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The regularized vacuum fluctuation related to a conformally coupled massless scalar field defined on
a space-time with dynamical horizon is computed with respect a radially moving observer in a generic
flat Friedmann-Lemaître-Robertson-Walker space-time. Two simple measurement prescriptions are given
in order to remove the ambiguity associated with the short distance singularity of the correlation function.
In some cases, it turns out that one is dealing with a quantum thermometer, recovering a proposal due
to Buchholz et al. in order to determine local temperature in the framework of quantum field theory.
In general, by arranging the detector so that it does not register for inertial motion in flat space, the
regularized quantum fluctuation may be used as a probe of space-time geometry and, in particular, may
provide information on the Hubble parameter. As an aside, it is not possible in general to fully decouple the
effect of the detector’s motion from the Universe expansion, a fact that could be interpreted as a kind of
Machian effect, which can be traced back to the global nature of the vacuum.
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I. INTRODUCTION

Relativistic theories of gravity on flat Friedmann-
Lemaître-Robertson-Walker (FLRW) space-times have
become important in modern cosmology after the discovery
of the current cosmic acceleration, the onset of the dark
energy issue, and the confirmation of inflationary models.
Among the several descriptions of the current accelerated
expansion of the Universe, the simplest one is the intro-
duction of a small positive cosmological constant in the
framework of general relativity, so that one is dealing with a
perfect fluid for which the equation-of-state parameter
ω ¼ −1. This fluid model is able to describe the current
cosmic acceleration, but also other forms of fluid (phantom,
quintessence, inhomogeneous fluids,…) satisfying a suit-
able equation of state are not excluded, since the observed
small value of the cosmological constant leads to several
conceptual problems, such as the role of vacuum energy
and the coincidence problem. For this reason, several
different approaches to the dark energy issue have been
proposed. Among them, the modified theories of gravity
(see, for example, Refs. [1–5] and references therein)
represent an interesting extension of Einstein’s theory.

Unfortunately, a large class of these modified models
admit future singularities, the worst being the so-called
big rip singularity [6,7].
With regard to quantum fields in curved space-time, the

other leitmotif of this paper, one of its most important
predictions is the Hawking radiation [8]. Several deriva-
tions of this effect can be found in literature [9–13], and
recently the search for experimental verification making
use of analog models was pursued by many investigators
(see, for example, Refs. [14,15]).
In a seminal paper, Parikh and Wilczek [16] (see also

Ref. [17]) introduced a further approach, the so-called
tunneling method, for investigating corrections to the stan-
dard semiclassical treatment of Hawking radiation. Avariant
of their method has been also introduced and called the
Hamilton–Jacobi tunneling method [18–20]. This method is
covariant and enjoys the peculiar feature to admit a gener-
alization to the dynamical case [21–23]. For a recent review,
see Ref. [24] and the references therein, and for a rigorous
quantum theoretical approach, see also Ref. [25].
Recall that in the tunneling approach the semiclassical

emission rate reads

Γ ∝ jAmplitudej2 ∝ e−2
ℑI
ℏ : (1)

withℑI standing for the imaginarypartof theclassical action.
The leading terms in the semi-classical approximation of the
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tunneling probability, taking into account energy conserva-
tion and the perturbed geometry, reads

Γ ∝ e−
2π
κH
ωð1−ω=2MÞ; (2)

in which an energy ω of the particle is released and the
surface gravity evaluated at the horizon κH ¼ 1=4M
appears. It is amusing that the exponent is the variation
in the entropy of the black hole caused by the emission
process. Also, by neglecting the small factor ω=2M, one
gets the Boltzmann tail of the thermal distribution.
From this asymptotic, one obtains the Hawking tem-

perature by the identification TH ¼ κH
2π. The method is

quite general and works for a generic stationary black
hole. With appropriate mathematical notions of horizons
and surface gravities, the above formula is still valid in
the spherically symmetric dynamical case in which the
mass and possibly other parameters depend on time, as
shown in Refs. [21–23,26], but the interpretation of
κH=2π as an effective temperature parameter is more
delicate1 and can be answered in principle by asking what
a local detector on a given trajectory can actually detect.
However, there is another sense in which κH

2π can be
considered as an effective TH. If the dynamical horizon
really emits blackbody radiation in the surrounding
vacuum, then by Liouville’s theorem, the distribution
function of the radiation is constant along phase space
trajectories and therefore must have a temperature equal
to that of the emitting horizon but redshifted as predicted
by general relativity. If it does not emit as a blackbody,
one can still define a local temperature by comparing the
radiation density at each point in phase space with the
equilibrium Planck density, but such a local temperature
will generally depend on the frequency and direction.
With regard to this temperature issue, we are particularly

interested in the cosmological scenario, and we would like
to continue the investigation by making use of quantum
field theory to evaluate the fluctuation of the simplest
quantum probe at our disposal, namely, a conformally
coupled scalar field defined on a spherically symmetric
space-time with horizons (see Refs. [27–29] and references
therein).
We mainly restrict our analysis to a flat FLRW space-

