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We study the mechanisms of the gravitational collapse of the Bose-Einstein condensate dark matter
halos, described by the zero temperature time-dependent nonlinear Schrödinger equation (the Gross-
Pitaevskii equation), with repulsive interparticle interactions. By using a variational approach, and by
choosing an appropriate trial wave function, we reformulate the Gross-Pitaevskii equation with spherical
symmetry as Newton’s equation of motion for a particle in an effective potential, which is determined by
the zero-point kinetic energy, the gravitational energy, and the particles interaction energy, respectively. The
velocity of the condensate is proportional to the radial distance, with a time-dependent proportionality
function. The equation of motion of the collapsing dark matter condensate is studied by using both
analytical and numerical methods. The collapse of the condensate ends with the formation of a stable
configuration, corresponding to the minimum of the effective potential. The radius and the mass of the
resulting dark matter object are obtained, as well as the collapse time of the condensate. The numerical
values of these global astrophysical quantities, characterizing condensed dark matter systems, strongly
depend on the two parameters describing the condensate, the mass of the dark matter particle, and of the
scattering length, respectively. The stability of the condensate under small perturbations is also studied, and
the oscillations frequency of the halo is obtained. Hence these results show that the gravitational collapse of
the condensed dark matter halos can lead to the formation of stable astrophysical systems with both galactic
and stellar sizes.
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I. INTRODUCTION

The recently published Planck satellite data [1] have
generally confirmed the predictions of the standard Lambda
cold dark matter (ΛCDM) cosmological model, as well
as the matter composition of the Universe. The ΛCDM
model successfully describes the accelerated expansion of
the Universe, the observed temperature fluctuations in the
cosmic microwave background radiation, the large scale
matter distribution, and the main aspects of the formation
and the evolution of virialized cosmological objects. On the
other hand the latest cosmic microwave background data,
as well as the observations of the distant Type IA super-
novae, baryon acoustic oscillations, weak gravitational
lensing, and the abundance of galaxy clusters, provide
compelling evidence that about 95% of the content of the
Universe resides in two unknown forms of matter/energy,
called dark matter and dark energy, respectively: the first
residing in bound objects as nonluminous matter at the
galactic and extragalactic scale [2], while the latter is in the
form of a zero-point energy that pervades the whole
Universe [3,4]. The dark matter is assumed to be composed
of cold neutral weakly interacting massive particles,
beyond those existing in the Standard Model of particle
physics, and not yet detected in accelerators or in dedicated
direct and indirect searches. There are many possible

candidates for dark matter, the most popular ones being
the axions and the weakly interacting massive particles
(for a review of the particle physics aspects of dark matter
see [5]). The interaction cross sections of dark matter
particles with normal baryonic matter, while extremely
small, are expected to be nonzero, and we may expect to
detect them directly [6]. Scalar fields or other long range
coherent fields coupled to gravity have also intensively
been used to model galactic dark matter [7]. Alternative
theoretical models to explain the galactic rotation curves
have also been elaborated recently [8].
Despite its important achievements, at galactic scales of

the order of ∼10 kpc, the ΛCDM model faces major
challenges in explaining the observed distribution of the
dark matter around the luminous one. In fact, N-body
simulations, performed in the ΛCDM scenario, have shown
that bound halos surrounding galaxies must have very
characteristic density profiles that feature a well pro-
nounced central cusp, ρNFWðrÞ ¼ ρs=ðr=rsÞð1þ r=rsÞ2
[9], where rs is a scale radius and ρs is a characteristic
density. On the observational side, high-resolution rotation
curves show, instead, that the actual distribution of dark
matter is much shallower than the simulated one, and it
presents a nearly constant density core: ρBðrÞ ¼ ρ0r30=ðrþ
r0Þðr2 þ r20Þ [10], where r0 is the core radius and ρ0 is the
central density. Therefore, to solve this contradiction
between observation and theory, new models and a new
understanding of dark matter and its properties are required.*t.harko@ucl.ac.uk
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The observation of the Bose-Einstein condensation in
1995 in dilute alkali gases, such as vapors of rubidium and
sodium, confined in a magnetic trap, and cooled to very low
temperatures [11] did represent a major breakthrough in
condensed matter and statistical physics. At very low
temperatures, all particles in a dilute Bose gas condense
to the same quantum ground state, forming a Bose-Einstein
condensate (BEC), i.e., a sharp peak over a broader
distribution in both coordinates and momentum space.
Particles become correlated with each other when their
wavelengths overlap; that is, the thermal wavelength λT is
greater than the mean interparticles distance l. This happens
at a temperature T < 2πℏ2n2=3=mkB, where m is the mass
of the particle in the condensate, n is the number density,
and kB is Boltzmann’s constant [12–16]. A coherent state
develops when the particle density is high enough, or the
temperature is sufficiently low. From experimental point
of view, the occurrence of the condensation is indicated by
a sharp peak in the velocity distribution, observed below a
critical temperature. This shows that all the atoms have
condensed in the same ground state, with a narrow peak in
the momentum and coordinate space [11]. Quantum
degenerate gases have been created by a combination of
laser and evaporative cooling techniques, opening several
new lines of research, at the border of atomic, statistical and
condensed matter physics [12–16].
Since the Bose-Einstein condensation is a phenomenon

observed and well studied in the laboratory, the possibility
that it may occur on astrophysical or cosmic scales cannot
be rejected a priori. Thus, dark matter, which is required to
explain the dynamics of the neutral hydrogen clouds at
large distances from the Galactic center, and which is a
cold, bosonic system, could also be in the form of a Bose-
Einstein condensate [17]. In these early studies either a
phenomenological approach was used, or the nonrelativ-
istic Gross-Pitaevskii equation describing the condensate
was investigated numerically. A systematic study of the
condensed galactic dark matter halos and of their properties
was performed in [18]. By introducing the Madelung
representation of the wave function, the dynamics of
the dark matter halo can be formulated in terms of the
continuity equation and of the hydrodynamic Euler equa-
tions. Hence condensed dark matter can be described as a
nonrelativistic, Newtonian gas, whose density and pressure
are related by a barotropic equation of state. In the case of a
condensate with quartic nonlinearity, the equation of state is
polytropic with index n ¼ 1 [18].
To test the validity of the condensed dark matter model

the Newtonian tangential velocity equation was fitted with
a sample of rotation curves of low surface brightness and
dwarf galaxies, respectively. A very good agreement was
found between the theoretical rotation curves and the
observational data. Therefore dark matter halos can be
described as an assembly of light individual bosons that
acquire a repulsive interaction by occupying the same

ground energy state. The repulsive interaction prevents
gravity from forming the central density cusps. The con-
densate particle is light enough to naturally form condensates
of very small masses that later may coalesce, forming
the structures of the Universe in a similar way than the
hierarchical clustering of the bottom-up CDM picture. Then,
at large scales, BEC perfectly mimic an ensemble of cold
particles, while at small scales quantum mechanics drives
the mass distribution.
The properties of the Bose-Einstein condensed dark

matter halos, as well as their cosmological implications,
have been investigated recently. The recently observed
size evolution of very massive compact galaxies in the
early universe can be explained, if dark matter is in a
Bose-Einstein condensate state [19]. The size of the dark
matter halos and galaxies depends on the correlation
length of dark matter and, hence, on the expansion of
the Universe. The BEC predicts that the size of the galaxies
increases as the Hubble radius of the Universe even without
merging, which agrees well with the recent observational
data. In [20] it was shown that the finite length scale of the
condensate dark matter can explain the recently observed
common central mass of the Milky Way satellites
(∼107M⊙) independent of their luminosity, if the mass
of the dark matter particle is about 10−22 eV.
The validity of the BEC model on the galactic scale by

using observed rotation curves was tested in [21] by
comparing the tangential velocity equation of the model
with a sample of eight rotation curves of dwarf galaxies.
A good agreement was found between the theoretically
predicted rotation curves (without any baryonic compo-
nent) and the observational data. The mean value of the
logarithmic inner slope of the mass density profile of
dwarf galaxies was also obtained, and it was shown that the
observed value of this parameter is in agreement with the
theoretical results. The study of the galactic rotation curves
in the BEC model was considered in [22] and [23]. The
BEC model predicts that all galaxies must be very similar
and exist for bigger redshifts than in the ΛCDM model. In
[22] the fits of high-resolution rotation curves of a sample
of thirteen low surface brightness galaxies were compared
with fits obtained using a Navarro-Frenk-White and pseu-
doisothermal (PI) profiles. A better agreement with the
BEC model and PI profiles was found. The mean value
of the logarithmic inner density slopes is −0.27� 0.18.
A natural way to define the core radius, with the advantage
of being model independent, was also introduced. Using
this new definition in the BEC density profile it was found
that the recent observation of the constant dark matter
central surface density can be reproduced. The BEC model
gives a similar fit to the Navarro-Frenk-White (NFW) dark
matter model for all high surface brightness and low surface
brightness galaxies in a sample of 9 galaxies [23]. For dark
matter dominated dwarf galaxies the addition of the BEC
component improved more upon the purely baryonic fit
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than the NFW component. Thus despite the sharp cutoff of
the halo density, the BEC dark matter candidate is con-
sistent with the rotation curve data of all types of galaxies
[23]. The dynamics of rotating Bose condensate galactic
dark matter halos, made of ultralight spinless bosons, and
the impact of the halo rotation on the galactic rotation
curves was analyzed in [24].
Finite temperature effects on dark matter halos were

