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We show the existence of physical superluminal modes and acausality in the Brans-Dicke type of
extension of teleparallel gravity that includes FðTÞ gravity and teleparallel dark energy as special cases. We
derive the characteristic hypersurface for the extra degrees of freedom in the theory, thereby showing that
the time evolution is not unique and closed causal curves can appear. Furthermore, we present a concrete
disastrous solution in Bianchi type I spacetime, in which the anisotropy in expansion can be any function of
time, and thus anisotropy can emerge suddenly, a simple demonstration that the theory is physically
problematic.
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I. INTRODUCTION

Teleparallelism (or “Fernparallelismus”) was proposed
by Einstein [1,2] to unify gravitation and electromagnetism.
Unlike general relativity (GR), which employs the Levi-
Civita connection, a spacetime in teleparallelism is
equipped with the Weitzenböck connection [3,4], which
gives zero curvature but nonvanishing torsion. Due to the
zero-curvature of the connection, the parallel transport of a
vector is independent of path. Indeed, teleparallel means
“parallel at a distance.” Despite Einstein’s earlier failure to
formulate the unified theory, the idea of teleparallelism
survived as a pure theory of gravity. It turns out that
Einstein’s GR can be reformulated with teleparallelism,
called teleparallel equivalent of general relativity (TEGR)
[5–9]. Despite such equivalence, teleparallelism gives a
different perspective: Teleparallel gravity can be regarded
as a gauge theory of gravity; in addition, it has an advantage
in describing gravitational (quasilocal) energy [10–18].
To explain the observed cosmic acceleration of the

present universe [19,20], a variety of modified theories
of gravity have been proposed, and TEGR has also been
generalized in several ways analogous to the generaliza-
tions of GR. Although TEGR and GR are equivalent, their
generalizations are not. For example, FðTÞ gravity [21,22]
replaces in the action the linear function of the torsion
scalar T with a general function, analogous to the approach
of FðRÞ gravity, while the Brans-Dicke type of extension
introduces a scalar field ϕ nonminimally coupled to the
torsion scalar, analogous to the scalar-tensor theory [23].
Such a Brans-Dicke type of theory dubbed “teleparallel dark
energy” has been proposed [24,25], and the Friedmann-
Lemaître-Robertson-Walker (FLRW) cosmology in this

theory widely studied (e.g., see [26,27] and references
therein).
Like all other new theories, it is crucial to check whether

these generalized theories of teleparallel gravity are healthy.
That is, we should investigate the behavior of the physical
degrees of freedom (DoFs) therein and check if the theory
is free of ghost, tachyonic behavior, and instabilities,
among other potential problems. (Note that “degrees of
freedom” referred in the present paper are not necessarily
physical unless specified explicitly.) A generic theory of
teleparallel gravity constructed of tetrad vectors has more
DoFs than a metric theory like GR. In TEGR, the extra
DoFs turn out to be inactive and do not change the physics
of GR, mainly due to the local Lorentz symmetry.
Nevertheless, in generalized theories of teleparallel gravity,
the gravity action is generically noninvariant under local
Lorentz transformation [28]. This lack of symmetry may
activate the extra DoFs, making them dynamical, physical,
and even out of control. The Dirac constraint analysis by Li
et al. [29] showed that FðTÞ gravity has three extra DoFs.
In a careful second-order linear analysis, the extra DoFs
were shown to disappear on the FLRW background [30].1

One therefore needs to go beyond linear analysis to
examine the behavior of the extra DoFs.
Nonlinear analysis of FðTÞ gravity has been performed

in [31]. This work established the existence of superluminal
(in fact, infinite speed) propagation by using the method of
characteristics [32], a solid method widely used to analyze
causal structure in gravity theories, including GR.
Moreover, specifically in a FLRW universe, the authors
have shown the nonuniqueness of time evolution from the
initial conditions prescribed on a constant-time hypersur-
face. In particular, they presented an exact solution of FðTÞ
gravity where one of the DoFs can be any function of time:
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1The disappearance of the extra DoFs on the Minkowski
background has been pointed out in [29].

