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The leitmotif of this paper is the question of whether four- and higher even-dimensional conformal
gravities do have a Chern-Simons pedigree. We show that Weyl gravity can be obtained as the dimensional
reduction of a five-dimensional Chern-Simons action for a suitable (gauge-fixed, tractorlike) five-
dimensional anti–de Sitter connection. The gauge-fixing and dimensional reduction program readily
admits a generalization to higher dimensions for the case of certain conformal gravities obtained by
contractions of the Weyl tensor.
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I. INTRODUCTION

Four-dimensional (4D) conformal (Weyl) gravity has
received a renewed interest since the advent of AdS/CFT
correspondence. In the interplay between the latter and
conformal geometry, the Weyl action turns up in the form
of certain conformally invariant terms in thevolume renorm-
alizationofconformallycompactEinstein (CCE)metrics [1]:
(1) in the “Lanczos-form,” as the volume anomaly of

five-dimensional CCE metrics

Z
M4

�
Ric2 −

1

3
R2

�
(1)

given by the boundary integral of the so-called Q-
curvature [2] in 4D;

(2) in the “Weyl-form,” as the renormalized volume of
4D CCE metrics [3,4]

Z
M4

Weyl2: (2)

TheintegralofBranson’sQ-curvaturegeneralizesthevolume
anomaly to higher even dimensions [5], with the Fefferman-
Grahamobstructiontensor [6] for itsmetricvariationgeneral-
izing the 4D Bach tensor, as shown in [7]. The renormalized
volume of even-dimensional CCE metrics admits as well a
higher-dimensional extension [8]. Both constructions result
inparticularcandidates forconformalgravities inhighereven
dimensions. In six dimensions, for example, a particular
combinationofWeyl contractionshasbeensingledoutby the
requirement that its space of solutions contains all Einstein
metrics [9,10]; one could have anticipated this result by
recalling that one of the features of the Fefferman-Graham
obstruction tensor is that it vanishes for conformallyEinstein
metrics, so that the resulting combination of Weyl terms is

precisely the one in Q6 as computed, for example in [11],
within AdS/CFT correspondence.
The aim of this article is to gain a new perspective on

four- and higher even-dimensional conformal gravities by
addressing the question of whether they do admit a Chern-
Simons (CS) formulation. The answer to the analogous
question in three dimensions has long been known: the
Lagrangian of three-dimensional conformal gravity of
Deser, Jackiw, and Templeton [12,13] is precisely the
CS Lagrangian of the tractor connection (cf. [14–17],
see also Appendix B for a brief description of tractor
calculus). This is actually what Horne and Witten showed
[18], even before the name tractor was coined in conformal
geometry [19].
In three dimensions, conformal gravity is constructed out

of a dreibein eμi as the fundamental variable and the action
[12,13]

ICG ¼
Z
M3

wi∧dwi þ 2

3
εijkwi∧wj∧wk; (3)

where wi ¼ εijkωμ
kldxμ with ωμ

kl the Levi-Civita or
Riemannian connection associated with the given dreibein
ei so that, despite the resemblance, this is not a Yang-Mills
gauge theory. The (covariant) equation of motion demands
three-dimensional spacetime to be conformally flat, i.e., a
vanishing Cotton tensor

Cμνλ ¼ ∇μρνλ −∇λρνμ ¼ 0; (4)

the covariant curl of the Schouten or rho tensor

ρμν ¼ Rμν −
1

4
Rgμν: (5)

The tractor connection, on the other hand, comes into
play from the conformal group in three dimensions. There
are 10 generators: three translations (Pi), three Lorentz
boosts and rotation (Jij, or alternatively "dualized" to a

*raros@unab.cl
†danilodiaz@unab.cl

PHYSICAL REVIEW D 89, 084026 (2014)

1550-7998=2014=89(8)=084026(7) 084026-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.084026
http://dx.doi.org/10.1103/PhysRevD.89.084026
http://dx.doi.org/10.1103/PhysRevD.89.084026
http://dx.doi.org/10.1103/PhysRevD.89.084026


three-vector Ji), three special conformal transformations
(Ki), and one dilatation (D). The gauge connection is the
Lie-algebra valued form

