rotating star in the Cowling
approximation. We show profiles along one ray very close to
the equator, and another close to the pole. Both profiles remain
very similar to their initial data throughout the evolution. Middle
panel: the L1-norm ∥ρðtÞ − ρð0Þ∥

1

for two simulations with
Nr ¼ 100, Nθ ¼ 8, and Nφ ¼ 2; 8. Lower panel: the L1-norm
∥ρðtÞ − ρð0Þ∥

1

for three simulations performed with grids
consisting of (100,8,2), (150,12,2), and (200,16,2) points,
respectively.
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Finite-difference errors in the initial data trigger small
amplitude radial pulsations of the star which are a sum of
eigenmodes of pulsation [46]. These finite-difference errors
arise not only from the hydrodynamic part of the code but
also from the spacetime part that solves the full set of
Einstein equations. It is expected that the star oscillates at
the proper mode frequencies, and therefore, it is possible to
exploit this feature to check the consistency of the nonlinear
evolution by comparing numerical results for the stellar
mode frequencies with the predictions from linear pertur-
bation theory [52]. In fact, this has become a standard test
for numerical relativity codes. The power spectral density
of the maximum density time evolution [for the grid with
(400, 2, 2) points] displays a peak for the fundamental
mode at νF ¼ 1.427 KHz and at νH1 ¼ 3.945 KHz for the
first overtone. We find excellent agreement between our
frequency peaks and the theoretical values [46,52]; the
relative errors for the two frequencies are less than 1%.

2. Rotating stars

As a test that does not involve spherically symmetric
initial data we again consider relativistic rotating stars, but
now evolve the spacetime together with the fluid. We adopt
the same model as that in Sec. VA 2 and three grids of sizes
(200, 8, 2), (300, 12, 2) and (400, 16, 2), and impose the
outer boundary at 60. We therefore cover the rotating star
by the same number of grid points as in Sec. VA 2 while

placing the outer boundary at approximately 6 times the
equatorial radius of the star. We notice that not only the
interpolation of the initial data from the Lorene computa-
tional domains onto our grid and truncation errors due to
the spacetime evolution but, in particular, the outer boun-
dary Sommerfeld condition for the gravitational fields
induce oscillations of a larger amplitude than what we
observed in the Cowling approximation (where the
Sommerfeld outer boundary condition does not play any
role as the gravitational fields do not evolve in time).
The oscillations are also visible in the spacetime quantities.
In Fig. 5 we plot the L1-norm ∥ρðtÞ − ρð0Þ∥

1

in the upper
panel, and the L1-norm ∥αðtÞ − αð0Þ∥

1

in the middle panel,
where both L1-norms are computed inside the star. Error
originating from the outer boundaries reaches the center at
around t ¼ 0.3 ms (t ¼ 60 in our code units) and triggers
the oscillations visible in the graph. As expected, the
amplitude of the initial oscillation does not decrease with
increasing resolution; however, for lower resolutions the

FIG. 4 (color online). We show in the upper panel the time
evolution of the difference jρcðtÞ − ρcð0Þj for the TOV model in a
dynamical spacetime, using three different resolutions in the
radial direction such that the grid spacing varies as Δr ¼ 0.2, 0.1,
0.05. The middle panel graphs the time evolution of the L1-norm
∥ρðtÞ − ρð0Þ∥

1

computed inside the star, and the lower panel
shows that the convergence rate of the L1-norm ∥ρðtÞ − ρð0Þ∥

1

at
t ¼ 15 ms is approximately 2.04.

