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We present exact spherically symmetric null dust solutions in the third-order Lovelock gravity with a
string cloud background in arbitrary N dimensions. This represents radiating black holes and generalizes
the well-known Vaidya solution to Lovelock gravity with a string cloud in the background. We also discuss
the energy conditions and horizon structures and explicitly bring out the effect of the string clouds on the
horizon structure of black hole solutions for the higher-dimensional general relativity and Einstein-Gauss-
Bonnet theories. It turns out that the presence of the coupling constant of the Gauss-Bonnet terms and/or
background string clouds completely changes the structure of the horizon and this may lead to a naked
singularity. We recover known spherically symmetric radiating models as well as static black holes in the
appropriate limits.
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I. INTRODUCTION

As demanded by string theory and various higher-
dimensional scenarios, black holes in Nð> 4Þ-dimensional
spacetimes must have higher curvature corrections. Among
the various gravity theories with higher curvature correc-
tion terms, the so-called Lovelock gravity [1] is quite
special. Lovelock [1] found the most general second rank
tensor with vanishing divergence being constructed from
the second derivative of the metric. Hence, its equations of
motion contain the most symmetric conserved tensor with
no more than two derivatives of the metric, and it has been
proven to be free of ghosts [2,3]. Lovelock gravity is one of
the higher derivative gravity theories, a natural generali-
zation of Einstein’s general relativity, first introduced
by David Lovelock [1]. The Lovelock action in Nð≥ 4Þ-
dimensional spacetime is given by

I ¼ 1

2κ2N

Z
dNx

ffiffiffiffiffiffi
−g

p X½N=2�

p¼0

αðpÞLðpÞ þ Imatter; (1)

LðpÞ ≔
1

2p
δ
μ1…μpν1…νp
ρ1…ρpσ1…σpRμ1ν1

ρ1σ1…Rμpνp
ρpσp ; (2)

where κN ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
. We assume κ2N > 0 without any loss

of generality, αðpÞ is an arbitrary constant with dimension
ðlengthÞ2ðp−1Þ, and LðpÞ is the Euler density of a 2p-
dimensional manifold. The δ symbol denotes a totally
antisymmetric product of Kronecker deltas, normalized to
take values 0 and �1 [1], which are defined by

δ
μ1…μp
ρ1…ρp ≔ p!δμ1½ρ1…δ

μp
ρp�: (3)

The quantity αð0Þ is related to the cosmological constant Λ
by αð0Þ ¼ −2Λ. Among these terms, the first term is the
cosmological constant term, the second term is the Einstein
general relativity (GR) term, and the third and fourth terms
are the second-order Lovelock (Gauss-Bonnet) and third-
order Lovelock terms, respectively. In this paper, we restrict
ourselves to consider the latter three terms of Lovelock
gravity; i.e., we start with GR without a cosmological
constant.
In Lovelock gravity, the case which attracts most

attention and which is most extensively studied is the
so-called Einstein-Gauss-Bonnet (EGB) gravity. The EGB
gravity is a special case of the Lovelock theory of
gravitation, whose existence naturally appears in the low
energy effective action of heterotic sting theory [4]. The
spherically symmetric static black hole in the EGB gravity
was first considered by Boulware and Deser [3]; this kind
of solution for third- order Lovelock gravity has been
introduced in [5]. Exact solutions of the former can be
found in [6], and the latter in [7–10]. The corresponding
EGB black holes in a string cloud model was considered in
[9,11]. Also, several nonstatic Vaidya-like spherical radiat-
ing black hole solutions have been obtained in EGB gravity
[12–14].
It would be interesting to consider further nonstatic or

radiating generalizations of static black hole solutions [6,7].
It is the purpose of this Letter to obtain an exact nonstatic
solution in the second and third-order Lovelock theory in
the presence of null dust with a cloud of strings in the
background. We shall present a class of nonstatic solutions
describing the exterior of radiating black holes with
null dust endowed with a cloud of strings, i.e., an exact
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Vaidya-like solution in the second and third-order Lovelock
theory for a string cloud model. The radiating black hole
solution in GR was obtained by Vaidya [15] which is a
solution of Einstein’s equations with spherical symmetry
for a null fluid, i.e., the radially propagating radiation
source. The nonstatic Vaidya [15] geometry offers a more
realistic background than static geometries, where all back
reaction is ignored. It is possible to model the radiating star
by matching it to the exterior Vaidya spacetime (see [16,17]
for reviews on the Vaidya solution and [18] for the higher-
dimensional version). On the other hand relativistic strings
can be used to describe the large scale anisotropy of the
universe [19], and also to describe extended objects in
general relativity [20], e.g., to model stars [21], and black
holes [11].
In this paper we are concerned with radiating black hole

solutions in Lovelock theory. We discuss how higher-order
curvature corrections in a string cloud background alter
black hole solutions and their qualitative features we know
from our knowledge of black holes in GR. Particular
attention will be given to the simpler Gauss-Bonnet case
which exhibits most of the relevant qualitative features. We
obtainN-dimensional spherically symmetric radiating black
hole solutions in a string cloud background with the three
terms of Lovelock gravity which are Einstein or GR, Gauss-
Bonnet and third-order Lovelock terms, and analyze their
properties and horizon structures. The family of solutions
discussed here belongs to a type II fluid. However, when the
matter field degenerates to a type I fluid, we can regain
the static black hole solutions [8]. In particular, our results
in the limit α → 0 and β → 0 generate models vis-á-vis
N-dimensional relativistic solutions [18,22].

