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We investigate the possibility of sustained orbital resonances in extreme mass ratio inspirals. Using a
near-identity averaging transformation, we reduce the equations of motion for a particle moving in Kerr
spacetime with self-force corrections in the neighborhood of a resonant geodesic to a one-dimensional
equation for a particle moving in an effective potential. From this effective equation we obtain the necessary
and sufficient conditions that the self-force needs to satisfy to allow inspiralling orbits to be captured in
sustained resonance. Along the way we also obtain the full nonlinear expression for the jump in the
adiabatic constants of motion incurred as an inspiral transiently evolves through a strong resonance to first-
order in the mass ratio. Finally, we find that if the resonance is strong enough to allow capture in sustained
resonance, only a small fraction (order of the square root of mass-ratio) of all inspirals will indeed be
captured. This makes observation of sustained resonances in extreme mass ratio inspirals—if they exist—
very unlikely for space-based observatories like eLisa.
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I. INTRODUCTION

An extreme mass ratio inspiral (EMRI) is a binary
system consisting of a central supermassive black hole
(∼106M⊙) with a compact object of several solar masses in
orbit. As the system emits gravitational radiation, the orbit
gradually decays, causing the compact object to slowly
spiral toward the central black hole. EMRIs are of great
astrophysical interest as a source of gravitational waves for
future space-based observatories [1]. The gradual evolution
of EMRIs encodes a very detailed map of the spacetime
surrounding the central supermassive black hole. This
allows for precise tests of the predictions of general
relativity in the strong field regime [2]. Furthermore, it
allows for precise determination of the physical parameters
(mass and spin) of the central supermassive black hole [3].
The dynamics of EMRIs can be studied by using pertur-

bation theory in the small mass-ratio ϵ ¼ m=M ∼ 10−6.
At lowest order, the motion of the compact object is that
of a test particle following a geodesic in the Kerr spacetime
generated by the centralmassive (and usually rotating) black
hole. Any deviations from geodesic motion due to ϵ taking a
finite value, can be included by adding a force term—known
as the gravitational self-force—to the geodesic equation. In
the last decade a lot of progress has beenmade in formulating
and calculating this self-force (see [4,5] for a comprehensive
review).
A common phenomenon in celestial mechanics is the

occurrence of resonance, well-known examples include
the phase-locking of the rotational and orbital motions of
the Moon, and the 3:2 spin-orbit resonance of Mercury.
In general, resonances occur when a system has two
interacting degrees of freedom oscillating at different

frequencies ω1 and ω2. If the ratio of these frequencies
is rational ω1=ω2 ¼ n1=n2, then the linear combination
n2ω1 − n1ω2 vanishes. Physically this means that the time
scale of the associated interaction terms of the Fourier
expansion diverges leading to behavior that is qualitatively
different from oscillatory behavior expected for nonreso-
nant systems.
Geodesic motion in a Kerr background can be charac-

terized by three periods: the time between two successive
periastron passes Tr, the time between two passes of
maximum inclination Tθ, and the time of one sidereal
period Tϕ. At the geodesic level these oscillations are
completely independent. The self-force corrections provide
interaction between the oscillations creating the possibility
of resonant effects when the periods become commensu-
rate. Flanagan and Hinderer first worked out the effect
explicitly in [6], although this possibility had been noted in
the past [7,8]. Based on a post-Newtonian approximation
for the self-force (not necessarily valid in the relativistic
strong field regime) they found that as an inspiral system
evolves through a situation where Tr=Tθ is rational, its
adiabatic constants of motion (the energy E, axial angular
momentum Lz, and Carter constant Q) acquire a jump of
order ϵ1=2.
Over the last few years orbital resonance in EMRIs have

gained quite some attention. Grossman et al. [9] have studied
resonant geodesics in some detail without studying the
resonant self-force effects. Gair et al. [10] studied two
different toy models for resonance and their effect on the
constants of motion. By numerically calculating the “fluxes”
of the constants of motion to infinity and down the central
black hole horizon, Flanagan et al. [11] obtained the first true
measure of the strength of the resonant effects for realistic
relativistic orbits in Kerr spacetime. This was complemented
by Ruangsri and Hughes [12] with a post-Newtonian*M.vandeMeent@soton.ac.uk
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estimate of the length of each resonant episode, and the time
remaining after each episode before the orbiting object
plunges into the central black hole. Isoyama et al. [13]
studied the adiabatic evolution of the Carter constant when
an EMRI system crosses a resonance. Brink et al. [14]
have explored the “phase space” of resonant orbits in Kerr
spacetime, and noted the relevance of its structure for
resonance caused by other astrophysical perturbations that
couple the independent oscillations of the geodesic orbits.
Previous works have focused primarily on so-called

transient resonances, situations where the EMRI evolves
through the resonant situation, with the resonant condition
being satisfied only at one point in time and the duration of
the resonance isOðϵ−1=2Þ. Generally, this is what happens if
the terms of the self-force coupling the independent
oscillations is weak compared to the terms driving the
overall evolution. However, in the general theory of
resonant dynamical systems there exists the possibility
that the system lingers near the resonance for a prolonged
time of order of the inspiral time scale ∼ϵ−1. Such a
situation is known as a sustained resonance and its
occurrence requires the resonant dynamics to be “strong”
in some suitable sense. If a sustained resonance occurred in
an EMRI, it would cause significant qualitative deviation
from the normal evolution of the system, which should
leave a distinctive imprint on the gravitational waveform.
In this paper, we explore exactly what conditions need to

be satisfied by the gravitational self-force in order to allow
the occurrence of sustained resonances in EMRIs.

A. Background

Geodesic motion in Kerr spacetime with massM ¼ 1 and
spin parameter a has four constants of motion, the invariant
mass m, the energy per unit mass E, the axial angular
momentum per unit mass Lz, and Carter’s constant [15]

Q ¼ Qμνuμuν ¼ a2cos2θð1 − u2t Þ þ u2θ þ cot2θu2ϕ; (1)

where Qμν is a Killing tensor defined by the second line, uμ
is the 4-velocity along the geodesic, and r, θ, ϕ, and
t are standard Boyer-Lindquist coordinates. These can be
used to reduce the geodesic equations from four second-
order differential equations to four first-order equations,�

dr
dτ

�
2

¼ RðrÞ
Σðr; θÞ2 ; (2a)

�
dθ
dτ

�
2

¼ Θðcos θÞ
Σðr; θÞ2 ; (2b)

dϕ
dτ

¼ ΦrðrÞ þ ΦθðθÞ
Σðr; θÞ ; (2c)

dr
dτ

¼ TrðrÞ þ TθðθÞ
Σðr; θÞ ; (2d)

where τ is proper time, R,Θ, Φj, and Tj are functions of r or
θ, which can be obtained explicitly in terms of E, Lz, andQ,
and Σ ¼ r2 þ a2cos2θ. As first noted by Carter [15], and
more recently emphasized by Mino [16], these equations can
be simplified by choosing an alternative time parametriza-
tion λ defined by

dτ
dλ

¼ Σ ¼ r2 þ a2cos2θ: (3)

This time parameter is commonly referred to as “Mino time.”
The effect of this choice is that all Σ’s disappear from (2),
and the equations for r and θ decouple.
Since the geodesic equations in Kerr have as many

constants of motion as equations (and their mutual Poisson
brackets vanish), the system of equations is integrable [17].
One interesting property (out of many) of integrable
systems is that they can be rewritten in action-angle
variables ðqμ; JμÞ as

dqμ
dλ

¼ ϒμðJÞ; (4a)

dJμ
dλ

¼ 0: (4b)