FIG. 5 (color online). Dynamical spacetime evolution of a
rotating relativistic star. The figure shows the time evolution of
the L1-norm, computed inside the star, of the rest-mass density
∥ρðtÞ − ρð0Þ∥

1

(upper panel) and the lapse function ∥αðtÞ −
αð0Þ∥

1

(middle panel). For all simulations we impose the outer
boundary at r ¼ 60 in our code units. Error originating from
the outer boundaries reaches the center at around t ¼ 0.3 ms, and
triggers the oscillations visible in the graph. As expected, the
amplitude of the initial oscillation does not decrease with
increasing resolution; however, for lower resolutions the ampli-
tude continues to increase, while for higher resolutions it does
not. We therefore measure the convergence rate before outer
boundary and surface effects become the main source of error. We
show (lower panel) that the convergence rate of the L1-norm
∥ρðtÞ − ρð0Þ∥

1

at t ¼ 0.002 ms (for comparison, this corre-
sponds to about one-tenth of the time needed by light to travel
from the surface to the center, and approximately 1000 time
steps) is approximately 1.98.
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amplitude continues to increase, while for higher resolu-
tions it does not. At very early times, the time evolution of
the L1-norms shows that the error decreases with increas-
ing resolution. In particular, we measure the convergence
rate of the L1-norm ∥ρðtÞ − ρð0Þ∥

1

at t ¼ 0.002 ms, well
before the outer boundary conditions as well as the stellar
surface (compare the discussion in Sec. VA 2) affect the
numerical evolution of the star. In the lower panel of
Fig. 5 we show that the convergence rate, at these early
times, is approximately 1.98. Most importantly, however,
our results demonstrate that our code can stably evolve
rapidly rotating star for many dynamical time scales.

3. Oppenheimer-Snyder collapse

Oppenheimer-Snyder (OS) collapse is an analytical
solution describing the collapse of a homogeneous dust
sphere into a black hole [53]. This solution has served as a
test bed for numerous numerical codes over the years. Even
though there is no complete analytical solution describing
OS collapse in moving-puncture coordinates, several fea-
tures of this solution can be obtained analytically (see [54])
and can be used to test our code.
The initial data for OS collapse are obtained by writing

the metric in isotropic coordinates. The exterior
Schwarzschild metric then takes the form

dl2 ¼
�
1þM

2r

�
4

ðdr2 þ r2dΩ2Þ; (66)

where dl2 denotes the spatial line element. The interior
metric is obtained by transforming the Friedmann metric to
isotropic coordinates and matching the conformal factors in
the interior and exterior at the surface of the star. The initial
spatial line element then appears as

dl2 ¼ ψ4ðdr2 þ r2dΩ2Þ (67)

with

ψ ¼
8<
:

�
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2M=R0

p
Þr0R2

0

2r3
0
þMr2

�
1=2

; r ≤ r0;

1þ M
2r ; r > r0;

(68)

where

r0 ¼ R0ð1 −M=R0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=R0

p
Þ=2 (69)

(see [54]). The initial data also include Kij ¼ 0, βi ¼ 0 and
α ¼ 1. For our simulations here we choose the initial areal
radius R0 ¼ 5M. The initial rest-mass density ρð0Þ is
related to R0 and the mass M by

M ¼ 4π

3
ρð0ÞR3

0: (70)

We evolve these initial data with moving-puncture
coordinate conditions. One gauge-invariant quantity that
can be compared with the analytical solution is the central
rest-mass density as a function of proper time. In the upper
panel of Fig. 6 we show this analytical solution as a solid
(blue) line, and our numerical solution as (red) crosses.
Since the coordinate singularity at r ¼ 0 leads to a
relatively large truncation error at the center, we instead
show numerical results for the rest-mass density at the
coordinate location r ¼ 0.1M. We nevertheless find very
good agreement between the numerical and analytical
solution.
As shown by [54], in the early stages of moving-

puncture evolutions of the Oppenheimer-Snyder collapse
the lapse remains spatially constant in a region around the
center. This region is limited by a “gauge wave” that
originates at the surface and propagates toward the center.
Once this gauge wave reaches the center at a (proper)
“gauge time” τgauge, the region of spatially constant lapse
disappears. For R0 ¼ 5M, the gauge time is τgauge ≈ 3.54M.
Moreover, Ref. [54] shows that (under conditions that