II. THE STRING-CLOUD MODEL

The main aim of this paper is to study black hole
solutions in N-dimensional Lovelock gravity coupled to a
string cloud and discuss their properties. Expressed in
terms of Eddington coordinates, the metric of a general
spherically symmetric spacetime in N dimensions [18]
reads

ds2 ¼ −Aðv; rÞ2fðv; rÞdv2 þ 2ϵAðv; rÞdvdr
þ r2ðdΩN−2Þ2: (4)

In the above dΩ2
N−2 is the metric on the (N − 2)-sphere

given by

ðdΩN−2Þ2 ¼ dθ21 þ sin2ðθ1Þdθ22 þ sin2ðθ1Þsin2ðθ2Þdθ23

þ � � � þ
��YN−2

j¼1

sin2ðθjÞ
�
dθ2N−1

�
: (5)

Here Aðv; rÞ is an arbitrary function. It is useful to
introduce a local mass function mðv; rÞ defined by [18]

fðv; rÞ ¼ 1 −
2mðv; rÞ

ðN − 3ÞrðN−3Þ :

Whenmðv; rÞ ¼ MðvÞ and A ¼ 1, the metric reduces to the
N-dimensional Vaidya metric [18,23]. Initially mðv; rÞ ¼
m0 provides the vacuum Schwarzschild solution in the
region r > 2m0 > 0. The metric in N-dimensional spheri-
cally symmetric spacetime is given in terms of the
advanced time coordinate v. Using the Newman-Penrose
null tetrad formalism the principal null vectors lμ; nμ are of
the form [21]

lμ ¼ δvμ; nμ ¼ −
f
2
δvμ þ δrμ; (6)

where lμlμ ¼ nμnμ ¼ 0, lμnμ ¼ −1. The metric (4) admits
an orthonormal basis defined by unit vectors

v̂μ ¼ −f1=2δvμ þ f−1=2δrμ; r̂μ ¼ f−1=2δrμ; (7)

θ̂μ ¼ rδθμ; ϕ̂ðθ1Þμ ¼ r sin θ1δ
ϕðθ1Þ
μ ;

ϕ̂ðθ2Þμ ¼ r sin θ1 sin θ2δ
ϕðθ2Þ
μ ;

ϕ̂ðθnÞμ ¼ r sin θ1 sin θ2… sin θnδ
ϕðθnÞ
μ ; (8)

with n ¼ N − 2. Here, we are interested in the Vaidya-like
radiating black hole solution for a cloud of strings in
Lovelock gravity. Hence the energy momentum tensor we
consider includes both a null dust and a string fluid, i.e., a
two-fluid description of radial strings and outward flowing
short-wavelength photons that is null dust [21]. In order to
see the two-fluid description we use the above timelike unit
velocity vector v̂μ and unit spacelike vectors r̂μ; θ̂μ; ϕ̂μ

ðθnÞ
such that

gμν ¼ v̂μv̂ν − r̂μr̂ν − θ̂μθ̂ν − ϕ̂ðθ1Þμϕ̂ðθ1Þν

− ϕ̂ðθ2Þμϕ̂ðθ2Þν − � � � − ϕ̂ðθnÞμϕ̂ðθnÞν: (9)

Next, we consider the theory of a cloud of strings
(see [20] for further details). The Nambu-Goto action of
a string evolving in the higher-dimensional spacetime is
given by

IS ¼
Z
Σ
Ldλ0dλ1; L ¼ mðγÞ1=2;

where m is a positive constant that characterizes each
string, ðλ0; λ1Þ is a parametrization of the world sheet Σ
with λ0 and λ1 being timelike and spacelike parameters
[24], and γ is the determinant of the induced metric on the
string world sheet Σ given by

γab ¼ gμν
∂xμ
∂λa

∂xν
∂λb ; (10)
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where γ ¼ det γab. Associated with the string world-sheet
we have the string bivector [20,21] defined by

Σμν ¼ ϵAB
dxμ

dλA
dxν

dλB
; (11)

where ϵAB is the two-dimensional Levi-Civita symbol. It is
useful to write the bivector, in terms of the unit vectors, as

Σμν ¼ r̂μv̂ν − v̂μr̂ν; (12)

and the condition that the world-sheet are timelike; i.e.,
γ ¼ 1

2
ΣμνΣμν < 0 implies that only the Σur component is

nonzero. Therefore one obtains

ΣμcΣν
c ¼ v̂μv̂ν − r̂μr̂ν: (13)

The string energy momentum tensor for a cloud of strings is
[20,21]