A ¼ eiPi þ wiJi þ λiKi þ ϕD; (6)

and the Chern-Simons action for this gauge theory
of SO(3,2),

ICS ¼
k
8π

Z
M3

�
A∧dAþ 2

3
A∧A∧A

�
; (7)

yields a vanishing curvature (or flat connection) as the
equation of motion

F ¼ dAþ A∧A ¼ 0: (8)

The classical equivalence between three-dimensional
conformal gravity and this CS theory was established by
Horne and Witten [18]. Under the assumption of the
invertibility of the dreibein, they showed that the gauge
choice ϕμ ¼ 0 is consistent and that the equations of
motion, after drastic simplification, force ωμ

ij to be the
Levi-Civita connection and −λμi to be the rho tensor. In all,

ϕ ¼ 0; (9)

dei þ ωi
jej ¼ 0; (10)

−λi ¼ ρi; (11)

dρi þ ωi
jρ

j ¼ 0: (12)

The first three relations above define the gauge choice,
whereas the last one is precisely the equation of motion of
three-dimensional conformal gravity: the vanishing of the
Cotton tensor. In this particular gauge, the Chern-Simons
action becomes that of conformal gravity, that is, the
CS Lagrangian of the resulting partially gauge-fixed
connection

τAμ ¼ eμiPi þ wμ
iJi − ρμ

iKi: (13)

In component form, one can easily recognize the tractor
connection of conformal geometry [16,17] Appendix B
(different conventions demand a little scrambling and sign
flips)

0
B@

0 −eμi 0

eμj ωμ
ij ρμ

j

0 −ρμi 0

1
CA

We do not dwell any further in odd dimensions as the
final target space; our present interest, instead, focuses
on conformal gravities in four and higher even dimensions,

where no direct construction via a CS form is available.
A possibility, inspired by AdS/CFT correspondence, sug-
gests itself: to look for a CS form in one dimension higher
and trade conformal symmetry in d ¼ even by the anti–de
Sitter (AdS) group in dþ 1 ¼ odd. However, unlike the
usual AdS/CFT lore, contact with final even-dimensional
target space will be achieved by dimensional reduction on a
circle.
Our proposal is to start with AdS-invariant Chern-

Simons Lagrangians in odd dimensions and then to perform
a suitable gauge fixing that, after dimensional reduction,
leads to local curvature invariant Lagrangians as candidates
for conformal gravities in even dimensions. This new
perspective on four- and higher even-dimensional con-
formal gravities may cast a different light on the problems
on unitarity and renormalizability of gravitational theories
(cf. [9,20] for a recent discussion).

II. ADS CHERN-SIMONS GRAVITY

Our starting point will be the theory of gravity in d ¼
2nþ 1 obtained as the Chern-Simons gauge theory for the
SOð2n; 2Þ group [21]. The writing in terms of the spin
connection for the Lorentz group proceeds as follows:
(1) Splitting of the general AdS-connection [22]

A ¼ 1

2
ω̂IJJIJ ¼

1

2
ω̂ijJij þ qiJi;2nþ2; (14)

where i; j ¼ 1; 2;…; 2nþ 1. More graphically,

�
ω̂μ

ij qμj

−qμi 0

�

(2) Next, identifying qi and ω̂ij with the vielbein ei and
the Lorentz spin connection ωij, respectively, on the
manifold to be considered.

In this way, the AdS connection is rewritten as

A ¼ 1

2
ωijJij þ eiJi; (15)

where, for simplicity, we have set the AdS radius to one
and renamed Ji;2nþ2 ≡ Ji as a momentum generator (which
is not incorrect, but one has to keep in mind that
½Ji; Jj� ¼ Jij) [23].
Little has been said about the role of the trace hi in the

algebra; nonetheless, for any even dimension d ¼ 2n, the
following trace (invariant tensor) will be used:

hJI1I2…JI2nþ1I2nþ2
i ¼ εI1…I2nþ2

; (16)

which, throughout I ¼ ði; 2nþ 2Þ with i ¼ 1…2nþ 1,
amounts to the trace to be considered hereafter
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hJi1i2…Ji2n−1i2nJi2nþ1
i ¼ εi1…i2nþ1