Schmidt [18] used this property to obtain the frequencies
of Kerr orbits with respect to Boyer-Lindquist coordinate
time Ωμ, while analytic expressions for the frequencies
with respect to Mino time Υμ were obtained by Fujita and
Hikida [19].
Figure 1 shows the parameter space of orbits in Kerr in

terms of the frequencies with respect to Mino time. There
are some features that are worth commenting on here. First,
due to the equivalence principle the orbital dynamics
cannot depend on the mass of the orbiting object m, hence
we only need three parameters (e.g., Υr, Υθ, and Υϕ)

1 to
describe each orbit. Second, the Mino frequencies all
diverge as the radius of the orbit increases—in sharp
contrast to the frequencies with respect to coordinate time
or proper time which vanish at infinity. This is a result of
the fact that Mino time is rescaled by a factor Σ ¼ r2 þ
a2cos2θ with respect to proper time. Third, as the radius
increases the three Mino time frequencies converge to a
common (diverging) value. Fourth, at the separatrix divid-
ing bound orbits and orbits plunging into the central black
hole Υr is zero.
A resonant orbit is a geodesic for which the ratio ϒr=ϒθ

is a rational number, or equivalently, for which there exist
coprime integers nr and nθ such that

nrϒr þ nθϒθ ¼ 0: (5)

1See Appendix B for discussion on the validness of Υr, Υθ,
and Υϕ as parameters on the space of bound orbits.
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The sum jnrj þ jnθj is called the order of the resonance.
As a rule of thumb for resonant dynamical systems low
order resonances have greater effect than high order
resonance [6]. Hence, we will generally focus on the
low order resonances. The resonant condition (5) defines
a two-dimensional subspace of the parameter space, which
we refer to as a resonant surface. In Fig. 1 we have plotted
the resonant surface for the 3:2 resonance.
Note that at infinity the ratio ϒr=ϒθ is unity, while at the

separatrix this ratio is zero. Hence, as an inspiral evolves
from infinity to a plunge into the central black hole it passes
through all resonant surfaces with jnrj > jnθj. Resonances
are therefore a generic feature of any EMRI.

B. Overview of this paper

In this paper we will derive the exact conditions that
the self-force needs to satisfy to allow sustained resonances
to occur in EMRIs. In Sec. II we first review how the self-
force can be reexpressed as a correction to the equations of
motion for Υi and qμ, then we apply a near identity
transformation to simplify these equations of motion by
absorbing all nonresonant interaction terms in Υi and qμ.
In Sec. III we then discuss the effect of resonant

interactions. We start in Sec. III A with deriving a set of
effective equations of motion in the neighborhood of a
resonant surface. At leading order this equation describes
the conservative dynamics of a particle moving in a one-
dimensional effective potential. In Sec. III B we then use
this effective potential to derive the jump in the constants of
motion induced by a transient crossing of a resonant
surface. Section III C then continues to derive a necessary
and sufficient condition for the existence of sustained
resonance solutions to the equation of motion, which is

related to the existence of local minima in the effective
potential. Existence of such solutions however is not
sufficient to conclude that they also occur in EMRI.
This requires that an inspiral starting far away from the
black hole is captured in a local minimum of the potential.
Section III D derives the necessary and sufficient condition
for this to happen as a restriction on the initial conditions.
Finally, Sec. III E discusses the fate of an EMRI after it is
captured in sustained resonance.
The final section (Sec. IV) then discusses how the above

conditions can be tested using numerical calculations of the
self-force, and what can be learned from already existing
numerical results.

C. Notations and Conventions

We employ units such that c (speed of light), G
(Newton’s constant), and M (the mass of the central
supermassive black hole) are all unity. Consequently, all
quantities appearing in this paper are dimensionless.
Furthermore the constants of motion E, Lz, and Q are
normalized to be independent of the invariant particle mass
m. Metrics have signature ð−þþþÞ. Without further
specification an index i runs over ðr; θ;ϕÞ, and an index
j runs over ðr; θÞ. Repeated indices are generally summed
over their full range, unless otherwise indicated. The Mino
frequencies ϒr and ϒθ are considered positive by con-
vention, ϒϕ can be either positive or negative with aϒϕ

positive for prograde orbits and aϒϕ negative for retrograde
orbits (where a is the spin parameter of the central super-
massive black hole).

II. EQUATIONS OF MOTION

A. First-order equations with self-force

In the limit ϵ ¼ 0 the orbiting object follows a geodesic
of the background spacetime. The self-force program
summarizes corrections order-by-order in ϵ as a term on
the right-hand side (RHS) of the geodesic equation,

d2xν

dτ2
þ Γν

σρ
dxσ

dτ
dxρ

dτ
¼ ϵaμðxÞ; (6)

where ϵaμ is the self-acceleration. Hinderer and Flanagan
show in [17] how this second-order equation can be
rewritten as two first-order equations,

dPi

dλ
¼ ϵ ~Gið~P; qr; qθÞ þOðϵ2Þ; (7a)

dqν
dλ

¼ ϒμð~PÞ þ ϵ~gνð~P; qr; qθÞ þ Oðϵ2Þ; (7b)

where the qμ are generalized angle variables, and ~P ¼
ðP1; P2; P3Þ ¼ ðE;Lz;QÞ are the slowly varying constants
of motion. In particular they show how the forcing terms ~Gi

FIG. 1 (color online). A plot of parameter space of bound
geodesic in a Kerr space time with a ¼ 0.9. The plot curves are
lines of constant semilatus rectum p, eccentricity e, and/or
zmax ¼ maxλ cos θðλÞ. The labeled lines represent equatorial
circular, equatorial parabolic, polar circular, and polar parabolic
orbits. The transparent surface represents all orbits in a 3:2
resonance. (See Appendix B for more details.)
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and ~gν follow from the self-acceleration aν (see Appendix A
for an explicit formula).
The frequencies ϒν themselves are functions of the Pi,

and therefore constants of motion of the zeroth order
system. We can therefore simplify the analysis of the
system by using ~ϒ ¼ ðϒr;ϒθ;ϒϕÞ as the slow variables
instead of ~P. One might worry that the map ~P↦ ~ϒð~PÞ is
not invertible due to the existence of isofrequency pairs.
It is known that this is the case for the frequencies Ωi
with respect to Boyer-Lindquist coordinate time [20].
In Appendix B we present evidence that no such pairing
occurs for frequencies with respect to Mino time. In the rest
of this paper we will assume that this map is indeed
invertible and use ~Υ as slow variables. However, the results
do not crucially depend on this assumption.
Note that the RHS of Eqs. (7) does not depend on qt and

qϕ. The equations for these two generalized angles thus
decouple, and we can focus on just qr and qθ as the fast
variables, since qt and qϕ can later be recovered by a simple
integration. This yields the reduced system,

dϒi

dλ
¼ ϵGið ~ϒ; ~qÞ þ Oðϵ2Þ; (8a)

dqj
dλ

¼ ϒj þ ϵgjð ~ϒ; ~qÞ þ Oðϵ2Þ; (8b)

where ~q ¼ ðqr; qθÞ, i runs over ðr; θ;ϕÞ, and j runs over
ðr; θÞ. An explicit formula for obtaining Gi and gj can be
found in [17] or Appendix A.

