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We carry out a general study on the collapse of axially (and reflection-)symmetric sources in the context
of general relativity. All basic equations and concepts required to perform such a general study are
deployed. These equations are written down for a general anisotropic dissipative fluid. The proposed
approach allows for analytical studies as well as for numerical applications. A causal transport equation
derived from the Israel-Stewart theory is applied, to discuss some thermodynamic aspects of the problem.
A set of scalar functions (the structure scalars) derived from the orthogonal splitting of the Riemann tensor
are calculated and their role in the dynamics of the source is clearly exhibited. The characterization of the
gravitational radiation emitted by the source is discussed.
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I. INTRODUCTION

In a recent paper we have presented a general frame-
work for studying axially symmetric static sources [1]. The
physical arguments supporting the study of axially sym-
metric sources were clearly exposed there; accordingly, we
shall not repeat them here.
We intend in this work to extend the above-mentioned

study to the fully dynamic case. The reasons to undertake
such an endeavor are easy to understand.
Indeed, the static (and quasistatic) approximation is very

sensible because the hydrostatic time scale is very small for
many phases of the life of a star. Thus, it is of the order of
27 minutes for the sun, 4.5 seconds for a white dwarf and
10−4 seconds for a neutron star of 1 solar mass and a radius
of 10 km [2–4]. However, during their evolution, self-
gravitating objects may pass through phases of intense
dynamical activity, with time scales of the order of
magnitude of (or even smaller than) the hydrostatic time
scale, and for which the static (quasistatic) approximation is
clearly not reliable, e.g., the collapse of very massive stars
[5], and the quick collapse phase preceding neutron star
formation; see for example Ref. [6] and references therein.
In these cases it is mandatory to take into account terms
which describe departure from equilibrium, i.e. a full
dynamic description has to be used.

Analytical approaches to describe the evolution of
axially (and reflection-)symmetric self-gravitating fluids
have been proposed before [7–9]. However in these latter
references only perfect fluids were considered, and fur-
thermore the source was described in Bondi null coordi-
nates [10,11]. However, the perfect-fluid condition seems
to be a too stringent restriction for axially symmetric
sources, even in the static case [1,12]. On the other hand,
Bondi coordinates are known to be very useful for the
treatment of gravitational radiation in vacuum, but are not
particularly suitable within the source. An analytical
approach, which shares some similarities with ours,
although restricted to the perfect-fluid case, may be found
in Ref. [13].
Therefore, here, we propose a 1þ 3 approach, and the

source under consideration is as general as possible. It
includes all nonvanishing stresses compatible with the
symmetry of the problem, as well as dissipative
phenomena.
The relevance of dissipative processes in the study of

gravitational collapse cannot be overemphasized. Indeed,
dissipation due to the emission of massless particles
(photons and/or neutrinos) is a characteristic process in
the evolution of massive stars. In fact, it seems that the only
plausible mechanism to carry away the bulk of the binding
energy of the collapsing star, leading to a neutron star or
black hole, is neutrino emission [14].
We shall describe dissipation in the diffusion approxi-

mation. This assumption is in general very sensible, since
the mean free path of particles responsible for the
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propagation of energy in stellar interiors is in general very
small as compared with the typical length of the object.
Thus, for a main sequence star such as the sun, the mean
free path of photons at the center, is of the order of 2 cm.
Also, the mean free path of trapped neutrinos in compact
cores with densities of about 1012 g cm−3 becomes smaller
than the size of the stellar core [15,16].
Furthermore, the observational data collected from

supernova 1987 A indicates that the regime of radiation
transport prevailing during the emission process, is closer
to the diffusion approximation than to the streaming-out
limit [17].
On the other hand, the inclusion of pressure anisotropy is

based on the fact that the local anisotropy of pressure may
be caused by a large variety of physical phenomena, of the
kind we expect in compact objects (see Refs. [18–25] and
references therein for an extensive discussion on this point).
Among all possible sources of anisotropy, there are two

that are particularly related to our primary interest. The first
one is the intense magnetic field observed in compact
objects, such as white dwarfs, neutron stars, or magnetized
strange-quark stars (see, for example, Refs. [26–30] and
references therein). Indeed, it is a well-established fact that
a magnetic field acting on a Fermi gas produces pressure
anisotropy (see Refs. [31–34] and references therein). In
some way, the magnetic field can be addressed as a fluid
anisotropy.
Another source of anisotropy expected to be present in

neutron stars and, in general, in highly dense matter, is the
viscosity (see Refs. [35–42] and references therein).
To carry out the program sketched above, we shall apply

the 1þ 3 formalism developed in Refs. [43–51] (not to
confound with the 3þ 1 formalism used in numerical
general relativity), coupled to the Israel-Stewart transport
equation, within the context of axial symmetry. However, in
spite of its advantages (e.g. coordinate independence and
completeness [47]), we shall not follow here a frame
formalism but rather a coordinate basis approach in which
the orthonormal frame is only used to identify frame
components of proper vectors as scalars that can have a
covariant interpretation. The reason for proceeding in this
way is not related to any specific advantage of our
approach, with respect to the tetrad formalism, but rather
by the simple fact that having been working in the past,
with the former [52,53], we are more familiar with it.
Besides the great complexity of the equations, the setup

of the presented framework, faces another important
challenge, namely the fact that the source should emit
gravitational radiation. Indeed, the gravitational collapse
even if only slightly aspherical, will lead to copious
gravitational-wave emission [54]. This implies (for the
case of bounded sources) that the exterior spacetime should
in principle describe such a radiation. However, as is well
known, no exact solution, describing gravitational radiation
from bounded sources, is available in closed analytical

form. The best we have is perhaps the Bondi approach
[10,11] which provides expressions for the metric functions
in terms of inverse power series of the null coordinate, and
whose convergence is only assured very far from the
source. In other words, there is not any explicit exterior
metric, to which we could match our interior fluid
distribution (in the most general case). In spite of this
drawback, we shall be able to provide a formal characteri-
zation for the emitted (gravitational) radiation within the
source, together with the flow of super-energy associated to
the vorticity of the fluid.
An important role in this study is played by a set of scalar

functions known as structure scalars. These are obtained
from the orthogonal splitting of the Riemann tensor [52].
They have been shown to be related to fundamental
properties of the fluid distribution [53,55–61]. We shall
calculate them for our problem. There will be 12 of them, in
contrast with the cylindrically symmetric case which is
characterized by eight [53] or the spherically symmetric
case, where there is only five [52]. We shall relate them to
specific physical aspects of the source, and we shall write
down for them the relevant equations. A systematic, though
nonexhaustive, study of these equations is carried out.
Dissipative processes will be treated by means of a

causal transport equation derived from the Israel-Stewart
theory [62–65]. This allows for discussing some interesting
thermodynamic aspects of the problem. Also, its coupling
with the generalized “Euler” equation, will illustrate the
decreasing of the effective inertial mass density, due to
thermal effects, and which may lead to the occurrence of
the thermoinertial bounce. These effects have already been
discussed, in spherically and cylindrically symmetric
systems (see Refs. [53,66–74] and references therein).
Finally, in the last section, the results will be summarized

and a list of issues deserving further attention will be
presented.