: (17)

We close this section with a final remark on AdS Chern-
Simons gravity. The action, modulo boundary terms, can be
rewritten in the form of a (first order) Lovelock gravity
[24,25] as

ICS ¼
Z Xn

p¼0

1

2nþ 1 − 2p

×

�
n
p

�
εi1…i2nþ1

Ri1i2…Ri2p−1i2pei2pþ1…ei2nþ1 ; (18)

where Rij ¼ dωij þ ωi
kω

kj with i; j; k ¼ 1;…; 2nþ 1. It
is worthwhile to recall that the vielbein is merely a part of
the connection, e.g., ei ¼ ωi;2nþ1. The equations of motion
of Chern-Simons gravity are generically

hδAFni ¼ δω̂I1I2FI3I4…FI2nþ1I2nþ2εI1…I2nþ2
¼ 0

¼ δei2nþ1εi1…i2nþ1
R̄i1i2…R̄i2n−1i2n

þ δωi2ni2nþ1εi1…i2nþ1
R̄i1i2…R̄i2n−3i2n−2Ti2n−1 ¼ 0;

where R̄ stands for R̄ij ¼ Rij þ eiej and Ti ¼ dei þ ωi
jej

stands for a torsion two-form. For simplicity, and in order to
connect with the Lovelock equation of motion, this is
usually split as

Ei2nþ1
¼ εi1…i2nþ1

R̄i1i2…R̄i2n−1i2n ¼ 0;

Ei2ni2nþ1
¼ εi1…i2nþ1

R̄i1i2…R̄i2n−3i2n−2Ti2n−1 ¼ 0:

It must be stressed that, unlike for any other Lovelock
gravity, to impose Ti ¼ 0 is actually not the most general
solution in this case. This is due the fact that the torsion
two-form in the context of Chern-Simons gauge theory is
merely a component of the gauge curvature, Ti ¼ Fi2nþ1,
and therefore Ti ¼ 0 comprises a very particular subset of
the space of solutions of Fn ¼ 0.

III. A TRACTORLIKE GAUGING OF THE ADS
CONNECTION

The idea now is to reformulate a conformal theory of
gravity in even dimensions as a Chern-Simons gauge
theory with the help of an extension of a manifestly
conformally invariant tractorlike connection. The construc-
tion is obviously not direct because of the clash between the
numbers of dimensions: there is a tractor connection for
SOðd − 1; 2Þ in the (even) d − 1-dimensional manifold,
whereas the SOðd − 1; 2Þ CS density lives in (odd) d
dimensions. The way out proposed in this work is to
proceed with a dimensional reduction of the 2nþ 1-CS
density to end up with a 2n-dimensional manifestly
conformally invariant theory. The simplest approach
assumes a 2nþ 1 manifold of the form M0 ¼ M × S1

or M0 ¼ M × R1 and considers only the zero modes, so
that the difference in this case becomes irrelevant.
In close analogy with the tractor connection [17], we

consider a connection for the SOð2n; 2Þ group in terms of
the conformal generators (see Appendix A for their
expression) in the space M0 ¼ M × S1 given by

A ¼ 1

2
ωijðxÞJij þ eiðxÞPi þ ρiðxÞKi þ ΦðxÞdφD; (19)

where i; j ¼ 1; 2;…2n and a system of coordinates XM ¼
ðxμ;φÞ has been considered on M0 with φ parametrizing
S1. On the other hand,

ρi ¼ eiνρνμdxμ

with ρμν

ρνμ ¼
1

d − 3

�
Rν

μ −
1

2ðd − 2Þ δ
ν
μR

�
(20)

being the Schouten tensor of the d − 1 ¼ 2n-dimensional
M and Rν

μ and R, the Ricci tensor and scalar, respectively.
The Schouten tensor relates the Riemann and Weyl
curvatures

Rμναβ ¼ Wμναβ þ gμαρνβ − gναρμβ − gμαρνα þ gνβρμα;

or, equivalently, as two-forms

Rij ¼ 1

2
Wij

klekel þ 2ðeiρj − ejρiÞ; (21)

where Wij
kl is the Weyl tensor.