B. Averaged equations near resonance

Since the inspiral time scale of the system (8),
T insp ¼ Oðϵ−1Þ, is much larger than the orbital time scale
Torb ¼ Oð1Þ, one intuitively expects the solutions to be
largely independent of the rapid oscillations of the forcing
functionsGi and gj, and to mainly depend on their averages.
This intuition fails near a resonance, where the period of
some of the oscillating terms diverges. However, one still
expects the other oscillating terms, whose periods stay small
with respect to the inspiral time scale, to play only a
subdominant role. In this section we describe how to make
this notion precise by employing a so-called near-identity
averaging transformation following [21].
Suppose that the system encounters a resonance at λ ¼ 0,

i.e., for some coprime integers nr and nθ the linear
combination nrϒr þ nθϒθ ≡ϒ⊥ vanishes at λ ¼ 0.2

Since the generalized angles qr and qθ have a period of
2π, the functions Gi and gj can be decomposed as Fourier
series,

Gið ~ϒ; ~qÞ ¼ Gið ~ϒÞ þ
X
N≠0

Gi;Nð ~ϒÞeiNq⊥

þ
X

ðn;kÞ∈R
Gi;nkð ~ϒÞeinqrþikqθ ; (9a)

gjð ~ϒ; ~qÞ ¼ g
j
ð ~ϒÞ þ

X
N≠0

gj;Nð ~ϒÞeiNq⊥

þ
X

ðn;kÞ∈R
gj;nkð ~ϒÞeinqrþikqθ ; (9b)

where we introduced the resonant phase combination
q⊥ ¼ nrqr þ nθqθ,

3 the sum over N runs from −∞ to ∞,
andR is the set fðn; kÞ ∈ Zjðn; kÞ ≠ Nðnr; nθÞ;∀N ∈ Zg of
all nonresonant 2-tuples. The first term in the expansion of (9)
is the average adiabatic term, the first sum contains all
the resonant terms, i.e., all oscillating terms whose period
diverges at the resonance, and the final sum contains all the
nonresonant oscillating terms.
We employ an appropriate near-identity averaging trans-

formation (see [21], Sec. 5.1.3),

~ϒi ¼ ϒi þ ϵTið ~ϒ; ~qÞ þ Oðϵ2Þ; (10a)

~qj ¼ qj þ ϵLjð ~ϒ; ~qÞ þ Oðϵ2Þ; (10b)

where T and L are functions of ~Υ and ~q defining the
transformation. The goal is to choose T and L in such a way
as to eliminate the dependence of (8) on the rapidly
oscillating phase to order ϵ. The details of this trans-
formation are described in Appendix C. The result is

d ~ϒi

dλ
¼ ϵGið ~~ϒ; ~q⊥Þ þ Oðϵ2Þ; (11a)

d ~qj
dλ

¼ ~ϒj þ ϵgjð ~~ϒ; ~q⊥Þ þ Oðϵ2Þ; (11b)

with

Gið ~~ϒ; ~q⊥Þ ¼ Gið ~~ϒÞ þ
X
N≠0

Gi;Nð ~~ϒÞeiN ~q⊥ ; (12a)

gjð ~~ϒ; ~q⊥Þ ¼
X
N≠0

gj;Nð ~~ϒÞeiN ~q⊥ : (12b)

An important consequence of this result is that the forcing
terms now only depend on the resonant phase q̂⊥. The
equations of motion for the other phases thus decouple

2Note that there is a sign ambiguity in the definition ofϒ⊥. We
will adopt the convention that nr > 0 and nθ < 0. This has the
consequence that in an inspiral Υ⊥ starts out positive and
becomes negative as the infalling object crosses the resonance.

3In the rest of this paper whenever we have a quantity Xi with i
running over ðr; θ;ϕÞ or ðr; θÞ, we denote the linear combination
nrXr þ nθXθ by X⊥.
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from the system, and we can first focus on solving the

system for q⊥ and ~~ϒ. The other phases can then be
recovered by direct integration.

III. RESONANCES

A. Effective potential

In order to solve the averaged equations of motion (11)
near the resonance at λ ¼ 0 we introduce a rescaled
boundary layer time scale

λ̂ ¼ ϵ̂λ; (13)

with ϵ̂≡ ϵξ for some power ξ > 0. By expanding ~ϒi and
~q⊥ in ϵ̂,

~ϒiðλ; ϵÞ ¼ ~ϒ0
i þ ϵ̂ϒ̂1

i ðλ̂Þ þ Oðϵ̂2Þ; (14a)

~q⊥ðλ; ϵÞ ¼ q̂0⊥ðλ̂Þ þ ϵ̂q̂1⊥ðλ̂Þ þ Oðϵ̂2Þ; (14b)

and plugging these into the averaged equations of motion
(11) we obtain at leading order

dϒ̂1
i

dλ̂
¼ ϵ̂

1−2ξ
ξ Gið ~~ϒ0; q̂0⊥Þ; (15a)

dq̂0⊥
dλ̂

¼ ϒ̂1⊥: (15b)

Obtaining a nonsingular and nontrivial limit as ϵ̂ → 0
requires that we set ξ ¼ 1=2.
Differentiating (15b) with respect to λ̂ and plugging in

(15a) gives the second-order equation,

d2q̂0⊥
dλ̂2

¼ G⊥ð ~~ϒ0; q̂0⊥Þ: (16)

By multiplying both sides of this equation with dq̂0⊥
dλ̂

and

integrating once with respect to λ̂, we obtain an equivalent
first-order equation,

1

2

�
dq̂0⊥
dλ̂

�
2

¼ K − Vðq̂0⊥Þ; (17)

where

VðqÞ ¼ −G⊥ð ~~ϒ
0Þqþ i

X
N≠0

G⊥;Nð ~~ϒ
0Þ

N
eiNq; (18)

and K is an integration constant.
This is the phase resonance equation studied in [10] as a

toy model. It can be interpreted as the equation for a 1 D
particle moving in an effective potential, V with energy K.

Figure 2 plots the solutions of this equation in the case
that V ¼ q̂⊥ − 1

2
cos q̂⊥ þ 1

2
sin q̂⊥.

B. Transient resonance

As discussed in [6], the effect of a resonance compared
to the adiabatic approximation ignoring the oscillating

terms is an order ϵ̂ jump in the slow variables ~~ϒ. We
now provide an expression for the size of these jumps.
The initial condition that the system crosses the reso-

nance at λ ¼ λ̂ ¼ 0 corresponds to setting,

K ¼ Vðq0Þ; (19)

where q0 is the value of q̂⊥ðλ̂Þ at λ̂ ¼ 0. We can then invert
(17) to find λ̂ as a function of q̂⊥.

λ̂ðq̂⊥Þ ¼
Z

q̂⊥

q0

1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðK − VðqÞÞp dq; (20)

where the� sign corresponds to the branch before and after
resonance.

FIG. 2 (color online). The top figure shows the phase portrait of
solutions of (17), with V ¼ q̂⊥ − 1

2
cos q̂⊥ þ 1

2
sin q̂⊥. The bottom

figure show the potential of the same system. The levels plotted in
the lower figure correspond to the solutions plotted in the top
figure with the same shade.
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The effective potential V can be split into an adiabatic
contribution V and a (resonant) oscillatory contribution
ΔV,

Vðq̂⊥Þ ¼ Vðq̂⊥Þ þ ΔVðq̂⊥Þ; (21a)

Vðq̂⊥Þ ¼ −G⊥ð ~~ϒ0Þq̂⊥; (21b)

ΔVðq̂⊥Þ ¼ i
X
N≠0

G⊥;Nð ~~ϒ0Þ
N

eiNq̂⊥ : (21c)

In the adiabatic approximation (i.e., ignoring ΔV), Eq. (20)
can be integrated explicitly, yielding

λ̂ðq̂⊥Þ ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 − q̂⊥
−G⊥

s
: (22)

If we denote the full integral (20) by λ̂ and its adiabatic
approximation λ̂0, then as the system “evolves” from
q̂⊥ ¼ −∞ to q0 to −∞ again the full integral “accumu-
lates” an additional amount of time over the adiabatic
approximation given by

Δλ̂ ¼ lim
q→−∞

λ̂ðqÞ − λ̂0ðqÞ þ lim
q→∞

λ̂ðqÞ − λ̂0ðqÞ

¼
Z

q0

−∞

� ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðq0Þ − VðqÞp −

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðq0Þ − VðqÞp �

dq.

