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The inspiral of a stellar mass (1 − 100M⊙) compact body into a massive (105 − 107M⊙) black hole has
been a focus of much effort, both for the promise of such systems as astrophysical sources of gravitational
waves, and because they are a clean limit of the general relativistic two-body problem. Our understanding
of this problem has advanced significantly in recent years, with much progress in modeling the “self-force”
arising from the small body’s interaction with its own spacetime deformation. Recent work has shown that
this self-interaction is especially interesting when the frequencies associated with the orbit’s θ and r
motions are in an integer ratio: Ωθ=Ωr ¼ βθ=βr, with βθ and βr both integers. In this paper, we show that
key aspects of the self-interaction for such “resonant” orbits can be understood with a relatively simple
Teukolsky-equation-based calculation of gravitational-wave fluxes. We show that fluxes from resonant
orbits depend on the relative phase of radial and angular motions. The purpose of this paper is to illustrate in
simple terms how this phase dependence arises using tools that are good for strong-field orbits, and to
present a first study of how strongly the fluxes vary as a function of this phase and other orbital parameters.
Future work will use the full dissipative self-force to examine resonant and near resonant strong-field
effects in greater depth, which will be needed to characterize how a binary evolves through orbital
resonances.
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I. INTRODUCTION

A. The self-force driven evolution of binaries:
A very brief synopsis

Our understanding of the two-body problem in general
relativity has advanced substantially in the past decade.
Besides the celebrated breakthroughs in numerical rela-
tivity [1–3] which have opened the field of binary phe-
nomenology in general relativity, there has been great
progress in understanding the extreme mass-ratio limit of
this problem, when one member of the binary is much
smaller than the other. This limit is of great interest in
describing astrophysical extreme mass-ratio binaries (a
particularly interesting source for space-based gravita-
tional-wave measurements) [4], and as a limiting form
of the more generic two-body problem [5,6].
Most efforts to model extreme mass-ratio binaries have

focused on the computation of self-forces (see Ref. [7] for a
recent comprehensive review). Consider a small body
orbiting a black hole. At zeroth order in the small body’s
mass, its motion is described as a geodesic of the black hole
spacetime. At first order in this mass, the black hole’s
spacetime is slightly deformed. This deformation changes
the trajectory that the small body follows, pushing it away
from the background spacetime’s geodesic. It is useful to
regard the change to the trajectory as arising from a self-
force which modifies the geodesic equations typically used

to describe black hole orbits. Conceptually, it is useful to
split the self-force into two pieces: a time-symmetric
conservative piece and a time-asymmetric dissipative
piece. On average, the impact of the conservative contri-
bution is to shift orbital frequencies away from their
geodesic values. The dissipative self-force is equivalent,
on average, to a slow evolution of the otherwise conserved
constants (e.g., the orbital energy and angular momentum)
which characterize geodesic orbits. It makes the largest
contribution to an orbit’s phase evolution. The conservative
piece makes a smaller (though still significant) contribution
which accumulates secularly over many orbits [8,9].
Recent work by Flanagan and Hinderer [10] (hereafter

FH) using a post-Newtonian (pN) approximation to the
self-force together with fully relativistic orbital dynamics
has shown that a small body’s self-interaction becomes
particularly important near resonances. The background
geodesic motion can be characterized by three orbital
frequencies with respect to Boyer-Lindquist time: a radial
frequency Ωr, a polar frequency Ωθ, and an axial frequency
Ωϕ. In the weak-field (large separation) limit, these three
frequencies asymptote to the Newtonian Kepler frequency.
In the strong field, these frequencies can differ signifi-
cantly, with Ωr always the smallest frequency (the relative
magnitude of Ωθ and jΩϕj depends on the sign of the
orbit’s axial angular momentum). Resonant orbits are
ones for which the radial and angular motions become
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commensurate: Ωθ=Ωr ¼ βθ=βr, where βθ and βr are small
integers with no common factors. On such orbits, compo-
nents of the self-interaction which normally “average
away” when examined over a full orbital period instead
combine coherently, substantially changing their impact on
the system’s evolution.
For the purpose of our background discussion, it is useful

to include more details from FH’s analysis of how resonant
effects arise. Consider a body of mass μmoving on a bound
trajectory near a Kerr black hole of mass M, with μ ≪ M.
FH note that one can describe the motion of this body using
action-angle variables and correctly accounting for how
the integrals which parametrize geodesic orbits evolve due
to the self-force. Writing the angle variables qα ¼
ðqt; qr; qθ; qϕÞ (which describe motions in the t, r, θ,
and ϕ directions of Boyer-Lindquist coordinates), and
writing the integrals associated with geodesic motion Ji ¼
ðE;Lz;QÞ (with E the energy, Lz the axial angular
momentum, and Q the Carter constant), the equations of
motion describing the system are [12]

dqα
dτ

¼ ωαðJÞ þ ϵgð1Þα ðqr; qθ; JÞ þOðϵ2Þ; (1.1)

dJi
dτ

¼ ϵGð1Þ
i ðqr; qθ; JÞ þOðϵ2Þ: (1.2)

The time parameter τ is proper time along the orbit; the
parameter ϵ ¼ μ=M is the system’s mass ratio. The ωr;θ;ϕ
are fundamental frequencies with respect to proper time
associated with bound Kerr geodesic orbits. The forcing
functions gð1Þα and Gð1Þ

i arise from the first-order self-force.
FH also include discussion of second-order forcing func-
tions, which we do not need for this synopsis; see Ref. [10]
for further discussion.
At order ϵ0, Eqs. (1.1) and (1.2) simply describe geo-

desics of Kerr black holes: The integrals of the motion are
constant, and each angle variable evolves according to its
associated frequency. The leading adiabatic dissipative
correction to this motion can be found by dropping the

forcing term gð1Þα and replacing Gð1Þ
i by hGð1Þ

i i, the average
of this forcing term over the 2-torus parametrized by qθ and
qr [12]. To compute this torus-averaged self-force, it is
sufficient to use the radiative approximation [9,11,12],
which includes only the radiative contributions to the self-
interaction and neglects conservative contributions. For
generic (nonresonant) orbits, this torus average coincides
with an infinite time average, and the averaged quantities

hGð1Þ
i i are just the time-averaged fluxes of energy, angular

momentum, and Carter constant. In recent years such time-
averaged fluxes have been computed numerically using the
frequency domain Teukolsky equation [23–25]. These
fluxes can be used to compute leading-order, adiabatic
inspirals. The conservative contributions influence the
motion only beyond the leading adiabatic order [11,12].

B. Resonant effects

Now consider going beyond the leading adiabatic order.
Important post-adiabatic effects can be found by continuing

to neglect gð1Þα , but now integrating Eq. (1.2) using Gð1Þ
i

rather than its averaged variant. FH show that for “most”

orbits, Gð1Þ
i is given by hGð1Þ

i i plus a rapidly oscillating
contribution. Over the time scales associated with inspiral,
this rapidly oscillating piece averages away and has little

effect. The effect of the forcing term Gð1Þ
i is dominated by

hGð1Þ
i i for all nonresonant orbits.
For resonant orbits, this averaging fails: contributions

beyond hGð1Þ
i i are not rapidly oscillating and can signifi-

cantly modify how the integrals of motion evolve during an
inspiral. A given binary is very likely to evolve through
several low-order resonances en route to the final merger of
the smaller body with the large black hole [13]. A complete
quantitative understanding of these resonant effects will
thus be quite important for making accurate inspiral
models. Prior to FH’s analysis, several other papers argued
that such resonances may play an important role in the
radiative evolution of binary systems [14,15] (albeit with-
out quantifying the detailed impact they can have), or else
because of other effects which resonances have on the
evolution of a dynamical system [16].
Orbits in which Ωθ=Ωr take on a small-integer ratio have

been studied in great detail by Grossman, Levin, and Perez-
Giz [17], who called them “periodic” orbits and provided a
fairly simple scheme for classifying their features.
Following Ref. [10] (as well as more recent work by
Grossman, Levin, and Perez-Giz [18]), we will call them
“resonant” orbits, reflecting the fact that our main interest is
in understanding how their periodic structure impacts the
self-interaction. Grossman, Levin, and Perez-Giz have
more recently argued for the utility of using resonant orbits
as sample points in numerical computations of leading
order, adiabatic inspirals: evaluating fluxes at resonant
orbits may enable a speedup of flux computations [18],
more efficiently covering the parameter space of generic
orbits. Although their goals are rather different from ours
here, many of their techniques and results substantially
overlap with ours (modulo minor differences in notation).
We highlight the overlap at appropriate points in this paper.
As a binary evolves through a resonance, its self-

interaction and thus its evolution are modified compared
to what we would expect if the resonance were not taken
into account. The details of how the self-interaction is
modified depend on the relative phase of the radial and
angular motions as the orbit passes through resonance.
Because of this, resonances enhance the dependence of a
binary’s orbital evolution on initial conditions. Let the
phase variable χ0 define the value of the orbit’s θ angle at
the moment it reaches periapsis (see Sec. II A for more
details). On resonance, two orbits which have the same
energy E, the same axial angular momentum Lz, and the
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same Carter constant Q will evolve differently if they have
different values of χ0.
FH estimate [10] that the shift to the orbital phase induced

by these resonances can be several tens to ∼102 rad for mass
ratios ∼10−6 (as compared to an analysis which neglects the
resonances). That there is such a large shift, and that this shift
may depend on initial conditions, is potentially worrisome.
Resonances could significantly complicate our ability to
construct models for measuring the waves from extreme
mass-ratio inspirals. On the other hand, the detailed behavior
of a system as it evolves through resonances may offer an
opportunity to study an interesting aspect of strong-field
gravity, providing a new handle for strong-gravity phenom-
enology. Analytic studies of the effect of the passage through
resonance can be found in Refs. [19,20].

C. Our analysis

The “several tens to ∼102 rad” estimate by FH is based
on applying pN self-force estimates to strong-field orbits, a
regime where pN approximations are generally inaccurate.
It is thus of great interest to estimate the impact of orbital
resonances using strong-field methods. The purpose of this
paper is to take a first step in this direction.
Our goal is to generalize our computational techniques in

order to treat resonances correctly. A key point is that the
flux-balancing technique which can be used to approximate
inspiral (as described in the final paragraph of Sec. I A) is
based on the adiabatic approximation. This approximation
temporarily breaks down during a resonance. Therefore, to
treat resonances, one must use the orbital equations of
motion (1.1–1.2) to track the evolution of all the orbital
degrees of freedom on short time scales. Flux balancing
instead just tracks the evolution of the conserved quantities
E, Lz, and Q on long time scales. In addition one must use
the full, oscillatory self-force driving termGð1Þ

i , and not just
its averaged version.
As is well known, computation of the full self-force is

extremely difficult, largely because it requires regulariza-
tion of the self-field [7]. Fortunately, only the dissipative
piece of the self-force should contribute to leading order
resonance effects. As argued in FH, there is some evidence
suggesting that geodesic motion perturbed by the
conservative piece of the self-force is an integrable
dynamical system, and resonances do not occur in such
systems. Thus, if the integrability conjecture of FH is true,
only the dissipative self-force needs to be computed. This
constitutes a great simplification, since the well-known
difficulties of self-force computations apply only to the
conservative piece; the dissipative piece is relatively
straightforward to compute. Techniques for doing so with
scalar fields were presented in Ref. [21], and generalizing
to the gravitational dissipative self-force is not terribly
difficult [14,15]. While these references focused on the
averaged self-force, it is straightforward to generalize the
analysis to obtain the full dissipative self-force.

It is thus feasible to perform numerical compututations
of orbital evolutions through resonances using the full
dissipative self-force, without any orbit averaging. Our
eventual goal is to extend our black hole perturbation
theory codes to do just this, and to evaluate how the
dissipative self-force behaves as a system evolves through
resonance. Work in this vein is in progress and will be
presented in future work [39].
In this paper, we take a first step in this direction.We focus

here on computation of time-averaged fluxes of the integrals
of the motion, and in particular on how these quantities differ
between resonant and nonresonant orbits. These quantities
correspond to the fluxes that one would measure at infinity
(and at the black hole horizon) if one turned off radiation
reaction effects; upon averaging over long times, they are
equal to the rate at which the dissipative self-force evolves
these constants. We emphasize that these quantities are not
sufficient to allow computation of orbital evolutions.
However, they provide insight into the characteristic features
of the radiation emitted by resonant orbits.
We find that fluxes from resonant orbits generically differ

from those from nearby, nonresonant orbits,1 and in addition
vary depending on the relative phase of the radial and
angular motions. The magnitude of this variation is closely
related to the “kick” that is imparted to the orbit’s constants
as it evolves through a resonance (cf. Fig. 1 of FH). As such,
characterizing on-resonance fluxes is a useful and natural
first step in the process of modifying existing flux-based
codes to compute the full dissipative self-force. We explore
numerically the magnitude of the difference between the
resonant and nonresonant cases, and the dependence on the
orbital phase. For specific modes, the fluxes can vary by
large factors (although variations of order unity are more
typical). For the net fluxes obtained by summing over all
modes, variations are typically of order a percent or less.