II. THE METRIC AND THE SOURCE: BASIC
DEFINITIONS AND NOTATION

We shall consider, axially (and reflection-)symmetric
sources. For such a system the most general line element
may be written in “Weyl spherical coordinates” as

ds2 ¼ −A2dt2 þ B2ðdr2 þ r2dθ2Þ þ C2dϕ2 þ 2Gdθdt;

(1)

where A; B;C;G are positive functions of t, r and θ. We
number the coordinates x0 ¼ t; x1 ¼ r; x2 ¼ θ; x3 ¼ ϕ.
We shall assume that our source is filled with an

anisotropic and dissipative fluid. We are concerned with
either bounded or unbounded configurations. In the former
case we should further assume that the fluid is bounded by a
timelike surface Σ, and junction (Darmois) conditions
should be imposed there.
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The energy-momentum tensor may be written in the
“canonical” form, as

Tαβ ¼ ðμþ PÞVαVβ þ Pgαβ þ Παβ þ qαVβ þ qβVα: (2)

The above is the canonical, algebraic decomposition of a
second-order symmetric tensor with respect to a unit
timelike vector, which has the standard physical meaning
when Tαβ is the energy-momentum tensor describing some
energy distribution, and Vμ is the four-velocity assigned by
a certain observer.
With the above definitions it is clear that μ is the energy

density (the eigenvalue of Tαβ for the eigenvector Vα), and
qα is the heat flux, whereas P is the isotropic pressure, and
Παβ is the anisotropic tensor. We emphasize that we are
considering an Eckart frame where fluid elements are
at rest.
Thus, it is immediate to see that

μ ¼ TαβVαVβ; qα ¼ −μVα − TαβVβ; (3)

P ¼ 1

3
hαβTαβ; Παβ ¼ hμαhνβðTμν − PhμνÞ; (4)

with hμν ¼ gμν þ VνVμ.
Since, we choose the fluid to be comoving in our

coordinates, then

Vα ¼
�
1

A
; 0; 0; 0

�
; Vα ¼

�
−A; 0;

G
A
; 0

�
: (5)

Next, let us introduce the unit spacelike vectors K;L;S,
with components

Kα ¼ ð0; B; 0; 0Þ; Lα ¼
 
0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p

A
; 0

!
;

(6)

Sα ¼ ð0; 0; 0; CÞ; (7)

satisfying the following relations:

VαVα ¼ −KαKα ¼ −LαLα ¼ −SαSα ¼ −1; (8)

VαKα ¼ VαLα ¼ VαSα ¼ KαLα ¼ KαSα ¼ SαLα ¼ 0:

(9)

The unitary vectors Vα; Lα; Sα; Kα form a canonical
orthonormal tetrad (say eðaÞα ), such that

eð0Þα ¼ Vα; eð1Þα ¼ Kα; eð2Þα ¼ Lα; eð3Þα ¼ Sα;

with a ¼ 0, 1, 2, 3 (with latin indices labeling different
vectors of the tetrad). The dual vector tetrad eαðaÞ is easily
computed from the condition

ηðaÞðbÞ ¼ gαβeαðaÞe
β
ðbÞ:

The anisotropic tensor may be expressed in the form

Παβ ¼
1

3
ð2ΠI þ ΠIIÞ

�
KαKβ −

hαβ
3

�

þ 1

3
ð2ΠII þ ΠIÞ

�
LαLβ −

hαβ
3

�
þ 2ΠKLKðαLβÞ;

(10)

with

ΠKL ¼ KαLβTαβ; (11)

ΠI ¼ ð2KαKβ − LαLβ − SαSβÞTαβ; (12)

ΠII ¼ ð2LαLβ − SαSβ − KαKβÞTαβ: (13)

This specific choice of these scalars is justified by the
fact, that the relevant equations used to carry out this
study, become more compact and easier to handle, when
expressed in terms of them.
Finally, we observe that from the condition qμVμ ¼ 0,

and the fact that due to the symmetry of the problem, the
Einstein equations imply T03 ¼ 0, it follows that

qμ ¼ qIKμ þ qIILμ (14)

or, in coordinate components

qμ ¼
�

qIIG

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p ;
qI
B
;

AqIIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p ; 0

�
; (15)

qμ ¼
�
0; BqI;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p
qII

A
; 0

�
: (16)

Of course, all the above quantities depend, in general,
on t; r; θ.

III. KINEMATICAL VARIABLES

The kinematical variables play an important role in the
description of a self-gravitating fluid. Here, besides the
four-acceleration, the expansion scalar and the shear tensor,
we have a component of vorticity.
Thus we obtain, respectively, for these variables (see for

example Ref. [51])

aα ¼ VβVα;β ¼ aIKα þ aIILα

¼
�
0;
A;r

A
;
G
A2

�
−
A;t

A
þG;t

G

�
þ A;θ

A
; 0

�
; (17)
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Θ ¼ Vα
;α

¼ AB2

r2A2B2 þ G2

�
r2
�
2
B;t

B
þ C;t

C

�

þ G2

A2B2

�
B;t

B
−
A;t

A
þG;t

G
þ C;t

C

��
; (18)

σαβ ¼ Vðα;βÞ þ aðαVβÞ −
1

3
Θhαβ: (19)

The nonvanishing components of the shear tensor are

σ11 ¼ −
1

3

1

r2A2B2 þG2

B2

A

�
r2A2B2

�
−
B;t

B
þ C;t

C

�

þ G2

�
−2

B;t

B
−
A;t

A
þ G;t

G
þ C;t

C

��
; (20)

σ22 ¼ −
1

3

1

A3

�
r2A2B2

�
−
B;t

B
þ C;t

C

�

þ G2

�
2
A;t

A
þ B;t

B
− 2

G;t

G
þ C;t

C

��
; (21)

σ33 ¼
1

3

1

r2A2B2 þG2

C2

A

�
2r2A2B2

�
−
B;t

B
þ C;t

C

�

þ G2

�
2
C;t

C
−
B;t

B
−
G;t

G
þ A;t

A

��
: (22)

However they are not independent, and therefore the shear
tensor may be defined through two scalar functions, as

σαβ ¼
1

3
ð2σI þ σIIÞ

�
KαKβ −

1

3
hαβ

�

þ 1

3
ð2σII þ σIÞ

�
LαLβ −

1

3
hαβ

�
: (23)

Using Eqs. (20), (21) and (22) the above scalars may
be written in terms of the metric functions and their
derivatives as

2σI þ σII ¼
3

A

�
B;t

B
−
C;t

C

�
; (24)

2σII þ σI ¼
3

A2B2r2 þG2

�
AB2r2

�
B;t

B
−
C;t

C

�

þ G2

A

�
−
A;t

A
þ G;t

G
−
C;t

C

��
; (25)

where the comma and the semicolon denote derivatives
and covariant derivatives, respectively. Once again, this
specific choice of scalars, is justified by the very conspicu-
ous way, in which they appear in the relevant equations
(see the Appendix).