Tμν ¼ ρðγÞ−1=2Σc
μΣcν; (14)

where ρ is the proper density of a string cloud. The quantity
ρðγÞ−1=2 is the gauge invariant quantity called the gauge-
invariant density. The string is characterized by a
surface-forming bivector Σμν, and conditions to be a
surface-forming are

Σμ½αΣβγ� ¼ 0; ∇μΣμ½αΣβγ� ¼ 0; (15)

where the square brackets indicate antisymmetrization in
the enclosed indices. The above equations, in conjunction
with Eqs. (12) and (15), lead to the useful identity

ΣμσΣστΣτν ¼ γΣνμ; (16)

which will be used in the later calculations. Further
Tμν

;μ ¼ 0 implies that

∂μð
ffiffiffiffiffiffiffi
−g

p
ρΣμσÞ ¼ 0: (17)

We are seeking spherically symmetric solutions, which
restrict the density ρ, and the bivector Σμν as a function of v,
and r only. Further, the only possible surviving component
of the bivector Σ is Σvr ¼ −Σrv. Thus Tv

v ¼ Tr
r ¼ −ρΣvr,

and from Eq. (17), we obtain ∂rðrnTv
vÞ ¼ 0 which implies

Tv
v ¼ Tr

r ¼
SðvÞ
rn

; (18)

where SðvÞ is a function of v. The energy momentum of the

two fluid system is Tμν ¼ TðnÞ
μν þ Tμν, where TðnÞ

μν ¼ ζlμlν.
It is the null fluid tensor corresponding to the component of
the matter field that moves along the null hypersurfaces
v ¼ const. The effective energy momentum tensor for the
two-fluid system, in terms of the unit vectors, can be cast as

Tμν ¼ ζlμlν þ ρv̂μv̂ν þ prr̂μr̂ν: (19)

Furthermore, the energy momentum tensor considered is
of the special case Tv

r ¼ 0, which means that from the
field equation Gv

r ¼ 0 we get Aðv; rÞ ¼ gðvÞ. However,
by introducing another null coordinate v̄ ¼ R gðvÞdv,
we can always set, without any loss of generality,
Aðv; rÞ ¼ 1 (see also [18]).

III. THE EINSTEIN LOVELOCK ACTION AND
FIELD EQUATIONS

Lovelock gravity is the most general second-order
gravity theory in higher-dimensional spacetimes, and it
is free of ghosts when expanding in space [1]. The
Lovelock tensor is nonlinear in the Riemann tensor and
differs from the Einstein tensor only if the spacetime has
more than four dimensions (4D). The action that describes
the third-order Lovelock gravity, without a cosmological
constant in N dimensions, reads [1]

IG ¼ 1

2

Z
M

dxN
ffiffiffiffiffiffi
−g

p ½Rþ α2LGB þ α3Lð3Þ� þ IM; (20)

where

LGB ¼ RμνγδRμνγδ − 4RμνRμν þ R2; (21)

is the Gauss-Bonnet (GB) Lagrangian, and

Lð3Þ ¼ 2RμνσκRσκρτRρτ
μν þ 8Rμν

σρRσκ
ντRρτ

μκ

þ 24RμνσκRσκνρR
ρ
μ þ 3RRμνσκRσκμν

þ 24RμνσκRσμRκν þ 16RμνRνσRσ
μ

− 12RRμνRμν þ R3; (22)

is the third-order Lovelock Lagrangian. Here R, Rμνγδ and
Rμν are the Ricci scalar, Riemann and Ricci tensors,
respectively. Variation of the action with respect to the
spacetime metric gμν yields the Einstein-Gauss-Bonnet-
Lovelock (EGBLL) equations

GE
μν þ α2GGB

μν þ α3G
ð3Þ
μν ¼ Tμν; (23)

where α2 and α3 are second and third-order Lovelock
coefficients, and GE

μν is the Einstein tensor, while GGB
μν and

Gð3Þ
μν are second and third-order Lovelock tensors given

explicitly as [2]

GGB
μν ¼ 2ð−RμσκτRκτσ

ν − 2RμρνσRρσ − 2RμσRσ
ν þ RRμνÞ

−
1

2
LGBgμν; (24)

and
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Gð3Þ
μν ¼ −3ð4RτρσκRσκλρRλ

ντμ − 8Rτρ
λσRσκ

τμRλ
νρκ þ 2Rν

τσκRσκλρRλρ
τμ − RτρσκRσκτρRνμ þ 8Rτ

νσρRσκ
τμRρ

κ

þ 8Rσ
ντκRτρ

σμRκ
ρ þ 4Rν

τσκRσκμρRρ
τ − 4Rν

τσκRσκτρRρ
μ þ 4RτρσκRσκτμRνρ þ 2RRν

κτρRτρκμ þ 8Rτ
νμρRρ

σRρ
τ

− 8Rσ
ντρRτ

σRρ
μ − 8Rτρ

σμRσ
τRνρ − 4RRτ

νμρRρ
τ þ 4RτρRρτRνμ − 8Rτ

νRτρRρ
μ þ 4RRνρRρ

μ−R2RνμÞ −
1

2
Lð3Þgμν:

The constants α2 and α3 will help us track the changes in
the equations, when we compare with the corresponding
equations of GR. We are interested in the exact solutions of
black holes in Lovelock theory coupled to a string cloud
which will be shown to be generalizations of the earlier
solutions. To achieve this, we need to solve the EGBLL
equation (23) for the spherically metric ansatz (4). In this
case only diagonal and one off-diagonal ðr; vÞ EGBLL
equations survive. It is enough to solve the ðv; vÞ compo-
nent of the EGBLL field equation (23), which amounts to
the equation