time, which is a spherically symmetric dynamical space-
time admitting in principle several past- and future-oriented
dynamical horizons. We can now briefly review the general
formalism [30–32] and the relevant quantities that will
be used.
Any spherically symmetric metric can locally be

expressed in the form

ds2 ¼ γijðxiÞdxidxj þ R2ðxiÞdΩ2; i; j ∈ f0; 1g; (3)

where the two-dimensional metric

dγ2 ¼ γijðxiÞdxidxj (4)

is referred to as the normal metric, fxig are associated
coordinates, and RðxiÞ is the areal radius, considered as a
scalar field in the two-dimensional normal space. A relevant
scalar quantity in the reduced normal space is

χðxÞ ¼ γijðxÞ∂iRðxÞ∂jRðxÞ; (5)

since the dynamical trapping horizon, if it exists, is
defined by

χðxÞjH ¼ 0; (6)

provided the condition ∂iχjH ≠ 0 is satisfied. One signifi-
cant scalar in the normal space is given by the interesting
proposal due to Hayward [31],

κH ¼ 1

2
□γRjH; (7)

which is a generalization of the usual Killing surface
gravity. This is the quantity that appears in the tunneling
rate (1). But there is another one, still given by Hayward
[32], that is defined by computing on the horizon the
quantity

KH ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−nμ∇μθ

q
jH; (8)

where θ is the expansion of an appropriately oriented null
geodesic congruence with tangent vector lμ and nμ is another
future-pointing null congruence such that n · l ¼ −1.
As an example, let us consider the flat FLRW space-

time; the metric is usually written in the form

ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2dΩ2Þ; (9)

the coordinates are x ¼ ðt; rÞ, the areal radius is R ¼ aðtÞr,
and the normal metric simply reads

dγ2 ¼ −dt2 þ a2ðtÞdr2: (10)

Thus,

χ ¼ −ð∂tRÞ2 þ
1

a2ðtÞ ð∂rRÞ2 ¼ 0; (11)

namely, the trapping horizon is located at rH ¼ 1
_a and in

terms of the areal radius reads

RH ¼ aðtÞrH ¼ 1

HðtÞ ; (12)1The radiating system is obviously not in global thermody-
namic equilibrium.
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where the Hubble parameter is given by HðtÞ ¼ 1
a
da
dt. The

quantity RH is known as the Hubble sphere, but we may also
refer to it as the Hubble dynamical horizon in Hayward’s
terminology. Thus, it turns out that κH ¼ RHðtÞK2

H=2, so
that both definitions contain the same information.
Furthermore, in a spherical symmetric dynamical case, it

also is possible to introduce the Kodama vector field K.
Given the metric Eq. (3), the Kodama vector components are

KiðxÞ ¼ 1ffiffiffiffiffiffi−γp εij∂jR; Kθ ¼ 0 ¼ Kφ: (13)

We may introduce the Kodama trajectories, and related
Kodama observer, by means of integral lines of the Kodama
vector,

dxi

dλ
¼ Ki ¼ 1ffiffiffiffiffiffi−γp εij∂jR: (14)

As a result, dRðxðλÞÞ
dλ ¼ 0. Thus, in generic spherically

symmetric space-times, the areal radius R is conserved
along Kodama trajectories. In other words, a Kodama
observer is characterized by the condition R ¼ R0. The
operational interpretation goes as follows. Static observers in
static black hole (BH) space-times become, in the dynamical
case, Kodama observers for which the velocity is

viK ¼ Kiffiffiffi
χ

p ; γijviKv
j
K ¼ −1: (15)

The energy measured by this Kodama observer at fixed areal
radius R0 is

E ¼ −viK∂iI ¼ −
Ki∂iIffiffiffiffiffi

χ0
p ¼ ωffiffiffiffiffi

χ0
p ; (16)

where I is the classical action of the relativistic particle,
ω ¼ −Ki∂iI and ∂iI being its momentum. As a conse-
quence, the tunneling rate may be written also as

Γ≃ e−
2π
κH

ffiffiffiffi
χ0

p
E ≃ e−

E
T0 ; (17)

and the local quantity T0,

T0 ¼
THffiffiffiffiffi
χ0

p ; TH ¼ kH
2π

; (18)

evaluated at radial radius R0 is also invariant, since it
contains the invariant factor

ffiffiffi
χ

p
. In the static case χ ¼ grr ¼

−g00 and recalling Tolman’s theorem, “for a gravitational
system at thermal equilibrium in a static gravitational field,
the local temperature satisfies T

ffiffiffiffiffiffiffiffiffiffi−g00
p ¼ constant.” As a

consequence, TH ¼ κH
2π is the intrinsic temperature of the BH:

the Hawking temperature. In the general static case, we
confirmed this result by making use of the Unruh–de Witt