PHYSICAL REVIEW D 89, 084025 (2014)

1550-7998=2014=89(8)=084025(9) 084025-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.084025
http://dx.doi.org/10.1103/PhysRevD.89.084025
http://dx.doi.org/10.1103/PhysRevD.89.084025
http://dx.doi.org/10.1103/PhysRevD.89.084025


e0μdxμ ¼ cosh θðtÞdtþ aðtÞ sinh θðtÞdx;
e1μdxμ ¼ sinh θðtÞdtþ aðtÞ cosh θðtÞdx;
e2μdxμ ¼ aðtÞdy;
e3μdxμ ¼ aðtÞdz; (1)

where aðtÞ is the scale factor of the FLRW metric and θðtÞ
the extra DoF which can become out of control. For
example, we can freely choose the form of the function
θðtÞ such that θðtÞ ¼ 0 for t < 0 and θðtÞ ≠ 0 for t > 0,
thereby having a universe where torsion can suddenly
emerge seemingly from nothingness on the spacelike
hypersurface at time t ¼ 0.
Although it has been explained in [31] that the extra

DoFs with such illness are not gauge DoFs and therefore
potentially physical, it is not made explicit whether this
illness truly infects the physical world, i.e., affecting the
physical quantities such as the Hubble expansion rate. To
fully establish the illness of the theory, we need to check
whether the extra DoFs are truly physical, i.e., coupled to
the known physical fields such as metric and those in the
Standard Model of particle physics, either directly or
indirectly. If ill-behaved DoFs are completely decoupled
from the physical ones, they simply dwell in their own
world and make no harm to our physical world.
The extra DoFs in teleparallel gravity correspond to the

freedom to have different tetrads which give the same
metric. In a generic teleparallel theory there can be more
than one tetrad that solves the field equations, and due to
the lack of local Lorentz symmetry, these tetrads are
considered distinct if they are not related by a global
Lorentz transformation. That is, a generic teleparallel
theory is a theory of preferred frame. A good teleparallel
theory should not admit more than one such global frame
that parallelizes the spacetime. From this viewpoint the
explicit solution given above casts doubt on the validity of
the teleparallel theory. However, it is not clear how to
experimentally distinguish the tetrads that correspond to the
same metric. Thus, one reasonably wonders if the acausal2

DoFs are actually decoupled from the physical DoFs and
therefore will neither change physics nor violate causality
of the physical world.
This motivates the present work. We show that the

problem is indeed physical; i.e., the ill-behaved extra DoF
does couple to the metric DoFs and therefore is clearly
physical. Beyond FðTÞ gravity, we extend our analysis to a
broader class of teleparallel theory, namely the Brans-Dicke
theory that includes FðTÞ gravity and teleparallel dark
energy as special cases.
The organization of this paper is as follows. In Sec. II, we

review the teleparallel formulation of gravity and TEGR.

We then introduce two generalized theories of teleparallel
gravity, namely FðTÞ gravity and the Brans-Dicke type of
extension, and show that the former is a special case of the
latter. In Sec. III, we analyze the equation of motion (EoM)
for a general tetrad in the Brans-Dicke theory of teleparallel
gravity and derive the characteristic hypersurface for the
extra DoFs. We find that the constant-ϕ hypersurfaces are
always characteristic hypersurfaces. In Sec. IV, we consider
a simple case with the Bianchi type I metric for the
demonstration of the acausality in teleparallel gravity.
We present the nonuniqueness of time evolution in the
gauge-invariant metric components, thereby showing that
the acausal modes are truly physical. Finally, we summa-
rize with discussion in Sec. V.
We use the following notation for indices. The Greek

letters fμ; ν; � � �g are the indices for four-dimensional
spacetime [i.e. ðt; x; y; zÞ], while fi; j; � � �g are the indices
for three-dimensional space [i.e. ðx; y; zÞ]. For ðx; yÞ
direction, we use fp; q; � � �g. The Latin letters
fA; B; � � �g label tetrad vectors and run from 0 to 3, while
fI; J; � � �g run from 1 to 3. We use the signature con-
vention ð−;þ;þ;þÞ.

II. TELEPARALLEL GRAVITY

In teleparallel gravity, the fundamental dynamical var-
iables of gravity are tetrad vectors eAμ. The metric and the
metric-compatible Weitzenböck connection invoked
therein are constructed from the tetrad vectors as

gμν ¼ ηABeAμeBν; (2)

Γλ
μν ¼ eAλ∂νeAμ ¼ −eAμ∂νeAλ: (3)

The Weitzenböck connection always gives zero curvature
but can give nonzero torsion. The antisymmetric part of the
connection gives the torsion tensor, from which the
gravitational action will be constructed:

Tλ
μν ≔ Γλ

νμ − Γλ
μν ¼ eAλ∂μeAν − eAλ∂νeAμ: (4)

The difference between the Weitzenböck connection and
the Levi-Civita connection is given by the contortion tensor

Kμν
ρ ≔ −

1

2
ðTμν

ρ − Tνμ
ρ − Tρ

μνÞ: (5)

One can construct the teleparallel gravity equivalent to
GR [5–9] with the gravity action (in the unit c ¼ 1)