FIG. 6 (color online). Oppenheimer-Snyder collapse of a dust
cloud to a black hole. In the upper panel we show the time
evolution of the central rest-mass density up to the approximate
time of black hole formation. The solid (blue) line is the analytical
solution for the central rest-mass density as a function of the proper
time, and the (red) crosses are the numerical solution for the same
quantity at a coordinate location r ¼ 0.1M (which avoids numeri-
cal artifacts that are the result of the larger truncation errors caused
the coordinate singularity at r ¼ 0). The bottom panel shows the
values of the lapse at the center, αc (blue-solid), together with its
lower limit, αLL (red-dashed), given by eq. (71).
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generally hold) the central lapse αc is greater than or equal
to a “lower-limit” lapse αLL given by

αc ≥ αLL ¼ 1þ 6 lnða=amÞ; (71)

where the scale factor a is expressed parametrically as a
function of proper time by

a ¼ 1

2
amð1þ cos ηÞ; (72)

τ ¼ 1

2
amðηþ sin ηÞ; (73)

and where the initial scale factor is given by

am ¼
�
R3
0

2M

�1
2

: (74)

In (71), equality holds as long as the lapse remains
spatially constant at the center. The arrival of the gauge
wave at τ ¼ τgauge marks a sudden departure of αc from αLL
(see also Fig. 2 in [54]). Reproducing this behavior there-
fore serves as a stringent code test.
In the lower panel of Fig. 6 we show our numerical

results for αc together with αLL as given by (71). As
expected, we find excellent agreement between the two
quantities at early times, and a sudden departure at
τ ≈ 3.5M, very close to the theoretical value. At late times,
our simulation settles down to a Schwarzschild black hole
in trumpet geometry [55–59], which completes the collapse
of the dust cloud to a black hole in moving-puncture
coordinates.

4. Collapse of a marginally stable spherical
star to a black hole

We next test the capability of the code to follow black
hole formation from the gravitational collapse of a margin-
ally stable spherical relativistic star. For this test, we
consider a κ ¼ 100, Γ ¼ 2 polytropic star with central
rest-mass density ρc ¼ 3.15 × 10−3, so that its gravitational
mass is M ¼ 1.64 and its baryon rest-mass M� ¼ 1.79. To
induce the collapse of the star, we initially decrease the
pressure by 0.5%. We adopt moving-puncture gauge
conditions, use a numerical grid of (2000,2,2) points,
and impose the outer boundary at rmax ¼ 100. We stopped
the simulation at t ¼ 300 without encountering any
instabilities.
In Fig. 7 we show the time evolution of the normalized

central density (top panel) and the mass of the apparent
horizon in units of the Arnowitt-Deser-Misner (ADM)
mass of the system (bottom panel). At early times the
central density increases, reflecting the contraction of the
collapsing star. As an unambiguous signature of black-hole
formation we first detect an apparent horizon at t ∼ 172.
The mass of this horizon quickly settles down to the ADM

mass of the spacetime; at t ¼ 300 the relative difference
between the ADM mass and the horizon mass is approx-
imately 0.2%. As discussed in detail by [60], the gamma-
driver shift condition (62) leads to large grid stretching

FIG. 7 (color online). Collapse of a marginally stable spherical
star to a black hole. In the upper panel we show the time evolution
of the normalized central density (measured at a coordinate radius
r ¼ 0.075), and in the lower panel the apparent-horizon mass
(solid line) in units of the ADM mass of the system (dashed line).