analyzed in [25], where the condensed dark matter and
thermal cloud density and mass profiles at finite temper-
atures were explicitly obtained. The obtained results show
that when the temperature of the condensate and of the
thermal cloud are much smaller than the critical Bose-
Einstein transition temperature, the zero temperature
density and mass profiles give an excellent description
of the dark matter halos. The angular momentum and
vortices in BEC galactic dark matter halos were studied in
[26–29], respectively.
In [30] it was proposed that the dark matter content of

galaxies consist of a cold bosonic fluid, composed of
weakly interacting slim particles, represented by spin-0
axionlike particles and spin-1 hidden bosons, thermalized
in the Bose-Einstein condensation state and bounded by
their self-gravitational potential. By comparing this model
with data obtained from 42 spiral galaxies and 19 low
surface brightness galaxies, the dark matter particle mass
was constrained to the range 10−6 − 10−4 eV, and the
lower bound for the scattering length was found to be of the
order of 10−14 fm.
The possibility that due to their superfluid properties

some compact astrophysical objects may contain a signifi-
cant part of their matter in the form of a Bose-Einstein
condensate was investigated in [31]. To study the con-
densate the Gross-Pitaevskii equation was used, with
arbitrary nonlinearity. In this way a large class of stable
astrophysical objects was obtained, whose basic astro-
physical parameters (mass and radius) sensitively depend
on the mass of the condensed particle, and on the scattering
length.
The Bose-Einstein condensation process in a cosmological

context, by assuming that this process can be described (at
least approximately) as a first order phase transition was
studied in [32]. It was shown that the presence of the
condensate dark matter and of the Bose-Einstein phase
transition could have modified drastically the cosmological
evolution of the early universe, as well as the large scale
structure formation process. The effects of the finite dark
matter temperature on the properties of the Bose-Einstein
condensed dark matter halos were analyzed, in a cosmologi-
cal context, in [33]. The basic equations describing the finite
temperature condensate, representing a generalized Gross-
Pitaevskii equation that takes into account the presence of
the thermal cloud were formulated. The static condensate
and thermal cloud in thermodynamic equilibrium was
analyzed in detail, by using the Hartree-Fock-Bogoliubov

and Thomas-Fermi approximations. It was also shown that
finite temperature effects may play an important role in the
early stages of the cosmological evolution of the dark matter
condensates. The cosmological perturbations in the cosmo-
logical models with condensed dark matter were studied in
[34–36]. The large scale perturbative dynamics of the BEC
dark matter in a model where this component coexists with
baryonic matter and cosmological constant was investigated
in [37]. The perturbative dynamics was studied using neo-
Newtonian cosmology (where the pressure is dynamically
relevant for the homogeneous and isotropic background)
which is assumed to be correct for small values of the sound
speed. BEC dark matter effects can be seen in the matter
power spectrum if the mass of the condensate particle lies in
the range 15 meV < m < 700 meV, leading to a small, but
perceptible, excess of power at large scales.
Simulation codes that are designed to study the behavior

of the dark matter galactic halos in the form of a Bose-
Einstein condensate were developed in [38] and [39]. In
[40] it was shown that once appropriate choices for the dark
matter particle mass and scattering length are made, the
galactic dark matter halos composed by axionlike Bose-
Einstein condensed particles, trapped by a self-gravitating
potential, may be stable in the Thomas-Fermi approxima-
tion. The validity of the Thomas-Fermi approximation for
the halo system was also discussed, and it was shown that
the kinetic energy contribution is indeed negligible. The
Thomas-Fermi approximation for the study of the con-
densed dark matter halos was also discussed in [41]. The
Thomas-Fermi approximation is based on the assumption
that in the presence of a large number of particles, the
kinetic term in the Gross-Pitaevskii energy functional can
be neglected. However, this assumption is violated near the
condensate surface. It was also shown that the total energy
of the self-gravitating condensate in the Thomas-Fermi
approximation is positive.
A major recent experimental advance in the study of the

Bose-Einstein condensation processes was the observation
of the collapse and subsequent explosion of the conden-
sates [42]. A dynamical study of an attractive 85Rb BEC in
an axially symmetric trap was done, where the interatomic
interaction was manipulated by changing the external
magnetic field, thus exploiting a nearby Feshbach reso-
nance. In the vicinity of a Feshbach resonance the atomic
scattering length a can be varied over a huge range, by
adjusting an external magnetic field. Consequently, the sign
of the scattering length is changed, thus transforming a
repulsive condensate of 85Rb atoms into an attractive one,
which naturally evolves into a collapsing and exploding
condensate.
From a simple physical point of view the collapse of the

Bose-Einstein condensates can be described as follows.
When the number of particles becomes sufficiently large,
so thatN > Nc, whereNc is a critical number, the attractive
interparticle energy overcomes the quantum pressure, and
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the condensate implodes. In the course of the implosion
stage, the density of particles increases in the small vicinity
of the trap center. When it approaches a certain critical
value, a fraction of the particles gets expelled. In a time
period of an order of few milliseconds, the condensate
again stabilizes. There are two observable components at
the final stage of the collapse: remnant and burst particles.
The remnant particles are those which remain in the
condensate. The burst particles have an energy much larger
than that of the condensed particles. There is also a fraction
of particles, which is not observable. This fraction is
referred to as the missing particles [43].
The study of the Bose-Einstein collapse within a model

of a gas of free bosons described by a semi-classical
Fokker-Planck equation was performed in [44]. A striking
similarity between the Bose-Einstein condensation in the
canonical ensemble, and the gravitational collapse of a gas
of classical self-gravitating Brownian particles was found.
It was also shown that at the Bose-Einstein condensation
temperature Tc, the chemical potential μðtÞ vanishes
exponentially with a universal rate. After tcoll, the finite
time interval in which

ffiffiffiffiffiffiffiffi
μðtÞp

vanishes, the mass of the
condensate grows linearly with time, and saturates expo-
nentially to its equilibrium value for large times.
It is the purpose of the present paper to study the

dynamics of gravitationally self-bound Bose-Einstein dark
matter condensates of collisionless particles, without
exterior trapping potentials. In particular, we focus on
the description, mechanism and properties of the conden-
sate collapse. In order to study the gravitational collapse,
and to solve the Gross-Pitaevskii equation describing
the dynamics of the condensate, we employ a variational
method. By appropriately choosing a trial wave function,
the dynamical evolution of the condensate can be described
by an effective time-dependent action, with the equation of
motion of the condensate being given by the equation of
motion of a single particle in an effective potential. The
effective potential contains the contributions of the zero-
point kinetic energy, of the gravitational energy, and of the
interaction energy, respectively. The effective equation of
motion of the collapsing dark matter condensate is studied
by using both analytical and numerical methods. The
collapse of the condensate ends with the formation of a
stable astrophysical configuration, corresponding to the
minimum of the effective potential. The radius and the mass
of the resulting dark matter object are obtained, as well as
the collapse time of the condensate by numerically solving
the effective equation of motion. Approximate expressions
for the radius of the stable configuration and of the collapse
time are also obtained. The numerical values of these global
astrophysical quantities, characterizing condensed dark
matter systems, strongly depend on the two parameters
describing the condensate, the mass of the dark matter
particle, and of the scattering length, respectively. The
stability of the condensate under small perturbations is also

studied, and the oscillations frequency of the halo is
obtained. Hence the results obtained in the present paper
show that the gravitational collapse of the condensed dark
matter halos can lead to the formation of stable astrophysi-
cal systems on both galactic and stellar scales.
The present paper is organized as follows. The basic

physical properties of the static Bose-Einstein condensed
dark matter halos are reviewed briefly in Sec. II. The
variational formulation of the Gross-Pitaevskii equation,
the choice of the trial wave function, and the formulation of
the effective dynamics of the condensate as a motion of a
single particle in an effective potential are presented in
Sec. III. The physical parameters of the time-dependent
dark matter halos (density, gravitational potential, and the
physical parameters of the effective potential) are deter-
mined, within the framework of the variational approach in
Sec. IV. The gravitational collapse of the dark matter halos
is analyzed in Sec. V. The stability properties of the dark
matter halos formed after the gravitational collapse are
investigated in Sec. VI. We discuss and conclude our results
in Sec. VII.