S ¼ −
1

2κ

Z
d4xjejT; κ ¼ 8πG; (6)

where e ¼ detðeAμÞ and the torsion scalar T is constructed
from the torsion and contortion tensors as

2Acausality is a stronger statement than superluminality; we
explain why there is indeed acausality in the theory in the
discussion.
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T ≔ SρμνTρ
μν; (7)

where

Sρμν ≔
1

2
ðKμν

ρ þ δμρTλν
λ − δνρTλμ

λÞ: (8)

Motivated by the discovery of the accelerated expansion
of the present universe, recently TEGR has been general-
ized in the same spirit as the generalizations of GR. In the
present paper we consider two generalized theories of
teleparallel gravity, namely FðTÞ gravity and the Brans-
Dicke type of extension, with the following actions,
respectively:

SFT ¼ −
1

2κ

Z
d4xjejFðTÞ; (9)

SBD¼−
1

2κ

Z
d4xjej½fðϕÞT−αð∂μϕÞð∂μϕÞ−VðϕÞ�; (10)

where FðTÞ is an arbitrary function of the torsion scalar,
fðϕÞ and VðϕÞ arbitrary functions of the scalar field ϕ,
and α a constant. Despite the same spirit, these general-
izations of TEGR give different dynamics from their
modified GR counterparts. The difference in dynamics
stems from the difference between the torsion scalar and the
Ricci scalar:

R
L ¼ −T − 2∇μ

L
Tν

μν; (11)

where R
L
and ∇μ

L
are, respectively, the Ricci scalar and the

covariant derivative corresponding to the Levi-Civita con-
nection. The difference is a divergence term that gives no
effect on the dynamics in GR and TEGR. However, this
divergence term does make a difference in the generalized
theories.
We claim that the teleparallel theory with action SFT

is actually a special case of SBD. The action SFT can be
recast into a different form by introducing auxiliary fields ψ
and ϕ:

SFT ¼ −
1

2κ

Z
d4xjej½FðϕÞ − ψðϕ − TÞ�: (12)

The EoM from the variation with respect to ψ requires
ϕ ¼ T, which, upon substitution into the action, reduces
the recast action back to the original one in Eq. (9). In
addition, the variation with respect to ϕ gives a constraint
equation:

ψ ¼ dF
dϕ

; (13)

with which the action in Eq. (12) can be rewritten as

SFT ¼ −
1

2κ

Z
d4xjej

�
dF
dϕ

T −
�
ϕ
dF
dϕ

− F

��
: (14)

This action is explicitly a special case of SBD, with α ¼ 0,
fðϕÞ ¼ dF=dϕ and VðϕÞ ¼ ϕðdF=dϕÞ − F. In addition,
SBD clearly includes teleparallel dark energy [24,25], in
which the action is

STDE¼−
Z

d4xjej
�
T
2κ

þ1

2
ξTϕ2−

1

2
ð∂μϕÞð∂μϕÞ−VðϕÞ

�
:

(15)

Therefore, the Brans-Dicke type of extension indeed gives
a more general theory of teleparallel gravity that includes
both FðTÞ gravity and teleparallel dark energy.

III. GENERAL ANALYSIS

We now analyze the more general action SBD of tele-
parallel gravity, together with a matter action Sm that
represents the gravitational source,3 which is, unlike
SBD, assumed to be invariant under local Lorentz trans-
formation. The variation of the action with respect to the
tetrad eAν gives one of the EoMs that, after contracted with
κeAμ=ð2jejÞ, reads

Gμν ≔ ð∂λfÞSμλν þ f
1

e
∂λðeSμλνÞ − fTλρ

μSλνρ

−
α

2
ð∂μϕÞð∂νϕÞ − 1

4
gμν½fðϕÞT − αð∂λϕÞð∂λϕÞ

− VðϕÞ� − κ

2
T μν ¼ 0; (16)

where the matter contribution is

jejT μν ≔ −eAμ
δSm
δeAν

: (17)

The other EoM is given by the variation with respect to ϕ,
which reads

Φ ≔ 2α∇μ
L ∇μ

L
ϕþ f0ðϕÞT − V0ðϕÞ ¼ 0: (18)

To separate the extra DoFs from the ordinary ones
associated with the metric, we decompose the 16 DoFs
of a general tetrad eAμ into six DoFs of local Lorentz
rotation ΛA

B and the remaining ten in a more restricted
tetrad ~eAμ:

eAμ ¼ ΛA
B ~eBμ: (19)

Here, 16 components of tetrad ~eAμ are fixed by any six
constraints that leave ten DoFs of metric in tetrad ~eAμ.
Symmetrization of tetrad ~eBμ is one of the choices, with the