A. Weyl transformation

This tractorlike connection is constructed to make
explicit a Weyl transformation on M in the form of a
gauge transformation A → eξDAe−ξD þ eξDdðe−ξDÞ. In this
case the components of A in Eq. (19) transform as

ei → eξei;

ωij → ωij þϒiej −ϒjei;

ρi → e−ξðρi þDϒi þϒiϒμdxμ þ eiϒμϒμÞ;

with Υμ ¼ ∂μξðxÞ and Υi ¼ EiμΥμ ¼ Eiμ∂μξðxÞ.
The introduction of Φ along D does not change the law

of transformation of the other component of the connection
under A → eξDAe−ξD þ eξDdðe−ξDÞ. In fact this only
introduces a transformation for Φ given by

Φdφ → Φdφ − dξ;

where dξ has only a projection onM which determines, in
practice, that a Weyl transformation, from the point of view
of its pullback on M, has no effect on Φ. Furthermore this
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transformation, as it will be observed, has no effect at all on
the CS action. This defines thatΦ, from the point of view of
the effective theory under discussion, is actually a scalar
field under Weyl transformation.

IV. DIMENSIONAL REDUCTION: FROM FIVE TO
FOUR DIMENSIONS

Let us illustrate the dimensional reduction from five to
four dimensions. In this case one starts with a product
manifold M0 ¼ M × S1, coordinates XM ¼ ðxμ;φÞ, and a
gauge-fixed connection of the form

A¼1

2
ωijJijþðeiþρiÞJi6þðei−ρiÞJi5þΦdφD; (22)

where i ¼ 1…4.
For d ¼ 5 and AdS5 [SO(4,2)] the idea relies on

considering the five-Chern-Simons density

I ¼
Z
M4×S1

εabcdf

�
R̂abR̂cdqf þ 2

3
R̂abqcqdqf

þ 1

5
qaqbqcqdqf

�
; (23)

where R̂ab ¼ dω̂ab þ ω̂a
cω̂

cb with a ¼ 1;…; 5, and
establishing the map between ei, ρi and qa as follows:

ω̂ij ¼ ωij;

ω̂i5 ¼ ei − ρi;

ω̂56 ¼ ΦðxÞdφ ¼ q5;

ω̂i6 ¼ ei þ ρi ¼ qi: (24)

This yields

R̂ij ¼ Rij − ðei − ρiÞðej − ρjÞ and

R̂i5 ¼ Dðei þ ρiÞ; (25)

where now Rij ¼ dωij þ ωi
kω

kj is the four-dimensional
Riemann curvature two-form.
After replacing Eq. (25) and Eq. (24) into Eq. (23)

and integrating along φ one obtains the four-dimensional
action

I ¼
Z
M4

ΦεijklðRijRkl þ 8Rijekρl þ 16eiejρkρlÞ: (26)

For the sake of clarity these terms can be rewritten in
metric formalism. For instance,

εijklRijRkl ¼ ðRμναβRμναβ − 4RμνRμν þ R2Þ ffiffiffi
g

p
d4x

¼ E
ffiffiffi
g

p
d4x; (27)

which can be recognized as the Euler density E. This
defines, once expressed in metric formalism, the action

I ¼
Z
M4

Φ

�
E þ 2

�
Ric2 −

1

3
R2

��
(28)

¼
Z
M4

Φ · Weyl2: (29)

The equations of motion for this action can be obtained
either from the Chern-Simons equations of motion and later
replacing the gauge choice, or directly from the variation of
Eq. (28) with respect to the metric. The result in both cases
is a generalization of the Bach tensor. Moreover, a further
gauging of Φ to a constant reduces the equation of motion
to those of Weyl gravity, containing in particular all
Einstein metrics.