Finally, for the vorticity vector defined as

ωα ¼
1

2
ηαβμνVβ;μVν ¼ 1

2
ηαβμνΩβμVν; (26)

where Ωαβ ¼ V ½α;β� þ a½αVβ� and ηαβμν denote the vorticity
tensor and the Levi-Civita tensor, respectively, we find a
single component different from zero, producing

Ωαβ ¼ ΩðLαKβ − LβKαÞ; (27)

and

ωα ¼ −ΩSα; (28)

with the scalar function Ω given by

Ω ¼ GðG;r

G − 2A;r

A Þ
2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p : (29)

We observe that from Eq. (29) and regularity conditions
at the center, it follows that G ¼ 0⇔Ω ¼ 0.

IV. THE ORTHOGONAL SPLITTING
OF THE RIEMANN TENSOR AND

STRUCTURE SCALARS

In this section we shall introduce a set of scalar
functions, known as structure scalars, which are obtained
from the orthogonal splitting of the Riemann tensor (see
Refs. [52,53,55–58] for details). The reason for doing this
is that we shall express the set of the basic equations
deployed in the Appendix, in terms of these scalars.
Thus, using the Einstein equations, the Riemann tensor

can be decomposed as

Rαβ
νδ ¼ Rαβ

ðFÞ νδ þ Rαβ
ðQÞ νδ þ Rαβ

ðEÞ νδ þ Rαβ
ðHÞ νδ; (30)

with

Rαβ
ðFÞ νδ ¼

16π

3
ðμþ 3PÞV ½αV ½νh

β�
δ� þ

16π

3
μhα½νh

β
δ�; (31)

Rαβ
ðQÞ νδ ¼ −16πV ½αhβ�½νqδ� − 16πV ½νh

½α
δ�q

β� − 16πV ½αV ½νΠ
β�
δ�

þ 16πh½α½νΠ
β�
δ� ; (32)

Rαβ
ðEÞ νδ ¼ 4V ½αV ½νE

β�
δ� þ 4h½α½νE

β�
δ� ; (33)

Rαβ
ðHÞ νδ ¼ −2ϵαβγV ½νHδ�γ − 2ϵνδγV ½αHβ�γ; (34)
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where Eαβ and Hαβ are the electric and magnetic
parts, respectively, of the Weyl tensor Cαβγδ, defined as
usual by

Eαβ ¼ CανβδVνVδ;

Hαβ ¼
1

2
ηανϵρC

ϵρ
βδV

νVδ; (35)

where ϵαβρ ¼ ηναβρVν and the subscripts F;Q;E;H have an
obvious meaning.
The electric part of the Weyl tensor has only three

independent nonvanishing components, whereas only two
components define the magnetic part. Thus we may also
write

Eαβ ¼
1

3
ð2EI þEIIÞ

�
KαKβ −

1

3
hαβ

�

þ 1

3
ð2EII þEIÞ

�
LαLβ −

1

3
hαβ

�

þEKLðKαLβ þ KβLαÞ; (36)

and

Hαβ ¼ H1ðSαKβ þ SβKαÞ þH2ðSαLβ þ SβLαÞ: (37)

The orthogonal splitting of the Riemann tensor is
carried out by means of three tensors Yαβ, Xαβ and Zαβ

defined as

Yαβ ¼ RανβδVνVδ; (38)

Xαβ ¼
1

2
ηαν

ϵρR⋆
ϵρβδV

νVδ; (39)

and

Zαβ ¼
1

2
ϵαϵρRδβ

ϵρVδ; (40)

where R⋆
αβνδ ¼ 1

2
ηϵρνδRαβ

ϵρ.
Using Eqs. (30)–(33) and (36), we obtain

Yαβ ¼
1

3
YThαβ þ

1

3
ð2YI þ YIIÞ

�
KαKβ −

1

3
hαβ

�

þ 1

3
ð2YII þ YIÞ

�
LαLβ −

1

3
hαβ

�
þ YKLðKαLβ þ KβLαÞ; (41)

with

YT ¼ 4πðμþ 3PÞ; (42)

YI ¼ EI − 4πΠI; (43)

YII ¼ EII − 4πΠII; (44)

YKL ¼ EKL − 4πΠKL: (45)

In a similar way the tensor Xαβ can be written as

Xαβ ¼
1

3
XThαβ þ

1

3
ð2XI þ XIIÞ

�
KαKβ −

1

3
hαβ

�

þ 1

3
ð2XII þ XIÞ

�
LαLβ −

1

3
hαβ

�
þ XKLðKαLβ þ KβLαÞ; (46)

with

XT ¼ 8πμ; (47)

XI ¼ −EI − 4πΠI; (48)

XII ¼ −EII − 4πΠII; (49)

XKL ¼ −EKL − 4πΠKL: (50)

Once again, the specific choice of all the scalars above
has the purpose of rendering the basic equations in the
Appendix in the simpler form.
Finally, from Eqs. (30)–(33), (35) and ([13]) we obtain

Zαβ ¼ Hαβ þ 4πqρϵαβρ; (51)

or

Zαβ ¼ ZIKβSα þ ZIIKαSβ þ ZIIILαSβ þ ZIVLβSα; (52)

where

ZI ¼ ðH1 − 4πqIIÞ; ZII ¼ ðH1 þ 4πqIIÞ;
ZIII ¼ ðH2 − 4πqIÞ; ZIV ¼ ðH2 þ 4πqIÞ: (53)

Before ending this section it would be useful to
introduce a relevant quantity defined in terms of
tensors Yαβ; Xαβ; Zαβ. This is the super-Poynting vector
defined by

Pα ¼ ϵαβγðYγ
δZ

βδ − Xγ
δZ

δβÞ; (54)

which can be written as

Pα ¼ PIKα þ PIILα; (55)

with
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PI ¼
H2

3
ð2YII þ YI − 2XII − XIÞ þH1ðYKL − XKLÞ þ

4πqI
3

½2YT þ 2XT − XI − YI� − 4πqIIðXKL þ YKLÞ;

PII ¼
H1

3
ð2XI þ XII − YII − 2YIÞ þH2ðXKL − YKLÞ − 4πqIðYKL þ XKLÞ þ

4πqII
3

½2YT þ 2XT − XII − YII�: (56)

Three comments are in order at this point:
(i) The super-Poynting vector may be defined in terms

of the Riemann tensor [as in Eq. (54)], or in terms of
the Weyl tensor [75–77]. Obviously they coincide
in vacuum, but are different within the fluid
distribution.