3The existence of the gravitational source does not change the
discussion in Sec. II.
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understanding that the indices B and μ are actually
associated with different kinds of spaces.
The metric is independent of local Lorentz rotation

ΛA
B and is therefore fully determined by the restricted

tetrad ~eAμ, i.e.,

gμν ¼ ηABeAμeBν ¼ ηAB ~eAμ ~eBν: (20)

Thus, ~eAμ contains all information of the metric with the
accordant number of DoFs. Some of the DoFs are not
physical, and the DoF number can be reduced via a gauge
choice. We consider a spacetime region where ϕ has no
minimum and its gradient is timelike4 and take the uniform-
ϕ gauge where ϕ ¼ ϕðtÞ. Under this gauge one can write
~eAμ in a simpler form, with a suitable choice of ΛA

B, as
follows5:

~eBμ ¼
�
N 0

0 ~eIi

�
; (21)

where N plays the role of the lapse function.
In the following, we analyze the dynamics of the extra

DoFs that are contained in the local Lorentz rotation ΛA
B.

Their dynamics are determined by the EoMs (16)–(18),
where ΛA

B is involved through Tμ
νλ and Sμνλ. To single out

the extra DoFs, we decompose Tμ
νλ and Sμνλ by separating

the parts which depend on ΛA
B from those which do not:

Tμ
νλ ¼ ~Tμ

νλ þ ΔTμ
νλ; (22)

Sμνλ ¼ ~Sμνλ þ ΔSμνλ; (23)

where the Λ-dependent parts read explicitly

ΔTμ
νλ ≔ ~eBμ ~eCλΛA

B∂νΛA
C − ~eBμ ~eCνΛA

B∂λΛA
C; (24)

ΔSμνλ ≔
1

4
ΛA

B∂μΛA
Cð~eBν ~eCλ − ~eBλ ~eCνÞ

−
1

2
ΛA

B∂ρΛA
Cðgμν ~eBρ ~eCλ − gμλ ~eBρ ~eCνÞ; (25)

while the Λ-independent parts ~Tμ
νλ and ~Sμνλ are constructed

from ~eAμ under Eqs. (4) and (8), respectively. The explicit
components of ~Tμ

νλ and ~Sμνλ are listed in Appendix A.
Using the relation between the Weitzenböck connection

and the Levi-Civita connection, we can rewrite Eq. (16) as

ð∂ρfÞSμρν þ
1

2
fGμν −

α

2
ð∂μϕÞð∂νϕÞ þ 1

4
gμν½αð∂ρϕÞð∂ρϕÞ

þ V� − κ

2
T μν ¼ 0; (26)

where Gμν is the Einstein tensor based on the Levi-Civita
connection. (For the detailed relation between the
Weitzenböck connection and the Levi-Civita connection,
see Sec. 4 of [6].) Only the first term on the left-hand side
depends on the local Lorentz rotation ΛA

B while the other
terms are invariant under the local Lorentz transformation.
Consequently, the extra DoFs appear in the EoM (16) only
through δSμνλ, the components of which read

ΔStti ¼
N2

2
ΛA

Ið∂kΛA
JÞ~eJi ~eIk; (27)

ΔStij ¼
1

4
ΛA

Ið∂tΛA
JÞð~eIi ~eJj − ~eIj ~eJiÞ; (28)

ΔSitj ¼ −
N
2
ΛA

0ð∂iΛA
IÞ~eIj þ

N
2
ΛA

Ið∂kΛA
0Þgij ~eIk; (29)

ΔSijk ¼ −
1

2N
ΛA

0ð∂tΛA
IÞðgij ~eIk − gik ~eIjÞ

þ 1

4
ΛA

Ið∂iΛA
JÞð~eIj ~eJk − ~eIk ~eJjÞ

−
1

2
ΛA

Ið∂lΛA
JÞðgij ~eIl ~eJk − gik ~eIl ~eJjÞ: (30)

Under the uniform-ϕ gauge, fðϕÞ depends only on time.
Therefore, the first term in the EoM (26) becomes ð∂tfÞSμtν,
and only the terms in Eqs. (27) and (29) need to be
considered. Note that δStti and δSitj do not involve the time
derivative ofΛA