II. PHYSICAL PARAMETERS OF THE STATIC
CONDENSED DARK MATTER HALOS

In the following we assume that the dark matter halos
are composed of a strongly coupled, dilute Bose-Einstein
condensate at absolute zero temperature. Therefore almost
all the dark matter particles are in the condensate. In a dilute
and cold gas, only binary collisions at low energy are
relevant, and, hence, independently of the details of the
two-body potential, the collisions are characterized by a
single physical parameter, the s-wave scattering length a.
Consequently, one can replace the interaction potential with
an effective interaction VIð~r0 − ~rÞ ¼ u0δð~r0 − ~rÞ, where the
coupling constant u0 is related to the scattering length a
through u0 ¼ 4πℏ2a=mχ , where mχ is the mass of the dark
matter particle [12]. The ground state properties of the dark
matter are described by the mean-field Gross-Pitaevskii
(GP) equation.
The density distribution ρBE of the static gravitationally

bounded single component dark matter Bose-Einstein
condensate is given by [18],

ρBEðrÞ ¼ ρðcÞBE
sin kr
kr

; (1)

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm3

χ=ℏ2a
q

and ρðcÞBE is the central density of the

condensate, ρðcÞBE ¼ ρBEð0Þ.
The mass profile mBEðrÞ ¼ 4π

R
r
0 ρBEðrÞr2dr of the

Bose-Einstein condensate galactic halo is

mBEðrÞ ¼
4πρðcÞBE

k2
r

�
sin kr
kr

− cos kr

�
; (2)
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with the boundary radius RBE. At the boundary of the dark
matter distribution ρBEðRBEÞ ¼ 0, giving the condition
kRBE ¼ π, which fixes the radius of the condensate dark
matter halo as

RBE ¼ π

ffiffiffiffiffiffiffiffiffiffi
ℏ2a
Gm3

χ

s
: (3)

The total mass MBE of the condensate is

MBEðRBEÞ ¼ 4π

Z
RBE

0

ρBEðrÞr2dr ¼
4

π
R3
BEρ

ðcÞ
BE; (4)

which represent a simple cubic proportionality between
mass and radius. The mass of the condensate is around
three times smaller than the mass of a constant density
sphere.
For r > RBE the density is smaller than zero, so that the

n ¼ 1 polytropic density profile cannot be extended to
infinity, that is, beyond its sharp boundary. For small values
of r the condensate dark matter profile can be written as

ρBEðrÞ ≈ ρðcÞBE

�
1 −

π2

6

r2

R2
BE

þ π4

120

r4

R4
BE

þ � � �
�
;

r ≤ RBE: (5)

The gravitational potential VðgravÞ
BE ðrÞ of the condensed

dark matter distribution is determined by the equation

VðBEÞ
grav ðrÞ ¼ −G

Z
RBE

r

mBEðr0Þdr0
r02

¼ −
4GρcR3

BE

π2r
sin
�

πr
RBE

�
;

r ≤ RBE: (6)

At small radii the potential behaves as

VðBEÞ
grav ðrÞ ≈ −GρcR2

BE

�
4

π
−
2π

3

r2

R2
BE

þ π3

30

r4

R4
BE

�
þOðrÞ6; r ≤ RBE: (7)

The tangential velocity of a test particle moving in the
condensed dark halo can be represented as [18]

V2
BEðrÞ ¼

GmBEðrÞ
r

¼ 4πGρðcÞBE

k2

�
sin kr
kr

− cos kr

�
: (8)

With the use of Eq. (3) the mass of the particle in the
condensate can be obtained from the radius of the dark
matter halo in the form [18]

mχ ¼
�
π2ℏ2a
GR2

BE

�
1=3

≈ 2.58 × 10−30½aðcmÞ�1=3½RBEðkpcÞ�−2=3g
≈ 6.73 × 10−2½aðfmÞ�1=3½RBEðkpcÞ�−2=3 eV; (9)

where 1g ¼ 5.598 × 1032 eV.
From this equation it follows that mχ is of the order

of eV. For a ≈ 1 fm and RBE ≈ 10 kpc, the mass is of the
order of mχ ≈ 14 meV. For values of a of the order of
a ≈ 106 fm, corresponding to the values of a observed in
terrestrial laboratory experiments, mχ ≈ 1.44 eV. These
numerical values of the mass of the dark matter particle
are perfectly consistent with the limit mχ < 1.87 eV,
obtained for the mass of the condensate particle from
cosmological considerations [45].
The properties of dark matter can be obtained observa-

tionally through the study of the collisions between clusters
of galaxies, like the Bullet Cluster (1E 0657-56) and the
baby Bullet Cluster (MACSJ0025-12) [46,47]. From these
observations one can obtain constraints on the physical
properties of the dark matter, such as its interaction cross
section with baryonic matter, and the dark matter self-
interaction cross section. If the ratio σm ¼ σ=mχ of the self-
interaction cross section σ ¼ 4πa2 and of the dark matter
particle mass mχ is known from observations, with the use
of Eq. (9) the mass of the dark matter particle in the Bose-
Einstein condensate can be obtained as [33]

mχ ¼
�
π3=2ℏ2

2G

ffiffiffiffiffiffi
σm

p
R2
BE

�
2=5

: (10)

The comparison of the results obtained from x-ray,
strong lensing, weak lensing, and optical observations with
numerical simulations of the merging galaxy cluster 1E
0657-56, gives an upper limit (68% confidence) for σm of
the order of σm < 1.2 cm2=g [46]. By choosing for σm a
value of σm ¼ 1.25 cm2=g, we obtain for the mass of the
dark matter particle an upper limit of the order

mχ < 3.1933×10−37×

�
RBE

10 kpc

�
−4=5

×

�
σm

1.25 cm2=g

�
1=5

g

¼ 0.1791×

�
RBE

10 kpc

�
−4=5

×

�
σm

1.25 cm2=g

�
1=5

meV:

(11)

By using this value of the particle mass we can estimate the
scattering length la as

a<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σm×mχ

4π

r
¼ 1.7827×10−19 cm¼ 1.7827×10−6 fm:

(12)

A stronger constraint for σm was proposed in [47], so that
σm ∈ ð0.00335 cm2=g; 0.0559 cm2=gÞ, giving a dark mat-
ter particle mass of the order [33]
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mχ ≈ ð9.516 × 10−38 − 1.670 × 10−37Þ ×
�

RBE

10 kpc

�
−4=5

g

¼ ð0.053 − 0.093Þ ×
�

RBE

10 kpc

�
−4=5

meV; (13)

and a scattering length of the order of

a ≈ ð5.038 − 27.255Þ × 10−21 cm

¼ ð5.038 − 27.255Þ × 10−8 fm: (14)

Therefore the galactic radii data and the Bullet Cluster
constraints predict a condensate dark particle mass of the
order of mχ ≈ 0.1 meV.

III. TIME-DEPENDENT EVOLUTION OF ZERO
TEMPERATURE BOSE-EINSTEIN DARK

MATTER HALOS

In the present section we introduce the variational
formulation of the Gross-Pitaevskii equation, describing
the time dynamics of the cold (T ¼ 0) Bose-Einstein
condensed dark matter halos, and we obtain the basic
equation describing the evolution of the gravitationally
bounded dark matter condensates. We begin our analysis
with the study of the general relativistic Bose-Einstein
condensates trapped in a gravitational field in the semi-
classical approximation, and with the use of the Newtonian
limit we obtain the basic equations describing the gravi-
tational collapse of the Bose-Einstein condensates.