(ii) Both components PI; PII have terms not containing
heat dissipative contributions. It is reasonable to
associate these with gravitational radiation.

(iii) Both components of the super-Poynting vector have
contributions of both components of the heat flux
vector.

We shall come back to these points, later.

V. THE HEAT TRANSPORT EQUATION

We shall need a transport equation derived from a causal
dissipative theory (e.g. the Müller-Israel-Stewart second-
order phenomenological theory for dissipative fluids
[62–65]).
Indeed, the Maxwell-Fourier law for radiation flux leads

to a parabolic equation (diffusion equation) which predicts
the propagation of perturbations with infinite speed (see
Refs. [78]–[80] and references therein). This simple fact is
at the origin of the pathologies [81] found in the approaches
of Eckart [82] and Landau [83] for relativistic dissipative
processes. To overcome such difficulties, various relativ-
istic theories with nonvanishing relaxation times have been
proposed in the past [62–65,84,85]. The important point is
that all these theories provide a heat transport equation
which is not of Maxwell-Fourier type but rather of Cattaneo
type [86], leading thereby to a hyperbolic equation for the
propagation of thermal perturbations.
A fundamental parameter in these theories is the relax-

ation time τ of the corresponding dissipative process. This
positive-definite quantity has a distinct physical meaning,
namely the time taken by the system to return sponta-
neously to the steady state (whether of thermodynamic
equilibrium or not) after it has been suddenly removed from
it. Therefore, when studying transient regimes, i.e., the
evolution between two steady-state situations, τ cannot be
neglected. In fact, leaving aside that parabolic theories are
necessarily noncausal, it is obvious that whenever the time
scale of the problem under consideration becomes of the
order of (or smaller) than the relaxation time, the latter
cannot be ignored, since neglecting the relaxation time
amounts—in this situation—to disregarding the whole
problem under consideration.
Thus, the transport equation for the heat flux reads

[63–65,79],

τhμνqν;βV
β þ qμ ¼ −κhμνðT;ν þ TaνÞ −

1

2
κT2

�
τVα

κT2

�
;α

qμ;

(57)

where τ, κ, T denote the relaxation time, the thermal
conductivity and the temperature, respectively.
Contracting Eq. (57) with Lμ, we obtain

τ

A
ðqII;t þ AqIΩÞ þ qII

¼ −
κ

A

�
GT;t þ A2T;θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p þ ATaII

�
−
κT2qII

2

�
τVα

κT2

�
;α

;

(58)

where Eq. (29), has been used.
On the other hand, by contracting Eq. (57) with Kμ, we

find

τ

A
ðqI;t − AqIIΩÞ þ qI

¼ −
κ

B
ðT;r þ BTaIÞ −

κT2qI
2

�
τVα

κT2

�
;α

: (59)

It is worth noting that the two equations above are
coupled through the vorticity. We shall discuss this point
further in Sec. VII.

VI. BASIC EQUATIONS

The relevant equations (besides the transport equation
shown in the previous section) for describing the evolution
of our axially and reflection-symmetric dissipative fluid,
are obtained by applying the 1þ 3 formalism [43–51] to
axial symmetry. Accordingly, they are not new (see for
example Ref. [47]), but are exhibited here in the form
explicitly adapted to the problem under consideration. The
equivalent set of equations for the spherically symmetric
case was obtained in Ref. [52], whereas in Ref. [53], they
were obtained for the cylindrically symmetric case.
Obviously, not all of them are independent; however,
depending on the problem under consideration, it may
be more advantageous to use one subset instead of the
other, and therefore here we present them all. They are
presented, with brief comments about their origins, in
Appendix A. The scalar equations obtained by projecting
them on all possible combinations of tetrad vectors
V;K;L;S, are deployed in Appendix B.
In what follows we shall extract and discuss part of the

information contained in these equations.
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VII. SOME THERMODYNAMIC ASPECTS
OF THE PROBLEM

The thermodynamics of fluids endowed with vorticity
may be quite complicated even in Newtonian theory (e.g.
see Ref. [87] for a discussion on this point). However, even
at this level of generality, some interesting conclusions may
be drawn from the study of the transport equation (57) and
the generalized “Euler” equation (A7).
Thus, as we shall see, the combination of the two above-

mentioned equations lead to a decreasing of the “effective”
inertial mass density. This is a known effect, with important
implications on the evolution of the object. On the other
hand, the fact that both components of Eq. (57) are coupled
(through the vorticity), produces a result which recalls the
well-known von Zeipel’s theorem [3]. Let us analyze these
two issues in some detail.

A. The effective inertial mass density of the
dissipative fluid

In classical dynamics the inertial mass is defined as the
factor of proportionality between the three-force applied
to a particle (a fluid element) and the resulting three-
acceleration, according to Newton’s second law. In rela-
tivistic dynamics a similar relation only holds (in general)
in the instantaneous rest frame (i.r.f.), since the three-
acceleration and the force that causes it are not (in general)
parallel, except in the i.r.f. (see for example Ref. [88]).
However, under a variety of circumstances, this factor of
proportionality does not coincide with the mass (density) of
the particle (fluid element) in the absence of interactions. In
such cases we refer to this proportionality factor as the
“effective inertial mass” (e.i.m.). Thus for example the
e.i.m. of an electron moving under a given force through a
crystal, differs from the value corresponding to an electron
moving under the same force in free space, and may even
become negative (see Refs. [89,90]).
In our case, by combining Eqs. (A7) and (57) we obtain

ðμþ PÞ
�
1 −

κT
τðμþ PÞ

�
aα

¼ −hβαΠμ
β;μ −∇αP − ðσαβ þ ΩαβÞqβ

þ κ

τ
∇αT þ

�
1

τ
þ 1

2
Dt

�
ln

�
τ

κT2

��
−
5

6
Θ
�
qα; (60)

where ∇αP≡ hβαP;β and Dtf ≡ f;βVβ.
In the above equation we have on the right-hand side,

besides some dissipative terms, terms representing the
hydrodynamic “forces” acting on any fluid element. On
the left-hand side, it is clear that the factor multiplying the
four-acceleration vector represents the effective inertial
mass density. Thus, the obtained expression for the
e.i.m. density contains a contribution from dissipative
variables, which reduces its value with respect to the

nondissipative situation. Such a decreasing of the e.i.m.
density was pointed out for the first time in Ref. [66], and
since then, it has been shown to appear in a great variety of
scenarios (see Refs. [59,67,70,72] and references therein).
The potential consequences of the above-mentioned

effect, on the evolution of the self-gravitating object, should
be seriously considered. Indeed, from the equivalence
principle it follows that the “passive” gravitational mass
density should be reduced too, by the same factor as the
e.i.m. density. This in turn might lead, in some critical cases
when such diminishing is significative, to a bouncing of the
collapsing object (see Ref. [69] for a specific numerical
example).