detector formalism [28]. In the dynamical case, the full
interpretation is still missing, and one of the aims of this
paper is to give a contribution in order to clarify this issue for
cosmological horizons by making use of concepts in linear
quantum field theory.
Thus, in this paper, we shall evaluate the regularized

vacuum expectation value, i.e., the quantum vacuum
fluctuation, given formally by hϕ2ðxÞi, where ϕðxÞ is a
conformally coupled quantum field defined on a flat FLRW
space-time. This is an ill-defined quantity, and a regulari-
zation is necessary. The computation of the coincidence
limit will be done along world lines parametrized by the
proper time or arc length in the spacelike case. Therefore,
the final result will also depend on the invariant accel-
eration (the norm of the corresponding 4-vector) of an
arbitrary observer, and the role of Kodama observers will
be investigated. The computation of hϕ2ðxÞi in a black hole
space-timewas also used recently in Ref. [33] to discuss the
reality of the firewall proposal around the black hole
horizon, and it is conceivable that the analysis of these
authors could be relevant for the case of cosmic horizons
as well.
Along the way, we shall also discuss the physical

meaning of the renormalization procedures by insisting
that they have to correspond to measurement procedures
and point out that many of them have no operational
meaning in general. We stress that the obtained results are
approximatively valid for all states for which the leading
singularity is of Hadamard’s type.
In some special cases, including the important static

black holes, this renormalized fluctuation gives direct
information on the temperature associated with the quan-
tum field at thermal equilibrium, and according to
Buchholz [34] (see also the recent paper of Ref. [35]),
in these cases, one is dealing with a quantum thermometer.
In general, the quantum fluctuation will still give informa-
tion on FLRW space-times. We then show that the
fluctuations as measured locally by a comoving observer
are isotropic, but they do not take the form of a quantum
thermal bath with some characteristic horizon temperature
parameter, as might be expected from general thermody-
namical arguments based on horizon physics [36].
The paper is organized as follows. In Sec. II, the vacuum

fluctuation is introduced, including its formal renormaliza-
tion. In Sec. III, the general formula for the renormalized
vacuum fluctuation is derived, and a physical meaning is
attached to the formal renormalization procedure. Some
applications are also discussed in Sec. IV, where the
peculiar class of Kodama observers is analyzed in relation
to our problem. Conclusions are given in Sec. V.

II. hϕ2i AS AN OBSERVABLE

In the present section, we discuss the role of the the
quantum vacuum fluctuation, given formally by hϕ2ðxÞi,
where ϕðxÞ is a quantum field defined on a generic curved
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space-time. It has been calculated in a cosmological context
in Refs. [37–39]. A related quantity is the off-diagonal
Wigthman function, given by

Wðx; x0Þ ¼ hϕðxÞϕðx0Þi (19)

and for which the evaluation in the coincidence limit x0 → x
gives the fluctuation at space-time event x. However, on
general grounds, Wðx; x0Þ in this limit possesses the so
called Hadamard singularity: in D ¼ 4, one has (see, for
example, Ref. [40])

Wðx; x0Þ ¼ hϕðxÞϕðx0Þi ¼ 1

4π2
Dðx; x0Þ
σ2ðx; x0Þ

þ Uðx; x0Þ lnðλσ2ðx; x0ÞÞ þ Vðx; x0Þ; (20)

where σ2ðx; x0Þ is the geodesic distance between x and x0; λ
is a characteristic dimensional parameter (a mass or a scalar
curvature term); and D, U, and V are smooth functions,
regular at the coincidence limit. We left understood the
presence of the iϵ factor, which allows one to deal with
tempered distributions. This means that in any case, at the
coincidence limit, Wðx; xÞ is singular.
One of the simplest regularizations consists of removing

the related Hadamard singularity associated with a reference
space-time, typically Minkoswki space. But in general, the
presence of the logarithmic divergence introduces a finite
logarithmic ambiguity in the form of a dimensional param-
eter μ2. The structure of the Hadamard singularity depends
on the geometry of the space-time and on the differential
operatorL associated with the equation of motion of the field
ϕðxÞ, while the finite part depends on the chosen quantum
state. In our case, for the sake of simplicity, we consider
neutral quasifree scalar fields so that the operator L consists
of the D’Alembertian operator plus a term that may depend
on the gravitational coupling of the field and on its mass. The
renormalized value of the fluctuation hϕ2ðxÞiR contains
physical information, and in this sense, it is an observable
much simpler than the renormalized vacuum expectation
value of the stress-energy tensor.
As an illustrative example, let us consider a free massive

scalar field defined on the Euclidean manifold S1 × R3,
obtained by “rotating”Minkowski time to imaginary values
and then compactifying it with periodicity β. It is well
known that in this case one is dealing with a massive
quantum scalar field in thermal equilibrium at temperature
T ¼ 1

β. The relevant operator is

L ¼ −∂2
τ −∇2 þM2; (21)