FIG. 8 (color online). Radial profile of the conformal factor ψ at
time t ¼ 300 for the collapse of a marginally stable star to a black
hole. The (red) crosses mark our numerical results, while the
(blue) line is the analytical solution for a maximally sliced
trumpet solution (see [57]).
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once a black hole forms; this effect leads to the decrease in
the central density around the time of apparent-horizon
formation that can be seen in the top panel of Fig. 7.
In Fig. 8 we show a radial profile of the conformal factor

ψ at t ¼ 300. Since we are using the “nonadvective”
version of the 1þ log slicing condition (61), the evolution
settles down to a Schwarzschild black hole in a maximally
sliced trumpet geometry [56]. This maximally sliced
trumpet solution can be expressed analytically [57] and
is included as the solid (blue) line in Fig. 8. We find very
good agreement.
The simulations of Oppenheimer-Snyder collapse in the

previous section and the collapse of a marginally stable star
in this section demonstrate that our implementation of
relativistic hydrodynamics and of the gravitational fields
can accurately handle the transition between a regular
spacetime (that of the star) and an irregular spacetime
containing a puncture singularity at r ¼ 0.

VI. SUMMARY AND DISCUSSION

We derive and implement a reference-metric version of
the equations of relativistic hydrodynamics. Our equations
are a generalization of the Valencia formulation [8] and
reduce to that when a flat metric in Cartesian coordinates is
chosen as the reference metric. They are expressed in flux-
conservative form and allow for the implementation of
HRSC methods.
The advantage of the reference-metric approach is that it

provides a natural framework for curvilinear coordinate
systems. The resulting equations of hydrodynamics mesh
well with those for the gravitational fields, when the latter
are expressed in a reference-metric approach (see, e.g.,
[22,26]). Moreover, all conservative variables, fluxes and
source terms are now defined as tensorial quantities. We
note that the induction equation for magnetic fields can be
treated analogously, so that the equations of general
relativistic magnetohydrodynamics can similarly be
expressed in terms of a reference metric.
Perhaps the most important property of our formalism is

that it avoids certain numerical error terms that are present
when the original Valencia formulation is implemented in
spherical polar coordinates, and which cause a deviation
from spherical symmetry even for spherically symmetric
initial data. These problems are well known from both
relativistic and Newtonian hydrodynamics simulations and
can alternatively be handled by factoring out geometric
terms from the flux quantities. Our approach is more
general and goes further, in that it casts all terms in a
consistent geometric framework.

We implement two versions of this formalism in spheri-
cal polar coordinates. In our “full approach” we apply the
reference-metric approach to all general relativistic hydro-
dynamic equations, while in a “partial approach” we apply
the reference-metric approach to the Euler equation only
and leave the continuity and energy equations as given by
the original Valencia formulation. We found that, although
both approaches give reliable results, the second approach
is more accurate and robust. We have therefore adopted this
partial approach in a number of tests, both in the Cowling
approximation (in which the spacetime is kept fixed)
and for dynamical spacetimes. Specifically, we perform
simulations of nonrotating and rotating relativistic stars,
of Oppenheimer-Snyder collapse, and of the collapse of a
marginally stable spherical star. Our code is capable of
performing these numerical experiments, including col-
lapse to black holes, with high accuracy.
To the best of our knowledge, we present the first stable

and self-consistent general relativistic hydrodynamic sim-
ulations in dynamical spacetimes in spherical polar coor-
dinates without the need of regularization or symmetry
assumptions. Many numerical codes of the traditional
astrophysics community adopt spherical polar coordinates
because they offer several advantages over Cartesian
coordinates for simulations of single stars—one important
example are supernovae calculations. Since, to date,
methods for treating relativistic gravitational fields self-
consistently had not been available in spherical polar
coordinates, these codes rely on some approximate treat-
ment of the gravitational fields. Our results demonstrate
that these approximations can be relaxed and show how
general relativistic hydrodynamics can be evolved self-
consistently with fully dynamical gravitational fields in
spherical polar coordinates. We therefore believe that our
methods offer a promising approach to implementing a
self-consistent treatment of the gravitational fields in such
existing codes, and we hope that they will prove to be
useful in future relativistic astrophysics simulations.
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