D. Outline of this paper

We begin this paper by briefly reviewing the behavior of
Kerr geodesic orbits in Sec. II. Much of this material has
been presented elsewhere, so we leave out most details,
pointing the reader to appropriate references. Our main
focus is to describe how to find and characterize resonant
orbits. We then describe how to compute radiation from
Kerr orbits in Sec. III. We first briefly review the
Teukolsky-equation-based formalism we use (Secs. III A–
III B), and then describe how key details are modified by

1Thus the fluxes change discontinuously as one varies the
orbital parameters. This is certainly unphysical, but arises
because we compute infinite time averages of fluxes from
geodesic orbits. If one considers the fluxes from the true
inspiraling motion, and averages over a time scale intermediate
between the orbital time scale and the radiation reaction time
scale, the time-averaged fluxes would vary smoothly with time,
with order unity changes in the vicinity of resonances. This point
is discussed further in Appendix B.
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orbital resonances in Secs. III C and III D. We describe two
complementary approaches to computing fluxes on reso-
nance. Although formally equivalent (as we prove in
Appendix A), their implementation is quite different.
Having both methods at hand proved useful to us in our
numerical study. One aspect of the on-resonance compu-
tation (the evolution of Carter’s constant Q) is sufficiently
complicated that all details of this calculation are given in
Appendix B. Our analytic results for fluxes of energy and
angular momentum on resonance agree with those obtained
by Grossman, Levin, and Perez-Giz (compare especially &
Secs. III D–E and Appendices B5, B6, and C in Ref. [18]
with our discussion here, and with our Appendix A). Our
result for the resonant rate of change of the Carter constant
appears to be new.
Our numerical results are given in Sec. IV. We begin by

examining how fluxes from individual modes (i.e., har-
monics of the orbital frequencies) behave as a function of
the offset phase of the radial and angular motions, which
we denote χ0. We show that the amplitude of a given mode,
and hence the rates of change of conserved quantities
associated with that mode, can vary significantly with χ0.
For example, the flux of energy from an orbit can vary by
factors of order unity as χ0 varies from 0 to 2π. The rate of
change of the orbit’s Carter constant can even change sign
as χ0 varies. The total flux from a given orbit is given,
however, by adding fluxes from many modes. When many
modes are combined, much of the variation washes away;
we find variations of a fraction of a percent in most
quantities after summation. The amount of this residual
variation seems to depend most strongly upon the geometry

of the orbit’s ðr; θÞ motion on resonance, in particular, the
topology of the trace in the ðr; θÞ plane. Orbits whose
motion in ðr; θÞ have a simple topology with few trajectory
crossings in the plane (e.g., the Ωθ=Ωr ¼ 3=2 resonance)
tend to have a relatively large variation in the integrals of
motion; orbits whose motion has a more complicated
topology with many trajectory crossings show much less
variation (e.g., the Ωθ=Ωr ¼ 4=3 resonance). We argue that
this can be explained in terms of how the orbital motion
tends (or fails) to average away variations in the source
term to the Teukolsky equation.
As emphasized in Sec. I C, understanding these fluxes

exactly on resonance is only the first step in building a
complete strong-field understanding of how resonances
impact inspirals. In particular, these results do not provide
enough information to specify how a system will evolve
through a resonance. To go further, it will be necessary to
examine how dissipation behaves as the system evolves
toward and through an orbital resonance. As mentioned
above, this analysis is now beginning; we briefly outline the
approach we are pursuing in Sec. V.
Throughout this paper, we use “relativist’s units,”

setting G ¼ 1 ¼ c.

II. KERR GEODESICS AND ORBITAL
RESONANCES

A. Brief summary of general characteristics

We begin by reviewing geodesic orbits of Kerr black
holes, with a focus on aspects of this motion particularly
relevant to our analysis. In most textbooks [for example,

FIG. 1 (color online). Left: Lissajous figures describing motion in the (r, θ) plane on a 3:1 orbital resonance (a ¼ 0.9M,
p ¼ 3.2758M, e ¼ 0.7, θm ¼ 70°). The blue trace has θ ¼ θm at periapsis; red has θ ¼ π=2 at periapsis. The inset image zooms in on the
region 1.9M ≲ r≲ 2.3M, clarifying the angular oscillation at very small radius. Approximately nine radial cycles are used to generate
these traces. Right: Ergodic motion of a “normal” orbit. The orbit’s geometry is identical to that in the left-hand panel, but we have
changed the black hole’s spin to a ¼ 0.95M; this changes the ratio of frequencies to Ωθ=Ωr ¼ 2.0311…. Again, roughly nine radial
cycles are shown here. Given enough time, this trace would pass arbitrarily close to all points in 70° ≤ θ ≤ 110°, 2M ≲ r ≲ 12M.
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Ref. [27], Eqs. (33.32a)–(33.32d)], Kerr geodesics for a
massive body are described using equations of motion in
the Boyer-Lindquist coordinates t, r, θ, and ϕ:

Σ2

�
dr
dτ

�
2

¼ ½Eðr2 þ a2Þ − aLz�2

− Δ½r2 þ ðLz − aEÞ2 þQ�
≡ RðrÞ; (2.1)

Σ2

�
dθ
dτ

�
2

¼ Q − cot2θL2
z − a2cos2θð1 − E2Þ

≡ ΘðθÞ; (2.2)

Σ
�
dϕ
dτ

�
¼ csc2θLz þ aE

�
r2 þ a2

Δ
− 1

�
−
a2Lz

Δ
≡ Φðr; θÞ; (2.3)

Σ
�
dt
dτ

�
¼ E

�ðr2 þ a2Þ2
Δ

− a2sin2θ

�
þ aLz

�
1 −

r2 þ a2

Δ

�

≡ Tðr; θÞ: (2.4)

In these equations, τ is proper time along the geodesic,
Σ ¼ r2 þ a2cos2θ, and Δ ¼ r2 − 2Mrþ a2. The quantities
E and Lz are the orbital energy and axial angular momen-
tum, normalized to the mass μ of the orbiting body, andQ is
the orbit’s Carter constant, normalized to μ2. These three
quantities are conserved on any geodesic.
Along with the coordinate time t and proper time τ, it is

often very useful to work using a time parameter λ, defined
by dλ ¼ dτ=Σ. The geodesic equations parametrized in this
way are

�
dr
dλ

�
2

¼ RðrÞ;
�
dθ
dλ

�
2

¼ ΘðθÞ;
dϕ
dλ

¼ Φðr; θÞ; dt
dλ

¼ Tðr; θÞ: (2.5)

By using λ as our orbital parameter, the r and θ coordinate
motions are completely separated from one another. Proper
time τ couples r and θ by the factor Σ; the coupling with
coordinate time t is even more complicated. The parameter
λ is often called “Mino time,” following Mino’s use of it to
untangle these coordinate motions [11].
We have found it useful for many of our studies to

introduce the following reparametrization of r and θ:

r ¼ pM
1þ e cosψ

; cos θ ¼ cos θm cosðχ þ χ0Þ: (2.6)

These transformations replace the variables r and θ with
secularly accumulating angles ψ and χ. As ψ and χ evolve
from 0 to 2π, r and θ move through their full ranges of
motion. We define χ ¼ ψ ¼ 0 at λ ¼ 0.

Notice that we include an offset phase χ0 for the angular
motion. We could also include an offset phase ψ0 for the
radial motion, as well as initial conditions ϕ0 and t0 for the
ϕ and t coordinates. We choose our time origin such that
t ¼ 0 when λ ¼ 0, which means t0 ¼ 0. We likewise
choose ϕ0 ¼ 0. Changing ϕ0 is equivalent to rotating
around the black hole’s spin axis, and can have no effect
on the flux of energy and angular momentum from the
system (although it introduces a phase offset to the system’s
gravitational waves).
Finally, we choose ψ0 ¼ 0, which amounts to setting

λ ¼ 0 at a moment that the orbit passes through periapsis,
r ¼ rperi ¼ pM=ð1þ eÞ. The offset phase χ0 thus sets
the value of θ at periapsis. Previous work (e.g., [23])
has typically used χ0 ¼ 0 as well. The parameter set
ðψ0; χ0;ϕ0; t0Þ is equivalent to the set ðλr0; λθ0;ϕ0; t0Þ used
in Ref. [21]. Following this reference, χ0 ¼ 0 will label the
“fiducial geodesic.” We will use it as a reference geodesic
for some of the calculations in Sec. III.
In their original form, Eqs. (2.1)–(2.4), Kerr orbits are

parametrized (up to initial conditions) by the three con-
served constants E, Lz, and Q. The reparametrization (2.6)
maps those constants to parameters that describes an
orbit’s coordinate geometry: semilatus rectum p, eccen-
tricity e, and minimum angle θm. These quantities are
likewise conserved along a geodesic. Schmidt [28] pro-
vides closed-form expressions for converting between
ðE;Lz;QÞ and ðp; e; θmÞ. Either the set ðE;Lz;QÞ or
ðp; e; θmÞ, plus the relative phase χ0, completely specifies
a geodesic for our purposes here.

B. Orbital frequencies and resonances

Each orbit has a set2 of frequencies describing its
motions with respect to r, θ, and ϕ. The frequencies

Ωr;θ;ϕ ¼ 2π=Tr;θ;ϕ (2.7)

are conjugate to the periods3 expressed in coordinate time t;
the frequencies

ϒr;θ;ϕ ¼ 2π=Λr;θ;ϕ (2.8)

are conjugate to these periods in Mino time λ. These two
frequencies are related by a factor Γ which describes the
average increase in t per unit λ:

Ωr;θ;ϕ ¼ ϒr;θ;ϕ=Γ: (2.9)

2Interestingly, this set is not unique: There exists in the strong
field geometrically distinct orbits (i.e., with different parameters
p, e, θm) that have identical frequencies. See Ref. [29] for a
detailed discussion.

3Describing the periods using Boyer-Lindquist time t is a bit
complicated; Tr;θ;ϕ really describes an averaged notion of the
periods. See Refs. [28,30] for more detailed discussions.
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Details of how to compute these frequencies given
ðE;Lz;QÞ or ðp; e; θmÞ are given in Refs. [30,31]. One
could also define frequencies conjugate to proper time τ
(see, e.g., Ref. [28] and discussion in Sec. I), but the Ω and
ϒ frequencies are sufficient for our purposes.
We next review how the qualitative features of the

resonant orbits differ from those of generic orbits, as
background to Sec. III below. A more detailed discussion
can be found in Sec. II of Ref. [18]. As an example, we
compare a typical orbit, for which the ratio Ωθ=Ωr is
some irrational number, to a resonant orbit, for which
Ωθ=Ωr ¼ βθ=βr, where βθ and βr are small integers with no
common factors. Figure 1 shows the motion of three orbits,
projected into the (r; θ) plane. In all cases, we have chosen
p ¼ 3.2758, e ¼ 0.7, θm ¼ 70°; the motion is thus bound
to the range 1.93M ≤ r ≤ 10.9M, 70° ≤ θ ≤ 110°. (See
also Fig. 1 of Ref. [18], which is very similar, although it
does not illustrate the impact of the offset phase between
the r and θ motions.)
In the right-hand panel, we have set the spin parameter

a ¼ 0.95M. For these orbital parameters, this orbit has
Ωθ=Ωr ¼ 2.0311…. This is not a resonant orbit; notice that
the roughly nine radial periods shown here do not close.
The orbital trace in this case ergodically fills the (r, θ)
plane. In the left-hand panel, we have set a ¼ 0.9M, which
yieldsΩθ=Ωr ¼ 3—these orbits are in a 3:1 resonance. The
two traces shown in this panel correspond to different
choices of χ0. The blue trace has χ0 ¼ 0 (so that θ ¼ θm ¼
70° at periapsis), and the red trace has χ0 ¼ π=2 (so that
θ ¼ 90° at periapsis). Both traces show roughly nine
complete radial periods. By their periodic nature, their
motions trace out Lissajous figures: No matter how long we
follow these orbits, they trace out a one-dimensional
trajectory in the (r, θ) plane.
Note that the geometry of the traces in the left-hand panel

varies significantly as χ0 is varied. The topology of these
traces remains fixed, however: In all cases the trace
oscillates three times in the angular direction as it com-
pletes a single radial oscillation. As emphasized by
Grossman et al. [17], the topology of resonant orbits is
uniquely determined by their orbital parameters, by virtue
of the integers βθ and βr that determine their periodicity. We
show some evidence in Sec. IV that the topology of
resonant orbits directly affects the strength of their reso-
nance. Simple orbits, which do not cross themselves often
and do not cover much of the allowed (r, θ) plane, show
large variations in their radiated fluxes as the phase χ0 is
varied; more complicated orbits, which cross themselves
many times and come close to much of the allowed (r, θ)
plane, do not show such large variations.

III. GRAVITATIONAL RADIATION
FROM KERR ORBITS

Herewe describe in detail howwe compute radiation from
strong-field orbits, with an emphasis on how resonances

modify the “usual” behavior. We begin in Sec. III A by
briefly reviewing the Teukolsky equation and its solutions.
This material has been presented at length in several other
papers, so we only give a summary. Our goal is to provide
just enough detail to understand how the situation changes
on resonance. Section III B describes how to compute fluxes
of energy E and angular momentum Lz from Teukolsky
equation solutions, highlighting how this calculation must be
modified for resonant orbits. The analogous calculation for
the Carter constant calculation is sufficiently complicated
that we present its details in Appendix B. Finally, Secs. III C
and III D present two different ways to compute on-resonant
fluxes. These methods are equivalent to one another,
although their computational implementations are quite
different. As mentioned in the Introduction, our analytic
results for fluxes of E and Lz agree with those obtained in
Ref. [18], while our results for the Carter constant are new.