τ being the imaginary time with period β.
One may compute the regularized fluctuation by means

of the zeta-function regularization (see, for example,
Refs. [41–43] and references therein). The general formula
is [44,45]

hϕðxÞ2iR ¼ lim
ε→0

�
d
dε

ðεζð1þ ε; xÞÞ þ εζð1þ ε; xÞ ln μ2
�
;

(22)

where ζðz; xÞ is the local zeta function associated with L
and μ2 is an arbitrary mass scale present when there is a
pole of the local zeta function at z ¼ 1. We omit the details
of the calculation, giving instead the result:

hϕðxÞ2iR ¼ M
2πβ

X∞
n¼1

K1ðnβMÞ
n

þ M2

8π2
ln

�
M2

μ2

�
: (23)

Here, K1ðxÞ is the modified Bessel function. If M is
not vanishing, the thermal properties are not trans-
parent. Furthermore, the ambiguity given by the arbi-
trary mass scale μ2 is still present, and a physical
renormalization prescription is needed. In the massless
case, there is a drastic simplification, and it is easy to
show that the logarithmic term (with its arbitrary mass
scale) is absent in the Hadamard singularity: the
regularized result reads

hϕðxÞ2iR ¼ 1

12β2
¼ T2

12
: (24)

Thus, in this particular case, the fluctuation acts as a
quantum thermometer [34]. However, one should
observe that in a generic curved space-time and for
an arbitrary gravitational coupling a logarithmic term is
always present in the Hadamard singularity, even
though one is dealing with a massless scalar field:
as a consequence of the regularization process, a finite
logarithmic term with an arbitrary mass scale μ2 is also
present. However, if one restricts the analysis to the
massless conformally coupled case, one may get rid of
the logarithmic term (see, for example, Refs. [46,47]).
As we have just seen, the proposal put forward by

Buchholz and collaborators seems to work for the mass-
less scalar field at finite temperature on Minskoswki
space-time. In Ref. [34], also the de Sitter space-time
was investigated, and we shall revisit this important case.
For a Schwarzschild black hole, the situation is not so
simple, in the sense that the renormalized vacuum fluc-
tuation still gives information on Hawking temperature
but in a less direct way. In fact, the result for the
renormalized vacuum fluctuation of a massless confor-
mally coupled scalar field on a Hartle–Hawking state
reads [46]

hϕðxÞ2iR ¼ T2
H

12V
−

T2
U

12V
þ THΔH; (25)

where TH ¼ 1
8πM is the Hawking temperature, TU ¼ M

2πr2 is
the Unruh temperature, V ¼ 1 − 2M

r is the lapse function,
and ΔH a finite contribution that can be numerically
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evaluated. It should be noted that on the horizon, since one
is working on the Hartle–Hawking state, the vacuum
fluctuation is finite because the local (redshifted)
Hawking and Unruh temperature divergences cancel.
Conversely, the finiteness of the correlation implies the
value of the Hawking temperature.
Motivated by these arguments, we would like to consider

a conformally coupled scalar field in a FLRW conformally
flat space-time. In this case, the off-diagonal Wigthman
function is given by (see, for example, Refs. [27,28])

Wðx; x0Þ ¼ hϕðxÞϕðx0Þi ¼ 1

4π2
1

σ2ðx; x0Þ ; (26)

where σ2ðx; x0Þ ¼ aðtÞaðt0Þðx − x0Þ2 and aðtÞ is the scale
factor. In the coincidence limit x → x0, one has the
Hadamard singularity without the logarithmic term.

III. A LOCAL EXPANSION OF hϕ2ðxÞi IN TERMS
OF PARAMETRIZED WORLD LINES

As we argued in the previous section, massless con-
formally coupled fields could be a convenient probe to
investigate at quantum level the properties of nontrivial
space-times through the quantity hϕ2ðxÞi. To calculate this
quantum fluctuation, one needs to evaluate to the inverse of
the square geodesic distance between two events. For our
purposes, the geodesic distance may be conveniently
expressed in terms of the corresponding world line xðsÞ
parametrized by the proper length, which is the proper time
τ along timelike trajectories and the usual arc length along
spacelike curves. This approach is similar to the one
described in detail in the monograph [10], and it is the
core of the adiabatic point-splitting regularization method.
It is also strictly related to Unruh–deWitt detector approach
(see, for example, Ref. [10] and references therein and the
references contained in the recent papers, Refs. [28,48]).
For a rigorous recent approach, see also Ref. [49]. In the
following, we shall discuss both timelike and spacelike
correlations. We shall use both forms of the spatially flat
FLRW metric

ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2dΩ2Þ
¼ a2ðηÞð−dη2 þ dr2 þ r2dΩ2Þ; (27)

where, by a slight abuse of notation, we denoted with the
same symbol two really different functions, namely, aðtÞ and
aðηÞ ¼ aðtðηÞÞ; here, η ¼ R

dt=aðtÞ is the conformal time.