B. Vorticity and heat transport

As we mentioned earlier, the two components of the
transport equation (58) and (59), are coupled through the
vorticity. This fact entails an interesting thermodynamic
consequence. Indeed, let us assume that at some initial time
(say t ¼ 0) and before it, there is thermodynamic equilib-
rium in the θ direction; this implies qII ¼ 0, and also that
the corresponding Tolman’s temperature [91] is constant,
which in turns implies that the term within the round
bracket in the first term on the right-hand side of Eq. (58)
vanishes. Then it follows at once from Eq. (58) that

qII;t ¼ −AΩqI; (61)

implying that the propagation in time of the vanishing
of the meridional flow, is subject to the vanishing of the
vorticity and/or the vanishing of heat flow in the r direction.
Inversely, by repeating the same argument for Eq. (59)

we obtain at the initial time when we assume thermo-
dynamic equilibrium,

qI;t ¼ AΩqII: (62)

Thus, it appears that the vanishing of the radial compo-
nent of the heat flux vector at some initial time, will
propagate in time if only, the vorticity and/or the meridional
heat flow are different from zero.
In other words, time propagation of the thermal equi-

librium condition, in either direction r; θ, is assured only in
the absence of vorticity. Otherwise, it requires initial
thermal equilibrium in both directions.
This result is a clear reminiscence of von Zeipel’s

theorem [3].

VIII. EVOLUTION OF THE EXPANSION
SCALAR AND THE SHEAR

Let us now consider Eqs. (B1)–(B4). In order to
elucidate the significance of these equations, we shall,
for simplicity, restrict ourselves to the geodesic fluid
(aμ ¼ 0). The first of these equations, describes the
evolution of the expansion scalar (Raychaudhuri equation).
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First of all we observe that the evolution of the
expansion scalar is controlled not only by the scalar
YT and σ as in the cylindrically [53] and the spherically
symmetric [52] cases, but it also depends on the vorticity
vector. It is worth mentioning that, as is apparent from
Eqs. (B5)–(B9), in the nongeodesic case there is a
coupling between H1; H2;Ω; qI; qII , implying that in
the general case all these factors also affect the evolution
of Θ.
For the shear we have two equations, Eqs. (B2) and (B4)

(for the two independent scalars defining the shear tensor).
We observe that even in the geodesic case, unlike the

cylindrically symmetric case, Eqs. (B2) and (B4) are
coupled through the 2σ2 þ Ω2 term. Thus, assuming that
the fluid is initially shear free, the system will deviate from
such a condition even if we keep YI; YII vanishing all along
the evolution. In order to keep the fluid shear free, we need
to also keep it, vorticity free. This last condition implies
because of Eq. (B3) that YKL should also vanish all along
the evolution. Thus, the evolution of the shear is now
controlled by three structure scalars: YI; YII; YKL. In other
words all the information about the stability of the shear-
free condition is encrypted in YI; YII; YKL. Once again it
should be emphasized that this conclusion is true only for
the geodesic case. In the general case, because of
Eqs. (B5)–(B9), we see that the magnetic part of the
Weyl tensor and the heat flux vector also affect the stability
of the shear-free condition.

IX. EVOLUTION OF THE VORTICITY

Let us now turn to Eqs. (B5)–(B9). If we restrain to the
geodesic case, then it seems from Eq. (B5), that an initially
vorticity-free configuration, will remain vorticity free
during the evolution. The same situation happens for the
shear-free case.
Indeed, from Eqs. (24) and (25), it follows that the

shear-free condition implies

G ¼ ACfðr; θÞ; (63)

where fðr; θÞ is an arbitrary function of its arguments.
Since, neither A nor C can vanish during the evolution, it
follows at once from Eq. (63) that a shear-free configura-
tion, which is initially vorticity free, will remain vorticity
free during the evolution.
However such conclusions have to be taken with caution.

Indeed, as it follows from Eq. (B3), the vorticity-free
condition implies, in the geodesic case YKL ¼ 0. On the
other hand as it follows from Eq. (B6) (remember that the
metric is nondiagonal and therefore L0 ≠ 0), the vorticity-
free condition is unstable in the presence of dissipative
fluxes, as a result of which it appears that the geodesic
condition and the shear-free condition, are too restrictive,
and the stability of the vorticity-free condition depends on
the above-mentioned factors. This fact is in turn, in full

agreement with earlier works, where it was shown that
vorticity generation is sourced by entropy gradients (see
Refs. [92–96] and references therein).
Finally, we observe that if the fluid is shear free, the

vanishing of the vorticity implies, as it follows from
Eqs. (B8) and (B9), that the magnetic part of the Weyl
tensor vanishes, too. Also, as it follows from Eq. (B16), the
inverse is true for nondissipative fluids. This is in full
agreement with a result by Glass [97], indicating that a
necessary and sufficient condition for a shear-free perfect
fluid to be irrotational is that the Weyl tensor is purely
electric. Thus we have extended the Glass result, to
anisotropic fluids. In the case of dissipative fluids, the
vanishing of the magnetic part of the Weyl tensor does not
necessarily imply the vanishing of the vorticity.

X. THE DENSITY INHOMOGENEITY FACTORS
AND THEIR EVOLUTION

The density inhomogeneity factors (in Refs. [52,53,98]
they are referred to as inhomogeneity factors), are specific
combinations of physical and geometrical variables (say
Ψi), such that their vanishing is a sufficient and necessary
condition for the homogeneity of the energy density i.e.
∇αμ≡ hβαμ;β ¼ 0. Of course these latter conditions are
necessary but not sufficient for the system to be homo-
geneous in the broad sense (i.e. a system where spatial
gradients of the Hubble scalar, the pressure, etc, also
vanish).
In the spherically symmetric case, in the absence of

dissipation, the density inhomogeneity factor is the
scalar associated to the trace-free part of Xαβ. If
dissipation is present then additional terms including
dissipative flux appear (see Refs. [52,98] for a detailed
discussion).
In the cylindrically symmetric case, it was not

possible to identify explicitly the density inhomogeneity
factors; nevertheless, it was easy to check that the trace-
free part of Xαβ, besides the magnetic part of the Weyl
tensor and the dissipative flux determine the energy
density inhomogeneity.
In the static axially symmetric case it was possible to

identify the density inhomogeneity factors; they are the
structure scalars associated to the trace-free part of Xαβ.
In the present case however, the situation is quite

complicated and we were not able to explicitly identify
the density inhomogeneity factors. However we can iden-
tify the structure scalars these factors are made of, and their
evolution.
Indeed, it follows at once from Eqs. (B14) and (B15) that

the vanishing of XI; XII; XKL; ZI; ZII; ZIII; ZIV implies the
homogeneity of the energy density (in the sense defined
above). On the other hand, the evolution of the above
mentioned scalars is determined by Eqs. (58), (59), (B10),
(B11), (B12), (B13), (B17), and (B18).
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XI. THE SUPER-POYNTING VECTOR AND
GRAVITATIONAL RADIATION