A. The frequency-domain Teukolsky equation
and its solutions

Our computation of the small body’s self-interaction
uses the Teukolsky equation [22]. This equation governs
the radiative components to a Kerr black hole’s spacetime
curvature, ψ0 and ψ4, which arise due to some perturbing
source or field. In the relevant limits, identities make it
possible to obtain all information about the field ψ0 from
ψ4, and vice versa, so we need only focus on one. The field
ψ4 is particularly convenient for describing radiation at
infinity.
Teukolsky showed [22] that, imposing the Fourier and

multipolar decomposition,

ψ4 ¼ ρ4
Z

∞

−∞
dω

X
lm

RlmωðrÞSlmωðθÞeiðmϕ−ωtÞ; (3.1)

where ρ ¼ −1=ðr − ia cos θÞ, a master partial differential
equation governing ψ4 separates. The function SlmωðθÞ is a
spin-weighted spheroidal harmonic; Ref. [32] presents
techniques for computing it to high accuracy. The radial
function is governed by

Δ2
d
dr

�
1

Δ
dRlmω

dr

�
− VðrÞRlmω ¼ −T lmωðr; χ0Þ: (3.2)

Equation (3.2) is the Teukolsky equation (although that name
is also used for the partial differential equation that governs
ψ4 before separating variables). Setting the right-hand side of
(3.2) to zero, we construct a pair of homogeneous solutions,
RH
lmω (which is regular on the event horizon) andR

∞
lmω (which

is regular at infinity). See Ref. [23] (hereafter DH06) for a
detailed discussion of how we construct these solutions, as
well as for the potential VðrÞ appearing in Eq. (3.2). From
these solutions, it is straightforward to build a Green’s
function which can then be integrated over the source
T lmω to construct a particular solution.
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The source T lmω is sufficiently complicated that we will
not write it out explicitly; see DH06 for details. It is built
from projections of the stress-energy tensor for a small
body orbiting the black hole,

Tαβ ¼
μuαuβ

Σ sin θdt=dτ
δ½r− roðtÞ�δ½θ − θoðt; χ0Þ�δ½ϕ− ϕoðtÞ�;

(3.3)

where μ is the mass of the small body, and uα are the
components of its orbital 4-velocity. The subscript “o” on
the coordinates in the delta functions stands for “orbit,”
labeling the orbit’s coordinates (as opposed to a general
field point, which we leave without a subscript).
Note that T lmω is a frequency-domain quantity. Because

it arises from Kerr orbital motion, it only has support at
frequencies ωmkn ¼ mΩϕ þ kΩθ þ nΩr, and is nonzero
only for rmin ≤ r ≤ rmax, θm ≤ θ ≤ π − θm [where rmin ¼
p=ð1þ eÞ, and rmax ¼ p=ð1 − eÞ; see Eq. (2.6)]. Once
fully constructed, T lmω has terms in δ½r − roðtÞ� and its first
two radial derivatives; see Sec. III of DH06.
To understand fluxes from this system, our interest is in

RlmωðrÞ in the limits r → ∞ and r → rþ (the event
horizon). These limits will allow us to deduce how the
orbit evolves due to radiation to infinity, and due to
radiation absorbed by the hole. As r → ∞, the homo-
geneous solution R∞

lmωðrÞ approaches (modulo a power-law
scaling) an outgoing plane wave. Likewise, as r → rþ, the
solution RH

lmωðrÞ is limited to an ingoing plane wave. The
particular solution we construct by integrating the Green’s
function over the source then takes the form

RlmωðrÞ ¼
�
ZH
ωlmðχ0ÞR∞

ωlmðrÞ r → ∞;
Z∞
ωlmðχ0ÞRH

ωlmðrÞ r → rþ;
(3.4)

where

Z⋆
lmωðχ0Þ ¼ C⋆

Z
∞

rþ
dr0

R⋆
lmωðr0ÞT lmωðr0; χ0Þ

Δðr0Þ2 ; (3.5)

and where ⋆ can stand for ∞ or H. The symbol C⋆ is
shorthand for a collection of constants whose value is not
needed here; see Sec. III of DH06 for further discussion.
Next insert T lmω into Eq. (3.5) and perform the r

integral. The result is a Fourier transform:

Z⋆
lmωðχ0Þ ¼ C⋆

Z
∞

−∞
dtei½ωt−ϕðtÞ�I⋆lmω½roðtÞ; θoðt; χ0Þ�

¼ C⋆
Z

∞

−∞
dλeiðωΓ−mϒϕÞλJ⋆lmω½roðλÞ; θoðλ; χ0Þ�:

(3.6)

The function I⋆lmω introduced on the first line of Eq. (3.6) is
built from T lmω; see Eqs. (3.30)–(3.33) in DH06 and
associated text for a detailed discussion. On the second line,

we have changed the integration variable from coordinate
time t to Mino time λ, and defined

J⋆lmωðro; θoÞ ¼ I⋆lmωðro; θoÞTðro; θoÞ
× ei½ωΔtðro;θoÞ−mΔϕðro;θoÞ�: (3.7)

[In any place that we indicate a dependence on (ro, θo),
please note that this is shorthand for [roðλÞ; θoðλ; χ0Þ].] The
function J⋆lmωðro; θoÞ is just I⋆lmωðro; θoÞ reweighted by
Tðro; θoÞ [the right-hand side of the geodesic equa-
tion (2.4)], and with the factor eiðωΔt−mΔϕÞ included. The
functions Δtðro; θoÞ and Δϕðro; θoÞ are oscillatory con-
tributions to the t and ϕ pieces of the orbit:

toðλÞ ¼ Γλþ Δt½roðλÞ; θoðλ; χ0Þ�; (3.8)

ϕoðλÞ ¼ ϒϕλþ Δϕ½roðλÞ; θoðλ; χ0Þ�. (3.9)

Both Δt and Δϕ oscillate at harmonics of ϒθ and ϒr; see
Ref. [30] for a detailed discussion.
The function J⋆lmωðro; θoÞ gathers all the pieces of the

integrand for Z⋆
lmω that can be described as harmonics ofϒθ

and ϒr. As such, it is useful to decompose it into these
harmonics:

J⋆lmωðro; θoÞ ¼
X
kn

J⋆ωlmknðχ0Þe−iðkϒθþnϒrÞλ; (3.10)

where

J⋆ωlmknðχ0Þ ¼
ϒrϒθ

ð2πÞ2
Z

2π=ϒθ

0

dλθ
Z

2π=ϒr

0

dλr

× eiðkϒθλ
θþnϒrλ

rÞJ⋆lmω½roðλrÞ; θoðλθ; χ0Þ�:
(3.11)

We have here taken advantage of the fact that Mino time
completely decouples the r and θ motions from one
another. We imagine that these two coordinates depend
separately on two different Mino-time variables, λr and λθ,
and integrate over a full period of each time. See Ref. [30]
for detailed discussion of this trick.
Next, combine Eqs. (3.6), (3.7), (3.10), and (3.11) to find

Z⋆
lmωðχ0Þ ¼

2π

Γ

X
kn

J⋆ωlmknðχ0Þδðω − ωmknÞ

≡X
kn

Z⋆
lmknðχ0Þδðω − ωmknÞ: (3.12)

On the last line, we have taken advantage of the fact that the
delta functions mean that the right-hand side only has
support at ω ¼ ωmkn, and we have defined
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Z⋆
ωlmknðχ0Þ ¼

2π

Γ
J⋆ωlmknðχ0Þ

¼ ϒrϒθ

2πΓ

Z
2π=ϒθ

0

dλθ
Z

2π=ϒr

0

dλr (3.13)

eiðkϒθλ
θþnϒrλ

rÞJ⋆lmω½roðλrÞ; θoðλθ; χ0Þ� (3.14)

and

Z⋆
lmknðχ0Þ ¼ Z⋆

ωmknlmknðχ0Þ: (3.15)

Throughout this synopsis, we have explicitly shown the
dependence on the relative phase χ0. To account for its
influence on the amplitudes, let us first define

Z
̬ ⋆
lmkn ≡ Z⋆

lmknðχ0 ¼ 0Þ: (3.16)

In other words, amplitudes with a check mark ̬ are
computed using the fiducial geodesic. As shown in
Sec. 8.4 of Ref. [21], the effect of χ0 is to introduce a phase,

Z⋆
lmknðχ0Þ ¼ eiξmknðχ0ÞZ

̬ ⋆
lmkn; (3.17)

where

ξmknðχ0Þ ¼ kϒθλ
θ
0 þmΔϕ̂½rmin; θð−λθ0Þ�

− ωmknΔt̂½rmin; θð−λθ0Þ�; (3.18)

where Δϕ̂ is Δϕ for the fiducial geodesic (and likewise for
Δt̂), and where λθ0 ¼ λθ0ðχ0Þ is the value of λθ at which
θ ¼ θm. It is given explicitly by Eq. (3.75) of Ref. [21]. On
the fiducial geodesic, λθ0 ¼ 0, and ξmkn ¼ 0, as it should.

B. The nonresonant rates of change of the orbital
parameters E, Lz, and Q

As stated previously, our eventual goal is to compute the
motion of a body which spirals through resonances under a
rigorously computed self-force, or at least the dissipative
piece of the self-force. The three components of the self-
force can be regarded as the rates of change of the orbital
constants E, Lz, Q. We will present results showing these
rates of change for the dissipative self-force in a later paper.
Here, we focus just on appropriately averaged rates of
change of E, Lz, and Q.
In this section, we will show how to extract the rates at

which gravitational radiation carries E and Lz to infinity
and down the event horizon. This calculation has appeared
many times in other papers; we present it in perhaps more
detail than is necessary in order to highlight aspects of the
calculation that change when we move from nonresonant to
resonant orbits. One cannot extract the rate of change of Q
from the radiation, but must instead compute it using the
dissipative self-force. This is was done by Sago et al. [25]
(hereafter S06). We go through the Sago et al. calculation in

some detail in Appendix B in order to understand how to
modify their result on an orbital resonance. In Appendix C,
we likewise compute the rates of change of E and Lz using
the dissipative self-force. The result we find there (for both
resonant and nonresonant orbits) duplicates the rates of
change we compute from gravitational-wave fluxes. This is
not terribly surprising: Quinn and Wald [26] showed that
this equality must hold given an appropriate averaging for
these two ways of computing the evolution of E and Lz.
Strictly speaking, Quinn andWald’s work does not apply to
the situation we are studying—they do not consider black
hole spacetimes (although they describe how to go beyond
their calculation to include this limit) and require that the
particle’s trajectory begin and end far away from the
gravitating source. Nonetheless, it demonstrates that this
balance is to be expected in a wide range of situations, so
the equality we find is sensible.
Using Eq. (3.1) and the definitions which follow, we find

that as r → ∞,

ψ4 ¼
1

r

X
lmkn

eiξmknðχ0ÞZ
̬
H
lmknSlmknðθÞeiðmϕ−ωmkntÞ

≡ 1

r

X
lmkn

ψ4;lmkn: (3.19)

Here, SlmknðθÞ is the spheroidal harmonic SlmωðθÞ for
ω ¼ ωmkn. As r → ∞, ψ4 → ð1=2Þðḧþ − iḧ×Þ, so

hþ − ih× ¼ −
2

r

X
lmkn

ψ4;lmkn

ω2
mkn

: (3.20)

A useful tool for understanding the energy carried by
gravitational waves is the Isaacson stress-energy tensor
[33], whose r → ∞ limit is given by

Trad
μβ ¼ 1

16π
h∂μhþ∂βhþ þ ∂μh×∂βh×i: (3.21)

The angle brackets in this expression mean that the quantity
is averaged over several wavelengths. See Ref. [33] and
references therein for detailed discussion of the averaging
procedure.
The energy flux, our focus here, is given by

dE∞

dt
¼ lim

r→∞
r2

Z
Trad
tk n

kdΩ

¼ lim
r→∞

r2
Z

Trad
tt dΩ; (3.22)

where nk is a radially outward pointing normal vector, and
the index k is restricted to spatial directions.
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Combining Eqs. (3.20)–(3.22)(3.22), we find

�
dE∞

dt

�
¼

�X
lmkn

X
l0m0k0n0

Re
Z

ψ4;lmknψ̄4;l0m0k0n0

4πωmknωm0k0n0
dΩ

�
;

(3.23)

ψ̄4 is the complex conjugate of ψ4. The sum over l is taken
from 2 to ∞; the sum over m from −l to l; the sums over k
and n are both taken from −∞ to ∞; and likewise for the
primed indices. The angle brackets on the left-hand side
mean that this rate of change is to be understood as one
which is averaged over appropriate orbital time scales.
Consider now averaging the right-hand side over

several wavelengths. Assuming that each frequency ωmkn
is distinct (an assumption that is only true when we are
not on a resonance), then this averaging forces m ¼ m0,
k ¼ k0, n ¼ n0. Using the fact that

Z
SlmknðθÞSl0mknðθÞdΩ ¼ δll0 ; (3.24)

we find

�
dE∞

dt

�
¼

X
lmkn

jZ
̬ H
lmknj2

4πω2
mkn

≡X
lmkn

_E∞
lmkn: (3.25)

A similar calculation focusing on Trad
tϕ gives us the flux of

axial angular momentum:

�
dL∞

z

dt

�
¼

X
lmkn

mjZ
̬ H
lmknj2

4πω3
mkn

≡X
lmkn

_L∞
z;lmkn: (3.26)

Notice that the phase ξmkn does not appear in Eqs. (3.25)
and (3.26). Appendix C derives these results using the local
self-force, following S06.
The calculation of fluxes down the horizon is more

complicated. Since the Isaacson tensor is not defined in a
black hole’s strong field, we use the fact that the curvature
perturbation from the orbiting body exerts a shear on the
generators of the horizon, which increases the black hole’s
surface area. By the first law of black hole dynamics, this in
turn changes its mass and angular momentum; see
Refs. [34,35] for detailed discussions. Assuming flux
balance, we can then read out the down-horizon fluxes:

�
dEH

dt

�
¼

X
lmkn

αlmkn
jZ
̬ ∞
lmknj2

4πω2
mkn

≡X
lmkn

_EH
lmkn; (3.27)

�
dLH

z

dt

�
¼

X
lmkn

αlmkn
mjZ

̬ ∞
lmknj2

4πω3
mkn

≡X
lmkn

_LH
z;lmkn: (3.28)

We refer the reader to Eq. (3.60) of DH06 for the down-
horizon factor αlmkn.