B. As a result, the constant-ϕ hypersurface is
always the characteristic hypersurface for ΛA

B, implying
that it is a Cauchy horizon for the extra DoFs. That is,
regarding the variation of the extra DoFs in spacetime, the
variation across the constant-ϕ hypersurface (i.e., the time
evolution) cannot be uniquely determined by the EoMswith
initial conditions, while the variation along the directions on
the characteristic hypersurface can be determined by the
EoMs with boundary conditions. Such variation on the
hypersurface can be interpreted as a spacelike (therefore
superluminal) propagation of the extra DoFs, a pathological
type of behavior. (We refer the readers to Appendix B for a
quick introduction to the method of characteristics. For
further reading, see e.g. [32–34] and more recently [35].)
In TEGR, where fðϕÞ is constant, the first term on the

left-hand side of Eq. (26) is algebraically zero. The
equation then becomes a local Lorentz invariant as
expected. In other words, the DoFs associated with the
breaking of local Lorentz invariance become gauge modes,
and thus, the pathology in the extended theories which
arises from these extra DoFs does not arise in TEGR. In
contrast, FðTÞ gravity with nonconstant dF=dT is plagued
by the same pathology as that in the Brans-Dicke type of
extension. This can be seen by setting α ¼ 0 in Eq. (26)
since FðTÞ gravity is a special case with α ¼ 0, fðϕÞ ¼
dF=dϕ and VðϕÞ ¼ ϕðdF=dϕÞ − F, as stated below
[Eq. (14)]. In this case the first term on the left-hand side
of Eq. (26), i.e., the carrier of the pathology, remains.

4In almost all cosmological models in generalized teleparallel
theories, these conditions are satisfied.

5In the uniform density gauge, both the metric and ~eAμ have
seven DoFs.
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We emphasize the difference between the lack of kinetic
terms in a constraint equation and the disappearance of a
kinetic term on a characteristic hypersurface. The equations
which, on all spacelike hypersurfaces, do not have a kinetic
term are constraint equations, e.g., the Hamiltonian and
momentum constraint equations in GR. The constraint
equations render DoFs of propagation to be reduced. On
the other hand, a hypersurface Σ is characteristic if a kinetic
term disappears only on Σ. That is, on generic hyper-
surfaces, the kinetic term shows up. Here, only when we
choose the coordinate satisfying ϕ ¼ ϕðtÞ to fix the time-
constant hypersurface do the kinetic terms of ΛA

B dis-
appear. It exactly means that the time-constant hypersurface
is characteristic. On the characteristic, the modes related to
the disappearance of the kinetic terms must propagate (for
the detailed discussion, see [32]).

IV. NONUNIQUENESS OF TIME EVOLUTION:
A CONCRETE EXAMPLE

In the previous section we have shown the existence of
the characteristic hypersurface, i.e., the constant-ϕ hyper-
surface, for local Lorentz rotation ΛA

B that carries the extra
DoFs. The time evolution of the extra DoFs is therefore
nonunique, an illness of the theory. Nevertheless, in view of
the discussion in Sec. I, if this illness does not affect
physical quantities such as the metric, one might argue that
it is not physical and can be ignored. In this section we
consider a simple case6 with the Bianchi type I metric and
demonstrate such illness in the physical quantities, par-
ticularly in the gauge-invariant metric components.
Recall that the Bianchi type I metric

gμν ¼ diagð−1; b2; b2; a2Þ (31)

describes a homogeneous but anisotropic spacetime. It can
be obtained from the tetrad with the ansatz:

~e0t ¼ 1; ~e3z ¼ aðtÞ; ~e1x ¼ ~e2y ¼ bðtÞ; (32)

while all other components vanish.
For demonstration we consider a simple, special ansatz

for Lorentz rotation ΛA
B:

Λ0
0 ¼ Λ3

3 ¼ cosh ðaðtÞθðtÞzÞ;
Λ3

0 ¼ Λ0
3 ¼ sinh ðaðtÞθðtÞzÞ; Λ1

1 ¼ Λ2
2 ¼ 1; (33)

while all other components vanish. In EoMs the Lorentz
DoFs always appear in the form of ΛA

B∂iΛA
C. Under

the ansatz (33), ΛA
B∂iΛA

C can be nonzero only for

ðB;C; iÞ ¼ ð0; 3; zÞ and ð3; 0; zÞ, both of which give
−aðtÞθðtÞ. Therefore, the ansatz (33) is consistent with
the homogeneous ansatz for the metric. The energy-
momentum tensor in this case has a diagonal form,

T μν ¼ diagðρðtÞ; b2PðtÞ; b2PðtÞ; a2PzðtÞÞ; (34)

and satisfies the local conservation law, ∇μ
L
T μν ¼ 0.