(23)

In the asymptotic regime 1=ϵ̂ ≫ jλ̂j ≫ 1, far away from the
resonance the resonant termsΔV are oscillating rapidly and
can be ignored at lowest order. Equation (16) then has
solutions of the form

q̂⊥ðλ̂Þ ¼
G⊥
2

�
λ̂þ signðλ̂ÞΔλ̂

2

�
2

þ C; (24)

where C is some constant that is not relevant here. From
Eq. (11), we then find the total jump in the frequencies ~ϒ,

Δ ~ϒi ¼ ϵ̂GiΔλ̂þ Oðϵ̂2Þ: (25)

Together, Eqs. (23) and (25) provide a full expression for
this jump (to leading order in ϵ̂).4 In previous works [6,10],
the size of this jump was only calculated in the limit that
jΔVj ≪ jG⊥j (although a similar result is supposed to
appear in [22]). To check our result with theirs, we expand
(23) in ΔV,

Δλ̂ ≈ −
1ffiffiffi
2

p
Z

q0

−∞

ΔVðq0Þ − ΔVðqÞ
ðVðq0Þ − VðqÞÞ3=2 dq; (26a)

¼ −i
X
N≠0

G⊥;Nffiffiffi
2

p
NG3=2

⊥

Z
q0

−∞

eiNq0 − eiNq

ðq0 − qÞ3=2 dq: (26b)

This integral can be computed explicitly,

Δλ̂ ¼
X
N≠0

ffiffiffiffiffiffi
2π

p

jG⊥Nj12
G⊥;N

G⊥
eiNq0−iπ4σ; (27)

where σ is the sign of N. Plugging this result into Eq. (25)
yields

Δ ~ϒi ¼ ϵ̂Gi

X
N≠0

ffiffiffiffiffiffi
2π

p

jG⊥Nj12
G⊥;N

G⊥
eiNq0−iπ4σ; (28)

which agrees with the linear result in [6].

C. Sustained resonance

When the effective potential V has a local minimum,
Eq. (17) has solutions that oscillate around the resonant
surface (see Fig. 3). Such solutions are called sustained
resonances. As time progresses, the system will oscillate

around the resonance surface, and the components of ~~ϒ1

perpendicular to ϒ̂1⊥ will continue to grow. Eventually,
they become order ϵ̂−1 and the expansion (14) becomes
disordered.
To follow the long-term evolution of such a sustained

resonance it is convenient to introduce the rescaled orbital
parameters ϒ̂iðλ̂; ϵ̂Þ and q̂ðλ̂; ϵ̂Þ,

~ϒiðλ; ϵÞ ¼ ~ϒc
i ð~λÞ þ ϵ̂ϒ̂iðλ̂; ϵ̂Þ; (29a)

~qðλ; ϵÞ ¼ q̂ðλ̂; ϵ̂Þ; (29b)

where ~ϒc
i ð~λÞ is an a priori unknown set of functions of

the slow-time ~λ ¼ ϵ̂ λ̂ ¼ ϵλ, satisfying ~ϒc⊥ð~λÞ ¼ 0, which
describes the slow evolution of the system along the
resonant surface.
Plugging these into (11) and expanding in ϵ̂ yields

dϒ̂i

dλ̂
¼ −

d ~ϒc
i

d~λ
þ Gi þ

X
N≠0

Gi;NeiNq̂⊥

þ ϵ̂ϒ̂j

�
dGi

dϒj
þ
X
N≠0

dGi;N

dϒj
eiNq̂⊥

�
þ Oðϵ̂2Þ; (30a)

dq̂⊥
dλ̂

¼ ϒ̂⊥ þ ϵ̂
X
N≠0

gi;NeiNq̂⊥ þ Oðϵ̂2Þ; (30b)
4This result depends on the assumption that the resonance is

transient, consequently it does not apply in the sustained
resonance situations discussed in the next sections.

MAARTEN VAN DE MEENT PHYSICAL REVIEW D 89, 084033 (2014)

084033-6



where summation over the repeated index j is implicit and
the functions G and g and their derivatives are to be
evaluated at ~~ϒ

c
. Bosley and Kevorkian in [23] describe

how to solve such equations to find the evolution of a
system captured in sustained resonance. For our current
purpose it is enough to note such sustained resonance
solutions can exist in principle and stay near the resonance
for a prolonged period resulting in a qualitatively different
behavior from the adiabatic approximation of an inspiral.
A necessary and sufficient condition for sustained

resonance solutions to exist is that the effective potential
for the resonant phase V has a local minimum; i.e.,
there must be values of the resonant phase q̂⊥ for which
dV
dq̂⊥ ¼ 0.5 For the Fourier components of the self-force this
means

G⊥ð ~~ϒ0Þ ¼ −
X
N≠0

G⊥;Nð ~~ϒ0ÞeiNq̂⊥ : (31)

Since the left-hand side is constant and the right-hand side
is purely oscillatory, this equation only has solutions if the
right-hand side has an amplitude which is bigger than

jG⊥ð ~~ϒ0Þj, i.e.,

ΔG⊥ð ~~ϒ0Þ≡ Gmax⊥ ð ~~ϒ0Þ −Gmin⊥ ð ~~ϒ0Þ
jGmax⊥ ð ~~ϒ0Þ þ Gmin⊥ ð ~~ϒ0Þj

≥ 1; (32)

where

Gmax⊥ ð ~~ϒÞ ¼ max
q⊥∈½0;2π�

G⊥ð ~~ϒ; q⊥Þ; (33)

Gmin⊥ ð ~~ϒÞ ¼ min
q⊥∈½0;2π�

G⊥ð ~~ϒ; q⊥Þ: (34)

In terms of the Fourier components of the self-force this
implies the necessary (but not sufficient) condition,

jG⊥ð ~~ϒ0Þj <
X
N≠0

jG⊥;Nð ~~ϒ0Þj; (35)

for the existence of sustained resonances. The negation of
this condition is therefore sufficient (but not necessary) to
show that there are no sustained resonances.

D. Capture condition

However, the existence of sustained resonance solutions
to Eq. (11), does not guarantee that they will also occur for
inspiralling solutions. In fact, in the lowest order approxi-
mation of this equation given by (17) K is a constant of
motion; consequently, if a solution starts at q⊥ ¼ −∞ it
cannot get stuck in a local potential well (see Fig. 3), and
will in general return to q⊥ ¼ −∞ after reflecting off the
potential. The only exceptions are the isolated solutions
that asymptote to the unstable equilibrium at a local
maximum of the potential.
In this section we derive the conditions under which

EMRI may be captured in sustained resonance. In [24]
Haberman derived these conditions for a Hamiltonian
system with one degree of freedom, where the resonance
is caused by a perturbation that is a predetermined function
of time. We generalize his method to apply to orbital
resonances in Kerr spacetime, where there are three slowly
evolving frequencies and the perturbation causing the
resonance (the self-force) is a function of the frequencies.
From the expansion (14), we can find the next order

contribution to the second-order equation of motion for q̂⊥,

d2q̂⊥
dλ̂2

¼ −
dðV þ ϵ̂V1Þ

dq̂⊥
ðq̂⊥Þ þ ϵ̂ϒ̂1

jh1jðq̂⊥Þ þ Oðϵ̂2Þ; (36)

with

FIG. 3 (color online). Plots of the same system as in Fig. 2, but
withV ¼ q̂⊥ − 2 cos q̂⊥ þ 2 sin q̂⊥. Thephaseportrait nowhas two
fixed points related to the local minimum (stable) and maximum
(unstable) of the potential. Near the stable fixed point there exist
periodic solutions of the system that stay near the fixed point.