Unlike the energy and axial angular momentum, there is
no simple formula describing the “flux” of the Carter
constant carried by radiation. However, one can formulate
how Q changes due to radiative backreaction. Taking into
account only the dissipative piece of the self-force and
averaging over very long times, Sago et al. [25] showed
that

�
dQ∞

dt

�
¼

X
lmkn

jZ
̬ H
lmknj2 ×

ðLmkn þ kϒθÞ
2πω3

mkn

; (3.29)

�
dQH

dt

�
¼

X
lmkn

αlmknjZ
̬ ∞
lmknj2 ×

ðLmkn þ kϒθÞ
2πω3

mkn

; (3.30)

where

Lmkn ¼ mhcot2θiLz − a2ωmknhcos2θiE: (3.31)

It is interesting that the rate of change of Q can be factored
into quantities that are encoded in the distant radiation
(Z
̬ H
lmkn and Z

̬ ∞
lmkn) and quantities that are local to the orbital

worldline (Lmkn, ωmkn, and ϒθ). Using Eqs. (3.25) and
(3.27), these results can be written

�
dQ⋆
dt

�
¼ 2

X
lmkn

_E⋆
lmkn × ðLmkn þ kϒθÞ=ωmkn; (3.32)

where ⋆ is either ∞ or H. We go through the Sago et al.
calculation of hdQ=dti in some detail in Appendix B in
order to understand how to modify this result on an orbital
resonance.
Note that the rates of change hdE⋆=dti, hdL⋆

z =dti, and
hdQ⋆=dti are equivalent for nonresonant orbits to the three
components of the torus-averaged forcing term hGð1Þ

i i
introduced in the Introduction, albeit using coordinate time
t rather than proper time τ to parametrize the rate of change.
This equivalence breaks down for resonant orbits, as
pointed out in Ref. [18].

C. Radiation from resonant orbits I:
Merging of amplitudes on resonance

On resonance, Ωθ=βθ ¼ Ωr=βr ≡Ω, and so
kΩθ þ nΩr ¼ NΩ, where N ¼ kβθ þ nβr. An infinite
number of pairs (k, n) are consistent with a given N.
For a given value of m, all pairs (k, n) satisfying
kβθ þ nβr ¼ N will have mode frequency ωmkn≡
ωmN ¼ mΩϕ þ NΩ.
Revisiting Eq. (3.19), this means that only three indices

are needed to describe the radiation on resonance, rather
than four:

ψ res
4 ¼ 1

r

X
lmN

ZH
lmNðχ0ÞSlmNðθÞeiðmϕ−ωmNtÞ; (3.33)
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where

Z⋆
lmNðχ0Þ ¼

X
ðk;nÞN

eiξmknðχ0ÞZ
̬ ⋆
lmkn; (3.34)

and where ðk; nÞN denotes all pairs (k, n) which satisfy
kβθ þ nβr ¼ N. In Eq. (3.33), the sums over l and m are
exactly as before, and N is summed from −∞ to ∞.
Equation (C16) of Ref. [18] gives a relationship, in their
notation, that is equivalent to our Eq. (3.34).
Equations (3.33) and (3.34) tell us that, as we enter a

resonance, modes of ψ4 which were distinct combine with
one another: “lines” in the gravitational-wave spectrum
merge. Each mode’s contribution to the combined ampli-
tude (3.34) is weighted by its phase ξmknðχ0Þ. Revisiting the
calculation of the fluxes using Eq. (3.33) rather than (3.19),
we find

�
dE∞

dt
ðχ0Þ

�
¼

X
lmN

jZH
lmNðχ0Þj2
4πω2

mN

≡X
lmN

_E∞
lmNðχ0Þ; (3.35)

�
dEH

dt
ðχ0Þ

�
¼

X
lmN

αlmN
jZ∞

lmNðχ0Þj2
4πω2

mN

≡X
lmN

_EH
lmNðχ0Þ; (3.36)

�
dL∞

z

dt
ðχ0Þ

�
¼

X
lmN

mjZ∞
lmNðχ0Þj2
4πω3

mN

≡X
lmN

_L∞
z;lmNðχ0Þ; (3.37)

�
dLH

z

dt
ðχ0Þ

�
¼

X
lmN

αlmN
mjZ∞

lmNðχ0Þj2
4πω3

mN

≡X
lmN

_LH
z;lmNðχ0Þ: (3.38)

(The factor αlmN appearing here is the same as αlmkn
introduced earlier, but with ωmkn replaced by ωmN.) Thanks
to the dependence of Z⋆

lmN on the relative phase χ0, the on-
resonance fluxes likewise depend on this phase. These
equations reproduce Eq. (C15) of Ref. [18]. We derive them
using the local self-force in Appendix C.
In Appendix B, we show how the calculation of dQ=dt is

changed due to an orbital resonance. The result is

�
dQ∞

dt
ðχ0Þ

�
¼

X
lmN

jZH
lmNðχ0Þj2
2πω3

mN
LmN

þϒθ

X
lmN

Re½ZH
lmNðχ0ÞȲH

lmNðχ0Þ�
2πω3

mN
; (3.39)

�
dQH

dt
ðχ0Þ

�
¼

X
lmN

αlmN jZ∞
lmNðχ0Þj2

2πω3
mN

LmN

þϒθ

X
lmN

αlmNRe½Z∞
lmNðχ0ÞȲ∞

lmNðχ0Þ�
2πω3

mN
:

(3.40)

The factor LmN is the same as Lmkn with ωmkn replaced by
ωmN . We have introduced the modified amplitude

Y⋆
lmNðχ0Þ ¼

X
ðk;nÞN

keiξmknðχ0ÞZ
̬ ⋆
lmkn: (3.41)

Notice that Y⋆
lmNðχ0Þ is similar to Z⋆

lmNðχ0Þ [compare
Eq. (3.34)], but with each term in the sum weighted by
k. Equations (3.39) and (3.40) are used in the following
section to study how the Carter constant’s evolution is
affected by an orbital resonance.

D. Radiation from resonant orbits II: The constrained
source integral of a resonant orbit

Themethod described in Sec. III C builds the on-resonance
amplitudes Z⋆

lmNðχ0Þ from the amplitudes Z
̬ ⋆
lmkn which are

normally computed with frequency-domain Teukolsky equa-
tion solvers, such as that described in DH06. The only
modification is the need to compute the phase ξmknðχ0Þ.
One can also compute the on-resonant amplitudes by

modifying the integral for the amplitudes Z
̬ ⋆
lmkn. Doing so,

we compute Z⋆
lmNðχ0Þ directly, without reference to the

amplitudes Z
̬ ⋆
lmkn. We begin this calculation by carrying

over without modification the computation of Sec. III A up
to Eq. (3.6),

Z⋆
lmω ¼ C⋆

Z
∞

−∞
dλeiðωΓ−mϒϕÞλJ⋆lmω½roðλÞ; θoðλ; χ0Þ�:

As before, we decompose J⋆lmω into ϒθ and ϒr harmonics.
However, we now take into account how these frequencies
are related on a resonance:

J⋆lmω ¼
X
kn

J⋆ωlmkne
−iðkϒθþnϒrÞλ

¼
X
kn

J⋆ωlmkne
−iðkβθþnβrÞϒλ

≡X
N

J ⋆
ωlmNe

−iNϒλ: (3.42)

On the second line, we have used the resonance relation
ϒθ=βθ ¼ ϒr=βr ≡ϒ. We then use N ¼ kβθ þ nβr, and
change notation slightly to distinguish the source amplitude
J⋆ωlmkn from its on-resonance variant J ⋆

ωlmN .
The result, Eq. (3.42), depends on only one fundamental

frequency, ϒ. As such, our integral for J ⋆
ωlmN is taken over

only a single time variable λ:
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J ⋆
ωlmNðχ0Þ ¼

ϒ
2π

Z
2π=ϒ

0

dλJ⋆lmω½roðλÞ; θoðλ; χ0Þ�eiNϒλ:

(3.43)

Finally, by combining Eqs. (3.6), (3.7), (3.42), and (3.43),
we define

Z⋆
lmNðχ0Þ ¼

2π

Γ
J ⋆

ωmNlmNðχ0Þ (3.44)

¼ ϒ
Γ

Z
2π=ϒ

0

dλJ⋆lmωmN
½rðλÞ; θðλ; χ0Þ�eiNϒλ: (3.45)

Equation (B33) of Ref. [18] is equivalent to Eq. (3.45) here.
In combining the previous relations to derive Eq. (3.45),

we find a proportionality to δðω − ωmNÞ, which forces the
right-hand side to have support only at ω ¼ ωmN . Although
it may not be obvious, Eqs. (3.34) and (3.45) are equivalent.
We show this analytically in Appendix A, and will
demonstrate it numerically in the following section. A
conceptually attractive feature of Eq. (3.45) is that the
integrand is only evaluated at the coordinates (r, θ) which
the on-resonance orbit passes through. Changing χ0
changes the points (r, θ) at which the integrand has support.
This is how the dependence on χ0 enters Z⋆

lmN in this
calculation.
However, Eq. (3.45) can only be used for orbits that

are exactly on resonance. Indeed, in any other case, the
3-index amplitude Z⋆

lmN is not meaningful since the

on-resonance condition kβθ þ nβr ¼ N is not met. A
suitable generalization of Eq. (3.34) for slightly off-
resonance orbits can be used to understand the behavior
of ψ4 as one approaches and moves through a resonance.
As such, the sum of phase-weighted amplitudes, Eq. (3.34),
is likely to be more useful for understanding the resonant
self interaction in full inspiral studies. In any case, we have
found having two techniques for computingZ⋆

lmNðχ0Þ to be
very useful. The codes which implement these two for-
mulas are quite different, so it is reassuring that their results
are in agreement. As discussed at the end of Appendix B, it
appears that the modified amplitude YlmNðχ0Þ can also be
computed with a one-dimensional integral by propagating
the operator ðdθ=dλÞ∂θ under the integral in Eq. (3.45). We
have not yet tested this, though it would be a worthwhile
exercise to do so.

IV. RESULTS: HOW RESONANCES IMPACT
RADIATION

A. Variation of modes with χ 0 and comparison
of two computational techniques

We now discuss examples illustrating how wave ampli-
tudes and fluxes are affected by orbital resonances. All of
our results are computed using a version of the code
described in DH06, modified to handle resonances.
Begin with Fig. 2, which illustrates how ZH

lmN and
Z∞

lmN behave as functions of χ0. For this example, we
have put a ¼ 0.9M, p ¼ 8.7744M, e ¼ 0.7, θm ¼ 20° (for

FIG. 2 (color online). Comparison of two methods to compute the on-resonance amplitudes Z⋆
lmN . All panels correspond to radiation

from an orbit with parameters p ¼ 8.7744M, e ¼ 0.7, θm ¼ 20°, about a black hole with spin a ¼ 0.9M. For this orbit, Ωθ=Ωr ¼ 3=2.
We have chosen l ¼ 4, m ¼ 3, N ¼ 7. Left panels show ZH

437, right panels show Z∞
437; top panels show the real part, bottom panels the

imaginary part. Blue curves show the amplitude computed by the on-resonance merging of amplitudes discussed in Sec. III C; red dots
show the amplitude computed using the constrained source integral presented in Sec. III D. The two methods agree to numerical
accuracy (roughly 6 digits in this case).
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which Ωθ=Ωr ¼ 3=2), and we have chosen l ¼ 4, m ¼ 3,
N ¼ 7. In all panels, the green curves showZ⋆

lmN computed
using Eq. (3.34); the red dots show the same quantity
computed using Eq. (3.45). The two methods agree to
numerical accuracy (roughly 6 digits4). All examples that
we have examined show that Eqs. (3.34) and (3.45) agree
perfectly (as we would expect from the calculation pre-
sented in Appendix A). Having both methods at hand was
quite useful for debugging the on-resonance version of
our code.
Besides showing the excellent agreement between

our methods of computing Z⋆
lmN , Fig. 2 also illustrates

how Z⋆
lmN varies with χ0. For this example, we find that

jZH
lmN j varies by about 25% from minimum to maximum,

and jZ∞
lmN j varies by about 40%. The associated energy

fluxes, which are proportional to the amplitude’s modulus
squared, varies by about 55% and by a factor of 2,
respectively.
Figures 3 and 4 give two examples of the on-resonance

rate of change of orbital constants. We show _E⋆
lmN and _Q⋆

lmN
for two orbits about a black hole with a ¼ 0.9. Figure 3
shows the l ¼ 2, m ¼ 2, N ¼ −5 mode computed for an
orbit with p ¼ 3.2758M, e ¼ 0.7, θm ¼ 70°; in this case,
Ωθ=Ωr ¼ 3. Figure 4 shows the l ¼ 5, m ¼ −2, N ¼ 11
mode for an orbit with p ¼ 4.5322M, e ¼ 0.3, θm ¼ 45°,
for which Ωθ=Ωr ¼ 2.