A. Timelike correlations

The proper-time parametrized Wightman function reads

WðxðτÞ; x0ðτ0ÞÞ ¼ 1

4π2
1

σ2ðτ; τ0Þ ; (28)

where

σ2ðτ; τ0Þ ¼ aðτÞaðτ0ÞðxðτÞ − xðτ0ÞÞ2 (29)

is computed in the FLRW metric. Because of the isotropy
of FLRW space-time, we may restrict the analysis to radial
trajectories, namely, xðτÞ ¼ ðηðτÞ, rðτÞÞ. To discuss the
coincidence limit, we put ε ¼ τ − τ0. An overdot will mean
derivation with respect to proper time τ. We define aðτÞ ¼
aðηðτÞÞ so that _a ¼ a2H _η and so on.
It will be sufficient to make an expansion to fourth order

in ε of Eq. (29),

σ2ðτ; τ − εÞ≃ −ε2a2ðτÞð_η2 − _r2Þ þ 1

2
ε3∂τ½a2ðτÞð_η2 − _r2Þ�

þ 1

12
ε4½6aäð_r2 − _η2Þ þ 12a _að_r ̈r−_η η̈Þ

þ 3a2ð̈r2 − η̈2Þ þ 4a2ð_r r⋯−_η η⋯Þ�: (30)

To simplify the expression, we just need to enforce the
following relations:

(i) a2 _x2 ¼ −1 (for timelike trajectories) and its deriv-
atives with respect to τ.

(ii) the relation between cosmic time and conformal
time dη=dt ¼ a−1.

(iii) _r ¼ a−1
ffiffiffiffiffiffiffiffiffiffiffiffi
_t2 − 1

p
.

Because of relation i, the coefficient of ε2 is 1, while the
coefficient of ε3 is zero. As regards the detailed calculations
of the ε4 term, see Appendix A. The result in terms of _t and
HðtÞ ¼ ∂taðtÞ=aðtÞ is

σ2ðτ; εÞ ¼ −ε2 −
1

12

� ̈t2

_t2 − 1
þ 2̈tH þ _t2ðH2 þ 2∂tHÞ

�
ε4

þOðε6Þ: (31)

Note that _t fully determines the trajectory via iii, while HðtÞ
is determined by aðtÞ (i.e., by the model with which one is
dealing). Furthermore, the τ-dependent coefficient in square
brackets can be rewritten in a more enlightening way,

σ2ðτ; εÞ ¼ −ε2 −
1

12
½A2 þH2 þ 2_t2∂tH�ε4 þOðε6Þ; (32)

where

A2 ¼
� ̈tffiffiffiffiffiffiffiffiffiffiffiffi

_t2 − 1
p þH

ffiffiffiffiffiffiffiffiffiffiffiffi
_t2 − 1

p �
2

is the square of the 4-acceleration along the trajectory.
At this point, we must discuss a crucial matter: the

renormalization of the singular term in the Wightman
function. We think that, in order to avoid any possible
ambiguity, this should be done by making reference to the
actual method of measurement. It seems there are many
possibilities, but to keep the matter as plain as possible, we
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will consider two simple and sensible ways to define the
finite part of the correlation. The first is to subtract the value
for Minkowski space on a linear trajectory, a flat geodesics in
fact; the second is to subtract the value on the actual
trajectory as embedded in flat space. Thus, in the first case,
we set the detector so that it registers no signal when it is at
rest in a freely falling frame; in the second case, we set it so
that it gives no signal when it is moving on the actual
trajectory again in a freely falling frame. If the detector is
small with respect to the curvature scale, for example, a
pointlike monopole detector, well-known arguments based
on the equivalence principle will imply that the detector in
general will register a signal when it is moving or is at rest in
a comoving frame. Since Minkowski space can be locally
reached by passing to a freely falling frame, both prescrip-
tions are in principle achievable. By contrast, any subtraction
corresponding to a globally nonisometric space-time has no
operational meaning in the given space-time and should not
be used. For instance, we can give hϕ2i any value we like
by subtracting its unrenormalized value in a contracting
Universe, but clearly there is no natural physical meaning in
this entirely arbitrary procedure. In the case of inertial
trajectories in Minkowski space-time, one has _xμ ¼ Uμτ,
U2 ¼ −1, and aðtÞ ¼ 1. Thus,

σ2Mðτ; εÞ ¼ −ε2: (33)

The renormalization following from the first prescription
requires the subtraction of this contribution from the
expression given by Eq. (32). The renormalized vacuum
fluctuation is then given by

hϕ2ðxÞiR ¼ 1

48π2

� ̈t2

_t2 − 1
þ 2̈tH þ _t2ðH2 þ 2∂tHÞ

�
(34)

or the equivalent form

hϕ2ðxÞiR ¼ 1

48π2
½A2 þH2 þ 2_t2∂tH�: (35)

This result is in agreement with the one obtained by
Obadia [27] within the Unruh–deWitt detector approach.
Furthermore, in this form, it shows in a clear way the
contribution coming from the proper motion along the
trajectory (through A and hence _t) and the one coming
from the dynamics of the cosmological model (through H).
The third term in square brackets represents a mixed
contribution, which vanishes for stationary cosmological
models. Thus, adjusting the detector so that it does not
register for inertial motion in flat space provides a probe of
certain features of space-time geometry and of the actual
motion. Most interesting, of course, would be the proper
motion of our neighborhood relative to the Hubble flow.
Interesting is the case whereby _H ≪ H2: then, hϕ2i has a

thermal interpretation in terms of de Sitter temperature
(even in the presence of some acceleration; see below).