In the theory of the super-Poynting vector, a state of
gravitational radiation is associated to a nonvanishing
component of the latter (see Refs. [75–77]). This is in
agreement with the established link between the super-
Poynting vector and the news functions [99], in the context
of the Bondi-Sachs approach [10,11]. Furthermore, as it
was shown in Ref. [99], there is always a nonvanishing
component of Pμ, on the plane orthogonal to a unit vector
along which there is a nonvanishing component of vorticity
(the θ-r plane). Inversely, Pμ vanishes along the ϕ direction
since there are no motions along this latter direction,
because of the reflection symmetry.
Therefore we can identify three different contributions in

Eq. (56). On the one hand we have contributions from the
heat transport process. These are in principle independent
of the magnetic part of theWeyl tensor, which explains why
they remain in the spherically symmetric limit. However
the intriguing fact is the appearance of both components of
the four-vector q in both components of P. We observe that
this is achieved through the XKL þ YKL terms in Eq. (56),
or using Eqs. (45) and (50), through ΠKL. But we have also
seen that both components of the heat flux vector are
coupled through the vorticity, in the transport equation.
Thus, the vorticity acts as a coupling factor between the two
components of the heat flux vector in the transport
equation, whereas ΠKL couples the two components of
the super-Poynting vector, with the two components of the
heat flux vector.
On the other hand we have contributions from the

magnetic part of the Weyl tensor. These are of two kinds:
on the one hand contributions associated with the propa-
gation of gravitational radiation within the fluid, and on the
other, contributions of the flow of super-energy associated
with the vorticity on the plane orthogonal to the direction of
propagation of the radiation. Both contributions are inter-
twined, and it appears to be impossible to disentangle them
through two independent scalars.
It is worth noticing that the factors multiplying the H

terms in Eq. (56), are EI;EII;EKL, implying that purely
magnetic or purely electric sources, do not produce
gravitational radiation. This is consistent with the result
obtained in vacuum for the Bondi metric [100], which
states that purely electric Bondi metrics are static, whereas
purely magnetic ones, are just Minkowski.

XII. CONCLUSIONS AND SUMMARY
OF RESULTS

We have carried out a general study on axially (and
reflection-)symmetric relativistic fluids. An important role
in this study is played by the structure scalars.
We have defined the complete set of such scalars

corresponding to our problem. It turns out that there are

12 structure scalars (XT;I;II;KL; YT;I;II;KL; ZI;II;III;IV) in con-
trast with the spherically symmetric case where there are
only five, and the cylindrically symmetric case where there
are only eight. Besides, two scalars defining the shear
tensor (σI;II), one scalar defining the vorticity (Ω), and five
scalars defining the electric and magnetic parts of the Weyl
tensor (EI;II;KL; H1;2) were also introduced.
Next we have identified and deployed, the set of

equations governing the structure and evolution of the
system under consideration and brought out the role of
structure scalars in these equations, in order to exhibit the
physical relevance of the former.
We have first considered the dynamical equation (A7)

derived from conservation laws, and coupled it with a
transport equation derived from a causal dissipative theory.
The resulting equation exhibits the decreasing of the effective
inertial mass term due to thermal effects. It is worth noticing
that such a decreasing is described by the term in the square
bracket on the left-hand side of Eq. (60), which in turn is
produced by the first term on the left-hand side and the
second term on the right-hand side, of Eq. (57) (see Ref. [70]
for a detailed discussion on this point). But these two terms
should enter into any causal and relativistic theory of
dissipation. Therefore the effect under consideration is not
exclusive to the Israel-Stewart theory, but rather must be
present in any other reasonable theory of dissipation.
We have also pointed out the coupling of both compo-

nents of the heat flux vector, through the vorticity. The
resulting situation recalls the picture described by von
Zeipel’s theorem.
Next, we have studied the evolution of the expansion

scalar, the shear and the vorticity. For simplicity we have
considered the geodesic case. Thus we have seen that the
evolution of the expansion scalar is controlled by the scalar
YT . However the appearance of the vorticity in the
corresponding equation, together with the fact that in the
nongeodesic case there is a coupling between Ω and
ZI;II;III;IV , leads us to conclude that the latter scalars also
affect the evolution of Θ, if the fluid is not geodesic.
For the shear the situation is similar: in the geodesic case

the evolution is controlled by YI;II;KL; however, in the
nongeodesic case (for the same reason as in the case of the
scalar expansion), the four scalars ZI;II;III;IV are also
expected to affect the evolution of the shear.
For the vorticity, it appears that the geodesic condition

may be too stringent. In the general case the evolution of
the vorticity depends upon YKL and ZI;II;III;IV .
Next we have considered the density inhomogeneity

factors. Although we were unable to identify these factors
explicitly, it was shown that the scalars XI;II;KL; ZI;II;III;IV
are the basic constituents of such factors.
Finally, we analyzed the super-Poynting vector. It con-

tains three types of contributions. On the one hand we have
contributions from the dissipative processes associated to
the heat flux vector. Next, we have contributions from
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gravitational radiation, associated to the magnetic parts of
the Weyl tensor. Finally, we have contributions from the
flow of super-energy, which in turn, acts as the source of the
vorticity.
However, while the pure dissipative contribution is

trivially identified, we could not do the same for the other
two contributions, since the factors multiplying the H1; H2

terms in Eq. (56), do not vanish ifΩ ¼ 0. On the other hand
the coupling of both components of the super-Poynting
vector with the two components of the heat flux vector,
through ΠKL, appears explicitly in Eq. (56).
Before ending, we would like to make some final

remarks and to present a partial list of issues, which remain
unanswered in this manuscript, but should be addressed in
the future.

(i) We have considered some particular cases, where
some variables (e.g. the shear) were considered to
vanish. We did so, on the one hand for simplicity,
and on the other hand, in order to bring out the role
of some specific variables. However, it should be
kept in mind that such kinds of “suppressions” may
lead to inconsistencies in the set of equations. This is
for example the case of “silent” universes [101,102],
where dust sources have a vanishing magnetic Weyl
tensor, and lead to a system of 1þ 3 constraint
equations that do not seem to be integrable in
general [103]. In other words for any specific
modeling, the possible occurrence of these types
of inconsistencies should be carefully considered.

(ii) In the case of specific modeling, another important
question arises, namely: what additional information
is required to close the system of equations? It is
clear that information about local physical aspects of
the source (e.g. equations of state and/or information
about energy production) are not included in the set
of deployed equations and therefore should be given,
in order that metric and matter functions could be
solved for in terms of initial data.

(iii) From Eq. (56) it follows that either one of the
“gravitational” terms vanish, not only if H1 ¼ 0 or
H2 ¼ 0, but also if, either EI, EII , or EKL vanish.
What else do these latter conditions imply?