In both cases, the flux of energy to infinity varies by a
factor of about 3.1. This agreement is a coincidence. The
down-horizon flux shows more variety, varying by a factor
of about 6.8 for the 3:1 resonance, and by a factor of nearly
103 for the 2:1 case. (This large variation is because the flux
comes close to zero at χ0 ≃ 4.7.) The variation in _Q∞

2;2;−5 is
especially interesting for the 3:1 resonance: It is negative
over nearly half the span of χ0, but is positive elsewhere.
This behavior is unique to the on-resonance form of _Q⋆

lmN ,
and arises from the fact that it contains a term proportional
to Re½ZlmNȲlmN�. Because the amplitudes ZlmN and YlmN
can have different phases, the behavior of _Q⋆

lmN can be
more complicated than the behavior of the energy or
angular momentum fluxes. Those fluxes are both propor-
tional to jZ⋆

lmNj2, and hence are positive or negative
definite.
The horizontal dashed lines in these figures gives the rate

of change that would be found if the resonance were
neglected. In other words, it shows the rate of change one
would find by simply combining in quadrature all of the
4-index amplitudes Z⋆

lmkn which contribute to the relevant
3-index amplitude Z⋆

lmNðχ0Þ. Its value is the average with
respect to λθ0 of the resonant flux:

_E⋆;no-res
lmN ¼ ϒθ

2π

Z
2π=ϒθ

0

_E⋆
lmNdλ

θ
0

¼ ϒθ

2π

Z
2π

0

_E⋆
lmNðχ0Þ

dλθ0
dχ0

dχ0: (4.1)

FIG. 3. On-resonance variation of the rates of change of orbital energy (left panels) and Carter constant (right panels) in the l ¼ 2,
m ¼ 2,N ¼ −5mode for an orbit with p ¼ 3.2758M, e ¼ 0.7, θm ¼ 70°, a ¼ 0.9M (for whichΩθ=Ωr ¼ 3). Top panels give the flux to
infinity, bottom ones give flux down the horizon. The dashed line in all panels shows the value that would be obtained if the resonance
were neglected (i.e., simply adding in quadrature the various 4-index amplitudes Z⋆

lmkn that contribute to the 3-index amplitudeZ⋆
lmN). In

all cases, the flux varies considerably with the phase χ0. The variation in _Q∞ is especially interesting in this case, changing sign at
χ0 ≃ 0.28 and χ0 ≃ 3.01. We do not show _L⋆

z ðχ0Þ for this mode, since it is identical to _E⋆ðχ0Þ modulo a factor of m=ωmN .

4It is not difficult to do the calculations more accurately than
this [36–38], but 6 digits of accuracy is good enough for this first
strong-field examination of this effect.
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Recall that the parameter λθ0, introduced in Eq. (3.18), sets
the value of λθ at which θ ¼ θm. An explicit expression
for the Jacobian dλθ0=dχ0 is given in Eq. (3.76) of Ref. [21].
It is not difficult to show that this result must hold5:
combining Eqs. (3.34) and (3.35), we have

_E∞
lmNðχ0Þ ¼

1

4πω2
mN

�X
jZ
̬ H
lmknj2

þ
X

Z
̬ H
lmkn

¯
Z
̬ H
lmk0n0ei½ξmknðχ0Þ−ξmk0n0 ðχ0Þ�

�
: (4.2)

The first sum in this expression is, as usual, taken over all
pairs ðk; nÞN , as defined earlier. The second sum is taken
over the pair of pairs ðk; nÞN and ðk0; n0ÞN , with k ≠ k0,
n ≠ n0. The first sum is exactly _E∞;no-res

lmN . Using Eq. (3.18),
we see that on resonance,

ξmkn − ξmk0n0 ¼ ðk − k0Þϒθλθ0: (4.3)

Hence this term averages to zero, demonstrating the validity
of Eq. (4.1). Similar results hold for all of the other rates of
change we compute in this paper. An alternative demon-
stration of the identity (4.1) in a more general context can
be found in Appendix C2 of Ref. [18].
These examples show that the flux carried in each mode

can vary significantly as a function of χ0. This shows that in
principle resonances can have a strong impact on

gravitational-wave fluxes. Notice, though, that the detailed
dependence of each mode on χ0 varies quite a bit from
mode to mode. It would not be surprising if much of the
variation cancels out after summing over many modes. We
examine this in the next section, checking to see how much
flux variation remains when many modes are added.

B. Sum over many modes: Variation of total flux

We now examine the variation in total flux on resonant
orbits, computing the sums (3.35) and (3.36). Those sums
are taken over an infinite number of modes, which we
cannot do in a numerical calculation. We instead truncate
the sum over index l at lmax ¼ 6; for orbits with e ¼ 0.3, we
truncate the sum over N at Nmax ¼ 50, and truncate at
Nmax ¼ 100 for e ¼ 0.7:

_E⋆ðχ0Þ ¼
Xlmax

l¼2

Xl

m¼−l

XNmax

N¼−Nmax

_E⋆
lmNðχ0Þ: (4.4)

We have not performed a careful convergence analysis, but
we have found that increasing lmax and Nmax only changes
our numerical results by an unimportant fraction for the
orbits we have examined so far. We do not claim our
accuracy to be good enough for “production” purposes, but
we do claim it is good enough to illustrate the physics that
we present here.
Figure 5 shows one example of how, after summing over

many modes, _E⋆ varies as a function of χ0. We put
a ¼ 0.9M, and choose an orbit with p ¼ 5.48622M,
e ¼ 0.7, and θm ¼ 70°, for which Ωθ=Ωr ¼ 3=2. The
fractional variation in _E⋆ we find is much smaller than

FIG. 4. On-resonance variation of the rates of change of orbital energy (left panels) and Carter constant (right panels) in the l ¼ 5,
m ¼ −2, N ¼ 11mode for an orbit with p ¼ 4.5322M, e ¼ 0.3, θm ¼ 45°, a ¼ 0.9M (for which Ωθ=Ωr ¼ 2). Top panels give the flux
to infinity, bottom ones give flux down the horizon. The dashed line gives the value found when the resonance is neglected. As in Fig. 3,
we see that _E⋆

lmN and _Q⋆
lmN vary quite a bit as χ0 sweeps from 0 to 2π, with minima near zero in this case for the down-horizon quantities.

5At one point in our analysis, preliminary results indicated that
averages did not respect Eq. (4.1). Gabriel Perez-Giz insisted to
one of us (S. A. H.) that this must be an error. Indeed, these
preliminary results were wrong.

RESONANTLY ENHANCED AND DIMINISHED STRONG- … PHYSICAL REVIEW D 89, 084028 (2014)

084028-13



the variation we saw in individual modes: the summed flux
to infinity varies by about 0.2%, and the down-horizon flux
varies by about 6.7%. The down-horizon flux is much
smaller than the flux to infinity, so the variations are
dominated by the behavior of _E∞. The behaviors of
_L⋆
z ðχ0Þ and _Q⋆ðχ0Þ are qualitatively similar to _E⋆ðχ0Þ,

so we do not show plots for those quantities.
Tables I–IV present the fractional variation in _E⋆, _L⋆

z ,
and _Q⋆ for several orbits about a black hole with spin
a ¼ 0.9M. Within each table, we fix e and θm. We look at
large and small eccentricity (e ¼ 0.7 and e ¼ 0.3), and
large and small orbital inclination6 (θm ¼ 20° and
θm ¼ 70°). We then vary p to study radiation emission
from four different resonances, 3∶1, 2∶1, 3∶2, and 4∶3. The
fractional variation in a quantity X is defined as

ΔX ≡ jXmaxj − jXminj
ðjXmaxj þ jXminjÞ=2

; (4.5)

where Xmax =min is the maximum or minimum value X takes
as χ0 varies from 0 to 2π.
The peak-to-trough variation (4.5) in the fluxes is an

important quantity that determines several properties of the
resonances. First, the “kicks” in E, Lz, andQ that occur as a

system spirals through a resonance are directly proportional
to the variation (4.5) [39]. As such, these quantities give
some idea of how much impact resonances will have as a
system evolves through orbit, even though we have not yet
developed the tools needed to compute these evolutions in
detail. Second, there are two qualitatively different types of
resonances that can occur in systems of this kind: a simple
linear resonance in which the kicks depend sinusoidally on
the phase parameter χ0 (cf. the final equation of FH) and a
nonlinear variant in which the dynamics is rather more
complicated. For the nonlinear scenario, it is possible to
have a “sustained resonance” in which the system becomes
trapped near the resonance for an extended period of time
[40,41]. Our numerical results show that ΔX ≪ 1 at least
over all of the parameter space we have surveyed so far,
which indicates that the resonances are always of the
simple, linear kind. This agrees with post-Newtonian
analyses [39], as well as recent work by van de Meent [42].
Some interesting trends are apparent from these tables.

First, notice that in all cases the down-horizon variation is
quite a bit larger than than the variation in the quantities to
infinity. However, in all cases, the magnitude of the down-
horizon fluxes is substantially smaller than the magnitude
to infinity. The total variations are thus dominated by the
fluxes to infinity, consistent with the results shown
in Fig. 5.
Second, notice that the largest variations are seen in

either the 2∶1 or 3∶2 resonances (always the 3∶2 resonance
for orbits with e ¼ 0.3, but either 3∶2 or 2∶1 depending on
which quantity we examine for the orbits with e ¼ 0.7).
The variations are consistently smallest for the 4∶3 reso-
nance. This behavior correlates with the shape that a
resonant orbit traces in the (r, θ) plane. Figure 6 shows
these orbital tracks for the four orbits presented in Table I.
For simplicity, we only show tracks for χ0 ¼ π=2.
The contrasting shapes of the 2∶1 and 3∶2 orbits on one

hand, and of the 4∶3 orbit on the other, are particularly
noteworthy. The 4∶3 resonant orbit (bottom right) traces a
rather complicated Lissajous figure which comes “close to”
many of the (r, θ) points which are accessible given
ðp; e; θmÞ. This complicated trajectory samples much of
the accessible domain in r and θ. Appealing to the con-
strained integral method of computingZ⋆

lmN (cf. Sec. III D),
we can say that the motion effectively averages out the
variations in the integrand by passing close to so many
accessible points.
By contrast, the trajectory for the 2∶1 and 3∶2 resonances

(top right and bottom left) are much simpler. These
trajectories do not come as close to so many points in
their allowed domain, and so do not average the variations
in their integrands as effectively. The trajectory for the 3∶1
(top left) resonance is similar to that for the 2∶1 case, but
with an additional angular oscillation at small radius. This
extra oscillation enhances the averaging as the orbit moves
through a particularly strong-field part of its domain. Not

FIG. 5. Variation of total energy flux, both to infinity (top) and
down the horizon (bottom) for an orbit with p ¼ 5.48622M,
e ¼ 0.7, θm ¼ 70°, a ¼ 0.9M (for which Ωθ=Ωr ¼ 3=2). After
summing over many modes, the variation is significantly reduced:
the flux to infinity only varies by about 0.127%, and that down
the horizon varies by roughly 1.6%. The variations in _L⋆

z ðχ0Þ and
_Q⋆ðχ0Þ are qualitatively similar, so we do not show them. See
Table II for more details.

6Note that smaller θm implies a more highly inclined orbit;
θm ¼ 90° is an equatorial orbit.
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too surprisingly, the flux variation in this case is generally
intermediate to the others.
Beyond the fact that orbits with simple shapes in the

(r, θ) plane tend to show stronger resonances than orbits
with more complicated shapes, we do not as yet see strong
evidence of any trend which would allow us to predict
which resonances will tend to be “strong” (i.e., exhibit large

variation in orbital parameter evolution) and which will
tend to be “weak.” Consider for example the rate of change
of orbital energy, Δ _Etot. As we go from high inclination to
shallow and from high eccentricity to low, we see thatΔ _Etot

goes from large to small: It takes the value 1.03% for high
eccentricity, high inclination (Table I); 0.167% and 0.303%
for the mixed cases (Tables II and III); and the value

TABLE I. Variation in flux for orbits with e ¼ 0.7 and θm ¼ 20° about a black hole with spin a ¼ 0.9M. We vary p to examine a
sequence of orbital resonances from Ωθ=Ωr ¼ 3 to Ωθ=Ωr ¼ 4=3. Columns 3–5 show the fractional variation in energy flux, axial
angular momentum flux, and Carter constant rate of change arising from the down-hole fields; the fractional variation is defined
precisely in the text. Columns 6–8 repeat this information for these fields at infinity, and columns 9–11 give the fractional variation for
the totals (infinity plus horizon). The variations are largest for the 3∶2 resonance and 2∶1 resonances (depending on which quantity we
examine), and smallest for the 4∶3 resonance.

e θm p Ωθ=Ωr Δ _EH Δ _LH
z Δ _QH Δ _E∞ Δ _L∞

z Δ _Q∞ Δ _Etot Δ _Ltot
z Δ _Qtot

0.7 20° 5.38952M 3 92.5% 0.363% 0.543% 0.087% 0.069% 0.105% 0.125% 0.027% 0.126%
0.7 20° 6.31541M 2 30.7% 2.89% 1.82% 0.634% 0.483% 0.467% 0.662% 0.270% 0.494%
0.7 20° 8.77436M 3=2 106% 21.9% 10.4% 1.17% 0.172% 0.219% 1.03% 0.489% 0.261%
0.7 20° 11.4219M 4=3 1.41% 0.117% 0.979% 0.048% 0.058% 0.003% 0.047% 0.060% 0.002%