In the general case, there is not such an interpretation.
For instance, in the Einstein–de Sitter model, _H ¼ −3H2=2
so that hϕ2iR ¼ −H2=24π2 despite the presence of a
trapping horizon.
For a comoving observer (wewill see that this is a special

class of Kodama observers), Eq. (35) reduces to

hϕ2ðxÞiR ¼ 1

48π2
½H2 þ 2 _H�: (36)

Evidently the correlation acts as a probe for testing both the
Hubble parameter as well as its time derivative. In de Sitter
space relative to inflationary coordinates, one has _H ¼ 0,
and the correlation measures the Gibbons–Hawking tem-
perature of de Sitter space [50] for a geodesic observer [see
Eq. (24)]. The renormalization prescription just adopted
should be equivalent to a subtraction relative to the Bunch–
Davies vacuum, the same to be used in inflation theory, and
in this sense is the favorite one, although the conformal
field is not very relevant in inflationary theory. But there are
other possibilities: an appropriate one for massless fields is
perhaps the Kirsten–Garriga vacuum [51], or the various de
Sitter α vacua.We have not investigated this matter anymore.
The second prescription consists of subtracting the

fluctuation on the actual trajectory as embedded in flat
Minkowski space, namely, Eq. (34) withH ¼ 0. As a result,

hϕ2ðxÞiR ¼ 1

48π2
½2̈tH þ _t2ðH2 þ 2∂tHÞ�: (37)

It is designed to separate the Unruh effect from the
expansion, but a coupling ̈tH actually remains. It resembles
a Machian effect, showing that subtracting the acceleration
relative to absolute space, as would be expected in this case,
leaves nonetheless a coupling with the whole Universe. It is
clearly not possible to cancel this term by renormalization
with respect to a freely falling frame because, in such a
frame, the rest of the Universe disappears from the stage.
In spherical symmetry, the physical radial trajectory is

identified by the variation of the areal radius RðtÞ ¼ raðtÞ
so that, making use of the line element Eq. (3) restricted on
a radial path,

_t ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðdRdt − R

RH
Þ2

q ; (38)

and defining V ¼ dR
dt −

R
RH
, one can express Eq. (35) as

hϕ2ðxÞiR ¼ 1

48π2

�
H2 þ 1

1 − V2

�
_Vffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
p þHV

�2

þ 2
∂tH

1 − V2

�
; (39)

where the second term is the proper acceleration. This
expression can also be rewritten in an alternative form,
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hϕ2ðxÞiR ¼ 1

48π2
1

1 − V2

�
H2 þ 2∂tH

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
�

_V2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p þ 2HV _V
��

; (40)

in view of the discussion in the following sections.

B. Spacelike correlations

In this case, we use as a parameter the arc length s along
the curve, and we will simplify matters by choosing a
purely spatial trajectory within the cosmic time slices of
the metric. A simple calculation gives now nothing inter-
esting, namely, the exact result

σ2ðs; ϵÞ ¼ ϵ2: (41)

Evidently, we need to consider spacelike trajectories with
some extension in time. Formally, we can get the spacelike
result by taking imaginary proper time, say τ ¼ is, in
Eq. (34); we obtain, isolating the acceleration from the
expansion,

σ2ðs; ϵÞ ¼ 1

48π2

�
t002

t02 þ 1
− 2t00H − t02ðH2 þ 2∂tHÞ

�
þ⋯;
(42)

where a prime denotes d=ds. Adopting once more the
renormalization with respect to Minkowski space, we see
that the spacelike correlations are again a probe of the
Universe expansion. But unlike the timelike case, this time
there is no detector available and no obvious local method
to measure them.2

IV. KODAMA TRAJECTORIES

The previous results did not specify any special trajec-
tory. Here, we restrict our analysis to the class of Kodama
observers, i.e., the observers characterized by the condition
aðtÞr≡ RðtÞ ¼ R0. The importance of these observers is
related to the properties of the Kodama vector field in
spherical symmetry (see the introduction). In the static
patch of de Sitter space or static spaces, they stay at
constant r; in FLRW spaces, they are on top of a constant
areal radius, namely, R ¼ rðtÞaðtÞ is a constant, and
become null on the Hubble sphere; in Rindler space,
they correspond to uniformly accelerated observers in
Minkowski space; and so on. We are interested in
Kodama trajectories since they are the closest analog of
the hyperbolic histories giving rise to characteristic thermal
effects.