V. DIMENSIONAL REDUCTION IN
HIGHER DIMENSIONS

The 2nþ 1-dimensional Chern-Simons action for
SOð2n; 2Þ can be written as

I2nþ1
CS ¼

Z
M2n×S1

Xn
p¼0

1

2nþ 1 − 2p

×

�
n
p

�
εa1…a2nþ1

R̂a1a2…R̂a2p−1a2pqa2pþ1…q2nþ1;

(30)

where R̂ab ¼ dω̂abω̂a
cω̂

cb with a; b; c ¼ 1;…; 2nþ 1. It is
direct to prove that, after replacing the ansatz

ω̂ij ¼ ωij;

ω̂i2nþ1 ¼ ei þ ρi;

ω̂2nþ12nþ2 ¼ ΦðxÞdφ ¼ q2nþ1;

ω̂i2nþ2 ¼ ei − ρi ¼ qi; (31)

with i ¼ 1;…; 2n, the action merely becomes

I2nþ1
CS ¼

Z
M2n×S1

εi1…i2nððRi1i2þ2ρi1ei2−2ρi2ei1Þ…

…ðRi2n−1i2nþ2ρi2n−1ei2n−2ρi2nei2n−1ÞÞΦdφ: (32)

This is direct to integrate along φ and after
some realignments in terms of Eq. (21), namely,
Rij ¼ 1

2
Wij

klekel − 2ðeiρj − ejρiÞ, one can rewrite
Eq. (32) as
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I2nCG ¼
Z
M2n

Φδj1…j2n
i1…i2n

ðWi1i2
j1j2…Wi2n−1i2n

j2n−1j2nÞ
ffiffiffi
g

p
d2nx:

(33)

These gravities just constructed, as the number of
dimensions increases, saturate every possible contraction
of the Weyl tensor to the corresponding power. However
Eq. (33) contains more than a mere collection of the
possible contractions of the Weyl tensor; they are added
with a particular set of relative coefficients. This is due to
the larger, but hidden, AdS symmetry preserved by this
action principle, beyond the pure Weyl invariance pre-
served by an arbitrary set of coefficients. This is completely
analogous to the general Lovelock action which preserves
Lorentz symmetry versus the Chern-Simons action, a
Lovelock gravity with particular set of coefficients, which
preserves the larger AdS symmetry.
Essentially Eq. (33) has the same form of the Euler

density but in this case the Riemann curvature has been
replaced by the Weyl curvature. The seven-dimensional
case gives rise to a six-dimensional conformal gravity

I6CG ¼
Z
M6

ΦðWμνγτWγτξλWξλ
μν

þ 4Wμν
ξλWξτ

νκWλκ
μτÞ

ffiffiffiffiffi
jgj

p
d6x: (34)

VI. CONCLUSION AND OUTLOOK

In retrospective, in this work it has been shown that a
family of conformal gravities in even dimensions, con-
structed out of the Weyl tensor and a scalar field (under
diffeormorphisms and Weyl transformation), can be cast as
a Chern-Simons theory for the conformal or AdS group in
the appropriate dimension. Furthermore, it has been shown
that certain combinations of the Weyl invariants present an
enlarged, and seemingly unnoticed, SOð2n; 2Þ symmetry.
The purely gravitational theories that result upon gauging of
Φ to a constant ought to be compared with those obtained in
[26] based on squares of higher curvature Weyl tensors.
It is worthwhile to stress that although the 2n-dimen-

sional theory, after compactification, is purely metric,
actually it is not possible to translate the original
(gauge-fixed) Chern-Simons theory into a purely metric
2nþ 1 Lovelock theory. In 2nþ 1 dimensions, in addition
to the translation from vielbein into metric, it is necessary
to introduce a non-Levi-Civita connection as the ansatz
itself defines a nonzero torsion in 2nþ 1 dimensions.
Another open issue concerns the possibility to imple-

ment different traces, i.e., different invariant tensors, and
the question of whether these exhaust the list of type-B
trace anomalies in the given even dimension. This would
require the bystander field Φ to be gauged to a constant;
however, we notice that a kinetic term for this field would
demand a (conformally invariant) differential operator of

order equal to the dimensionality of the spacetime and the
action would look as a higher-dimensional version of the
(local) Riegert’s action [27]. We also notice similarities
with the approach in [28], although our tractorlike gauging
eventually leads to Weyl rather than Einstein gravity.
In all, the formulation of conformal gravities as CS

theories may have some interesting consequences and open
up an alternative route to address unitarity and quantization
aspects of gravitational theories. In principle, the methods
presented here could also be extended to any group
containing AdS as a subgroup; one could contemplate
the possibility for supersymmetric [29,30] and/or higher-
spin formulations.
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APPENDIX A: ADS AND CONFORMAL
ALGEBRAS