TABLE III. Variation in flux for orbits with e ¼ 0.3 and θm ¼ 20° about a black hole with spin a ¼ 0.9M. In this case, the 3∶2
resonance shows larger variations than all other cases; the 2∶1 resonance is surprisingly weak, given its strength in other examples we
have seen. As usual, however, the 4∶3 resonance shows the least amount of variation among all the resonances that we consider.

e θm p Ωθ=Ωr Δ _EH Δ _LH
z Δ _QH Δ _E∞ Δ _L∞

z Δ _Q∞ Δ _Etot Δ _Ltot
z Δ _Qtot

0.3 20° 5.04884M 3 4.43% 0.659% 1.15% 0.027% 0.068% 0.054% 0.008% 0.024% 0.033%
0.3 20° 6.12789M 2 4.24% 1.42% 1.94% 0.012% 0.025% 0.013% 0.004% 0.080% 0.002%
0.3 20° 8.65334M 3=2 3.34% 2.62% 8.82% 0.308% 0.158% 0.114% 0.303% 0.123% 0.123%
0.3 20° 11.3158M 4=3 0.104% 0.165% 1.09% 0.003% 0.005% 0.002% 0.003% 0.004% 0.002%

TABLE II. Variation in flux for orbits with e ¼ 0.7 and θm ¼ 70° about a black hole with spin a ¼ 0.9M. As when e ¼ 0.7 and
θm ¼ 70°, the variations are largest for the 3∶2 resonance and 2∶1 resonances (depending on which quantity we examine), and smallest
for the 4∶3 resonance.

e θm p Ωθ=Ωr Δ _EH Δ _LH
z Δ _QH Δ _E∞ Δ _L∞

z Δ _Q∞ Δ _Etot Δ _Ltot
z Δ _Qtot

0.7 70° 3.27580M 3 1.14% 1.89% 2.60% 0.010% 0.067% 0.421% 0.026% 0.009% 0.035%
0.7 70° 3.78947M 2 1.60% 2.68% 6.01% 0.204% 0.153% 0.109% 0.167% 0.067% 0.357%
0.7 70° 5.48622M 3=2 6.66% 5.77% 26.3% 0.222% 0.034% 0.216% 0.127% 0.078% 0.210%
0.7 70° 7.53814M 4=3 0.042% 0.008% 4.04% 0.001% 0.002% 0.023% 0.001% 0.002% 0.023%

TABLE IV. Variation in flux for orbits with e ¼ 0.3 and θm ¼ 70° about a black hole with spin a ¼ 0.9M. The case is qualitatively
similar to most of the others, with the 3∶2 and 2∶1 showing the largest degree of variation (depending on the quantity being examined),
and the 4∶3 case showing the least.

e θm p Ωθ=Ωr Δ _EH Δ _LH
z Δ _QH Δ _E∞ Δ _L∞

z Δ _Q∞ Δ _Etot Δ _Ltot
z Δ _Qtot

0.3 70° 2.91117M 3 1.13% 1.17% 0.544% 0.023% 0.026% 0.367% 0.059% 0.070% 0.310%
0.3 70° 3.55601M 2 1.10% 1.28% 3.67% 0.103% 0.142% 0.039% 0.131% 0.179% 0.046%
0.3 70° 5.34138M 3=2 0.481% 0.336% 4.86% 0.106% 0.063% 0.227% 0.102% 0.067% 0.208%
0.3 70° 7.41979M 4=3 0.007% 0.021% 0.229% 0.001% 0.001% 0.006% 0.001% 0.001% 0.006%
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0.131% for the case of small eccentricity, shallow inclina-
tion (Table IV). This appears to suggest, at least roughly,
that the strength of the resonance is correlated with the
degree of radial and angular motion.
However, no such pattern is seen when we examine

Δ _Ltot
z and Δ _Qtot. For Lz, the high eccentricity, high

inclination case again produces the largest variation
(0.489%, in the 3∶2 resonance of Table I). However, the
low eccentricity, low inclination case produces the second
largest variation (0.123%, in the 3∶2 resonance of Table IV).
These values of e and θm likewise produce the largest and
second-largest variations in the Carter constant (albeit in
different resonances).
We do not yet have a compelling way to explain these

trends (or lack of trends) in the resonances’ strength, so we
leave this mystery to future work.

V. CONCLUDING DISCUSSION
AND FUTURE WORK

In this analysis, using a Teukolsky-equation-based
formalism good for exploring radiation produced by

strong-field orbits, we have confirmed the picture that
on resonance the gravitational-wave driven evolution of a
binary can depend strongly on the relative phase of radial
and angular motions. A binary in which this relative
phase has the value π=2 as the system enters resonance
may evolve quite differently from an otherwise identical
system in which this phase is 3π=2 entering resonance. A
typical extreme mass-ratio binary can be expected to pass
through several orbital resonances en route to its final
coalescence. That their evolution through each resonance
depends strongly on an “accidental” phase parameter has
the potential to complicate schemes for measuring gravi-
tational waves from these binaries.
We find that the degree of variation depends strongly

upon the topology of the orbital trajectory in the (r, θ)
plane.7 Of the cases we have studied in detail, the orbital
plane trajectory of resonances like Ωθ=Ωr ¼ 3=2 have a
simple topology. This trajectory does not cross itself very
often, and does not come close to many points in the plane.
Such resonances do not effectively average out the behavior
of the source to the wave equation. As such, if the source
varies significantly over an orbit, there can be a strong
residue of this variation in the associated radiation. By
contrast, the trajectory of resonances likeΩθ=Ωr ¼ 4=3 has
a more complicated topology, crossing itself many times,
and more completely “covering” the plane. In these cases,
the orbit comes “close to”many of the allowed points in the
(r, θ) plane, which quite effectively averages out the
source’s behavior.
Although instructive and a nice validation of our ability

to examine resonances, these results are not enough to truly
assess the importance that resonances have in a strong field
analysis. We must be able to analyze a system as it evolves
through a resonance, and thereby integrate the full “kicks”
in the integrals of motion E, Lz, and Q imparted to the
system as it passes through resonance. A first step in this
direction has been taken by van de Meent [42], who
examines the likelihood that resonances can “trap” an
orbit, leading to long-lived resonant waves. Part of van
de Meent’s analysis is a description of the system’s
evolution as motion through a one-dimensional effective
potential. This approach is likely to be useful for more
general analysis of resonant evolution.
For our planned work, we have begun expanding our

Teukolsky code to compute, in the frequency domain, the
instantaneous components of the dissipative or radiative
piece of the self-force. Our formulation is based in part on
the discussion of Refs. [14,15,21], but generalized to
compute the full dissipative self-force rather than its torus

FIG. 6. Trajectories in the (r, θ) plane for the orbits discussed in
Table I. We put χ0 ¼ π=2 for these plots. The 4∶3 resonance
shows the smallest flux variation of those considered here, and
has the most complicated trajectory. This orbit comes “close to”
enough points in the (r, θ) plane that it averages over much of its
accessible domain. By contrast, the 3∶2 and 2∶1 orbits have simple
trajectories and do not effectively average over their domain.
Fluxes from these orbits tend to show the largest variation with
χ0. The 3∶1 orbit is similar to the 2∶1 orbit, but with an additional
angular oscillation at small radius which enhances orbital
averaging. This orbit generally shows intermediate flux variation
compared with the other cases.

7Strictly speaking, it is a trajectory’s geometry that matters,
particularly how close the orbit comes to all accessible points in
the (r, θ) plane. However, its geometry is strongly correlated to its
topology, which is an invariant property of a resonant orbit’s
frequencies [17]. As such, the topology is a valuable way to
characterize this aspect of its resonant behavior.
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average.8 This will allow us to study how a real inspiral is
affected as we evolve through each resonance using results
that are good deep in the strong field. The results shown in
this paper are a first step toward this, demonstrating that our
strong-field toolkit can be used to study resonant effects.
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APPENDIX A: PROOF: EQUIVALENCE
OF METHODS FOR COMPUTING
ON-RESONANT AMPLITUDES

In this appendix, we prove that Eq. (3.45), the 1-D
integral for the on-resonance 3-index amplitude Z⋆

lmNðχ0Þ,
is equivalent to Eq. (3.34), the on-resonance amplitude
expressed as a sum of 4-index amplitudes Z⋆

lmknðχ0Þ, each
of which is computed using the 2-D integral (3.14). Similar
discussion, demonstrating the equivalence of these forms of
the amplitudes, can be found in Appendix B of Ref. [18].
We begin with Eq. (3.6), which we repeat here:

Z⋆
lmωðχ0Þ ¼ C⋆

Z
∞

−∞
dλeiðωΓ−mϒϕÞλJ⋆lmω½roðλÞ; θoðλ; χ0Þ�:

(A1)
Recall that the “o” subscript on r and θ means that those are
quantities along the orbit and, as such, vary at harmonics of
the frequencies ϒr and ϒθ. We can thus expand J⋆lmω in a
Fourier series:

J⋆lmω ¼
X
kn

J⋆ωlmknðχ0Þe−iðkϒθþnϒrÞλ; (A2)

¼
X
N

J ⋆
ωlmNðχ0Þe−iNϒλ: (A3)

Equation (A2) holds for arbitrary orbits. Equation (A3)
only holds on resonance, when ϒθ ¼ βθϒ, ϒr ¼ βrϒ.
Because Eq. (A2) remains valid for resonant orbits, in

the resonant case

X
N

J ⋆
ωlmNðχ0Þe−iNϒλ ≐X

kn

J⋆ωlmknðχ0Þe−iðkϒθþnϒrÞλ: (A4)

(The notation “≐” means that this equation is true only on
resonance.) Multiply both sides by eiN

0ϒλ and integrate
from 0 to 2π=Υ. On the left-hand side, we have

Z
2π=ϒ

0

X
N

J ⋆
ωlmNðχ0ÞeiðN

0−NÞϒλdλ¼2π

ϒ

X
N

J ⋆
ωlmNðχ0ÞδNN0

¼2π

ϒ
J ⋆

ωlmN0 ðχ0Þ: (A5)

To do this operation on the right-hand side, first note that by
the resonance condition we must have

kϒθ þ nϒr ¼ ðkβθ þ nβrÞϒ: (A6)

Using this, the integral for the right-hand side becomes
Z

2π=ϒ

0

X
kn

J⋆ωlmknðχ0Þei½N
0−ðkβθþnβrÞ�ϒλdλ

¼ 2π

ϒ

X
kn

J⋆ωlmknðχ0ÞδðkβθþnβrÞ;N0

¼ 2π

ϒ

X
ðk;nÞN0

J⋆ωlmknðχ0Þ: (A7)

The notation ðk; nÞN0 means that the sum is over all pairs
ðk; nÞ which satisfy kβθ þ nβr ¼ N0.
Next, use Eqs. (3.13), (3.15), and (3.44), invoke

Eq. (3.34), drop the primes on the index N, and equate
(A5) and (A7). The result is

Z⋆
lmNðχ0Þ≐

X
ðk;nÞN

eiξmknðχ0ÞZ
̬ ⋆
lmkn; (A8)

which proves that the 1-D integral and the sum of 2-D
integrals are equivalent for resonant orbits.

APPENDIX B: EVOLUTION OF THE CARTER
CONSTANT

The third conserved quantity associated with orbits of
Kerr black holes is the Carter constant, Q. Rearranging
Eq. (2.2), we write

8One might be concerned about gauge ambiguities associated
with the gravitational self-force. As shown by Mino [11], these
ambiguities disappearwhenoneaverages the self-force’s effects over
an infinite time. In a two-time scale expansion [12], such ambiguities
remain, but are suppressed by the ratio of the time scales.
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Q ¼ cot2θL2
z þ cos2θð1 − E2Þ þ

�
dθ
dλ

�
2

: (B1)

Reference [25] (S06) first demonstrated how to compute
the long-time-averaged evolution of Q, at least for non-
resonant orbits. In this appendix, we revisit their calculation
in some detail in order to see clearly how it will have to be
modified for resonant orbits (modifying some details to be
in accord with our notation). We then examine how the
calculation changes when we are on an orbital resonance.

1. A comment regarding averaging

In this and the following appendix, we average several
quantities, defining

hfi ¼ lim
L→∞

1

2L

Z
L

−L
dλfðλÞ (B2)

for various functions f ¼ f½rðλÞ; θðλÞ�. For nonresonant
orbits (i.e, those in which Ωθ=Ωr is an irrational number),
the average (B2) is equivalent to the torus average:

hfinon-res ¼
ϒθϒr

ð2πÞ2
Z

2π=ϒθ

0

Z
2π=ϒr

0

f½rðλrÞ; θðλθÞ�dλrdλθ:
(B3)

If the orbit’s frequencies are commensurate (i.e., if it is a
resonant orbit), (B2) is equivalent to the average over the
1-D trajectory that the orbit traces on the (λr, λθ) torus:

hfires ¼
ϒ
2π

Z
2π=ϒ

0

f½rðλÞ; θðλ; χ0Þ�dλ: (B4)

Notice that in the resonant case, the average depends on
the offset phase χ0. As such, if we imagine evolving from a
nonresonant to a resonant orbit, hfi will not change
smoothly. Instead, it will jump discontinuously as we
move from the orbit in which hfi does not depend on
χ0 to the one where it does so depend, and, the amount of
jump will depend on the specific value of χ0 we have
chosen.
This discontinuous jumping behavior is an artifact of the

infinite time average, a limit which is of course irrelevant
for a real astrophysical inspiral. A real system will spend
some finite time near any given orbit; if one wants to study
averaged quantities, these quantities should be averaged
over something like that finite time.
As such, it should be understood that the infinite time

averages that we discuss in this paper are not intended to
serve as tools to be used for evolving extreme mass-ratio
binaries through resonances. For that purpose, we instead
advocate direct integration of the equations of motion
including self-force—without any averaging. The infinite
time averaged rates of change we compute here are
intended solely as diagnostics of how a system’s evolution

is changed by resonant physics, and how that change
depends on the phase χ0.