From Eq. (39), we find

hϕ2ðxÞiR ¼ 1

48π2
1

1 − R2
0H

2

�
H2 þ 2∂tH þ ð∂tHÞ2R2

0

ð1 − R2
0H

2Þ2

þ 2H2R2
0∂tHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −H2R2
0

p
�
; (43)

which for the comoving observer at R0 ¼ 0 reduces to
Eq. (36). Apparently, we see no natural thermal interpre-
tation of this formula.
An expression of the characteristic surface gravity

associated with a trapping horizon in cosmology is given
by Eq. (7), which when redshifted to a Kodama trajectory
takes the form

κH ¼
�
H þ

_H
2H

�
ð1 −H2R2

0Þ−1=2: (44)

According to a possible interpretation, this time-dependent
parameter controls the particle creation rate by the trapping
horizon located at rHa ¼ H−1, as given by Eq. (2), lending
support to the interpretation of κH=2π as an effective
temperature parameter. But Eq. (43), although similar, is
quite different from Eq. (24) at the base of Buchholz’s
proposal for this temperature. Evidently, the cosmological
horizon does not create a thermal background radiation
with a simple geometric description, as it happens to black
holes, unless _H ¼ 0 (this case will be considered in the next
subsection).
It seems truly remarkable that a local measurement such

as the one involved in the fluctuation has a geometrical
interpretation in terms of a quantity that is associated to a
very distant, observer-dependent Hubble sphere, and it
seems at odds with general results concerning the effects of
expansion on local systems. Is this another instance of a
Machian effect in cosmology? More modestly, we could
simply say that there is at least a renormalization pre-
scription that produces a geometrically meaningful (i.e.,
tightly connected to space-time geometry) result. But we
have to recall that the expectation value is not a truly local
quantity because the vacuum state to which it refers actually
probes a cosmic time slice in its entirety.

A. Stationary space-times

These observations bring us, as an important check, to
consider de Sitter space, which has HðtÞ ¼ H0 constant in
inflationary coordinates.3 The expression simplifies to

hϕ2ðxÞiR ¼ 1

48π2
H2

0

1 − R2
0H

2
0

; (45)

2In cosmology, the power spectrum is first determined by
observations in causal directions; then, the spatial correlations are
reconstructed via a Fourier transform.

3These are the only ones with flat spatial sections to which our
formalism applies.
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thus, one has

hϕ2ðxÞiR ¼ 1

12

T2
GH

ð1 − R2
0H

2
0Þ
; (46)

where TGH ¼ H0

2π is the Gibbons–Hawking temperature
[50], ð1 − R2

0H
2
0Þ being the kinematical redshift factor.

One also has the known result [52]

hϕ2ðxÞiR ¼ 1

12

�
A2
0

4π2
þ T2

GH

�
; (47)

where

A0 ¼
R0H2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

0

p

is the invariant acceleration of the Kodama observer
(needed to remain at a constant radial distance from the
origin in the static frame).
One may obtain a confirmation of the above result by

observing that the de Sitter space-time admits a static patch.
With regard to this issue, we may discuss the black hole
general case. In fact, a generic spherically symmetric static
black hole metric reads

ds2 ¼ −VðrÞdt2S þ
dr2

VðrÞ þ r2dΩ2

¼ Vðr�Þ½−dt2S þ ðdr�Þ2� þ r2ðr�ÞdΩ2; (48)

where tS is the time coordinate in the static patch and r� is
the tortoise coordinate given by dr�ðrÞ ¼ dr

VðrÞ. Introducing
the Kruskal-like coordinates defined by

X ¼ 1

κH
eκr

�
coshðκHtSÞ; T ¼ 1

κH
eκHr

�
sinhðκHtSÞ;

where κH ¼ V 0
H
2

is the usual Killing surface gravity, one
obtains

ds2 ¼ e−2κHr
�
Vðr�Þ½−dT2 þ dX2� þ r2ðT; RÞdΩ2; (49)

where now r� ¼ r�ðT; XÞ. The key point to recall here is
that in the Kruskal gauge the normal metric is conformally
related to two-dimensional Minkoswki space-time. The
second observation is that Kodama observers are defined by
the integral curves associated with the Kodama vector; thus,
the areal radius r and r� are constant, say r ¼ r0. As a
consequence, one is dealing with an effective flat FLRW
space-time,

ds2 ¼ V0e−2κHr
�
0ð−dT2 þ dX2Þ

¼ −dt2 þ a2ðr0ÞdX2; (50)

where t ¼ ffiffiffiffiffiffi
V0

p
e−κHr

�
0T is a new “cosmological” time and

aðr�0Þ ¼
ffiffiffiffiffiffi
V0

p
e−κHr

�
0 is the related constant scale factor.