5Strictly speaking, this only implies the existence of stationary
points. However, the periodic nature of V 0 in q̂⊥ ensures that local
mimima and maxima must come in pairs.
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V1ðq̂⊥Þ ¼
X
N≠0

g⊥;Nð ~~ϒ0ÞeiNq̂⊥ ; (37)

and

h1jðq̂⊥Þ ¼
dG⊥
dϒj

ð ~~ϒ0Þ þ
X
N

dG⊥;N

dϒj
ð ~~ϒ0ÞeiNq̂⊥ : (38)

The first-order ϵ̂ correction couples the evolution of q̂⊥ to

that of the slowly evolving frequencies ~~ϒ1 defined in (14).

The ~~ϒ1 correction acts as a friction term in the effective
equations of motion for q̂⊥, allowing solutions coming in
from q̂⊥ ¼ −∞ to sink into a local minimum of the
potential (see Fig. 4).
To make this notion precise, recall that the leading-order

system had a constant of motion,

K ¼ 1

2

�
dq̂⊥
dλ̂

�
2

þ Vðq̂⊥Þ: (39)

When we include the higher-order corrections, this quantity
is no longer constant. Taking a derivative and plugging in
(36) gives

dK

dλ̂
¼ dq̂⊥

dλ̂

�
d2q̂⊥
dλ̂2

þ dV
Rq̂⊥

�
; (40)

¼ ϵ̂
dq̂⊥
dλ̂

ϒ̂1
jh1jðq̂⊥Þ; (41)

which can be integrated to obtain K as a function of λ̂,

Kðλ̂Þ ¼ K0 þ ϵ̂

Z
λ̂

0

ϒ̂1
jh1jðq̂⊥Þdλ; (42)

where K0 is the value of K at λ̂ ¼ 0. (Recall that λ̂ ¼ 0 is
the time that the system (first) passes through resonance,
i.e., ϒ̂⊥ ¼ 0 at λ̂ ¼ 0.)
In order for the system to be captured in sustained

resonance, K must decrease sufficiently as q̂⊥ “passes
over” the local minimum of the potential. In general, there
will be a window of values K0 ∈ ½Kmin; Kmax� for which the
solution is captured.
The lowest extreme, Kmin corresponds to the solution

that comes in from negative infinity, barely scrapes the top
of the local maximum of the potential, and then reflects of
the potential at V ¼ Kmin. The solution corresponding to
the highest extreme Kmax, first reflects off the potential at
V ¼ Kmax and then asymptotically approaches the local
maximum of the potential from the right.
To calculate the values of Kmin and Kmax, we use the fact

that these extremal solutions are close to the critical
solutions of the lowest order system, i.e., the solutions
of (17) with K equal to the local maximum of the potential
Kc. We can use this to find an approximation of dq̂⊥

dλ̂
as a

function of q̂⊥,

dq̂⊥
dλ̂

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðKc − Vðq̂⊥ÞÞ

p
þ Oðϵ̂Þ: (43)

We can then use (15a) to obtain an approximation for ~̂ϒ1.
Plugging (43) into (15a) yields

dϒ̂1
i

dλ̂

dλ̂
dq̂⊥

¼ Gi þ
P

N≠0Gi;NeiNq̂⊥

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðKc − Vðq̂⊥ÞÞ

p þ Oðϵ̂Þ; (44)

where here and in the rest of the equations in this section
the functions Gi and Gi;N (and their derivatives) are

understood to be evaluated at the initial ~~ϒ0. This equation
can be integrated to obtain

ϒ̂1
i ðq̂⊥Þ ¼

Z
q̂⊥

q̂0

Gi þ
P

N≠0Gi;NeiNsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðKc − VðsÞÞp dsþ Oðϵ̂Þ: (45)

FIG. 4 (color online). Plotted are solutions of the same system
as Fig. 3, but with a constant dissipative term ϵ̂h1⊥ ¼ −1=15
added. This allows solutions coming in from negative infinity to
be captured in the local potential well. The thick line labeled
“max” is the solution with the highest effective energy Kmax to be
captured, while the thick line labeled “min” corresponds to the
solution with the minimal effective energy Kmin that is still
captured in the potential.
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We can then use the approximations for dq̂⊥
dλ̂

and ~~ϒ1 to
obtain leading-order approximations for Kmin and Kmax
from (42)

Kc ¼ Kmin − ϵ̂

Z
0

−∞
ϒ̂1

jh1jðq̂⊥Þdλþ Oðϵ̂2Þ (46)

¼ Kmin − ϵ̂

Z
q̂0

q̂c

ϒ̂1
jðq̂Þh1jðq̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðKc − Vðq̂ÞÞp dq̂þ Oðϵ̂2Þ; (47)

and

Kc ¼ Kmax þ ϵ̂

Z
∞

0

ϒ̂1
jh1jðq̂⊥Þdλþ Oðϵ̂2Þ (48)

¼ Kmax − ϵ̂

Z
q̂c

q̂0

ϒ̂1
jðq̂Þh1jðq̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðKc − Vðq̂ÞÞp dq̂þ Oðϵ̂2Þ: (49)

Together these give the size of the window
ΔK ¼ Kmax − Kmin,

ΔK ¼ 2ϵ̂

Z
q̂c

q̂0

ϒ̂1
jðq̂Þh1jðq̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðKc − Vðq̂ÞÞp dq̂þ Oðϵ̂2Þ (50)

¼ 2ϵ̂
X
j

Z
q̂c

q̂0

dq̂
Z

q̂

q̂0

ds
Gj þ

P
N≠0Gj;NeiNsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðKc − VðsÞÞp

×

dG⊥
dϒj

þP
N≠0

dG⊥;N

dϒj
eiNq̂⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðKc − Vðq̂ÞÞp þ Oðϵ̂2Þ: (51)

The first thing we notice is that the size of the window in K
is very small (of order ϵ̂ ¼ ϵ1=2). So, if we have an EMRI
system with ϵ ¼ 10−6 that has a resonance strong enough to
have sustained resonance solutions, only about 1 in 1000
inspirals will be captured. The rest will simply experience a
transient resonance and obtain a kick to their constants of
motion given by (23) and (25).
Since the window ΔK is small we may obtain the

window for the initial resonant phase Δq̂ as

Δq̂ ¼ V 0ðq̂0ÞΔK: (52)

Since V 0 ¼ Oð1Þ, this implies that the window Δq̂ is
also small.
Given the existence of sustained resonance solutions,

a necessary and sufficient condition for the existence of
captured inspiralling solutions is that Kmax ≥ Kmin. The
intuitive interpretation of this condition is that the
friction term in (36) must act to decrease K most of
the time, i.e., if we heuristically think of ϒ̂1

j as dq̂⊥
dλ̂
, then

h1j must be mostly negative. Given that along an inspiral
we heuristically expect the Mino frequencies to

decrease6 and the self-force to increase, we do indeed
in general expect h1j to be negative. This is by no means
guaranteed, but we are given a general indication of
the sign of ΔK. However, since the existence of
sustained resonance solutions may require nongeneric
conditions—if they exist in EMRIs at all (see Sec. IV)
—nongeneric behavior of h1j certainly is not excluded.