−
ðN − 2Þ
2r2

��
1þ 2

αψðv; rÞ
r2

þ βψðv; rÞ2
r4

�
rψ 0ðv; rÞ

− ψðv; rÞ
�
ðN − 3Þ þ ðN − 5Þαψðv; rÞ

r2

þ ðN − 7Þβψðv; rÞ2
3r4

��
¼ Tv

v;

and the ðr; vÞ equation takes the form

−
ðN − 2Þ

2r

�
1þ 2

αψðv; rÞ
r2

þ βψðv; rÞ2
r4

�
_ψðv; rÞ ¼ Tr

v;

(25)

in which a dot and a prime denote, respectively, derivatives
with respect to v and r. In the above the functions
ψðv; rÞ ¼ 1 − fðv; rÞ, α ¼ ðN − 3ÞðN − 4Þα2 and β ¼
ðN − 3Þ…ðN − 6Þα3. In three and four dimensions Love-
lock theory coincides with Einstein general relativity, e.g.,
for N ¼ 4 we get

−rf0ðv; rÞ þ 1 − fðv; rÞ ¼ SðvÞ; (26)

which clearly is α and β independent, and therefore it will
be the Einstein equation in four dimensions admitting the
solution

fðv; rÞ ¼ 1 −
2MðvÞ

r
− SðvÞ; (27)

where the functionMðvÞ arises due to integration and this is
the famous Vaidya solution with a cloud of strings in the
background [25], and goes over to Letelier model [20]
whenMðvÞ and SðvÞ are constants. The above solution can
be identified as radiating black hole spacetime associated
with a spherical mass MðvÞ centered at the origin of the
system of coordinates, surrounded by a spherical cloud of
strings.

In higher dimensions (HD), the Lovelock gravities are
actually different. In fact, for N > 4 Einstein gravity can be
thought of as a particular case of Lovelock gravity since
the Einstein-Hilbert term is one of several terms that
constitute the Lovelock action. Hence, for N > 4 and
α ¼ β ¼ 0, we obtain

ðN − 2ÞrðN−4Þ½rf0ðv; rÞ − ðN − 3Þð1 − fðv; rÞÞ� ¼ 2SðvÞ;
(28)

which admits a solution

fðv; rÞ ¼ 1 −
2MðvÞ

ðN − 3ÞrN−3 −
2SðvÞ

ðN − 2ÞrN−4 : (29)

We also observed that the above four-dimensional solution
(27) is recovered in the limit N → 4. From the ðr; vÞ
component of (25), we obtain the energy density of the
fluid as

ζðv; rÞ ¼ ðN − 2Þ
ðN − 3ÞrN−2

dM
dv

þ 1

rðN−3Þ
dS
dv

: (30)

It may be noted that the N-dimensional solution (29)
outlined here contains the N-dimensional version of, for
instance, the Vaidya metric [18,23] (when SðvÞ ¼ 0). The
solution (29) can be identified as the HD version of the
Vaidya solution with clouds of strings in the background. In
particular, in the four-dimensional case, the solution (29)
reduces to (27). The static black hole solutions, in both
higher dimensions [14] and in four dimensions [20], can be
recovered by setting MðvÞ ¼ M, SðvÞ ¼ S, with M and S
being constants, in which case the matter is type I.
In order to study the general structure of the solution

given in (29), we look for the essential singularity. It is seen
that the Kretschmann scalar for the metric (4) reduces to

K ¼ RabcdRabcd

¼ f00ðv; rÞ2 þ 2ðN − 2Þ f
0ðv; rÞ
r2

þ 2ðN − 2ÞðN − 3Þ fðv; rÞ
2

r4
; (31)

which on inserting (29) becomes
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K ¼ 4ðN − 2Þ2ðN − 1ÞðN − 3Þ
r2N−2 M2ðvÞ

þ 8ðN − 3Þ2ðN − 2Þ
r2N−3 MðvÞSðvÞ

þ ðN4 − 12N3 þ 55N2 − 144N þ 92Þ
ðN − 2Þ2r2N−4 S2ðvÞ; (32)

which clearly diverges as r → 0 indicating the scalar
polynomial or essential singularity at r ¼ 0. In the higher-
dimensional case, a fact which deserves to be emphasized is
that the cloud of strings alone (MðvÞ ¼ 0), unlike in
four dimensions, can have an apparent horizon located
at rEH ¼ ð2SðvÞ=ðN − 2ÞÞ1=ðN−4Þ. Thus we have extended
the Letelier [20] solutions to nonstatic higher-dimensional
spacetimes.