Furthermore, the proper time along Kodama trajectories
reads

dτ2 ¼ V0dt2S ¼ V0e−2κHr
�
0ðdT2 − dX2Þ

¼ dt2 − a2ðr0ÞdX2: (51)

Finally one also has, as functions of the proper time,

XðτÞ ¼ 1

κH
eκHr

�
0 cosh

�
κH

τffiffiffiffiffiffi
V0

p
�

TðτÞ ¼ 1

κH
eκHr

�
0 sinh

�
κH

τffiffiffiffiffiffi
V0

p
�
: (52)

Since for themetricEq. (50)onehasH ≡ ∂ta=a ¼ 0,wehave
to apply the general formula (34), namely, the one associated
with the first renormalization prescription, obtaining

hϕ2ðxÞiR ¼ 1

48π2

� ̈t2

_t2 − 1

�
: (53)

For the static black hole, one obtains

_t ¼ cosh
�
κH

τffiffiffiffiffiffi
V0

p
�
; ̈t ¼ κHffiffiffiffiffiffi

V0

p sinh
�
κH

τffiffiffiffiffiffi
V0

p
�
; (54)

which gives for the quantum fluctuation

hϕ2ðxÞiR ¼ 1

48π2
κ2H
V0

¼ T2
H

12V0

: (55)

As a result, also in this case, one has a Buchholz quantum
thermometer with Hawking temperature at infinity TH ¼ κH

2π

redshiftedby theusualTolman factorV0. FordeSitter,VðrÞ ¼
1 −H2

0r
2 and TH ¼ jκH j

2π ¼ H0

2π , thus recovering the previous
result. We may conclude that this temperature is an intrinsic
property of de Sitter space, not depending on the coordi-
nates used.4

B. Nonstationary space-times: The big rip

For the big rip solution [6,7], one has

HðtÞ ¼ c
ðts − tÞα ; c > 0 and α > 0: (56)

As in stationary scenarios, for Kodama observers, the
fluctuation diverges on the Hubble horizon RH ¼ H−1.
On the other hand, if 0 < R0 < RH, with every α > 1=2,
the fluctuation at the big rip attains a finite value:

4From a canonical perspective, it is an observable in the
Bergmann sense of a “gauge-invariant phase-space function.”
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lim
t→ts

hϕ2ðxÞiR ¼ −
1

48π2
1

R2
0

: (57)

If α ¼ 1=2, we have instead

lim
t→ts

hϕ2ðxÞiR ¼ −
1

192π2c4R4
0

−
1

48π2
1

R2
0

: (58)

It is interesting to note that only in this latter case the
limiting value depends on ðcR0Þ−4, i.e., on the details of the
model through c.
The finite, but negative, values of hϕ2ðxÞiR at the big rip

are due to the fact that a Kodama observer with R0 ≠ 0 has
a nonvanishing proper acceleration that diverges toward
the singularity: this divergence offsets exactly the infinite
contribution coming from HðtÞ.

V. CONCLUSIONS

We have computed at length the simplest local observable
available in a conformal scalar field theory in a flat FLRW
metric. Instead of throwing away the full short-distance
singularity of its Wightman function, as one might have
supposed to do, we retain some terms that look meaningful.
We have given justifications for this procedure. In de Sitter
space, itgives theresultobtained ininflationtheoryfor thefield
in the Bunch–Davies vacuum. The fluctuations as computed
shownorelationwith the thermodynamicsofcosmichorizons,
except for de Sitter space or in a quasi-de Sitter regime. The
Machian flavor of the results, namely, the connection of local
measurementswith theexpansionof theUniverse, isexplained
by the nonlocal character of the vacuum state.

APPENDIX: FOURTH-ORDER TERM IN THE
EXPANSION OF σ2

Let us consider the ε4 term in Eq. (30),

1

12
½6aäð−_η2 þ _r2Þ þ 12a _að−_η η̈þ_r ̈rÞ
þ 3a2ð−η̈2 þ ̈r2Þ
þ 4a2ð−_η η

⋯þ_r r⋯Þ�∶

(1) the first term can be rewritten by using the condition
a2 _x2 ¼ −1. The result is

6aäð−_η2 þ _r2Þ ¼ −6
ä
a
¼ −6_tð̈t∂tH þ _tÞ:

(2) By using the fact that ∂τ½a2 _x2� ¼ 0, the second term
becomes

12a _að−_η η̈þ_r ̈rÞ ¼ 12H2_t2:

(3) By deriving once more the condition ∂2
τ ½a2 _x2� ¼ 0,

the sum of the last two terms can be recast in the
form

3a2ð−η̈2 þ ̈r2Þ þ 4a2ð−_η η
⋯þ_r r⋯Þ

¼ −H2_t2 þ 4Ḧt −
̈t

_t2 − 1
þ 4_t2∂tH:

Putting all together, the ε4 term is given by

−
1

12

� ̈t2

_t2 − 1
þ 2Ḧtþ _t2ðH2 þ 2∂tHÞ

�
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