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In the context of scalar tensor theories for gravity, there is a universally adopted hypothesis when running
N-body simulations that time derivatives in the equation of motion for the scalar field are negligible. In this
work we propose to test this assumption for one specific scalar-tensor model with a gravity screening
mechanism: the symmetron. To this end, we implemented the necessary modifications to include the
nonstatic terms in the N-body code RAMSES. We present test cases and results from cosmological
simulations. Our main finding when comparing static vs nonstatic simulations is that the global power
spectrum is only slightly modified when taking into account the inclusion of nonstatic terms. On the
contrary, we find that the calculation of the local power spectrum gives different measurements. Such
results imply one must be careful when assuming the quasistatic approximation when investigating the
environmental effects of modified gravity and screening mechanisms in structure formation of halos and
voids distributions.
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I. INTRODUCTION

General relativity (GR) can be considered as the founda-
tion stone of the standard model for cosmology (ΛCDM).
Indeed, the assumption of this theory as valid leads to the
need of the two building blocks of the model: dark matter
and dark energy. The model is able to match large numbers
of observables on large scales. However, the nature of the
two dark components is still unclear. Among the different
solutions to the philosophical and quantitative issues asso-
ciated to this components, exists the idea of modifying the
gravitational theory [1]. As GR was proven to be valid in
solar system scales, any modification introduced must fulfill
the requirement of reducing to GR in these scales, which is
done through screening mechanisms. Within the context of
scalar-tensor theories, there are three such mechanisms based
on conformal couplings (Vainshtein [2], symmetron [3] and
Chameleon [4]). In addition to this, [5] recently proposed a
mechanism which is based on a disformal coupling.
The search for predictions for this kind of theories in the

scales of galaxies and clusters of galaxies (i.e., in the
nonlinear regime of cosmological evolution) requires
the use of cosmological simulations. Several works exist
in the literature in the context of scalar tensor theories for
gravity [e.g., [6–26]]. The main assumption in this papers is
that the quasistatic limit is a good approximation and thus,
time derivatives can be neglected in the equation of motion
of the scalar field. Within the context of standard gravity, it
can be shown analytically that the static equations are valid
even outside the horizon and thus, Newtonian simulations
do not give just a good approximation, but the right solution
at all scales [27–29]. On the other side, the validity of
the static limit for the scalar field equation is still unclear.
The only work in this subject [30] applies only to linear

evolution. In the nonlinear case, first N-body simulations
including time derivatives in the equation of motion of the
scalar field were presented in Ref. [31] in the context of the
symmetron model. However, in there, only the properties of
the solutions for the scalar field were studied and there
was no mention of the impact that these new solutions have
in the matter distribution. In other words, the simulations
were run without including the effects of the fifth force
associated to the scalar field in the geodesics equation. The
question wether observables such as the power spectrum of
density perturbations are affected by the nonstatic terms in
the nonlinear regime is still open. The aim of this paper is to
test the existence of these effects. To this end, we included
to nonstatic terms of the Klein-Gordon equation in the code
ISIS [22], which is a modification of the code RAMSES [32]
that includes scalar fields in its static limit. We focus this
paper in the symmetron screening mechanism [3]. However
our techniques can be easily generalized to different models.
In particular, there is an interesting family of models such as
disformal gravity [5], in which the screening of the fifth
forces is directly related to the time derivatives of the scalar
field and thus, cannot be simulated assuming the static
approximation.
The paper is organized as follows: Section II describes

the set of equations used in the N-body code, the method
that we employ to solve them and details of the imple-
mentation in the code RAMSES. The tests that were made
to this implementation are shown in Sec. III. Sections IV
and V describe 3D cosmological simulations that we run
including the nonstatic scalar field as well as results that
were obtained from them on the power spectrum of the
density perturbations. The last section includes our con-
clusions and discussion.
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II. THE EQUATIONS AND THE METHOD

A. The symmetron equations

The symmetron model is defined by the following
action:

S ¼
Z ffiffiffiffiffiffi

−g
p �

M2
pl

2
R −

1

2
∇aϕ∇aϕ − VðϕÞ

�
d4x

þ
Z

LMð~gμνÞd4x; (1)

where the Einstein and Jordan frames metrics (gμν and ~gμν)
are related according to

~gμν ¼ A2ðϕÞgμν: (2)

The potential V and conformal factor A that define this
particular model are

VðϕÞ ¼ −
1

2
μ2ϕ2 þ 1

4
λϕ4; (3)

AðϕÞ ¼ 1þ 1

2

�
ϕ

M

�
2

; (4)

where μ and M are mass scales and λ is a dimensionless
constant. The equation of motion for the scalar field that
results from this action is

∇a∇aϕ ¼ V;ϕ − A;ϕA3 ~T; (5)

where ~T is the trace of the Jordan frame energy momentum
tensor, which is defined as ~Tab ¼ −ð2= ffiffiffiffiffiffi

−~g
p ÞδLM=δ~gab.