2. Setup

We begin with the first line of Eq. (3.18) of S06. It relates
the averaged rate of change of the Carter constant, per unit
Mino time, to the Kerr metric’s Killing tensor Kαβ and to a
radiative field Ψrad which is constructed from the pertur-
bation to the Kerr spacetime metric:

�
dK
dλ

�
≡ lim

L→∞

1

2L

Z
L

−L
dλ

dK
dλ

¼ lim
L→∞

1

2L

Z
L

−L
dλ

�
2ΣKαβ ~uα∂β

�
Ψrad

Σ

������
x→zðλÞ

: (B5)

We refer the reader to S06 for a detailed derivation of
Eq. (B5), and defer discussion of the radiative field ΨradðxÞ
to Secs. B 4 and B 5. The coordinate x represents a general
spacetime field point; x → zðλÞ means to take this general
point to the orbit’s worldline zðλÞ.
The other quantities appearing in Eq. (B5) are as follows:

First, K is a variant of the Carter constant, given by

K ¼ Qþ ðLz − aEÞ2: (B6)

It is related to the Kerr metric’s Killing tensor by

K ¼ Kαβuαuβ; (B7)

where

Kαβ ¼ 2Σmðαm̄βÞ − a2cos2θgαβ: (B8)

The tensor gαβ is the Kerr metric, andmα are components of
the Newman-Penrose tetrad leg,

mt ¼ ia sin θffiffiffi
2

p ðrþ ia cos θÞ ; mr ¼ 0;

mθ ¼ 1ffiffiffi
2

p ðrþ ia cos θÞ ; mϕ ¼ i csc θffiffiffi
2

p ðrþ ia cos θÞ :

(B9)

The overbar denotes a complex conjugate. The quantity ~uα
is the 4-velocity promoted to a spacetime field:

ð ~ut; ~ur; ~uθ; ~uϕÞ ¼ ð−E;�
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
=Δ;�

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; LzÞ;

(B10)

where RðrÞ is defined in Eq. (2.1), and ΘðθÞ in Eq. (2.2).
Notice that our ~uθ differs from that used in S06. This is due
to a difference in the definition of the potential Θ (it
describes motion in θ here, but motion in cos θ in S06). The
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field ~uα reduces exactly to the 4-velocity uα when we take
the limit of the field point x to the worldline zðλÞ.

3. General simplification

We now take the first steps in simplifying Eq. (B5).
These steps are the same for both resonant and nonresonant
cases; we specialize to those cases in Secs. B 4 and B 5.
We begin by focusing on the integrand of Eq. (B5):

�
2ΣKαβ ~uα∂β

�
Ψrad

Σ

������
x→zðλÞ

¼
�
4Σ2mðαm̄βÞ ~uα∂β

�
Ψrad

Σ

�

− 2Σa2cos2θ ~uα∂α

�
Ψrad

Σ

������
x→zðλÞ

: (B11)

Use the fact that ~uα ¼ uα in the limit x → zðλÞ, and that
Σuα ¼ dxα=dλ. Expanding mðαm̄βÞ, we find

2ΣKαβ ~uα∂β

�
Ψrad

Σ

�
¼ 2Σ

�
ðLz − asin2θEÞðcsc2θ∂ϕ þ a∂tÞ

þ dθ
dλ

∂θ

��
Ψrad

Σ

�

− 2a2cos2θ
d
dλ

�
Ψrad

Σ

�
: (B12)

[For brevity, we omit x → zðλÞ in Eqs. (B12) and (B13),
though it should be understood that this limit is taken.] The
right-hand side of Eq. (B12) can be simplified significantly
by combining the term in dθ=dλ with the final term:

2Σ
dθ
dλ

∂θ

�
Ψrad

Σ

�
− 2a2cos2θ

d
dλ

�
Ψrad

Σ

�

¼ 2
dθ
dλ

∂θΨrad − 2
Ψrad

Σ
dθ
dλ

∂θΣ

− 2a2
d
dλ

�
cos2θ

Ψrad

Σ

�
þ 2a2

Ψrad

Σ
d
dλ

ðcos2θÞ: (B13)

The third term on the right-hand side of Eq. (B13) is a total
derivative in d=dλ. Thanks to the periodic nature of all the
relevant terms, it will not contribute to an averaging integral
of the form (B5), and may be discarded. Using

∂θΣ ¼ a2∂θcos2θ;
d
dλ

cos2θ ¼ dθ
dλ

∂θcos2θ; (B14)

we see that the second and fourth terms on the right-hand
side of (B13) cancel; only the term in ∂θΨrad remains. The
integrand simplifies to

�
2ΣKαβ ~uα∂β

�
Ψrad

Σ

������
x→zðλÞ

¼
�
2

�
ðLz − asin2θEÞðcsc2θ∂ϕ þ a∂tÞ

þ dθ
dλ

∂θ

�
Ψrad


����
x→zðλÞ

: (B15)

The radiative field Ψrad can be broken into an “out” and a
“down” component:

Ψrad ¼ Ψout
rad þΨdown

rad : (B16)

These two fields are in turn computed from mode functions
Φlmω (discussed in more detail momentarily) as follows:

Ψout
radðxÞ ¼

Z
dω

X
lm

1

4iω3

�
Φout

lmωðxÞ
Z

dλ0Φ̄out
lmω½zðλ0Þ�

�

þ c:c:; (B17)

Ψdown
rad ¼

Z
dω

X
lm

1

4iω2pm

�
Φdown

lmω ðxÞ
Z

dλ0Φ̄down
lmω ½zðλ0Þ�

�

þ c:c: (B18)

In Eq. (B18), pm ¼ ω −mΩH, whereΩH ¼ a=2Mrþ is the
angular velocity associated with the event horizon. The
abbreviation “c.c.” means complex conjugate. See S06 for
further discussion and derivation of these forms of the
fields Ψout

rad and Ψdown
rad . We will largely focus on the “out”

field, which is related to radiation at Iþ. Extension to the
“down” field, related to radiation on the event horizon, is
straightforward.
To proceed, we use two equivalent forms for Φout

lmωðxÞ
evaluated in the limit x → zðλÞ; both are described in more
detail in S06. The first is up to a constant factor the complex
conjugate of the integrand in the expression (3.6) for ZH

lmω:

Φout
lmω½zðλÞ� ¼ J̄HlmωðλÞe−iλðΓω−mϒϕÞ: (B19)

Here Γ is the factor introduced in Sec. II B that converts the
mean accumulation of Mino time to the mean accumulation
of coordinate time. Equation (B19) is Eq. (3.11) of S06,
translated into our notation9; the scalar-case version of this
equation is Eq. (9.20) of Ref. [21]. Using the Fourier series
expansion (3.10) of JHlmω, integrating with respect to λ, and
combining with the definitions (3.13) and (3.15) gives

9Note that there are two errors in Eq. (3.11) of S06: the sign of
the exponential is flipped, and the coefficients Z are of the usual
type (3.15) rather than the required more general type (3.14) with
ω ≠ ωmkn. See Eq. (B33) below.
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Z
dλ0Φ̄out

lmω½zðλ0Þ� ¼
X
nk

ZH
lmknδðω − ωmknÞ; (B20)

and so

Ψout
radðxÞ ¼

Z
dω

�X
lmkn

ZH
lmknδðω − ωmknÞ

4iω3
Φout

lmωðxÞ
�
þ c:c.

(B21)

A similar simplification describes Ψdown
rad ðxÞ. Combining

this with Eqs. (B5) and (B15), we obtain

�
dK∞

dλ

�
¼
�X

lmkn

ZH
lmkn

2iω3
mkn

��
ðcsc2θLz−aEÞ∂ϕ

þaðLz−aEsin2θÞ∂tþ
dθ
dλ

∂θ

�
Φout

lmkn



þc:c:

�
;

(B22)

where Φout
lmkn ≡ Φout

lmωmkn
. (The superscript “∞” is because

we focus on the “out” field.)
We next manipulate the term in ∂θ in Eq. (B22), by

invoking the second form for Φout
lmωðxÞ, which is

Φout
lmknðxÞ ¼ flmknðr; θÞeimϕe−iωmknt: (B23)

The value of flmknðr; θÞ is not important for our purposes;
see S06 [Eq. (3.20) and nearby text] for further details. We
have changed notation from S06 slightly to highlight the
fact that this function depends on l, m, k, and n; this is
important for generalizing to resonant orbits. We now
evaluate on the worldline x → zðλÞ, and use the following
explicit representations of the motions in t and ϕ:

tðλÞ ¼ Γλþ ΔtrðλÞ þ ΔtϕðλÞ;
ϕðλÞ ¼ ϒϕλþ ΔϕrðλÞ þ ΔϕϕðλÞ; (B24)

cf. Eqs. (3.8) and (3.9) above and Sec. 3 of Ref. [21]. Here
the function Δtr is periodic with period Λr and Δtθ is
periodic with period Λθ, etc. This gives

Φout
lmknðλÞ ¼ flmkn½rðλÞ; θðλÞ� expf−iλðkϒθ þ nϒrÞ

− iωmkn½ΔtrðλÞ þ ΔtθðλÞ�
þ im½ΔϕrðλÞ þ ΔϕθðλÞ�g: (B25)

We next define a mode function of two variables ðλr; λθÞ by

Φout
lmknðλr; λθÞ ¼ flmkn½rðλrÞ; θðλθÞ� expf−ikϒθλ

θ − inϒrλ
r

− iωmkn½ΔtrðλrÞ þ ΔtθðλθÞ�
þ im½ΔϕrðλrÞ þ ΔϕθðλθÞ�g: (B26)

This function is determined uniquely by the following three
properties: First, it reduces to the expression (B25) when
evaluated at λr ¼ λθ ¼ λ; second, it is biperiodic, with a
period of Λr in λr, and of Λθ in λθ; and third, it is a
continuous function of the geodesic’s parameters. The first
two properties are sufficient to guarantee uniqueness for
nonresonant orbits, but not for resonant orbits since the
different periodicities become degenerate. Adding the third
property is sufficient to restore uniqueness for all orbits,
since resonant orbits form a set of measure zero in the phase
space. See Refs. [21,30] for more details on the mapping
between functions of λ and functions of ðλr; λθÞ.
Next, differentiating the explicit expression (B26) with

respect to λθ, we obtain the following identity relating the
differential operator d=dλθ and the partial derivative oper-
ators ∂θ, ∂t, and ∂ϕ acting on Φout

lmkn:

dθ
dλ

∂θ ¼
d
dλθ

þ ikϒθ −
dΔtθ
dλθ

∂t −
dΔϕθ

dλθ
∂ϕ: (B27)

We now use the identity (B27) to substitute for the
ðdθ=dλÞ∂θ term in Eq. (B22). This yields

�
dK∞

dλ

�
¼

�X
lmkn

ZH
lmkn

2iω3
mkn

���
csc2θLz − aE −

dΔϕθ

dλθ

�
∂ϕ

þ
�
aLz − a2Esin2θ −

dΔtθ
dλθ

�
∂t

þ ikϒθ þ
d
dλθ

�
Φout

lmkn



þ c:c:

�
: (B28)

Using Eqs. (3.43) and (3.58) of Ref. [21] it is not difficult to
show that

csc2θLz − aE −
dΔϕθ

dλθ
¼ hcsc2θLz − aEi
¼ hcsc2θiLz − aE; (B29)

aLz − a2Esin2θ −
dΔtθ
dλθ

¼ haLz − a2Esin2θi
¼ aLz − a2Ehsin2θi: (B30)

Combining this with Eq. (B28) and using the replacements
∂ϕ → im, ∂t → −iωmkn gives

�
dK∞

dλ

�
¼

�X
lmkn

ZH
lmkn

2iω3
mkn

��
iMmkn þ ikϒθ

þ d
dλθ

�
Φout

lmkn



þ c:c:

�
; (B31)

where we have defined
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Mmkn ¼ mðhcsc2θiLz − aEÞ − aωmknðLz − aEhsin2θiÞ:
(B32)

Next, from Eqs. (B19), (3.10), (3.13), and (3.15) we obtain
an expression for Φout

lmknðλÞ. Extending this to a function of
λr, λθ as above gives

Φout
lmknðλr; λθÞ ¼

Γ
2π

X
Δn;Δk

Z̄H
ωmknlmkþΔk;nþΔne

iΔkϒθλ
θ
eiΔnϒrλ

r
:

(B33)

Combining this with Eq. (B31) yields the final result

�
dK∞

dλ

�
¼

�
Γ
4π

X
lmkn

X
Δk;Δn

½Mmkn þ kϒθ þ Δkϒθ�
ZH
lmkn

ω3
mkn

Z̄H
ωmknlmkþΔk;nþΔne

iΔkϒθλ
θ
eiΔnϒrλ

r þ c:c:

�
: (B34)

Here it is understood that the averaging procedure is to first
evaluate at λr ¼ λθ ≡ λ and then average over λ. In Sec. B 4,
we evaluate this average for nonresonant orbits, and
reproduce the results of S06. In Sec. B 5, we do so for a
resonant orbit and find an appropriately modified variant of
their formula.