A. The Newtonian limit for general relativistic
Bose-Einstein condensates

In formulating a general relativistic model of the Bose-
Einstein condensates we consider that bosonic matter at
temperatures below the critical temperature Tc in a gravi-
tational field represents a hybrid system, in which the
gravitational field remains classical, while the bosonic
condensate is described by quantum fields. In the standard
approach used for coupling quantum fields to a classical
gravitational field (i.e., semiclassical gravity), the energy-
momentum tensor that serves as the source in the Einstein
equations is replaced by the expectation value of the
energy-momentum operator T̂μν with respect to some
quantum state Ψ [48],

Rμν −
1

2
gμνR ¼ 8πG

c4
hΨjT̂μνjΨi; (15)

where Rμν is the curvature tensor, R is the curvature scalar,
and gμν is the metric tensor of the space-time. In the
nonrelativistic limit the state function Ψ evolves according
to the Gross-Pitaevski equation for the condensate wave
function ψ , with a quartic nonlinear term [12–16,18]

iℏ
∂
∂tψð~r; tÞ ¼

�
−

ℏ2

2mχ
∇2 þmχVextð~r; tÞ þ u0jψð~r; tÞj2

�

× ψð~r; tÞ; (16)

where u0 ¼ 4πℏ2a=mχ , a is the coherent scattering length
(defined as the zero-energy limit of the scattering amplitude
fscat), mχ is the mass of the condensate particle, and Vext is
the external potential. For the energy-momentum tensor we
obtain hΨjT̂μνjΨi ¼ hψ jT̂μνjψi ¼ Tμν, where Tμν is the
classical energy-momentum tensor of the condensed sys-
tem. In a comoving frame the energy-momentum tensor is
diagonal, with components Tμν ¼ ðρc2;−P;−P;−PÞ, with
ρc2 and P denoting the effective energy density and the
thermodynamic pressure of the condensed system. As for
Vextð~r; tÞ, we assume that it is the gravitational potential
Vgrav, Vextð~r; tÞ ¼ Vgravð~r; tÞ, and it is given by the
Newtonian limit of Eq. (15). In this limit g00 ¼ 1þ
2Vgravð~r; tÞ=c2, and Eq. (15) can be written as R0

0 ¼
ð4πG=c2Þρ. By taking into account that R0

0 ¼ ð1=c2Þ
ΔVgravð~r; tÞ, it follows that for a single component con-
densate the gravitational potential Vgravð~r; tÞ satisfies the
Poisson equation

∇2Vgravð~r; tÞ ¼ 4πGρð~r; tÞ; (17)

where

ρ ¼ mχnð~r; tÞ ¼ mχ jψð~r; tÞj2; (18)

is the mass density inside the Bose-Einstein condensate,
nð~r; tÞ ¼ jψð~r; tÞj2 is the particle number density, and G is
the gravitational constant, respectively. The probability
density jψð~r; tÞj2 is normalized according to

R
nð~r; tÞd3~r ¼R jψð~r; tÞj2d3~r ¼ N, where N is the total particle number in

the condensate.
The Newtonian approximation is valid only if the

condition P ≪ ρc2 is satisfied. The equation of state of
the Bose-Einstein condensate is PðρÞ ¼ U0ρ

2, with U0 ¼
2πℏ2a=m3

χ [18], which is a polytrope with index n ¼ 1.
Therefore the general relativistic corrections can be ignored
for condensate dark matter densities satisfying the con-
straint U0ρ ≪ c2, or, equivalently,

ρ ≪
c2m3

χ

2πℏ2a
¼ 1.289 × 10−15

×

�
mχ

10−32g

�
3
�

a
10−7 cm

�
g=cm3: (19)

The central densities of the galactic dark matter halos are
of the order of ρc ≈ 10−27 g=cm3 − 10−24 g=cm3 [46,47],
and hence the Newtonian approximation can be applied for
the study of the astrophysical properties of the condensate
dark matter systems.
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B. Variational formulation of the
Gross-Pitaevskii equation

The basic equations describing the gravitationally
trapped Bose-Einstein condensates in the Newtonian limit
are given by Eqs. (16) and (17), respectively. The time-
dependent Gross-Pitaevski equation (16) can be derived
from the action principle δ

R t2
t1 Lψdt ¼ 0, where the

Lagrangian Lψ is given by [15,49,50]

Lψ ¼
Z
V

iℏ
2

�
ψ� ∂ψ

∂t − ψ
∂ψ�

∂t
�
d3~r − E; (20)

where E ¼ RV εd3~r is the total energy, with the energy
density ε given by

ε ¼ ℏ2

2mχ
j∇ψ j2 þmχVgravjψ j2 þ

u0
2
jψ j4: (21)

If one multiplies Eq. (16) by ψ� and subtracts the
complex conjugate of the resulting equation, one arrives
at the equation

∂jψ j2
∂t þ∇ ·

�
ℏ

2imχ
ðψ�∇ψ − ψ∇ψ�Þ

�
¼ 0: (22)

Equation (22) has the form of a continuity equation for
the particle density, and can be written as

∂ρ
∂t þ∇ · ðρ~vÞ ¼ 0; (23)

where the velocity of the condensate is defined by

~v ¼ ℏ
2imχ

ψ�∇ψ − ψ∇ψ�

jψ j2 : (24)

Simple expressions for the density and velocity can be
obtained if we write the wave function ψ in terms of its
amplitude f and of a phase φ, ψ ¼ f exp ðiφÞ (the
Madelung representation). In this representation ρ ¼ f2,
and the velocity ~v is ~v ¼ ðℏ=mχÞ∇φ. In the Madelung
representation of the wave function, the dynamics of the
Bose-Einstein condensate can be formulated in terms of
the continuity equation and of the hydrodynamic Euler
equations [18].

C. Dynamical time evolution of the Bose-Einstein
condensed dark matter halos

In order to study the time evolution of the condensate we
apply the variational approach, by assuming a trial form for
the wave function ψ of the condensate. We assume that
during the motion of the dark matter cloud, the density
profile maintains its shape, but that its spatial extent R ¼
RðtÞ depends on time. The density distribution is determined

by the amplitude of the wave function, while the phase
determines its velocity field.
In the following we assume that the velocity is in the

radial direction, and it is proportional to r. Translated into
the behavior of the wave function, this implies that the
phase φ varies as r2, since the radial velocity of the
condensate is given by ðℏ=mχÞ∂φ=∂r. We therefore write
the phase of the wave function as φ ¼ HðtÞmχr2=2ℏ, where
HðtÞ is a second parameter in the wave function, which
determines the velocity of the condensate as

~v ¼ HðtÞ~r: (25)

Thus, the complete trial wave function is [15,49,50]

ψðr; tÞ ¼ A
ffiffiffiffi
N

p

R3=2ðtÞ f
�

r
RðtÞ

�
exp

�
iHðtÞmχr2

2ℏ

�
; (26)

where A is a normalization constant, and f½r=RðtÞ� is an
arbitrary function to be determined. The mass density of the
condensate is thus given by

ρðr; tÞ ¼ mχ jψðr; tÞj2

¼ A2Nmχ

R3ðtÞ f2
�

r
RðtÞ

�

¼ A2M
R3ðtÞ f

2

�
r

RðtÞ
�
; (27)

where M ¼ Nmχ is the total mass of the condensate dark
matter halo.
We now carry out the integration over r in Eq. (20) for

this choice of the wave function, and obtain the Lagrangian
of the condensate as a function of the two independent
variables HðtÞ and RðtÞ, as well as of the time derivative of
HðtÞ. For the first term in Eq. (20) we obtain

Z
iℏ
2

�
ψ� ∂ψ

∂t − ψ
∂ψ�

∂t
�
dV

¼ −
1

2
_HðtÞ

Z
mχnð~r; tÞr2dV

¼ −
1

2
meffR2ðtÞ _HðtÞ; (28)

where

meffðRÞ ¼ Nmχ
hr2i
R2ðtÞ ; (29)

and

hr2i ¼
R
nð~r; tÞr2d3~rR
nð~r; tÞd3~r (30)
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is the mean square radius of the dark matter halo. The total
energy of the condensate is obtained as

E ¼ 1

2
meffðRÞR2ðtÞH2ðtÞ þ EzpðRÞ þ EgravðRÞ þ EintðRÞ

¼ 1

2
meffðRÞR2ðtÞH2ðtÞ þUðRÞ; (31)

where

UðRÞ ¼ EzpðRÞ þ EgravðRÞ þ EintðRÞ; (32)

and

EzpðRÞ ¼
ℏ2

2mχ

Z
V

�
djψ j
dr

�
2

d3~r ¼ CzpR−2; (33)

EgravðRÞ ¼
Z
V
mχVgravjψ j2d3~r ¼ −CgravR−1; (34)

and

EintðRÞ ¼
u0
2

Z
V
jψ j4d3~r ¼ CintR−3; (35)

respectively. The coefficients Czp, Cgrav, and Cint, respec-
tively, are defined by Eqs. (33–35), and are given by

Czp ¼ 2πℏ2A2N
mχ

Z
1

0

f02ðξÞξ2dξ; (36)