E. Escape from sustained resonance

Once an inspiral has been captured in resonance it will
continue to evolve according to the equations of motion
(30a), until it manages to escape from the resonance. In
general, there are two ways in which the system can escape
from sustained resonance. The first is the reverse of the
capture condition, i.e., the friction term in (36) should have
the “wrong” (i.e. negative) sign for an extended period of
time. As we argued above, this is not what one heuristically
expects to happen.
The other possibility is that the local minimum of the

effective potential V disappears as the system continues to
evolve. As can be gathered from the geometry of the phase
diagram in Fig. 1, evolution of the system along a resonant
surface while still decreasing the energy implies that it
becomes more circular. We know that for circular orbits the
self-force can only depend on the qθ phase. Consequently
the resonant oscillating terms of self-force must vanish
as the orbit approaches circularity, and the local minimum
of the effective potential V must disappear before the orbit
becomes fully circular.
However, without a more detailed knowledge of the

functional form of the self-force this is all we can say about
the evolution of an inspiral captured in sustained resonance.

IV. EVALUATING THE RESONANCE
CONDITIONS

In the previous sections we have derived two necessary
and together sufficient conditions for the existence of
EMRI solutions that are captured in sustained resonance
at some frequencies ~ϒ,

ΔG⊥ð ~ϒÞ ≥ 1; (53a)

ΔKð ~ϒÞ ≥ 0: (53b)

Note that since the ðn; kÞ-modes of the self-force are
expected to become small for large values of n and k,
one expects ΔG⊥ to become small for resonances
with large nr and nθ. Consequently, one can at best expect

6Recall that, because Mino time is rescaled by a factor Σ ¼
r2 þ a2cos2θ with respect to proper time, the frequencies with
respect to Mino time increase with increasing radius, unlike
frequencies with respect to proper time and Boyer-Lindquist
time.
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(53a) to be satisfied for low order resonances
(i.e., jnr=nθj ¼ 2=3; 2=4; 2=5;…).
A useful fact for testing (53a) is that, as a result of the

resonance condition, q⊥ is constant on any resonant orbit,
and thus forms an additional constant of motion. This
allows us to study the long term average value of G⊥—
which is related to _E, _Lz, and _Q through equation (A3a)—
on geodesic orbits with different q⊥ to find the dependence
of G⊥ on q⊥. This can then be used to obtain ΔG⊥. It is
worth emphasizing that this procedure will provide all
Fourier modes of G⊥ that depend only on q⊥, including
those that are odd under the transformation q⊥↦2π − q⊥,
despite the fact that for nonresonant orbits these later modes
are associated with the conservative self-force.
In previous works, the additional constant of motion

present for resonant orbits is defined in different ways. In
[13], they define Δλ as Mino time difference between the
minima of the r and θ oscillations of the orbits. If we define
the generalized angles qr and qθ to be zero at their minima,
then this implies

qrðλÞ ¼ ðλ − λ0Þϒr; (54a)

qθðλÞ ¼ ðλ − λ0 þ ΔλÞϒθ; (54b)

where λ0 is the time at which the r oscillations reach their
minimum. Plugging this in the definition of q⊥ gives

q⊥ðλÞ ¼ nrwrðλÞ þ nθwθðλÞ (55a)

¼ nrðλ − λ0ÞϒrÞ þ nθðλ − λ0 þ ΔλÞϒθ (55b)

¼ nθϒθΔλ; (55c)

where in the last line we used the resonance condition
nrϒr þ nθϒθ ¼ 0. Hence Δλ ¼ q⊥=ðnθϒθÞ.
In [11], χ0 is defined as

χ0 ¼ arccos
�
zðλ0Þ
zmax

�
; (56)

where z ¼ cos θ. Although rather complicated, the relation
between χ0 and q⊥ can be obtained explicitly from the
analytic solutions of the geodesic equations in Kerr found
in [19].
Since ΔG⊥ only depends on the minimum and maxi-

mum of G⊥, it does not matter whether we obtain G⊥ as a
function of q⊥, Δλ, or χ0. The extrema are always the same.

In [11],
_~P ¼ ð _E; _Lz; _QÞ was calculated by solving the

Teukolsky equation for resonant orbits, and obtaining the
“fluxes” at infinity and the horizon. They find that Δ _Pi
[defined analogous to the definition in (32) of ΔG⊥] is at
most of the order of a few percent. Since they only give
Δ _Pi, and not the values of _Pi, we cannot calculate ΔG⊥

directly from their results, but unless _Pi is almost tangent to
the resonant surface, ΔG⊥ should be of similar order of
magnitude as Δ _Pi. This result is consistent with the
conclusions of Flanagan and Hinderer [6] based on a
post-Newtonian approximation of the self-force (even
though the resonant orbits are in the strong field regime
where the post-Newtonian approximations lose their val-
idity). Such small values of ΔG⊥ indicate that there are no
sustained resonance solutions (let alone captured sustained
resonances) for the resonant orbits probed in [11].
However, [11] probes only a few points in the parameter

space. Consequently, we cannot quite exclude the possibil-
ity of sustained resonances.
Testing the second condition for capture, (53b), requires

not only knowledge of Gi, but also of its derivatives with
respect to Υi. Consequently, we cannot rely on the shortcut
provided by calculating the changes of the constants of
motion on resonant geodesics. To test it, a complete survey
of the self-force in a neighborhood of the resonant surface
would be needed. Such a survey is currently beyond the
state-of-the-art.

V. DISCUSSION AND CONCLUSIONS

In this paper we derived a set of necessary and sufficient
conditions (53) that the self-force needs to satisfy for
sustained resonances to occur in extreme mass ratio
inspirals. Along the way we obtained an expression
[Eqs. (23) and (25)] for the jump made by the constants
of motion when an EMRI encounters a transient resonance.
This expression—valid to lowest order in the mass ratio
ϵ—applies to resonances of any strength, including tran-
sient crossings of resonances strong enough to allow the
existence of sustained resonances.
Current numerical evidence provides no indication that

condition (53a) is satisfied for any resonant orbits in Kerr
spacetime. However, these results are not sufficient to
completely rule out that the condition may be satisfied for
some particular resonant orbits. Efforts to provide a more
comprehensive sweep of the parameter space of resonant
surfaces are currently under way. Numerical testing of the
second condition (53b) would require almost full knowl-
edge of the self-force for generic orbits in Kerr spacetime,
which at this point is not (yet) available.
The initial conditions needed to allow capture into

sustained resonance however imply that even if the con-
ditions (53) are satisfied for some orbits, the probability that
an EMRI crossing that orbit is indeed captured is only of
order ∼ϵ1=2. This makes the chance of actually observing
such an event in an astrophysical context fairly remote,
unless very large numbers of EMRIs are observed. However,
if an EMRI stuck in sustained resonance is ever observed, it
would provide a unique glance into the resonant structure of
the space of orbits in Kerr, which as pointed out in [14], is
sensitive to the geometry of the spacetime.
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APPENDIX A: EXPRESSIONS FOR THE
FORCING TERMS

In [17] Hinderer and Flanagan derive the expression
for the forcing terms ~gi and ~Gi in terms of the self-
acceleration aν,

~gið~P; ~qÞ ¼
dτ
dλ

�
qi
pν

�
x
aν (A1a)

~Gið~P; ~qÞ ¼
dτ
dλ

�
Pi

pν

�
x
aν; (A1b)

where pν is the four-momentum, and the parentheses with
subscript x mean that the partial derivatives are performed
keeping the position xν fixed. They also show how to
calculate the partial derivatives more explicitly. The result
for ~G is rather simple,

~~Gð~P; ~qÞ ¼ dτ
dλ

ð−at; aϕ; 2QμνuμaνÞ: (A2)

The expression for ~g is much more involved, and since ~g is
not needed to evaluate the capture conditions derived in this
paper, we will not repeat it here.
The expressions for the forcing terms for the equation of

motion in terms of the frequencies, G and g, can be easily
derived from ~g and ~G,

Gið ~ϒ; ~qÞ ¼ ∂ϒi

∂Pj

~Gjð ~ϒð~PÞ; ~qÞ; (A3a)

gjð ~ϒ; ~qÞ ¼ ~gjð ~ϒð~PÞ; ~qÞ: (A3b)

Evaluating this requires knowledge of ~ϒð~PÞ.
Unfortunately, no analytic form of ~ϒð~PÞ is known.