(iv) Could it be possible to find the exact solution
corresponding to nondissipative dust with shear
(the analog of the Lemaitre-Tolman-Bondi solu-
tion)? Would this solution have a nonvanishing
magnetic part of the Weyl tensor?

(v) We observe that the shear-free condition can be
easily integrated from Eqs. (24) and (25). Could it be
possible to provide a comprehensive specific
description of shear-free fluids?

(vi) We have identified the subset of equations which
should determine the density inhomogeneity factors
and their evolution, but we were unable to isolate
such factors in the general case. Is this possible?

(vii) How could one describe the “cracking” (splitting) of
the configurations as described in Refs. [25,104]
(and references therein)?

(viii) As mentioned in the Introduction, we do not have an
exact solution (written down in closed analytical
form) describing gravitational radiation in vacuum,
from bounded sources. Furthermore, we do not
harbor the hope to find exact analytical solutions,
for evolving axially symmetric sources (except
perhaps in very restricted situations, e.g. dust).
Accordingly, any specific modeling of such a source
should be done numerically.

(ix) It could be useful to introduce the concept of a mass
function, similar to the one existing in the spheri-
cally symmetric case. This could be relevant, in
particular, in the case of matching the source to a
specific exterior. With respect to this point, it should
be mentioned that in this work we have not con-
sidered in detail such a problem, since no specific
solution has been presented. However, for any
specific model, the correct treatment of such a
matching, would be mandatory.
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APPENDIX A: THE BASIC EQUATIONS

1. Ricci identities

From the Ricci identities for the vector Vα the following
set of equations are obtained.
The time-propagation equation for the expansion Θ is

Θ;αVα þ 1

3
Θ2 þ 2ðσ2 −Ω2Þ − aα;α þ 4πðμþ 3PÞ ¼ 0;

(A1)

where 2σ2 ¼ σαβσ
αβ.

The time-propagation equation for the shear σαβ is

hμαhνβσμν;δV
δ þ σμασβμ þ

2

3
Θσαβ

−
1

3
ð2σ2 þ Ω2 − aδ;δÞhαβ þ ωαωβ − aαaβ

− hμðαh
ν
βÞaν;μ þ Eαβ − 4πΠαβ ¼ 0; (A2)

and the time-propagation equation for Ωαβ is
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hμαhνβΩμν;δVδ þ 2

3
ΘΩαβ þ 2σμ½αΩ

μ
β� − hμ½αh

ν
β�aμ;ν ¼ 0:

(A3)

Besides, the following constraint equations follow:

hβα

�
2

3
Θ;β − σμβ;μ þΩμ

β;μ

�
þ ðσαβ þΩαβÞaβ ¼ 8πqα;

(A4)

2ωðαaβÞ þ hμðαhβÞνðσμδ þ ΩμδÞ;γηνκγδVκ ¼ Hαβ: (A5)

2. Conservation laws

The conservation law Tα
β;α ¼ 0 leads to the following

equations:

μ;αVα þ ðμþ PÞΘþ 1

9
ð2σI þ σIIÞΠI þ

1

9
ð2σII þ σIÞΠII

þ qα;α þ qαaα ¼ 0; (A6)

ðμþ PÞaα þ hβαðP;β þ Πμ
β;μ þ qβ;μVμÞ

þ
�
4

3
Θhαβ þ σαβ þΩαβ

�
qβ ¼ 0: (A7)

The first of these equations is the “continuity” equation,
whereas the second one is the “generalized Euler” equation.

3. Differential equations for the Weyl tensor
derived from Bianchi identities

From the Bianchi identities and Einstein equations, the
following set of equations are obtained:

hμðαh
ν
βÞEμν;δVδ þ ΘEαβ þ hαβEμνσ

μν − 3Eμðασ
μ
βÞ þ hμðαη

δγκ
βÞ VδHγμ;κ − EδðαΩδ

βÞ − 2Hμ
ðαηβÞδκμV

δaκ

¼ −4πðμþ PÞσαβ −
4π

3
ΘΠαβ − 4πhμðαh

ν
βÞΠμν;δVδ − 4πσμðαΠ

μ
βÞ

− 4πΩμðαΠβÞμ − 8πaðαqβÞ þ
4π

3
ðΠμνσ

μν þ aμqμ þ qμ;μÞhαβ − 4πhμðαh
ν
βÞqν;μ; (A8)

hμαhνβEμν;β − ηα
δνκVδσ

γ
νHκγ þ 3Hαβω

β ¼ 8π

3
hβαμ;β − 4πhβαhμνΠβν;μ − 4π

�
2

3
Θhβα − σβα þ 3Ωα

β

�
qβ; (A9)

ðσαδEδ
β þ 3ΩαδEδ

βÞϵκαβ þ aνHνκ −Hνδ
;δhνκ ¼ þ4πðμþ PÞΩαβϵκ

αβ þ 4π½qα;β þ Πναðσνβ þΩν
βÞ�ϵκαβ; (A10)

2aβEακϵγ
αβ − Eνβ;δhνκϵγδβ þ Eδ

β;δϵγκ
β þ 2

3
ΘHκγ þHμ

ν;δV
δhνκhμγ − ðσκδ þ ΩκδÞHδ

γ þ ðσβδ þ ΩβδÞHμ
αϵκ

δ
μϵγ

αβ þ 1

3
ΘHμ

αϵκ
δ
μϵγ

α
δ

¼ 4π

3
μ;βϵ

β
γκ þ 4πΠαν;βhνκϵγαβ þ 4π

�
qκΩαβ þ qα

�
σκβ þ Ωκβ þ

1

3
Θhκβ

�
�ϵγαβ: (A11)

Projecting the above equations, on all possible combi-
nations of the tetrad vectors V;K;L;S, we find a set of
scalar equations, which are deployed in Appendix B.

APPENDIX B: SUMMARY OF SCALAR
EQUATIONS

From our basic equations, by projecting on all possible
combinations of the tetrad vectors V;K;L;S, we find the
following scalar equations.
For Eq. (A1),

Θ;αVα þ 1

3
Θ2 þ 2ðσ2 −Ω2Þ − aα;α þ YT ¼ 0: (B1)

By contracting Eq. (A2) with KK, KL and LL we
obtain, respectively,

σI;δVδ þ 1

3
σ2I þ

2

3
ΘσI − ð2σ2 þΩ2 − aδ;δÞ

− 3ðKμKνaν;μ þ a2I Þ þ YI ¼ 0; (B2)

1

3
ðσI − σIIÞΩ − aIaII − KðμLνÞaν;μ þ YKL ¼ 0; (B3)

σII;δVδ þ 1

3
σ2II þ

2

3
ΘσII − ð2σ2 þΩ2 − aδ;δÞ

− 3ðLμLνaν;μ þ a2IIÞ þ YII ¼ 0: (B4)

By contracting Eq. (A3) with KL, we obtain

Ω;δVδ þ 1

3
ð2Θþ σI þ σIIÞΩþ K½μLν�aμ;ν ¼ 0: (B5)