IV. THE EGB CASE (α2 ≠ 0 AND α3 ¼ 0)

The simplest case in Lovelock theory arises when we
choose α3 ¼ 0, which is the well-known EGB theory that
embodies nontrivial dynamics for the gravitational field in
five-(or higher) dimensional theories. The static spherically
symmetric black hole solutions of EGB theory were first
obtained by Boulware and Deser [3]. We wish to find the
general solution of the Einstein equations for the matter
field given by Eq. (19) for the metric (4). Eq. (18) with
α3 ¼ 0 takes the form

−
ðN − 2Þ
2r2

��
1þ 2

αψðv; rÞ
r2

�
rψ 0ðv; rÞ

− ψðv; rÞ
�
N − 3þ ðN − 5Þαðψðv; rÞÞ

r2
;

��
¼ Tv

v; (33)

which may be called the EGB equation. This equation
admits a general solution in arbitrary dimensions N as
follows

f�ðv;rÞ¼ 1þ r2

2α

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αMðvÞ

ðN−2ÞrN−1þ
8αSðvÞ

ðN−2ÞrN−2

s 1
A;

(34)

where MðvÞ is an arbitrary function of v. The special case
in which MðvÞ is a nonzero constant we call the GB-
Schwarzschild solution [3], for which the global structure is
presented in [26]. There are two families of solutions which
correspond to the sign in front of the square root in Eq. (34).
We call the family which has the minus (plus) sign the
minus-(plusþ) branch solution. From the ðr; vÞ component
of (25), we obtain the energy density of the fluid which is
again given by (31) for both branches, where the dot
denotes the derivative with respect to v. In order for the
energy density to be nonnegative, _M ≥ 0 must be satisfied.
In the static case _M ¼ _S ¼ 0, the solution (34) reduces to

the solution which was obtained in [27], and for N ¼ 5 to
the results in [9]. Further, _M ¼ SðvÞ ¼ 0, the solution
(33) reduces to the EGB black hole, independently dis-
covered by Boulware and Deser [3]. It may be noted that
similar solutions in five dimensions were reported in [10].
Also a similar kind of solution in arbitrary dimensions, but
in different context, has been discussed in [13,14].
Asymptotically, the minus branch of the solution (34) goes
to the higher-dimensional general relativistic limit α → 0,
and as it is expected the minus-branch solution in this limit
looks like Eq. (29). There is no such limit for the plus-
branch solution. We will restrict our discussion to the most
generic situation; i.e., we shall consider the solution with
the general relativistic or minus branch. Finally, when the
string cloud background is switched off, we recover the
EGB-Vaidya solution [12,28] from the Eq. (34).
To see the asymptotic behavior of the solution (34), we

take the limit r → ∞ orMðvÞ ¼ SðvÞ ¼ 0 in (34), to obtain

lim
r→∞

fþðv; rÞ ¼ 1þ r2

α
; and lim

r→∞
f−ðv; rÞ ¼ 1;

which means the plusþ branch of the solution (34) is
asymptotically de Sitter (Anti-de Sitter) depending on the
sign of αð�Þwhereas the minus- branch of the solution (34)
is asymptotically flat. Further, it is seen that the
Kretschmann scalar (32) diverges as r → 0 indicating a
scalar polynomial singularity.

A. Energy conditions

The family of solutions discussed here, in general,
belongs to a type II fluid defined in [27]. When
M ¼ MðrÞ, we have μ ¼ 0, and the matter field degener-
ates to a type I fluid [17]. In the rest frame associated with
the observer, the energy density of the matter is given by

ζ ¼ Tr
v; ρ ¼ −Tv

v ¼ Tr
r ¼

SðvÞ
rðN−2Þ ; (35)

and the principal pressures are Pi ¼ Ti
i (no sum conven-

tion). Therefore Pr ¼ Tr
r ¼ −ρ and Pθi ¼ 0.

(a) The weak energy conditions: The energy momentum
tensor obeys the inequality Tabwawb ≥ 0 for any
timelike vector, i.e., ζ ≥ 0, ρ ≥ 0, Pθ1 ¼ Pθ2 ¼ � � � ¼
PθðN−2Þ ≥ 0. The strong energy condition and the weak
energy conditions, for a type II fluid, are identical [17].

(b) The dominant energy conditions: For any timelike
vector wa, Tabwawb ≥ 0, and Tabwa is a non-spacelike
vector, i.e., ζ ≥ 0, ρ ≥ Pθ1 , Pθ2 ¼ � � � ¼ PθðN−2Þ ≥ 0.
Clearly, (a) is satisfied if SðvÞ ≤ 0. However, ζ > 0
gives the restriction on the choice of the functions
MðvÞ and SðvÞ. From Eq. (30), we observe ζ > 0
requires
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ðN − 2Þ
ðN − 3ÞrN−2

dM
dv

þ 1

rðN−3Þ
dS
dv

> 0: (36)

This, in general, is satisfied, if dM=dv > 0 and dS=dv > 0.
On the other hand, the dominant energy conditions hold if
SðvÞ ≤ 0, and the functionMðvÞ is subject to the condition
dM=dv > 0 and dS=dv > 0.