Cgrav ¼ 4πmχA2N
Z

1

0

f2ðξÞVgravðξÞξ2dξ; (37)

and

Cint ¼ 2πu0A4N2

Z
1

0

f4ðξÞξ2dξ; (38)

respectively. The coefficient Czp describes the so-called
zero-point kinetic energy of the system. Therefore the
Lagrangian of the Bose-Einstein condensate dark matter
halo takes the form of an effective Lagrangian, which can
be written as

LeffðR;H; _HÞ ¼ −
�
1

2
meffðRÞR2ð _H þH2Þ þUðRÞ

�
:

(39)

The Lagrange equation for _H,

d
dt

�∂LeffðR;H; _HÞ
∂ _H

�
¼ ∂LeffðR;H; _HÞ

∂H ; (40)

gives

H ¼
_R
R
; (41)

while the Lagrange equation for R, ∂LeffðR;H; _HÞ=
∂R ¼ 0, gives the equation of motion of the condensate as�

1

2

∂meffðRÞ
∂R Rþmeff

�
Rð _H þH2Þ ¼ −

∂UðRÞ
∂R : (42)

By integrating Eq. (23) over the volume of the con-
densate, with the use of the Gauss theorem we obtain
immediately the following particle conservation number
equation:

∂
∂t N þ

Z
S

ρ

mχ
~v · ~ndS ¼ 0; (43)

where the total particle number N ¼ RV jψð~r; tÞj2d3~r is
obtained by integrating the norm of the wave function over
the entire spherical volume V of the condensate, with radius
RBE. The time variation of N can be due only to the gain or
loss of the particles moving in or out of the condensate
through the surface S encompassing the volume V. In the
case of a static condensate, ~v≡ 0, and ρðRBEÞ≡ 0, and
then obviously the particle flux ~jðRBEÞ ¼ ρðRBEÞ~v≡ 0,
leading, via Eq. (43), to the conservation of the total particle
number in the system, N ¼ constant.
Based on the static case, for a time evolving condensate,

we would expect that on its boundary the condition
ρ½RBEðtÞ�≡ 0 to be satisfied for all times, leading to a
zero particle flux through the surface encompassing the
time-dependent volume V of the condensate, ~j½RBEðtÞ� ¼
ρ½RBEðtÞ�~v½RBEðtÞ�≡0; ∀t≥ 0. Since the Hamiltonian of
the Gross-Pitaevskii equation (16) is real, it is obviously
Hermitian, and therefore the norm of the wave function,
as well as the total particle number, are conserved. Since N
is a constant, from Eq. (43) it follows that in the time-
dependent case the particle flux through the boundary S

of the condensate must be zero, that is, ~j½RBEðtÞ� ¼
ρ½RBEðtÞ�~v½RBEðtÞ�≡ 0;∀t ≥ 0, and there is no particle loss
from the system.

IV. DARK MATTER DENSITY, GRAVITATIONAL
POTENTIAL AND PHYSICAL PARAMETERS

OF TIME-DEPENDENT BOSE-EINSTEIN
CONDENSATE DARK MATTER HALOS

As a first step in the study of the time dynamics of the
gravitationally bounded Bose-Einstein condensates we
have to chose a variational trial wave function. Instead
of fixing it in an arbitrary way (by assuming, for example,
that the initial density profile of the condensate has a
Gaussian form), we require that jψ j2 satisfies the continuity
equation (23). For the density of the Bose-Einstein con-
densate we assume a general form
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ρðr; tÞ ¼ ρ0ðtÞ þ ρ1ðtÞρ2ðrÞ; (44)

where ρ0ðtÞ, ρ1ðtÞ and ρ2ðrÞ are arbitrary functions of t and
r to be determined. From a physical point of view, the trial
density profile ρðtÞ is the sum of two terms, the first
representing a “cosmological” type homogenous term
ρhomðtÞ, while the second term ρinhomðt; rÞ represents the
effect of the time-dependent inhomogeneities in the dark
matter halo. The inhomogeneous term is assumed to be
separable in the variables t and r, so that ρinhomðt; rÞ ¼
ρ1ðtÞρ2ðrÞ.

A. The density profile and the gravitational potential
of the dark matter halo

Substitution of Eqs. (25) and (44) into the continuity
equation (23) gives

_ρ0ðtÞ þ 3ρ0ðtÞ
_RðtÞ
RðtÞ þ ρ2ðrÞ

×

�
_ρ1ðtÞ þ 3ρ1ðtÞ

_RðtÞ
RðtÞ þ

_RðtÞ
RðtÞ ρ1ðtÞr

ρ02ðrÞ
ρ2ðrÞ

�
¼ 0: (45)

We determine the function ρ2ðrÞ by imposing the
condition rρ02ðrÞ=ρ2ðrÞ ¼ constant ¼ α > 0, which leads
first to

ρ2ðrÞ ¼ C1rα; (46)

where C1 is an arbitrary constant of integration. Next we
require that the term in the square bracket of Eq. (45)
vanishes. Therefore, Eq. (45) gives the following two
independent differential equations for the determination
of the functions ρ0ðtÞ and ρ1ðtÞ:

_ρ0ðtÞ þ 3ρ0ðtÞ
_RðtÞ
RðtÞ ¼ 0; (47)

and

_ρ1ðtÞ þ ð3þ αÞρ1ðtÞ
_RðtÞ
RðtÞ ¼ 0; (48)

respectively. Hence, the general solution of Eq. (45) can be
obtained as

ρðr; tÞ ¼ 1

R3ðtÞ
�
a0 þ b0

rα

RαðtÞ
�
; (49)

where a0 and b0 are arbitrary constants of integration. Since
at the vacuum boundary of the condensate, where r ¼ RðtÞ,
the density must satisfy the condition ρ½RðtÞ; t� ¼ 0,
∀t ≥ 0, we obtain for the two integration constants the
condition a0 þ b0 ¼ 0. Therefore the density profile of
the condensate can be represented in the form

ρðr; tÞ ¼ a0
R3ðtÞ

�
1 −

rα

RαðtÞ
�
: (50)

With this density profile the Poisson equation can be
written as

1

r2
d
dr

�
r2
dVgrav

dr

�
¼ 4πGa0

1

R3ðtÞ
�
1 −

rα

RαðtÞ
�
; (51)

and can be integrated to give

dVgrav

dr
¼ 4πGa0

1

R3ðtÞ
�
r
3
−

rαþ1

ðαþ 3ÞRαðtÞ
�
þ C2ðtÞ

r2
;

(52)

where C2ðtÞ is an arbitrary integration function. In order to
avoid any singularities for r → 0 we take C2ðtÞ≡ 0. A new
integration gives

Vgravðr; tÞ ¼ 4πGa0
1

R3ðtÞ

×

�
r2

6
−

rαþ2

ðαþ 2Þðαþ 3ÞRαðtÞ
�
þ Vð0Þ

gravðtÞ:

(53)

At the surface of the dark matter halo r ¼ RðtÞ the
gravitational potential becomes Vgrav½RðtÞ; t� ¼ −GM=
RðtÞ, where M ¼ Nmχ is the total mass of the condensate,
which gives

Vð0Þ
gravðtÞ ¼ −

GM þ 2πGa0½αðαþ 5Þ=3ðαþ 2Þðαþ 3Þ�
RðtÞ ;

(54)

leading to

Vgravðr; tÞ ¼
πGa0
R3ðtÞ

�
2r2

3
−

4rαþ2

ðαþ 2Þðαþ 3ÞRαðtÞ
�

−
GM þ 2πGa0½αðαþ 5Þ=3ðαþ 2Þðαþ 3Þ�

RðtÞ :

(55)

Since the integration constant a0 is arbitrary, we deter-
mine it by imposing the condition

πGa0 ¼ GM þ 4πGa0½αðαþ 5Þ=6ðαþ 2Þðαþ 3Þ�; (56)

giving

a0 ¼
3ðαþ 2Þðαþ 3Þ
πðα2 þ 5αþ 18ÞM: (57)

From the normalization condition M ¼ 4π
R
R
0 ρr2dr we

obtain
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a0 ¼
3

4π

αþ 3

α
M: (58)

By equating Eqs. (57) and (58) we find for α the value
α ¼ 2, giving a0 ¼ 15M=8π. Therefore the density and the
gravitational potential in the Bose-Einstein condensed dark
matter halo become

ρðr; tÞ ¼ 15

8π

M
R3ðtÞ

�
1 −

r2

R2ðtÞ
�
; (59)

and

Vgravðr; tÞ ¼ −
15

8

GM
R

�
1 −

2

3

r2

R2ðtÞ þ
1

5

r4

R4ðtÞ
�
; (60)

respectively. For the wave function of the condensate we
obtain

jψðr; tÞj2 ¼ 15

8π

N
R3

�
1 −

r2

R2ðtÞ
�
: (61)