The nontrivial components of EoMs in this case are as
follows:

Gtt ¼−
1

2
fHbð2HaþHbÞ−

α

4
ð∂tϕÞ2−

1

4
V−

κ

2
ρ¼ 0; (35)

a−2Gzz ¼ f∂tHb þ
3

2
fH2

b þ ð∂tfÞHb −
α

4
ð∂tϕÞ2

þ 1

4
V −

κ

2
Pz ¼ 0; (36)

Gpq ¼
1

2
gpq½f∂tHa þ f∂tHb þ fH2

a þ fHaHb

þ fH2
b þ ð∂tfÞHa þ ð∂tfÞHb þ θ∂tf −

α

2
ð∂tϕÞ2

þ 1

2
V − κP� ¼ 0; (37)

Φ ¼ f0ð4HaHb þ 2Hb þ 4θHbÞ þ 2α½∂2
tϕ

þ ðHa þ 2HbÞ∂tϕ� − V 0 ¼ 0; (38)

where

Ha ≔
∂ta
a

and Hb ≔
∂tb
b

; (39)

i.e., the expansion rates in z and ðx; yÞ directions, respec-
tively. Here seem to be four EoMs for four DoFs, including
three ordinary DoFs, namely a, b and ϕ, and one extra DoF,
θ. However, Eqs. (35)–(38) are not independent because of
the diffeomorphism invariance of the action. This invari-
ance gives an identity:

∇μ
L
Gμν þ

1

4
ð∂νϕÞΦ ¼ 0: (40)

With the ansatz (32) and (33), only the ν ¼ t component
gives a nontrivial identity, i.e., a relation among
Eqs. (35)–(38). As a result, only three of the EoMs are
independent, one less than the DoFs. Therefore, there is one
DoF whose dynamics cannot be determined by EoMs.
In the following we concretely specify such uncontrolled

DoF and present an illness in the solution. We introduce
two physical variables:

h ¼ ðHa −HbÞ=3 and H ¼ ðHa þ 2HbÞ=3; (41)

characterizing the anisotropy and the average in expansion,
respectively. In a FLRW universe, h is zero, and H

6A simpler case is the FLRW metric (homogeneous and
isotropic) that is included in the Bianchi type I metric. However,
in this case, the local Lorentz DoFs do not appear in the EoMs,
and therefore, it is not clear how the pathological features could
be physical.
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coincides with the Hubble expansion rate. In terms of h and
H, we write three independent EoMs as

Gtt ¼
3

2
ðH − hÞðH þ hÞ − α

4
ð∂tϕÞ2 −

1

4
V −

κ

2
ρ ¼ 0; (42)

−2a−2Gzz þ gpqGpq ¼ 3ð∂thÞf þ 9Hhf þ 3hð∂tϕÞf0
þ θð∂tϕÞf0 þ κðPz − PÞ ¼ 0; (43)

Φ ¼ f0ð6ðH − hÞðH þ hÞ þ 4θðH − hÞÞ þ 2αð∂2
tϕ

þ 3H∂tϕÞ − V 0 ¼ 0: (44)

Solving Eqs. (42) and (43) as the algebraic equations of H
and θ and substituting the solution into Eq. (44), we obtain
an equation for ϕ and h with the sources ρ, Pz and P from
matter. One can treat this equation as a nonlinear equation
for ϕ and treat h as an additional source and then solve this
EoM of ϕ with any h. That is, h is arbitrary and cannot be
determined by the EoMs even with a complete set of initial
conditions. For instance, one can construct a solution in
which a FLRW universe suddenly decays into an aniso-
tropic universe or vice versa. Thus, the time evolution of the
physical DoFs in the generalized theory (10) of teleparallel
gravity is not unique. This remains true in FðTÞ gravity,
i.e., when α ¼ 0.
In contrast, the pathology does not appear in TEGR,

where f0 ¼ 0. In this case, the extra DoF, θ, as always
accompanied by the derivative of f, does not appear in the
EoMs (42)–(44). We accordingly have three well-behaved
equations for three variables (h, H and ϕ), and therefore,
the time evolution is unique. Note that θ is related to the
choice of tetrad, which is a gauge mode in TEGR.