However, it is possible to explicitly get ~Υ and ~P as
functions of ~s ¼ ðp; e; zmaxÞ7 (see [18,19] for an explicit

formula). We can therefore obtain ~ϒð~PÞ numerically by
numerically inverting the relation ~pð~sÞ. Similarly we obtain
∂ϒi∂Pj

from ∂ϒi∂sj and ∂Pi∂sj ,

∂ϒi

∂Pj
¼ ∂ϒi

∂sk
∂sk
∂Pj

: (A4)

APPENDIX B: CARTER-MINO
TIME FREQUENCIES

In this paper we identify (invariant tori of) bound orbits
by their frequencies with respect to Mino time,
~ϒ ¼ ðϒr;ϒθ;ϒϕÞ, instead of more conventional sets of
invariants such as ðE;Lz;QÞ or ðp; e; zmaxÞ. This choice is
convenient because it avoids the appearance of the function
~ϒðE;Lz;QÞ and its derivatives in many of the equations.
However, this choice is not crucial for any of the con-
clusions of the paper.
For this choice to be valid, we need the map

F∶ ðp; e; zmaxÞ↦ðϒr;ϒθ;ϒϕÞ to be invertible, or at least
for it be invertible in a neighborhood of the resonant
surfaces. It is known that this is not the case for the related
map ðp; e; zmaxÞ↦ðΩr;Ωθ;ΩϕÞ to the frequencies with
respect to Boyer-Lindquist coordinate time [20]. In that
case, there exist distinct invariant tori of bound orbits with
the same triple of coordinate frequencies ðΩr;Ωθ;ΩϕÞ, and
the region of parameter space where these isofrequency
pairs appear intersects at least some of the low integer
resonant surfaces. This might be cause to worry that the
map to Mino time frequency triples is equally degenerate.
We know of no formal proof that the map F is invertible,

but our investigations indicate that this seems to be the case.
We first present a formal proof that the reduced map
ðp; eÞ↦ðϒr;ϒθ ¼ ϒϕÞ for orbits in Schwarzschild space-
times is invertible, unlike the analogue map for Ω. We then
present numerical plots of the parameter space for bound
orbits in Kerr spacetime presented in Mino frequencies
which show the map to be regular in the plotted region,
which includes the low integer resonant surfaces.

1. Schwarzschild case

Due to the spherical symmetry of Schwarzschild space-
time the orbital dynamics are independent of the inclination
of the orbit. Consequently, there are only two relevant
invariant parameters for each orbit. The same symmetry
also implies that the oscillations about the equatorial plane
must match the azimuthal period of the orbit, i.e.,Υθ ¼ Υϕ.
This leaves a reduced map F∶ ðp; eÞ↦ðϒr;ϒθ ¼ ϒϕÞ to
consider. The expressions for Υr;Υϕ in terms of ðp; eÞ are
readily obtained from the general expressions in [18,19],

ϒr ¼
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp−6þ2eÞ
p−e2−3

q
2Kð 4e

p−6þ2eÞ
; (B1a)

ϒϕ ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p − e2 − 3

p ; (B1b)

where

KðxÞ ¼
Z

π=2

0

dσ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xsin2σ
p (B2)

is the complete elliptic integral of the first kind.
7Here, p is the semilatus rectum, e the eccentricity, and zmax is

the maximal value of z ¼ cos θ.
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For convenience, we shift the semilatus rectum p by the
6þ 2e, the value of p at the separatrix, i.e., ~p ¼ p−6þ2e

4e . As
a consequence, the space of bound orbits in Schwarzschild
spacetime is given by ~p ≥ 1 and 0 ≤ e < 1. In these
variables the frequencies are

ϒr ¼
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e ~pð4e ~p−2eþ6Þ
4e ~pþð1−eÞð3þeÞ

q
Kð1

~pÞ
; (B3a)

ϒϕ ¼ 4e ~p − 2eþ 6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e ~pþ ð1 − eÞð3þ eÞp : (B3b)

Note that the map ðp; eÞ↦ð ~p; eÞ is invertible. Hence, F is
invertible if and only if ~F∶ ð ~p; eÞ↦ðϒr;ϒϕÞ is invertible.
By the inverse function theorem it is enough to show the
Jacobian of ~F is nonzero everywhere.
The Jacobian J of the map ~F is given by

J ¼ 2eπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e ~pð4e ~p − 2eþ 6Þ

p
×
2ð ~p2 − ~pþ 1ÞEð1

~pÞ − ð2 ~p2 − 3 ~pþ 1ÞKð1
~pÞ

ð ~p − 1Þð4e ~pþ ð1 − eÞð3þ eÞÞ2Kð1
~pÞ2

; (B4)

where

EðxÞ ¼
Z

π=2

0

dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xsin2σ

p
(B5)

is the complete elliptic integral of the second kind.
Since the square and square root factors are manifestly

positive, J > 0 is equivalent to

fð ~pÞ ¼ 2ð ~p2 − ~pþ 1ÞE
�
1

~p

�

− ð2 ~p2 − 3 ~pþ 1ÞK
�
1

~p

�
> 0: (B6)

Note that f is only a function of ~p and not of e. We will
show that f is a monotonically increasing function ~p. Since
fð1Þ ¼ 2, this would prove that f is strictly positive. We
first calculate the third derivative of f,

f000 ¼
ð2 − ~pÞEð1

~pÞ þ ð ~p − 1ÞKð1
~pÞ

8=15ð ~p − 1Þ ~p3
: (B7)

If we expand the elliptic integral in the numerator we find,

Z
π=2

0

dθð2 − ~pÞ
�
1 −

sin2θ
1þ ~p

�
1=2

þ ~p − 1

ð1 − sin2θ
1þ ~pÞ1=2

: (B8)

The integrand can be rewritten to

cos2θ þ ð1þ sin2θÞð ~p − 1Þ
~pð1 − sin2θ

~p Þ1=2 > 0; (B9)

which is manifestly positive for all ~p ≥ 1 and 0 < θ < π=2.
Consequently, f000 > 0 for all ~p ≥ 0.
The first and second derivative of f are given by

f0 ¼
ð8 ~p2 − 3 ~pþ 2ÞEð1

~pÞ − ð8 ~p2 − 7 ~p − 1ÞKð1
~pÞ

2 ~p
; (B10)

f00 ¼
ð16 ~p2 þ 4 ~pþ 6ÞEð1

~pÞ − ð16 ~p2 − 4 ~pþ 3ÞKð1
~pÞ

4 ~p2
:

(B11)

If we use that

E

�
1

~p

�
¼ π

2

�
1 −

1

4 ~p
−

3

64 ~p2

�
þ O

�
1

~p3

�
; (B12)

K

�
1

~p

�
¼ π

2

�
1þ 1

4 ~p
þ 9

64 ~p2

�
þ Oð ~p3Þ; (B13)

we find both vanish at infinity,

lim
~p→∞

f0 ¼ 0; (B14)

lim
~p→∞

f00 ¼ 0: (B15)

Consequently, since f000 is positive and lim ~p→∞f00 ¼ 0, f00
must be strictly negative. So, f0 is a monotonically
decreasing function of ~p. Since this also vanishes at
infinity, it must be strictly positive. Hence, f is a mono-
tonically increasing function. As a consequence, f and by
extension J are strictly positive, and the inverse function
theorem therefore implies that ~F (and thus F) is invertible.