V. RADIATING BLACK HOLE HORIZONS

In this section, we study the structure and location of the
horizons and compare them with general relativity by using
the solution obtained in the previous section. We consider
the minus-branch solution in order to compare with the
general relativistic case. The line element of the radiating
black hole in EGB gravity has the form (4) with fðv; rÞ
given by Eq. (33) and the energy momentum tensor (19).
We can define a timelike limit surface as locus where
gð∂v; ∂vÞ ¼ gvv ¼ 0 where ∂=∂v is a timelike vector and
L ¼ −dM=dv, andMðvÞ is the mass of the black hole. It is
known that the apparent horizon coincides with the timelike
limit surface [29].
The luminosity due to loss of mass is given by

LM ¼ −dM=dv, LM < 1 [29], and due to clouds of string
by LS ¼ −dS=dv, where LM; LS < 1. Both are measured in
the region where d=dv is timelike. In order to further
discuss the physical nature of our solutions, we need to
introduce their kinematical parameters. We assume v ¼
constant is an in-going null surface with a future-directed
null tangent vector la. Then we define a future-directed null
geodesic by tangent vector na such that

lμlμ ¼ nμnμ ¼ 0; nμlμ ¼ −1; lμγμν ¼ 0: (37)

The metric at v ¼ constant will be (N − 2)-dimensional,
say γab, and let the spacetime metric be gμν. Following York
[29–32] a null vector decomposition of the metric (4) is of
the form

gμν ¼ −lμnν − nνlμ þ γab; (38)

where

lμ ¼ δvμ; nμ ¼
1

2
fðv; rÞδva þ δra;

γμν ¼ r2δθ1μ δ
θ1
ν þ r2

XN−1

i¼2

��Yi−1
j¼1

sin2ðθjÞ
��

δθia δ
θi
b ;

with fðv; rÞ given by Eq. (33). The optical behavior of the
null geodesic congruences is governed by the
Raychaudhuri equation

dΘ
dv

¼ KΘ − Rμνlμlν − ðγccÞ−1Θ2 − σμνσ
μν þ ωμνω

μν; (39)

with expansion Θ, twist ω, shear σ, and surface gravity K.
Here Rμν is the N-dimensional Ricci tensor and γcc is the
trace projection tensor for null geodesics. The expansion of
the null rays parametrized by v is given by

Θ ¼ ∇μnμ − K; (40)

where the ∇ is the covariant derivative and the surface
gravity is

K ¼ −lμnν∇νnμ: (41)

The apparent horizon is the outermost marginally
trapped surface for the outgoing photons, which can be
either null or spacelike, that is, it can “move” causally or
acausally [29,31] Using Eqs. (33), (39), and (41), we get

K ¼ 1

2

∂f
∂r : (42)

Then Eqs. (33), (39), (40), and (41) yield the expansion
parameter [28,32]

Θ ¼ ðN − 2Þ
2r

fðv; rÞ: (43)

The apparent horizons are defined as surfaces such that
Θ≃ 0 which implies that fðv; rÞ ¼ 0 and which is equiv-
alent to gð∂v; ∂vÞ ¼ gvv ¼ 0; hence the two surfaces
coincide for the spherically symmetric case. However, they
may be different for axially symmetric black holes.
The apparent horizon for four-dimensional GR is give by

1 − 2MðvÞ=r − SðvÞ ¼ 0, which admits a real root

r4DAH ¼ 2MðvÞ
1 − SðvÞ : (44)

In the limit, SðvÞ → 0 then r4DAH → 2MðvÞ and asMðvÞ → 0
no horizon exists. Thus the cloud of strings alone, in the
four-dimensional case, does not have a horizon and hence
naked singularity at r ¼ 0. Next we are going to calculate
apparent horizons for the higher-dimensional case which, if
they exist, are given by zeros of fðv; rÞ ¼ 0; i.e., we need to
look for a solution,

1 −
2MðvÞ

ðN − 3ÞrN−3 −
2SðvÞ

ðN − 2ÞrN−4 ¼ 0: (45)

In the higher-dimensional GR case, a fact which deserves
to be emphasized is that the cloud of strings alone, unlike
in four dimensions, can have an apparent horizon
located at

rSAH ¼ 2SðvÞ
ðN − 2Þ1=ðN−4Þ :
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The apparent horizon is located at, e.g., in the five-
dimensional case, r5DAH ¼ SðvÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðvÞ þ SðvÞ2

p
with

SðvÞ ¼ SðvÞ=3 and at r6DAH ¼ ηðvÞ1=3=6þ SðvÞ=ηðvÞ1=3
with ηðvÞ ≔ 72MðvÞ þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144MðvÞ2 − 6SðvÞ3

p
for the

six-dimensional case. Thus in order to have horizon in
six dimensions or r6DAH to be real valued, we must have
144mðvÞ2 ≥ 6SðvÞ3; otherwise, we have no horizons and
only a naked singularity.
EGB case: From (43) it is clear that the apparent horizon

is the solution of

1þ r2

2α

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αMðvÞ

ðN − 2ÞrN−1 þ
8αSðvÞ

ðN − 2ÞrN−2

s 1
A ¼ 0:

(46)

It is clear that (47) may not obviously admit simple closed
solutions. However, it is easy to get solutions in the five-
dimensional and six-dimensional cases as

r5DGBAH ¼ SðvÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðvÞ − αþ SðvÞ2

q
;

r6DGB
AH ¼ ξðvÞ1=3

6
þ ðSðvÞ − 2αÞ

ξðvÞ1=3
ξðvÞ ¼ 27MðvÞ þ 3

ffiffiffiffiffiffiffiffiffi
γðvÞ

p
; (47)

with γðvÞ¼18MðvÞ2−24SðvÞ3þ144αSðvÞ2−288α2SðvÞ.
In the relativistic limit α → 0, with SðvÞ ¼ 0, r5DAH →ffiffiffiffiffiffiffiffiffiffiffi
MðvÞp

. Further, the solutions have the right limit when
SðvÞ ¼ 0 and/or α ¼ 0 and for the five-dimensional case
we regain the solution obtained in [28]. We see that
gvvðv; rAHÞ ¼ 0 at the apparent horizons implies that they
are also timelike surfaces. It is clear that presence of the
coupling constant of the Gauss-Bonnet term α and string
clouds in background produce a change in the location of
the apparent horizon. Such a change could have a signifi-
cant effect in the dynamical evolution of the black hole
horizon. For an outgoing null geodesic, r ¼ rAH is given by

_r ¼ dr
dv

¼ 1

2
fðv; rÞ: (48)

For the EGB case, differentiating (48) with respect to v, we
obtain

̈r ¼ d2r
dv2

¼ r_rΣðv; rÞ
4α

þ 4αr2

Σðv; rÞ
�

LM

ðN − 2ÞrðN−1Þ þ
LS

ðN − 2ÞrðN−2Þ

þ ðN − 1ÞMðvÞ_r
ðN − 2ÞrN þ 2SðvÞ_r

rðN−1Þ

�
; (49)

with

Σðv; rÞ ¼
 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~α2MðvÞ

ðN − 2ÞrN−1 þ
8 ~α2SðvÞ

ðN − 2ÞrN−2

s !
:

(50)

At the timelike surface or apparent horizon r ¼ rAH, _r ¼ 0
and ̈r > 0 for LM > 0 and LS > 0. Hence the photon will
escape from the r ¼ rAH and reach an arbitrary large
distance, which confirms that the surface r ¼ rAH is an
apparent horizon not an event horizon. Thus the apparent
horizon is the outermost maximally trapped surface for an
outgoing photon. On the other hand, the event horizon is a
null three-surface which is the locus of outgoing future-
directed null geodesic rays that never manage to reach
arbitrarily large distances from the black hole and are
different from the apparent horizon for radiating black
holes. They are determined via the Raychaudhuri equation;
it can be seen to be equivalent to the requirement that
d2Θ=dv2 ≈ 0 to OðLM;LSÞ [29,31,32]. It can be shown
that the expressions for event horizons are the same as
apparent horizons, but MðvÞ and SðvÞ replaced by M�ðvÞ
and S�ðvÞ, where

M�ðvÞ ≈ MðvÞ − LM

κ
; S�ðvÞ ≈ SðvÞ − LS

κ
: (51)

Therefore a new region (rEH < r < rAH), called the “quan-
tum ergosphere” [29] exists for radiating black holes, which
is absent in the static black holes. In this region photons are
locally trapped but, being outside the event horizon, they
can cross the apparent horizon at a later time and propagate
to infinity. It turns out that because of evaporation apparent
and event horizons, coincide for the static Schwarzschild
solution. Finally, the Hawking temperature near the appar-
ent horizon can be obtained through the relation T ¼ κ=2π.

VI. CONCLUSION

Lovelock theory is a natural extension of Einstein’s GR
to higher dimensions in which the first, second and third-
order terms correspond, respectively, to the higher-
dimensional GR and EGB gravity and third-order
Lovelock gravity. In this paper, we have obtained exact
radiating black holes in the background of a cloud of strings
in arbitrary N dimensions in these theories. Thus we have
explicit nonstatic radiating black hole solutions in these
theories. The black holes are characterized by mass the
MðvÞ, the string cloud function SðvÞ and the parameters α
and β, and the solutions are asymptotically dS (AdS). We
have used the solutions to discuss the consequence of the
GB term and string clouds on the structure and location of
the horizons for radiating black holes. By defining all
kinematical parameter in terms of null vectors, and using
the definition suggested by York [29], we have investigated
the structure and locations of horizons for both the GR and
EGB cases. The apparent horizons are obtained exactly and
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event horizons are obtained to first order in the luminosity
using the method developed by York [29]. We have shown
that a radiating black hole has three important horizon-like
loci that full characterize its structure, viz. apparent
horizon, event horizon and a timelike limit surface; we
have the relationship of the three surfaces rEH < rAH ¼
rTLS and the region between the apparent horizon and event
horizons is defined as the “quantum ergosphere” [29]. The
presence of the coupling constant of the Gauss-Bonnet
terms and string clouds produce a change in the location of
these horizons. Such a change could have a significant
effect in the dynamical evolution of these horizons.
The static black hole solutions in Eddington-Finkelstein