By contracting Eq. (A4) with K and L we obtain,
respectively,
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2

3B
Θ;r − Ω;μLμ þ ΩðLβ;μKμKβ − Lμ

;μÞ þ 1

3
σIaI −ΩaII −

1

3
σI;μKμ

−
1

3
ð2σI þ σIIÞ

�
Kμ

;μ −
aI
3

�
−
1

3
ð2σII þ σIÞ

�
Lβ;μLμKβ −

aI
3

�
¼ 8πqI; (B6)

1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p
�
2G
A

Θ;t þ 2AΘ;θ

�
þ aIIσII

3
þ Ω;μKμ þΩðKμ

;μ þ LμKβLβ;μÞ þ ΩaI −
1

3
σII;μLμ

þ 1

3
ð2σI þ σIIÞ

�
Lβ;μKβKμ þ aII

3

�
−
1

3
ð2σII þ σIÞ

�
Lμ
;μ −

aII
3

�
¼ 8πqII: (B7)

By contracting Eq. (A5) with KS and LS we obtain, respectively,

−ΩaI −
1

2
ðKμSν þ SμKνÞðσμδ þ ΩμδÞ;γϵνγδ ¼ H1; (B8)

−ΩaII −
1

2
ðLμSν þ SμLνÞðσμδ þΩμδÞ;γϵνγδ ¼ H2: (B9)

Finally, by contracting Eq. (A8) with KK, KL, LL and SS we obtain

−
1

3
ðXI − 4πμÞ;δVδ þ 1

9
EIð3Θþ σII − σIÞ þ

1

9
ð2σII þ σIÞEII

− Kνϵ
νγκ½H1;κSγ þH1Sγ;κ þH2ðSμ;κLγKμ þ Lμ;κSγKμÞ� þΩXKL

¼ 2aIIH1 −
4π

3

�
μþ Pþ 1

3
ΠI

�
ðσI þ ΘÞ − 8πaIqI −

4π

B
ðqIÞ;r −

4πqIIAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p
�
GB;t

A2B
þ B;θ

B

�
; (B10)

−XKL;δVδþ1

6
ΩðXII−XIÞ−

1

2
XKLð2Θ−σI−σIIÞþaIH1−H2aII

−
1

2
½ðH1;κSγþH1ðSγ;κþSμ;κKγKμÞþH2SγLμ;κKμÞϵβγκLβ−ðH1KμSγþH2SμLγÞLμ;κϵ

βγκKβ�−
1

2
ðH2;κSγþH2Sγ;κÞϵβγκKβ

¼8π

3
ΠKLðΘ−σI−σIIÞ−4πaIIqI−2πðKμLνþKνLμÞqν;μ−4πaIqII; (B11)

1

3
ð−XII þ 4πμÞ;δVδ þ 1

9
EIIð3Θþ σI − σIIÞ þ

1

9
ð2σI þ σIIÞEI −ΩXKL

− ½H2;κSγ −H1ðSγLμ;κKμ þ Lμ;κSμKγÞ þH2Sγ;κ�ϵβγκLβ þ 2aIH2

¼ −
4π

3

�
μþ Pþ 1

3
ΠII

�
ðσII þ ΘÞ − 8πaIIqII − 4πLμLνqν;μ; (B12)

1

3
ðXI þ XII þ 4πμÞ;δVδ þ 1

3
ðXI þ XIIÞðΘþ σI þ σIIÞ þ

1

9
ð2σI þ σIIÞEI þ

1

9
ð2σII þ σIÞEII

− ðH1;κKγ þH2;κLγ þH1Kγ;κ þH2Lγ;κÞϵβγκSβ þ 2ðH1aII −H2aIÞ

¼ 4π

3
ðμþ PÞðσI þ σII − ΘÞ − 8π

9
ðΘþ 2σI þ 2σIIÞðΠI þ ΠIIÞ − 4πqI

C;r

BC
−

4πqIIAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p
�
GC;t

A2C
þ C;θ

C

�
: (B13)

Contracting Eq. (A9) with K and L produces
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−
1

3
XI;βKβ − XKL;βLβ −

1

3
ð2XI þ XIIÞðKβ

;β − aνKνÞ − 1

3
ðXI þ 2XIIÞLμ;βLβKμ

− XKLðLμ;βKμKβ þ Lβ
;β − aβLβÞ − 1

3
H2ðσI þ 2σIIÞ − 3ΩH1

¼ 8π

3
μ;βKβ −

4π

3
qIð2Θ − σIÞ þ 12πΩqII; (B14)

−
1

3
XII;βLβ − XKL;βKβ −

1

3
ðXI þ 2XIIÞðLβ

;β − aβLβÞ − 1

3
ð2XI þ XIIÞKμ;βLμKβ

− XKLðKμ;βLμLβ þ Kβ
;β − aβKβÞ þ 1

3
H1ð2σI þ σIIÞ − 3ΩH2

¼ 8π

3
μ;βLβ − 12πΩqI −

4πqII
3

ð2Θ − σIIÞ: (B15)

Contracting Eq. (A10) with S yields

−
1

3
XKLðσII − σIÞ þ aIH1 þ aIIH2 −H1;δKδ −H2;δLδ −H1ðKδ

;δ þ Kν
;δS

δSνÞ −H2ðLδ
;δ þ SδSνLν

;δÞ

¼
�
8π

�
μþ P −

1

3
ðΠI þ ΠIIÞ

�
− YI − YII

�
Ω −

4πAðqIBÞ;θ
B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p

þ 4πA

B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p
"
qII

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2B2r2 þ G2Þ

p
A

#
;r

; (B16)

whereas by contracting Eq. (A11) with SK and SL we obtain

−
2

3
aIIEI þ 2aIEKL − Eδ

2;δL
2 −

AYI;θ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p þ YKL;r

B

−
�
1

3
ð2YI þ YIIÞKβ;δ þ

1

3
ð2YII þ YIÞKνLν;δLβ þ YKLðLν;δKνKβ þ Lβ;δÞ

�
ϵγδβSγ

þH1;δVδ þ 1

3
H1ð3Θþ σII − σIÞ þ ΩH2 ¼ −

4π

3
μ;θL2 þ 12πΩqI þ

4πqII
3

ðσI þ ΘÞ; (B17)

2aI
3

EII − 2aIIEKL þ Eδ
β;δK

β þ YII;r

3B
−

AYKL;θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p

−
�
−
1

3
ð2YI þ YIIÞLν;δKνKβ þ

1

3
ð2YII þ YIÞLβ;δ þ YKLðKβ;δ − KνLβLν;δÞ

�
ϵγδβSγ

þH2;δVδ þ 1

3
H2ð3Θþ σI − σIIÞ −ΩH1 ¼

4π

3
μ;βKβ −

4πqI
3

ðσII þ ΘÞ þ 12πΩqII: (B18)
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