Here we make explicit the connection between the AdSd
group and the conformal group in ðd − 1Þ dimensions for
reference (see, e.g., [31]). On one hand the algebra of AdSd
is given by

½JAB; JCD� ¼ −δEFABδGHCDηEGJFH; (A1)

with A;B ¼ 0…d, and on the other hand, the conformal
algebra is

½Mij;Mkl�¼−δmn
ij δopkl ηmoMnp;½Mij;Pk�¼−ðηikPj−ηjkPiÞ;

½D;Pi�¼Pi;½Mij;Kk�¼−ðηikKj−ηjkKiÞ;
½D;Ki�¼−Ki; ½Pi;Kj�¼2Mijþ2ηijD; ½D;Mij�¼0;

(A2)

with i; j ¼ 0…d − 2. It is direct to observe that both sets
map into each other throughout

Jij ¼ Mij; Jid−1 ¼
1

2
ðPi þ KiÞ;

Jd−1d ¼ D; Jid ¼
1

2
ðPi − KiÞ: (A3)

APPENDIX B: TRACTOR CALCULUS

For completeness, we briefly summarize here the main
ingredients of the tractor formalism developed in conformal
geometry, and refer to [16,17] for more details. In con-
formal geometry, the metric g on a given manifold M is
specified up to a local Weyl rescaling g ↦ Ω2g. For a
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representative g, the vielbein, the Levi-Civita connection,
and the Schouten tensor can be arranged into a tractor
connection Aμ

0
B@

0 −eμj 0

eμi ωμ
ij ρμ

i

0 −ρμj 0

1
CA.

Under a Weyl transformation it transforms accordingly,
Aμ ↦ U∂μU−1 þ UAμU−1, with the SOðd; 2Þ-valued
matrix U given by

0
B@

Ω 0 0

ϒi δij 0

− 1
2
Ω−1ϒkϒk −Ω−1ϒj Ω−1

1
CA.

The SOðd; 2Þ indices are lowered with the metric

0
B@

0 0 1

0 ηij 0

1 0 0

1
CA;

which is parallel with respect to the covariant derivative
Dμ ¼ ∂μ þ Aμ. The nontrivial components of the corre-
sponding tractor curvature Fμν ¼ ½Dμ; Dν�

0
B@

0 0 0

0 Wμν
ij Cμν

i

0 −Cμν
j 0

1
CA

are expressed in terms of the Weyl and the Cotton tensors.
Now, these operators act on the tractor bundle over the

manifold, which is a conformally invariant extension of the

tangent bundle. A weighted vector tractor, of weight w, is
built out of a vector Ti and two functions Tþ; T−, arranged
in a row, so that under Weyl rescaling it transforms as

TA ↦ ΩwUA
BT

B: (B1)

Finally, the gradient and the Laplacian are unified in the
Thomas D-operator DA that acts on weighted tractors
yielding tractors

DA ≔

0
B@

wðdþ 2w − 2Þ
ðdþ 2w − 2Þ∇i

−Δ − wJ

1
CA; (B2)

where J stands for the trace of the Schouten tensor.
These are essentially the building blocks of tractor

calculus, the conformal analog of tensor calculus in
Riemannian geometry where now conformal invariance
is intrinsically built in. Tractor calculus is an efficient
computational tool in conformal geometry, as an illustra-
tion, let us describe a conformally coupled scalar field in
tractor formalism: given a scalar φ of weight w and an
auxiliary scalar σ (a constant scale) of weight one, the Weyl
invariance of the following action can be verified by simple
inspection:

Z
Md

ffiffiffiffiffiffi
−g

p
σ1−d−2wφðDAσÞðDAφÞ: (B3)

The Weyl weight w of the scalar field φ controls its mass;
for the particular value w ¼ 1 − d=2 the scale σ decouples
and one ends up with the action for the conformally
invariant scalar.
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