4. Nonresonant result

We evaluate the expression (B34) at λr ¼ λθ ≡ λ and
then evaluate the average over λ defined by Eq. (B5). The
term labeled by Δn, Δk is proportional to

lim
L→∞

1

2L

Z
L

−L
dλeiΔkϒθλeiΔnϒrλ

¼ lim
L→∞

Si½ðΔkϒθ þ ΔnϒrÞL�; (B35)

where SiðxÞ ¼ sinðxÞ=x. Since the frequencies ϒθ and
ϒr are incommensurate for nonresonant orbits, the combi-
nation Δkϒθ þ Δnϒr will be nonvanishing for
ðΔk;ΔnÞ ≠ ð0; 0Þ, and the right-hand side will vanish.
Thus the only nonvanishing term will be the term with
Δn ¼ Δk ¼ 0. Another way to think about this is that we
are averaging over a curve which is ergodically filling up
the torus parametrized by λr and λθ, and so the curve
average can be replaced by an average over the torus,

lim
L→∞

1

2L

Z
L

−L
…dλ →

ϒθϒr

ð2πÞ2
Z

2π=ϒθ

0

Z
2π=ϒθ

0

…dλrdλθ:

(B36)

Applying this torus average to the expression (B34) again
forces Δn ¼ Δk ¼ 0. Now using the definition (3.15) we
obtain the final result

�
dK∞

dλ

�
¼ Γ

X
lmkn

jZ
̬ H
lmknj2

4πω3
mkn

½Mmkn þ kϒθ� þ c:c. (B37)

Because all the terms on the right-hand side of (B37) are
real, the complex conjugate simplifies to an overall factor
of 2. We take the long-time average, so

�
dK
dλ

�
¼ Γ

�
dK
dt

�
: (B38)

Further, by Eq. (B6),

dK
dt

¼ dQ
dt

þ 2ðaE − LzÞ
�
a
dE
dt

−
dLz

dt

�
: (B39)

Combining Eqs. (3.25), (3.26), (3.31), (B32) together with
Eqs. (B37), (B38), and (B39), we finally obtain

�
dQ∞

dt

�
¼

X
lmkn

jZ
̬ H
lmknj2

2πω3
mkn

× ðmhcot2θiLz − a2ωmknhcos2θiEþ kϒθÞ

≡ 2
X
lmkn

_E∞
lmkn

ωmkn
ðLmkn þ kϒθÞ: (B40)

The quantity Lmkn is defined in Eq. (3.31). A similar
calculation focusing on the “down” modes yields

�
dQH

dt

�
¼

X
lmkn

αlmknjZ
̬ ∞
lmknj2

2πω3
mkn

× ðmhcot2θiLz − a2ωmknhcos2θiEþ kϒθÞ

¼ 2
X
lmkn

_EH
lmkn

ωmkn
ðLmkn þ kϒθÞ: (B41)

The factor αlmkn is introduced in Sec. III B; on the second
line, we have used Eqs. (3.27) and (3.31). Equations (B40)
and (B41) are the same (modulo minor changes in notation)
as Eq. (3.26) of S06.

5. Resonant _Q

We now return to the general formula (B34) evaluated at
λr ¼ λθ ¼ λ and compute the average over λ for the case of
resonant orbits. Before evaluating this average we first
simplify the sums over Δk and Δn by rewriting them in
terms of k0 ¼ kþ Δk, n0 ¼ nþ Δn. We also make the
replacements
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X
kn

→
X
N

X
ðk;nÞN

;
X
k0n0

→
X
N0

X
ðk0;n0ÞN0

; (B42)

where the indicated sums are taken over k; n satisfying
kβθ þ nβr ¼ N and over k0, n0 satisfying k0βθ þ n0βr ¼ N0.
We note that the quantities Mmkn and ωmkn depend on k
and n only through N, and write these as MmN and ωmN .
Finally using the definition (3.34) of the amplitudes Z⋆

lmN ,
the expression (B34) reduces to

�
dK∞

dλ

�
¼

�
Γ
4π

X
lmN

X
N0

X
ðk0;n0ÞN0

½MmN þ k0ϒθ�

×
ZH

lmN

ω3
mN

Z̄H
ωmknlmk0n0e

iΔkϒθλeiΔnϒrλ þ c:c:

�
:

(B43)

Next we note that the argument of the exponential is

iλðΔkϒθ þ ΔnϒrÞ ¼ iλϒðΔkβθ þ ΔnβrÞ
¼ iλϒðN0 − NÞ: (B44)

Evaluating the average over λ enforces N ¼ N0, and the
result is

�
dK∞

dλ

�
¼ Γ

4π

X
lmN

X
ðk0;n0ÞN

½MmN þ k0ϒθ�

×
ZH

lmN

ω3
mN

Z̄H
ωmknlmk0n0 þ c:c. (B45)

Now since ωmkn ¼ ωmN ¼ ωmN0 , the factor of Z̄H
ωmknlmk0n0

can be simplified to Z̄H
lmk0n0 . The expression (B45) can then

be simplified further by defining the new amplitude

YH
lmNðχ0Þ ¼

X
ðk;nÞN

kZH
lmknðχ0Þ ¼

X
ðk;nÞN

keiξmknðχ0ÞZ
̬ H
lmkn:

(B46)

Compare this with Eq. (3.34): YH
lmNðχ0Þ is similar to

ZlmNðχ0Þ, but with each ZH
lmkn weighted by k. In terms

of this new amplitude the result simplifies to

�
dK∞

dλ

�
¼

X
lmN

Γ
4πω3

mN
½MmN jZH

lmNðχ0Þj2

þϒθZH
lmNðχ0ÞȲH

lmNðχ0Þ� þ c:c. (B47)

Applying Eqs. (B38) and (B39), we at last find the rate of
change of Q for a resonant orbit:

�
dQ∞

dt

�
¼

X
lmN

1

2πω3
mN

fLmN jZH
lmNðχ0Þj2

þϒθRe½ZH
lmNðχ0ÞȲH

lmNðχ0Þ�g; (B48)

where LmN is the same as Lmkn, but with ωmkn → ωmN .
Repeating this exercise for the “down” modes yields

�
dQH

dt

�
¼

X
lmN

αlmN

2πω3
mN

fLmN jZ∞ðχ0Þj2

þϒθRe½Z∞
lmNðχ0ÞȲ∞

lmNðχ0Þ�g: (B49)

It is interesting to compare our final result for the on-
resonance evolution of Q, Eqs. (B48) and (B49), with the
equivalent results for the nonresonant case, Eqs. (B40) and
(B41). The first two terms in both expressions for hdQ=dti
are essentially the same; going from the nonresonant case
to the resonant case is simply a matter of promoting the
4-index nonresonant amplitude Z⋆

lmkn to the 3-index reso-
nant amplitude Z⋆

lmN .
The final term in the two cases is quite different,

however. In the nonresonant case, the final term is propor-
tional to kϒθ. In the resonant case, the index k cannot
appear in the final result, which can only depend on the
indices l, m, and N. This is accounted for in the definition
of the amplitude Y⋆

lmN , Eq. (B46). In both the nonresonant
and the resonant cases, this final term arises from the action
of the operator ðdθ=dλÞ∂θ on the radiative field Ψrad
[see Eq. (B15)].
As Appendix A made clear, the 3-index amplitude Z⋆

lmN
can be computed directly as a 1-D integral, Eq. (3.45), or
can be computed as a sum of 4-index integrals, Eq. (3.34),
each of which is computed from the 2-D integral (3.14).
Our definition (B46) of Y⋆

lmN is clearly analogous to
Eq. (3.34), writing this 3-index amplitude as a sum over
4-index amplitudes.
Might it be possible to compute the 3-index amplitude

directly, in a manner analogous to Eq. (3.45)? We believe
the answer is yes; we simply need to propagate the operator
ðdθ=dλÞ∂θ under the integral sign in Eq. (3.45). In other
words, we speculate that

Y⋆
lmNðχ0Þ¼?

ϒ
Γ

Z
2π=ϒ

0

dλ
dθ
dλ

∂θJ⋆lmω½rðλÞ; θðλ; χ0Þ�eiNϒλ:

(B50)

We have not yet tested this.

APPENDIX C: RATE OF CHANGE OF E AND Lz
BY DISSIPATIVE SELF-FORCE

With hdQ=dti due to the dissipative self-force now
understood, it is a relatively simple matter to likewise
compute hdE=dti and hdLz=dti. Our calculation again
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closely follows S06; the only important changes are
updates to the notation that we use, and a careful analysis
of resonances. The results we find are identical to the fluxes
of energy and angular momentum carried by gravitational
waves, exactly as Ref. [26] leads us to expect.

1. Setup

Our starting point is Eq. (3.7) of S06, which in our
notation becomes

�
dE
dλ

�
≡ lim

L→∞

1

2L

Z
L

−L
dλ

dE
dλ

¼ − lim
L→∞

1

2L

Z
L

−L
dλ½∂tΨrad�

����
x→zðλÞ

: (C1)

This equation is derived by averaging over long times the
dissipative self-force contracted with the time Killing
vector. Terms corresponding to total derivatives are dis-
carded thanks to the periodic nature of the underlying
functions. If we replace −∂t with ∂ϕ, we obtain hdLz=dλi.
As in Appendix B, we will focus on the “out” fields;

extension to “down” is straightforward. Using Eq. (B21),

�
dE∞

dλ

�
¼ −

�X
lmkn

ZH
lmkn

4iω3
mkn

∂tΦout
lmkn þ c:c:

�
: (C2)

The harmonic behavior of the mode functions means that
∂tΦout

lmkn ¼ −iωmknΦout
lmkn:

�
dE∞

dλ

�
¼

�X
lmkn

ZH
lmkn

4ω2
mkn

Φout
lmkn þ c:c:

�
: (C3)

Using Eq. (B33), this becomes

�
dE∞

dλ

�
¼
�
Γ
8π

X
lmkn

X
Δk;Δn

ZH
lmkn

ω2
mkn

×Z̄H
ωmknlmkþΔk;nþΔne

iΔkϒθλ
θ
eiΔnϒrλ

rþc:c:
�
: (C4)

Likewise, using ∂ϕΦout
lmkn ¼ imΦout

lmkn, we have

�
dL∞

z

dλ

�
¼
�
Γ
8π

X
lmkn

X
Δk;Δn

m
ZH
lmkn

ω3
mkn

×Z̄H
ωmknlmkþΔk;nþΔne

iΔkϒθλ
θ
eiΔnϒrλ

rþc:c:

�
: (C5)

As in Appendix B, the averaging procedure we use is to
evaluate at λr ¼ λθ ¼ λ, and then to average over λ. We do
this first for nonresonant and then for resonant orbits.

2. Nonresonant results

As in Appendix B 4, we use the fact that

lim
L→∞

1

2L

Z
L

−L
dλeiΔkϒθλeiΔnϒrλ

¼ lim
L→∞

Si½ðΔkϒθ þ ΔnϒrÞL�; (C6)

where SiðxÞ ¼ sinðxÞ=x. For nonresonant orbits, the
incommensurability of ϒθ and ϒr means that the
only nonvanishing term is Δn ¼ Δk ¼ 0, and we
deduce that

�
dE∞

dt

�
¼

X
lmkn

jZH
lmknj2

4πω2
mkn

; (C7)

�
dL∞

z

dt

�
¼

X
lmkn

mjZH
lmknj2

4πω3
mkn

: (C8)

We have used the fact that the factor Γ converts, on a
long-time average basis, derivatives in λ to derivatives
in t. Repeating this calculation for the “down” modes,
we find

�
dEH

dt

�
¼

X
lmkn

αlmkn
jZ∞

lmknj2
4πω2

mkn

; (C9)

�
dLH

z

dt

�
¼

X
lmkn

αlmkn
mjZ∞

lmknj2
4πω3

mkn

: (C10)

The factor αlmkn is discussed in Sec. III B. Equations (C7)–
(C10) are identical to Eqs. (3.25)–(3.28).

3. Resonant results

As in Appendix B 5, we first modify the sums by
rewriting them in terms of k0 ¼ kþ Δk, n0 ¼ nþ Δn,
and make the replacements

X
kn

→
X
N

X
ðk;nÞN

;
X
k0n0

→
X
N0

X
ðk0;n0ÞN 0

; (C11)

where the sums are taken over pairs satisfying kβθ þ nβr ¼
N and k0βθ þ n0βr ¼ N0. We use the fact that ωmkn depends
on k and n only through N to replace it with ωmN , and use
the definition (3.34) of Z⋆

lmN to write (C4) as

�
dE∞

dλ

�
¼

�
Γ
8π

X
lmN

X
N0

X
ðk0;n0ÞN0

ZH
lmN

ω2
mN

× Z̄H
ωmknlmk0n0e

iΔkϒθλeiΔnϒrλ þ c:c:

�
: (C12)
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A similar expression describes hdL∞
z =dti. Using the same

logic as follows Eq. (B43), we see that averaging over λ
enforces N ¼ N0, and we obtain

�
dE∞

dt

�
¼

X
lmN

jZH
lmN j2

4πω2
mN

; (C13)

�
dL∞

z

dt

�
¼

X
lmN

mjZH
lmN j2

4πω3
mN

: (C14)

The same analysis for the “down” modes yields

�
dEH

dt

�
¼

X
lmN

αlmN
jZ∞

lmN j2
4πω2

mN
; (C15)

�
dLH

z

dt

�
¼

X
lmN

αlmN
mjZ∞

lmN j2
4πω3

mN
: (C16)

These formulas reproduce the flux-derived results given in
Sec. III C.
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