By comparing Eqs. (27) and (59) we obtain the expres-
sions of the trial function f½r=RðtÞ� and of the normaliza-
tion constant A as

A ¼
ffiffiffiffiffiffi
15

8π

r
; f

�
r

RðtÞ
�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2

R2ðtÞ

s
: (62)

B. The coefficients Czp, Cgrav and Cint

Once the wave function of the system is known, the
effective mass meff and the constant coefficients in
Eqs. (36–38) can be obtained immediately. For the effective
mass meff we find

meff ¼
3

7
M ¼ constant: (63)

The coefficient Czp, giving the zero-point kinetic energy
of the condensate is given by

Czp ¼ 15ℏ2

4mχ

M
mχ

FðξÞ; (64)

where

FðξÞ ¼
Z

ξ

0

x4

ð1 − x2Þ dx: (65)

In obtaining the zero-point kinetic energy Ezp by using
the trial function given by Eq. (62), it turns out that the
coefficient Czp diverges at the surface of the condensate,
where r → RðtÞ. The divergence of the kinetic energy near
the edge of the condensate cloud is a general feature of the

Bose-Einstein condensates, and it can be understood from
simple physical considerations [15]. In the Thomas-Fermi
approximation the particle number profile is given by
nð~rÞ ¼ ½μ − Vgravð~rÞ�=u0, where μ is the chemical potential
of the condensate. If ~r0 is a point on the surface, then
μ ¼ Vgravð~r0Þ defines the surface of the condensate. By
expanding the external potential about ~r0 we obtain
nð~rÞ ¼ ~Fgrav · ð~r − ~r0Þ=u0, where ~Fgrav ¼ −∇Vgravð~r0Þ,
while the wave function is given by ψðrÞ ¼ ½~Fgrav·
ð~r − ~r0Þ=u0�1=2 [15,51]. If we denote the coordinate in
the direction of ∇Vð~r0Þ by x, and denote the position of
the surface as x0, the interior of the condensed dark matter
halo corresponds to x ≤ x0. The wave function near the
surface varies as ðx0 − xÞ1=2, and hence the kinetic energy
term in the energy functional behaves as ℏ2jdψ=dxj2=
2mχ jψ j2 ∼ ℏ2=2mχðx0 − xÞ2, and it diverges as x ap-
proaches x0 from below. In fact the kinetic energy term
dominates over the potential energy term for x0 − x ≤ δ,
where

δ ¼
�

ℏ2

2mχFgrav

�
1=3

: (66)

In order to obtain a better description of the surface
properties of the Bose-Einstein condensates one must study
the Gross-Pitaevskii equation [15,51]

−
�

ℏ2

2mχ

�
ψ 00ðxÞ þ Fgravxψ þ u0jψ j2ψ ¼ 0; (67)

describing the surface properties of the condensate. An
approximate solution of this equation is Ψ ¼ ffiffiffiffiffiffi−yp

, y ≤ 0,
where y ¼ x=δ, and Ψ ¼ ψ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fgravδ=u0

p
. By using this

solution one can evaluate the kinetic energy per unit
area perpendicular to the x axis, hp2=2mχi ¼ ðℏ2=2mχÞ

R
j▿ψ j2dx. Since this integral diverges for x → 0, the integral
must be evaluated for x less than some cutoff value −l,
with the lower limit of integration taken as −L, where
L ≫ δ. By choosing the cutoff distance as −δ, with the use
of the approximate solution for ψ given above we obtain
hp2=2mχi ≈ ðℏ2=8mχÞðFgrav=u0Þ ln ðL=lÞ. If one uses the
true wave function obtained numerically one finds
hp2=2mχi≈ðℏ2=8mχÞðFgrav=u0Þlnð4.160L=lÞ [15]. Hence
in order to calculate the kinetic energy in more general
situations an effective cutoff must be used, whose
numerical value is of the order of l ¼ 0.240δ [15,51].
In order to make the integral FðξÞ convergent, ξ must be

smaller than 1, ξ < 1, and therefore we must introduce a
cutoff length ϵ, so that the upper integration limit becomes
ξ ¼ 1 − ϵ. Since the force acting on a particle on the surface
of the condensate is the gravitational force F ¼ GMmχ=R2,
by taking into account the previous results we obtain the
cutoff length ϵ ¼ l=R as
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ϵ ¼ 0.240
δ

R
¼ 0.190488 ×

�
ℏ2

Gm2
χMR

�
1=3

¼ 2.653 × 10−16 ×

�
mχ

10−32g

�
−2=3

�
M

106M⊙

�
−1=3

×

�
R

10 kpc

�
−1=3

: (68)

For ϵ¼ 2.653×10−16 we obtain Fð1− ϵÞ¼ 17.0350669,
while for ϵ ¼ 10−10 we have Fð1 − ϵÞ ¼ 10.5261657. By
assuming that the surface region of the dark matter halo
represents around 1% of its spatial extension, we have
ϵ ¼ 0.01, and Fð1 − ϵÞ ¼ 1.333. In the following we
consider two limiting cases for ϵ, ϵ ¼ 0.01 and ϵ ¼
2.653 × 10−16, respectively.
Therefore the coefficients Czp, Cgrav and Cint can be

obtained as

Czp ¼ 15ℏ2

4mχ

M
mχ

FðξÞ

¼ ð1.110 × 1050 − 1.419 × 1051Þ

×

�
mχ

10−32g

�
−2
�

M
106M⊙

�
g cm4=s2; (69)

Cgrav ¼
10

7
GM2 ¼ 3.81 × 1071 ×

�
M

106M⊙

�
2

g cm3=s2;

(70)

and

Cint ¼
15

4π
u0

M2

m2
χ
¼ 6.665 × 10114

×

�
a

10−7 cm

��
mχ

10−32 g

�
−3
�

M
106M⊙

�
2

g cm5=s2;

(71)

respectively.

V. GRAVITATIONAL COLLAPSE OF
BOSE-EINSTEIN CONDENSATE DARK

MATTER HALOS

By taking into account the explicit form of H, given by
Eq. (41), and the constancy of the effective mass meff ,
the equation of motion of the gravitationally bounded
Bose-Einstein condensate is given by

meffR̈ ¼ 2Czp

R3
−
Cgrav

R2
þ 3Cint

R4
; (72)

Eq. (72) can be rewritten in the form of an energy
conservation equation as

1

2
meff

_R2ðtÞ þ UðRÞ ¼ E0 ¼ constant; (73)

where

UðRÞ ¼ Czp

R2
−
Cgrav

R
þ Cint

R3
: (74)

The variation of the potential UðRÞ as a function of R is
represented in Fig. 1.
Let us consider the case of the contraction, that is, the

case of a Bose-Einstein dark matter halo beginning to
contract at t ¼ 0 from an initial radius R ¼ R0 ¼ Rmax.
Then the initial velocity _Rð0Þ of the dark matter halo can be
obtained from Eq. (73) as

_Rð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

meff
½E0 −UðR0Þ�

s
: (75)

After a time tcoll the condensate will eventually reach a
stable radius Rst, where its velocity is zero, and the potential
energy UðRÞ is minimum, ∂U=∂RjR¼Rst

¼ 0, so that

2Czp

R3
−
Cgrav

R2
þ 3Cint

R4

����
R¼Rst

¼ 0: (76)

From Eq. (76) we obtain the radius of the stable
configuration as

Rst ¼
Czp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
zp þ 3CgravCint

q
Cgrav

¼ Czp

Cgrav

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3CgravCint

C2
zp

s #
: (77)

Since 3CgravCint=C2
zp ≫ 1, the equilibrium radius can be

obtained, in a very good approximation, as

0.5 1.0 1.5 2.0 2.5 3.0

2.0

1.5

1.0

0.5

0.0

0.5

R kpc

U
R

10
50

er
gs

FIG. 1 (color online). Variation of the potential UðRÞ as a
function of R for a Bose-Einstein condensate dark matter halo
with mass M ¼ 106M⊙ and scattering length a ¼ 10−7 cm. The
mass of the condensate dark matter particle ism ¼ 10−32 g (solid
curve), m ¼ 2 × 10−32 g (dotted curve), m ¼ 2.5 × 10−32 g
(short dashed curve), m ¼ 3 × 10−32 g (long dashed curve),
and m ¼ 3.5 × 10−32 g (ultra long dashed curve), respectively.
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Rst≈

ffiffiffiffiffiffiffiffiffiffi
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u0
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(78)