coordinates, in both higher dimensions and in four dimen-
sions, can be recovered by setting MðvÞ ¼ M, SðvÞ ¼ S,
withM and S as constants in which case fðv; rÞ → fðrÞ. In
the static limit, we can obtain from the metric (4), the usual
spherically symmetric form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dðΩN−2Þ2; (52)

by the coordinate transformation

dv ¼ AðrÞ−1
�
dtþ ϵ

dr
fðrÞ

�
: (53)

In the case of spherical symmetry, even when fðrÞ is
replaced by fðt; rÞ, we can cast the metric in the form
(4) [33].
A rigorous formulation and proof for the cosmic censor-

ship conjecture is far from our reach. Hence, examples or
counterexamples remain the only tool to study the various
aspects of this important conjecture. However, the lack of
exact solutions that are suitable to study gravitational
collapse from the viewpoint of cosmic censorship makes
progress very difficult. As a consequence, we are far from
completely understanding even the simple case of spherical
symmetry. The solutions presented here are dynamical
which are suitable for such studies and can be useful to get
insights into more general gravitational collapse situations,
and, in general, a better understanding of the conjecture that
may help to formulate it in precise mathematical form.
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APPENDIX: RADIATING BLACK HOLE AND
THIRD-ORDER LOVELOCK THEORY

In the present section, we proceed to consider third-order
Lovelock theory; i.e., we choose both α and β to be
nonzero. If N ≥ 7, with both α β nonzero, the role of the
third-order Lovelock term as well as the second-order
Gauss-Bonnet term will be nontrivial to the gravitational
dynamical equations. Hence, the radiating black holes
governed by the Eq. (25) can be integrated in arbitrary
dimension N ≥ 7 and the solution can be expressed as

fðv; rÞ ¼ 1þ αr2

β
−
2r2Nþ4ðβ − α2ÞðN − 2Þ

βrNΔðv; rÞ1=3

þ Δðv; rÞ1=3
2βrNðN − 2Þ ; (A1)

with

Δðv; rÞ ¼ 4ðN − 2Þ2βrN
ffiffiffiffi
Ξ

p
þ
�
β −

2α2

3

�
ðN − 2Þ3αr3Nþ6

− 2r2Nþ7β2χðv; rÞðN − 2Þ2;
Ξðv; rÞ ¼ 36χðv; rÞr2Nþ14β2 þ 4rNβðN − 2Þ2r3Nþ12

− 3α2ðN − 2Þ2r4Nþ12

− 36

�
β −

2α2

3

�
ðN − 2Þαr3Nþ13χðv; rÞ;

χðv; rÞ ¼ SðvÞr −MðvÞ
6

: (A2)

The special but interesting case β ¼ 2α2=3 immensely
simplifies the above solutions as

fðv; rÞ ¼ 1þ 3r2

2α
þ
�
9

8

�1
3 r2Nþ4ðN − 2Þ
rNΔðv; rÞ1=3 þ 3

1
3Δðv; rÞ1=3

2α2rNðN − 2Þ ;
(A3)

where

Δ¼ α2ðN−2Þ2½
ffiffiffi
8

p ffiffiffi
3

p
δrN þ12α2r2Nþ7χðv;rÞ�;

δ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2
�
rNðN−2Þ2r12þ3N −

9

8
r12þ4NðN−2Þ2þ τðv;rÞ

�r
;

(A4)

with τðv;rÞ¼6χðv;rÞ2rNrNþ14α2 and χðv;rÞ¼SðvÞr−
MðvÞ=6. Another interesting case arises when β ≠ 0
but α ¼ 0, which can be identified as Einstein-Lovelock
theory. In this case the solution further simplifies to

fðv; rÞ ¼ 1þ Δ1=3

2βrNðN − 2Þ −
2rðNþ4ÞðN − 2Þ

Δ1=3 ; (A5)

with
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Δ¼−4r7ð6SðvÞrþMðvÞÞþðN−2Þ2β2rð2Nþ6Þ

×
4ffiffiffi
β

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðN−2Þ2rð2NÞ þβr2ð6SðvÞrþMðvÞÞ2

q
: (A6)

Thus we obtain a kind of radiating Vaidya black
hole spacetime, with clouds of string, in third-order

Lovelock gravity by solving Eq. (25). When the dimen-
sion of spacetime is five, that is N ¼ 5, and MðvÞ, SðvÞ
constants, the solution reduces to the one reported by the
authors in Ref. [11]. In N ¼ 4 and SðvÞ ¼ 0, the solution
is just the familiar Vaidya solution [15] of general
relativity.
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