2. PLOTS FOR KERR

The general expressions for ðϒr;ϒθ;ϒϕÞ in terms of
ðp; e; zmaxÞ in a Kerr spacetime are known. [18,19]
However, they are complicated enough that a direct
computation of the Jacobian seems intractable, and we
are not going to attempt it here. Instead we use the explicit
expressions to numerically plot parameter space of bound
orbits in Kerr spacetime as parametrized by the Mino
frequencies.
Figures 5 and 6 show this parameter space for respec-

tively prograde and retrograde orbits in a Kerr spacetime
with spin a ¼ 9

10
M. The separatrix dividing bound and

plunge orbits is given by the surface Υr ¼ 0. The plotted
lines in the plot keep two of the original parameters
ðp; e; zmaxÞ constant. A failure of invertibility of F would
manifest itself as this grid degenerating. A similar plot for
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the frequencies with respect to Boyer-Lindquist coordinate
time easily reveals the isofrequency region where the grid
folds back on itself.
A particularly strong clue that helps us think that there

may be no Mino time isofrequency pairs is that parabolic
(e ¼ 1) orbits have a finite radial frequency. Hence, the
separatrix and the plane of parabolic orbits cannot get
(partly) mapped into each other as happens for coordinate
and proper time frequencies. This more or less restricts to
possibility of Mino time isofrequency pairings to the
interior of the plots in Figs. 5 and 6 (where it also does
not appear to occur).
The absence of any visible degeneration in these plots, is

a strong indication that the Mino time frequencies are a
good set of parameters for bound orbits in Kerr. At least, in
the plotted region which contains the low integer ratios of
Υr and Υθ. This, by no means, is a proof that there are no
Mino isofrequency pairs of bound orbits in Kerr space-
times, but it is good enough for us to assume this as a
conjecture.

APPENDIX C: NEAR IDENTITY AVERAGING
TRANSFORMATION

In this appendix we describe the details of the near
identity averaging transformation needed to remove the
nonresonant oscillatory terms from the equations of motion
(8). It closely follows the procedure described in Sec. 5.1 of
[21]. Recall the equations of motion (8) for an EMRI
system,

dϒi

dλ
¼ ϵGið ~ϒ; ~qÞ þ Oðϵ2Þ; (C1a)

dqj
dλ

¼ ϒj þ ϵgjð ~ϒ; ~qÞ þ Oðϵ2Þ; (C1b)

with

Gið ~ϒ; ~qÞ ¼ Gið ~ϒÞ þ
X
N≠0

Gi;Nð ~ϒÞeiNq⊥

þ
X

ðn;kÞ∈R
Gi;nkð ~ϒÞeinqrþikqθ ; (C2)

gjð ~ϒ; ~qÞ ¼ g
j
ð ~ϒÞ þ

X
N≠0

gj;Nð ~ϒÞeiNq⊥

þ
X

ðn;kÞ∈R
gj;nkð ~ϒÞeinqrþikqθ : (C3)

We introduce a change of variables that is an identity
transformation at leading order (hence the term “near
identity”),

~ϒið ~ϒ; ~qÞ ¼ ϒi þ ϵTið ~ϒ; ~qÞ þ Oðϵ2Þ; (C4a)

~qjð ~ϒ; ~qÞ ¼ qj þ ϵLjð ~ϒ; ~qÞ þ Oðϵ2Þ: (C4b)

The inverse transformation is given by

ϒið ~~ϒ; ~~qÞ ¼ ~ϒi − ϵTið ~~ϒ; ~~qÞ þ Oðϵ2Þ; (C5a)

qjð ~~ϒ; ~~qÞ ¼ ~qj − ϵLjð ~~ϒ; ~~qÞ þ Oðϵ2Þ: (C5b)

FIG. 5 (color online). Parameter space of prograde bound orbits
in a Kerr space time with a ¼ 0.9.

FIG. 6 (color online). The same parameter space as in Fig. 5,
but for retrograde orbits.
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To obtain the equations of motion for the new variables
~~ϒ and ~~q we first differentiate (C4) with respect to λ,

d ~ϒi

dλ
¼ dϒi

dλ
þ ϵ

�
dTi

dϒk

dϒk

dλ
þ dTi

dqk

dqk
dλ

�
þ Oðϵ2Þ; (C6a)

d ~qj
dλ

¼ dqj
dλ

þ ϵ

�
dLj

dϒk

dϒk

dλ
þ dLj

dqk

dqk
dλ

�
þ Oðϵ2Þ: (C6b)

If we then substitute the equations of motion (C1), and
use the inverse transformation (C5) to eliminate the
dependence on ~Υ and ~q, we obtain,

d ~ϒi

dλ
¼ ϵ

�
Gið ~ϒ; ~qÞ þ dTi

dqk
ϒk

�
þ Oðϵ2Þ; (C7a)

d ~qj
dλ

¼ ~ϒj þ ϵ

�
gjð ~ϒ; ~qÞ þ dLj

dqk
ϒk − Tj

�
þ Oðϵ2Þ: (C7b)

The idea is to use the freedom in the functions T and
L to eliminate the lowest order nonresonant oscillatory
terms from the equations of motion. That is we want
to set,

dTi

dqk
ϒk ¼ −

X
ðn;kÞ∈R

Gi;nkð ~ϒÞeinqrþikqθ ; (C8a)

dLj

dqk
ϒk ¼ ~Tj −

X
ðn;kÞ∈R

gj;nkð ~ϒÞeinqrþikqθ ; (C8b)

where ~Ti denotes the terms of Ti that depend on ~q. This
set of first-order ordinary differential equations can easily
be solved by direct integration, yielding

Tið ~ϒ; ~qÞ ¼ T̄ið ~ϒÞ þ i
X

ðn;kÞ∈R

Gi;nkð ~ϒÞ
nϒr þ kϒθ

einqrþikqθ ; (C9a)

Ljð ~ϒ; ~qÞ ¼ L̄jð ~ϒÞ þ i
X

ðn;kÞ∈R

gj;nkð ~ϒÞ
nϒr þ kϒθ

einqrþikqθ

þ
X

ðn;kÞ∈R

Gj;nkð ~ϒÞ
ðnϒr þ kϒθÞ2

einqrþikqθ (C9b)

and consequently

~Tið ~ϒ; ~qÞ ¼ i
X

ðn;kÞ∈R

Gi;nkð ~ϒÞ
nϒr þ kϒθ

einqrþikqθ : (C9c)

The appearance of the combination nϒr þ kϒθ in the
denominator of the solution, immediately tells why this
procedure cannot be used to remove the resonant oscillatory
terms, since these would become singular at resonance.
The solution (C9) contains the arbitrary functions T̄i and

L̄j of ~Υ. In principle, we could set them to zero, since our
objective of removing the nonresonant oscillatory terms has
been achieved. However, as explained in Sec. 5.1 of [21],
this freedom can be used to make further simplifications to
the equations of motion. In [21] this freedom is used to
eliminate the Oðϵ2Þ averaged terms. We make a slightly

different choice, we set T̄jð ~ϒÞ ¼ g
j
ð ~ϒÞ, which eliminates

the OðϵÞ averaged term from the ~q equations of motion,

while we use L̄jð~ΥÞ as in [21] to eliminate the Oðϵ2Þ
averaged terms from those same equations.
The equations of motion to Oðϵ2Þ resulting from these

manipulations are

d ~ϒi

dλ
¼ ϵGið ~~ϒÞ þ ϵ

X
N≠0

Gi;Nð ~~ϒÞeiN ~q⊥ þ Oðϵ2Þ; (C10a)

d ~qj
dλ

¼ ~ϒj þ ϵ
X
N≠0

gj;Nð ~~ϒÞeiN ~q⊥ þ Oðϵ2Þ: (C10b)
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