The condition of the zero final velocity of the halo,
_RðtcollÞ ¼ 0 determines the total energy E0 as given by

E0 ¼ UðRstÞ ¼
Czp

R2
st
−
Cgrav

Rst
þ Cint

R3
st
: (79)

Therefore the initial velocity of the halo _Rð0Þ is
determined as a function of the final radius Rst and of
the initial radius R0 by the consistency condition (the
conservation of energy),

meff

2
_R2ð0Þ ¼ Czp

R2
st
−
Cgrav

Rst
þ Cint

R3
st
−
Czp

R2
0

þ Cgrav

R0

−
Cint

R3
0

:

(80)

The general solution of Eq. (73) is given by

t − t0 ¼ �
ffiffiffiffiffiffiffiffi
meff

2

r Z
R

R0

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 − UðRÞp ; (81)

where þ and − corresponds to the case of expansion and
contraction, respectively. The variation of the collapse time
as a function of radius is presented, for R0 ¼ 20 kpc and
t0 ¼ 0, in Fig. 2.
SinceE0>UðRÞ,∀R<R0, the function 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0−UðRÞp ¼

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0½1−UðRÞ=E0�

p
can be approximated in the first

order as
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Cgrav
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1
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�
:

(82)

Therefore, within the framework of this approximation,
the total collapse time,

tcoll ¼ tðRstÞ − t0 ¼
ffiffiffiffiffiffiffiffi
meff

2

r Z
Rst

R0

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 −UðRÞp ; (83)

of the condensed dark matter halo between an initial radius
R0 and the radius of the stable configuration Rst is given by

tcoll ≈
ffiffiffiffiffiffiffiffi
meff

p f2Cð0Þ
gravR2

0R
2
st ln ðRst=R0Þ þ ðR0 − RstÞ½Cð0Þ

int ðR0 þ RstÞ þ 2R0RstðCð0Þ
zp þ R0RstÞ�g

2
ffiffiffi
2

p ffiffiffiffiffiffi
E0

p
R2
0R

2
st

; (84)

where we have denoted Cð0Þ
zp ¼ Czp=2E0, C

ð0Þ
grav ¼ Cgrav=2E0, and Cð0Þ

int ¼ Cint=2E0, respectively. By using Eq. (78) to
express the radius of the final stable configuration, we obtain for the collapse time the expression

tcoll ≈
ffiffiffiffiffiffiffiffi
meff
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;: (85)

If the initial size of the condensed dark matter cloud R0 is very high, so that the condition E0 ¼ Czp=R2
0 − Cgrav=R0 þ

Cint=R3
0 ≈ 0 is satisfied, and by assuming Czp ¼ 0, the collapse time of the condensate can be expressed in an exact form as

5 10 15 20

0

2 1017

4 1017

6 1017

8 1017

R kpc

t
s

FIG. 2 (color online). Collapse time t as a function of R for a
Bose-Einstein condensate dark matter halo with mass
M ¼ 106M⊙. The mass of the condensate dark matter particle
is in the range mχ ∈ ð10−32 g; 3.5 × 10−32 gÞ, and the scattering
length is taken as a ¼ 10−7 cm.
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where FðϕjmÞ denotes the elliptic integral of the first kind,
FðϕjmÞ ¼ R ϕ0 ð1 −m sin2 θÞ−1=2dθ. By using Eq. (78) for
the equilibrium radius, the collapse time can be written as

tcoll ≈
ffiffiffiffiffiffiffiffiffiffiffi
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The numerical values of the elliptic integral of the first
kind are of the order of unity. By neglecting the numerical
factors of the order of unity, and by considering that the
initial radius R0 of the dark matter halo is enough high so
that the condition CgravR2

0 ≫ Cint is satisfied, the collapse
time can be obtained in the simple form of

tcoll ≈
ffiffiffiffiffiffiffiffiffiffiffi
2meff

p
3
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grav R

3=2
0 ; E0 ≈ 0; R0 ≫

ffiffiffiffiffiffiffiffiffiffi
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s
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(88)

With the use of the expression of Cgrav we obtain

tcoll ≈
1
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In this approximation the collapse time of the dark matter
halo is determined only by the gravitational properties of
the system, and it is independent of the zero-point kinetic
energy and the interaction energy.

The total mass Mst of the stable condensate configura-
tion with radius Rst, at the end of the collapse process, can
be approximated as

Mst ¼
4

π
R3
stρc ≈

108

π

�
7

2

�
3=2 ℏ3
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χ
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10−7 cm

�
3=2

×

�
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10−24 g=cm3

�
M⊙; (90)

where ρc is the central density of the dark matter halo.
At the equilibrium point R ¼ Rst we can easily obtain

the relations

R
dU
dR

����
R¼Rst

¼ 2EzpðRstÞ þ EgravðRstÞ þ 3EintðRstÞ ¼ 0;

(91)

and

R2
d2U
dR2

����
R¼Rst

¼ 6EzpðRstÞ þ 2EgravðRstÞ þ 12EintðRstÞ;

(92)

respectively.

VI. THE STABILITY OF THE COLLAPSED BOSE-
EINSTEIN CONDENSATE DARKMATTER HALOS

For condensed dark matter halos with masses of the
order ofM ¼ 108M⊙ and radii of the order of R ¼ 10 kpc,
the “relativity parameter” 2GM=c2R ≈ 10−9 ≪ 1, which
shows that in this range of the physical parameters general
relativistic effects can be neglected, and the dynamics of the
halos can be described with a very good approximation in
the framework of Newtonian physics. Hence stable con-
figurations are possible, and the halo would not collapse to
a black hole, ending in a singular state. The collapse ends
when the interaction energy equals the gravitational energy,
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jEgravj ¼ Eint; (93)

a condition which allows the approximate determination of
the radius of the stable configuration as Rst ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cint=Cgrav

p
,

a result which is consistent with the radius of the static
configuration given by Eq. (78) obtained by solving the full
set of dynamical evolution equations. In the case of the
gravitationally confined Bose-Einstein condensates the
interaction energy plays the same role as the electron
and neutron quantum degenerate pressures in the cases of
the white dwarfs and of the neutron stars, and it supports the
dark matter halo against gravitational collapse.
The total energy E of the collapsed Bose-Einstein

condensates dark matter halo can be written as E ¼ Ezpþ
Eint þ Egrav, where Ezp, Eint and Egrav are the zero-point
kinetic energy, the interaction energy, and the gravitational
energy, respectively. In the following we will consider an
approximate estimate of the energy, by following the
approach considered in [15]. The kinetic energy per particle
is ℏ2=2mχR2

st, and therefore the total kinetic energy of
the system is given by Ekin ¼ Nℏ2=2mχR2

st, where N is
the total particle number. The interaction energy can be
obtained as Eint ¼ ð1=2ÞðN2=VÞmu0, where V is the
volume of the condensate, while the gravitational potential
energy is Egrav ¼ −GM2=Rst (for simplicity we neglect in
the following the factor 3=4 in the expression of the
gravitational potential energy). Therefore the total energy
of the condensate is given by

E ¼ N
ℏ2

2mχR2
st
þ 3

2
N2

ℏ2a
mχR3

st
−
GM2

Rst
: (94)

By taking into account the explicit expressions of the
radius and mass of the static condensate, given by Eqs. (3)
and (4), respectively, we obtain for the total energy the
expression

E ¼ 2
ffiffiffi
a

p
ℏ3½4πð3 − 2π2Þa2ℏ2ρc þGm4

χ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
G3m15

χ

q ρc: (95)

For a ¼ 0 we have E ¼ 0, but this case is not relevant
for the study of the condensate dark matter halos. If the
parameters of the BEC dark matter halo satisfy the
constraint

210.351
a2ℏ2

Gm4
χ
ρc > 1; (96)

then the total energy E of the halo satisfies the stability
condition E < 0. The condition given by Eq. (96) can be
reformulated as

3.50 × 1045 ×
ða=10−7 cmÞ2
ðmχ=10−32 gÞ4 ×

ρc
10−24 g=cm3

> 1; (97)

and it is obvious that it is satisfied by most of the realistic
BEC dark matter halo models.