V. SUMMARY AND DISCUSSION

We have investigated the (in)consistency of the Brans-
Dicke type of extension of teleparallel gravity that includes
both FðTÞ gravity and teleparallel dark energy as special
cases. We established the nonuniqueness of time evolution
by finding the characteristic hypersurface for the extra DoFs
that are additional to the ordinary DoFs associated with the
metric. We further demonstrated a concrete example of such
illness for a physical DoF in Bianchi type I spacetime.
In the general analysis, we attribute the extra DoFs to

local Lorentz rotation so as to separate them from the
ordinary metric DoFs and utilize the constant-ϕ gauge as
well as the orthonomal coordinate (21). We then show the
absence of the time derivative of local Lorentz rotation in
the the field equations. Note that, as we commented at the
end of Sec. III, such an equation should not be mistaken for
a constraint equation. Instead, it implies that the constant-ϕ
hypersurface is the characteristic hypersurface on which the
propagation of the extra DoFs can occur. The speed of
propagation can be infinite, a disaster from the viewpoint of
causality. The infinite speed of propagation renders the time

evolution from the hypersurface nonunique, and therefore,
the theory has no predictability.
We have further demonstrated that the disastrous propa-

gation can truly appear in physical quantities. In Bianchi
type I spacetime, we find that the anisotropy in expansion
can be an arbitrary function of time but not determined by
the EoMs even with a complete set of initial conditions.
This implies that the time evolution is not unique from any
constant-time hypersurface and that there can be strange
solutions where, for instance, a FLRW universe suddenly
decays into an anisotropic universe or the other way
around. Since the anisotropy is physical, this disaster from
the infinite-speed propagation is truly physical.
The undetermined function can be fixed by introducing

boundary conditions on a timelike hypersurface. This pro-
cedure is familiar in the context of an anti-de Sitter space,
which is not globally hyperbolic and a boundary condition
(usually a reflective one) needs to be imposed.7 Nevertheless,
the imposition of boundary conditions does not completely
save the theory from the disastrous failure of lacking
predictability. The necessity of both the initial conditions
on the spacelike hypersurface and the boundary conditions
on the timelike hypersurface means that the information on
the future boundary is required in order to solve the
dynamics. As in the case of an anti-de Sitter space, one
may understand this as the theory being defined with the
boundary condition at spatial infinity. However, even if so, in
order to figure out the development of the local universe
within the Hubble horizon, one must solve all of the
dynamics in the entire spatial slice, including those outside
the horizon. It is certainly not desirable that one has to know
what is happening at infinity in order to just calculate the
orbital motion of an asteroid in the Solar System, for
example.
Another problem is the existence of infinite-speed propa-

gation. These modes can propagate in any direction on the
constant-ϕ hypersurface. Therefore, any curve, including
closed curves, on the constant-ϕ hypersurface can be causal.
In other words, closed causal curves abound in the theory
and can be constructed much easier than in GR, much like
they do in nonlinear massive gravity [34,36]. Moreover, the
closed causal curves can be infinitesimal, i.e., local objects,
which are much more disastrous than the closed global
timelike curves appearing in GR solutions such as the Gödel
solution. As a result, the theory admits local acausality. Note
that acausality is a stronger statement than superluminality.
The latter simply means that the speed of light is not the
upper bound for information propagation, which by itself
needs not be problematic [37–39]. By contrast, acausality is
indeed unacceptable.

7The problem for teleparallel theories investigated here is more
serious in the sense that in an anti-de Sitter space one still has the
well-posed Cauchy problem at least locally, but in our case, as
already explained in [31], even locally the time evolution into an
infinitesimal future cannot be uniquely determined.
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A problem may appear in the quantization of the theory
where the time derivatives of the extra DoFs are absent. The
vanishing of the kinetic term always results in a strong
coupling problem [40]. With strong coupling the perturba-
tive method in quantization cannot work, and the theory is
out of control. In fact, the validity of the classical solutions
is also in trouble. Classical solutions are valid in the regime
of the effective theory below an energy cutoff that,
however, goes to zero when the kinetic term vanishes.
Thus, the classical dynamics described by the action with
vanishing kinetic terms is no longer reliable.
We now comment on the validity of the assumption that

matter fields obey local Lorentz symmetry. For a matter
action which is not invariant under local Lorentz rotation
ΛA

B and can accordingly involve the derivatives of ΛA
B, the

coupling between matter and the derivatives of ΛA
B should

be very weak, as required by the stringent bounds from the
experimental tests of the local Lorentz symmetry. This
extremely weak coupling, even if it exists, might simply
change the position of the characteristic hypersurface a little
bit but not drastically, and the existence of closed causal
curves and other problematic features should still persist.
All of the disasters we discussed seem to stem from the

extra DoFs which are activated by the breaking of the local
Lorentz symmetry.8 If the extra DoFs can be removed or
excited in gentler ways so as to cause no problem, the theory
may still be rescuable. It might therefore be desirable to
generalize teleparallel gravity in a way that does not involve
extra DoFs. This gives a guideline for constructing a healthy
generalized theory of teleparallel gravity.
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APPENDIX A: SOME TENSOR COMPONENTS

The components of ~Tμ
νλ, ~Sμνλ and other relevant quan-

tities (under the uniform-ϕ gauge) are as follows:

~Tt
ti ¼ −∂iðlogNÞ; (A1)

~Tt
ij ¼ 0; (A2)

~Ti
tj ¼ ~eIi∂t ~eIj; (A3)

~Ti
jk ¼ T̄i

jk: (A4)

~Tt ≔ ~Tμ
tμ ¼ ~eIi∂t ~eIj; (A5)

~Ti ≔ ~Tμ
iμ ¼ ∂iðlogNÞ þ T̄i; (A6)

~Stti ¼ −
N2

2
T̄i; (A7)

~Stij ¼
1

4
ð~eIi∂t ~eIj − ~eIj∂t ~eIiÞ; (A8)

~Sitj ¼
1

4
ð~eIi∂t ~eIj þ ~eIj∂t ~eIiÞ −

1

2
gij ~eIk∂t ~eIk; (A9)

~Sijk ¼ S̄ijk þ
1

2
gijð∂k logNÞ − 1

2
gikð∂j logNÞ; (A10)

where

T̄i
jk ≔ ~eIi∂j ~eIk − ~eIi∂k ~eIj; (A11)

T̄i ≔ T̄j
ij; (A12)

S̄ijk ≔−
1

4
T̄jkiþ

1

4
T̄kjiþ

1

4
T̄ijkþ

1

2
gijT̄k−

1

2
gikT̄j: (A13)

APPENDIX B: METHOD OF
CHARACTERISTICS

Consider a quasilinear Nth-order differential equation
representing the EoM for a physical system:

aμ1μ2���μNN ∂μ1∂μ2 � � � ∂μNϕþ Fðϕ; ∂μϕ; � � � ; ∂μ1∂μ2 � � � ∂μN−1
ϕÞ

¼ 0; (B1)

where the first term is linear with the Nth-order derivative
of ϕ, and aμ1μ2���μNN and F are functions of ϕ and its
derivatives up to the ðN − 1Þth order. This equation can
be decomposed as

att���tN ∂N
t ϕþ fð∂N−1

t ϕ; ∂N−2
t ϕ; � � � ; ∂N−1

t ∂iϕ; � � � ;ϕÞ ¼ 0;

(B2)

where the Nth-order time derivative is singled out and put
in the first term, while the others are represented by the
function f.
Consider the time evolution from an initial spacelike

hypersurface at some time t ¼ t0. That is, we start with
values of the fields fϕ; ∂tϕ; � � � ; ∂N−1

t ϕg at t ¼ t0 and use
the EoM to determine ð∂N

t ϕÞðt0Þ so that we can in turn
determine ð∂n−1

t ϕÞðt0 þ ΔtÞ for n ¼ N;N − 1; � � � ; 1 in the
infinitesimal future via

8This of course does not mean that preserving local Lorentz
symmetry will necessarily lead to the absence of extra DoFs.
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ð∂n−1
t ϕÞðt0 þ ΔtÞ ¼ ð∂n−1

t ϕÞðt0Þ þ ð∂n
t ϕÞðt0Þ · Δt: (B3)

If att���t ¼ 0 at t0, the EoM becomes singular, and ∂N
t ϕðt0Þ

can have any value. Time evolution thus becomes
nonunique.
More generally, consider a spacelike hypersurface Σwith

a timelike normal vector ξμ. If ξμ satisfies

aμ1μ2���μNN ξμ1ξμ2 � � � ξμN ¼ 0; (B4)

the hypersurface Σ is called the characteristic hypersurface
and ξμ the characteristic direction. Time evolution beyond
such hypersurface is not uniquely determined by initial
conditions; i.e., Σ is the edge of Cauchy development.
Accordingly, ϕ can be discontinuous across Σ, and physi-
cally one can visualize Σ as a propagating shock wave
front, which is a three-dimensional hypersurface tangent to
the two-dimensional shock wave front and to the direction

of its propagation. In the theory of differential equations,
the left-hand side of Eq. (B4) is called the “principal
symbols&quot; for the system (B1). By studying the
solutions of Eq. (B4), i.e., the zeros of the principal
symbols, one can find out how the shock wave front
propagates. In particular, a timelike characteristic direction,
like the case we have in the present paper, means that the
propagation on Σ is superluminal. A physically acceptable
shock wave front should be timelike and thus has a
spacelike characteristic direction. In contrast, a spacelike
(superluminal) shock is odd and problematic.
We emphasize that the characteristic method is a

standard analysis in differential equations. It is very power-
ful in revealing problematic (superluminal and acausal)
propagation without explicitly finding a solution which
exhibits acausality, such as the Gödel solution in GR
famous for its closed timelike curve.
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