A. The frequency of the small oscillations about
the equilibrium state

Equations (91) and (92) allow the study of the frequency
of the small oscillations about the equilibrium state of the
condensed dark matter halos. Expanding the potential
UðRÞ to second order in R − Rst we find

UðRÞ ¼ UðRstÞ þ
1

2
KeffðR − RstÞ2; (98)

where Keff ¼ U00ðRstÞ. The equation of motion of the
perturbed dark matter halo is

meffR̈þ KeffðR − RstÞ ¼ 0; (99)

and therefore the frequency ω of the small oscillations is
obtained as

ω2 ¼ Keff

meff
¼ R2

stU00ðRstÞ
R2
stmeff

¼ 3EintðRstÞ − EgravðRstÞ
R2
stmeff

:

(100)

With the use of Eq. (78) for the equilibrium radius, and of
the expression of meff , the oscillation frequency can be
expressed as

ω2 ¼ 14C5=2
grav

9
ffiffiffi
3

p
C3=2
int M

> 0; (101)
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(102)

Equivalently, we obtain

ω ¼ 4.837 × 10−17 ×

�
mχ

10−32 g

�
9=4
�

a
10−7 cm

�
−3=4

×

�
M

106M⊙

�
1=2

s−1: (103)

VII. Discussions and final remarks

In this paper we have analyzed a simple model for the
collapse of BEC dark matter halos, based on the dynamical
properties of the Gross-Pitaevskii equation. The present
model does not include damping nor a microscopic
mechanism for particle ejection. The rotational effects have
also been ignored, as well as the possible presence of

TIBERIU HARKO PHYSICAL REVIEW D 89, 084040 (2014)

084040-14



vortices in the condensate. We also do not include any
decay mechanism of the vortices (or turbulence) during the
collapse, since these effects can be neglected because of the
rapid increase of the density. Starting from the general
description of a time-dependent Bose-Einstein gravitation-
ally confined condensate, we focus our attention on a
simple limiting case, in order to obtain some intuitive
understanding of the physical properties of the gravitational
collapse of the dark matter halos, and the formation of
stable astrophysical systems.
In order to obtain a simple mathematical description of

the collapse process we have used a variational approach, in
which a trial form of the condensate wave function was
adopted, with all the physical parameters of the dark matter
halos assumed to have a r=RðtÞ dependence. With the help
of the trial wave function, the equation of motion and
dynamic properties of the time-dependent condensate can
be obtained from an effective time-dependent Lagrangian,
which describes the time evolution of the condensate radius
R. If the condensate wave function depends on one or more
parameters, the resulting Lagrangian functional yields
approximate Lagrangian equations of motion for these
parameters. With the help of the trial wave function one
minimizes the action with respect to the free parameter (the
Rayleigh-Ritz method). The choice of the trial wave
function is not unique, and different choices may lead to
different results. The precision of the method depends on
the number of free trial parameters, and on how physically
realistic the trial function is. The continuity and Poisson
equations can be solved exactly, and the density (square of
the wave function) and the gravitational potential of the
dark matter halo can be explicitly obtained in an analytical
form, thus allowing a complete description of the dynami-
cal evolution of the condensate. The motion of the
collapsing dark matter halos can be described as the motion
of a single point particle with mass meff in the force field
generated by the effective potential UðRÞ, which incorpo-
rates the effects of the zero-point kinetic energy Ezp, of the
interaction energy of the condensate particles Eint, and of
the gravitational energy Egrav. The variational procedure
allows us to express these energies as a function of the
radius RðtÞ only. However, their explicit functional form
also depends on the scattering length a, the mass of the dark
matter particles, and the total mass of the dark matter halo.
The trial wave function depends on a single parameter RðtÞ,
the time-dependent radius of the condensate. The time-
dependent density profile, as well as the gravitational
potential, are similar to the first order approximations of
the static density and gravitational potential profiles, given
by Eqs. (5) and (7), respectively, with the static radius of the
condensate RBE substituted by the time-dependent radius
RðtÞ, and with a time-dependent central density ρðcÞBEðtÞ. The
variational procedure used can be extended and signifi-
cantly improved by the choice of a trial wave function
depending on several physical parameters. The adopted

approach allows a complete exact analytical treatment of
the gravitational collapse of the condensed dark matter
halos. Other choices of the trial wave function, or the
increase of the number of free parameters would require the
extensive use of numerical methods for the integration of
the evolution equations. The expected error in this varia-
tional approach may be of the order of a few percent, when
compared to the exact numerical solution.
The study of the equation of motion of the collapsing

condensate shows that the collapse process ends with the
formation of a stable configuration, with radius Rst and
mass Mst. The resulting configuration can be of stellar
nature, or of galactic nature, depending on the physical
processes and the initial mass of the dark matter halo.
During the cosmological evolution such a collapse process
could have played an important role in the formation of the
galactic structure, and of the dark matter halos. On the other
hand local perturbations of the condensed dark matter
could lead to the formation of smaller mass condensate
stars. At the end of the collapse the density distribution of
the formed stable static structure is given by

ρBEðrÞ ¼
15Mst

8π

1

R3
st

�
1 −

r2

R2
st

�
¼ ρðcÞBE

�
1 −

r2

R2
st

�
; (104)

where the central density ρðcÞBE of the condensate is given by

ρðcÞBE ¼ 15

8π

�
2

63

�
3=2G3=2m9=2

χ

ℏ3a3=2
Mst ¼ 3.141 × 10−27

×

�
mχ

10−32 g

�
9=2
�

a
10−7 cm

�
−3=2

�
Mst

106M⊙

�
g=cm3:

(105)

Equation (105) gives the mass-central density relation for
stable gravitationally confined condensed astrophysical
objects. This central density is of the same order of
magnitude as the central dark matter density of galactic
dark matter halos. On the other hand, Eq. (104) is consistent
with Eq. (5), which gives an approximate representation of
the density profile of the static density profile of the
condensed Bose-Einstein dark matter halos. In the first
order approximation the density profile of the static
condensate is ρBEðrÞ ≈ ρðcÞBE½1 − ðπ2=6Þðr2=R2

BEÞ�. With
the start of the collapse, the radius of the halo becomes
time dependent, RBE → RðtÞ, while the central density of
the initial static halo changes in time as ρðcÞBE → M=R3ðtÞ.
This shows that the choice of the trial function for the time-
dependent case is consistent with the static case.
An interesting question is the possibility of formation of

dark dense Bose-Einstein condensed stars, having astro-
physical properties (mass and radius) similar to those of the
standard neutron stars. The radius and the mass of the dark
star are determined by the mass of the dark matter particle,
and by the scattering length. The radius of a neutron star is
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of the order of RNS ≈ 106 cm. A scaling of the mass and of
the scattering length of the form a ¼ α × 10−7 cm, mχ ¼
β × 10−32 g will give a radius of the same order of
magnitude as the radius of a neutron star if the coefficients
α and β satisfy the condition α=β3 ¼ 10−15. For α ¼ 10−12,
giving a ¼ 10−19 cm, we obtain β ¼ 10, which implies a
dark matter particle mass of mχ ≈ 10−31 g ≈ 55 eV. On the
other hand, for realistic dark matter densities the corre-
sponding mass of the star will exceed the general relativ-
istic stability limit. Hence the realistic description of the
dark stars requires the inclusion of general relativistic
effects in the study of their structure [31].
The details of the collapse of the Bose-Einstein con-

densate, as well as the numerical values of the physical
parameters of the resulting stable configuration are strongly
dependent on the numerical values of the two parameters
describing the physical properties of the condensate, the
dark matter particle mass mχ , and the scattering length a.
The numerical values of these physical quantities are
poorly known. We have discussed a number of observa-
tional constraints (galactic radii and Bullet Cluster data)
that provide some limits for mχ and a. Within the
framework of the Bose-Einstein condensed dark matter
model these astrophysical constraints point towards a dark
matter particle with mass in the range of meV to a few eV,

and a scattering length of the order of 10−19 cm. However,
in the present paper most of the numerical results are
normalized for a scattering length of 10−7 cm, and a mass
of the dark matter particle of the order of 10−32 g. By a
simple scaling all the numerical values corresponding to
other choices of mχ and a can be obtained easily. We have
also considered the stability properties of the stable dark
matter halos with respect to small oscillations, and the
oscillations frequencies of the halos have also been
obtained. These results show that the stable configuration,
formed from the collapse of the condensed dark matter
halos are stable with respect to small perturbations.
A large number of astrophysical observations, including

the flat galactic cores, or the constant density surfaces
points towards the possibility that dark matter may exist in
the Universe in the form of a Bose-Einstein condensate, and
that this possibility cannot be excluded a priori. The
confirmation of this hypothesis by further observations
on both galactic and cosmological scales would lead to a
major change in our understanding of the basic principles
of cosmology and astrophysics. In the present paper we
have developed some theoretical tools that can help in
the better understanding of the structure formation in the
presence of condensed dark matter.
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