In order to introduce Eq. (5) in the N-body code we
need to specify the metric, which we choose as a flat
Friedmann-Lemaître-Robertson-Walker metric with only
scalar perturbations:

ds2 ¼ −ð1þ 2ΦÞdt2 þ a2ðtÞð1 − 2ΦÞðdx2 þ dy2 þ dz2Þ:
(6)

With this metric, the equation of motion for the scalar field
takes the following form:

ϕ̈þ 3H _ϕ −
1

a2
∇2ϕ ¼ −V;ϕ − A;ϕρ ¼ −Veff;ϕ; (7)

where we assumed that the conformal factor A is close to
one. The dots in the previous expression represent deriv-
atives with respect to cosmic time t, ρ is the matter density
and the effective potential takes the following form:

VeffðϕÞ ¼
1

2

�
ρ

M2
− μ2

�
ϕ2 þ 1

4
λϕ4: (8)

At this point, it is convenient to define a characteristic
density:

ρSSB ¼ M2μ2: (9)

For values of the local density smaller than ρSSB, the scalar
field is free to oscillate around a minimum which is different
from zero and thus, a fifth force arises. For densities that are
larger than this value, the symmetry ϕ → −ϕ is restored and
the scalar field oscillates around zero or, in other words, it is
screened. For numerical convenience, we normalize the field
ϕ with the minimum of the potential ϕ0 that corresponds to
zero density and is given by

ϕ2
0 ¼

μ2

λ
: (10)

By dividing Eq. (7) by ϕ0 and defining the dimensionless
quantity

χ ¼ ϕ

ϕ0

; (11)

we obtain the equation of motion written in the following
form:

χ̈ þ 3H _χ − c2
∇2χ

a2
¼ −

c2

2λ20

�
a3SSB
a3

χη − χ þ χ3
�
; (12)

where η is the matter density field normalized with the
background density, and

λ0 ¼
1ffiffiffi
2

p
μ

(13)

is the range for the field that corresponds to zero density.
We also defined a redshift of symmetry breaking zSSB (or it
associated expansion factor aSSB), which corresponds to the
redshift at which the mean density of the universe is equal
to the density of symmetry breaking ρSSB.
The code RAMSES uses supercomoving coordinates [33],

which are defined by

dτ ¼ 1

a2
dt; (14)

~Φ ¼ a2Φ: (15)

To this change, we also add the following definition:

~χ ¼ aχ (16)

which will help in removing an explicit dependence with a
in the term related to the fifth force in the geodesics
equation. In this coordinate, the equation of motion for the
scalar field takes the following form:
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~χ00 − ~H ~χ0 − ~H0 ~χ − a2c2∇2 ~χ ¼ −
a4c2

2λ20

�
a3SSB
a3

~χη − ~χ þ ~χ3

a2

�
;

(17)

where the prime denotes derivatives with respect to the
supercomoving time τ and ~H ¼ a0=a is the supercomoving
Hubble factor.
The metric perturbations Φ will be a solution of the

following equation:

∇2Φ ¼ 3

2

ΩmH2
0

a
δ; (18)

where δ is the overdensity defined as δρ=ρb, ρb is the
background density, Ωm is the background density in terms
of the critical density of the universe and H0 is the Hubble
constant.
In this paper, we will track only the dark matter compo-

nent, which can be described by means of free particles
whose coordinates follow the geodesics equation. After
normalizing the field and defining β ¼ ϕ0Mpl=M2, we
obtain the geodesics written in the following form:

d2x
dτ2

þ∇ ~Φþ 6 ΩmH2
0

ðβλ0Þ2
a3SSB

�
~χ∇~χ þ 1

c2a3
~χð~χ0 − ~H ~χÞx0

�
¼ 0: (19)

Note that the second term inside the squared bracket is lower
order with respect to the first one if one thinks in an
expansion in terms of the speed of light c. Thus, during
the rest of this paper we will neglect the term and include
the effects of the fifth force only through the term ~χ∇~χ. The
study of the effects of high order terms is left for future work.

B. Solving the nonstatic field equation

The standard way to solve Eq. (12) in the context of
cosmological simulations is to assume that the terms
responsible for the oscillations of the scalar field are small
and thus its solution can be approximated by the solution of

∇2χ

a2
¼ 1

2λ20

�
a3SSB
a3

χη − χ þ χ3
�
; (20)

which can be obtained, for instance, by using multigrid
methods. In this paper we go beyond this approximation and
solve the complete equation, including the time derivatives
of the scalar field. The method applied to cosmological
simulations was presented in [31] and exploits the fact that
the Klein-Gordon equation is formally equivalent to the
geodesics equation. Thus, one can apply a leapfrog scheme,
not to positions and velocities of a set of particles, but to the
scalar field ~χ and its time derivative. The definition

q ¼ ~χ0

a
(21)

gives the following set of first order equations:

q0 ¼
~H0

a
~χ þ ac2∇2 ~χ −

a3c2

2λ20

�
a3SSB
a3

η~χ − ~χ þ ~χ3

a2

�
; (22)

~χ0 ¼ aq: (23)

By using second order discretization in time and implement-
ing a leapfrog scheme, we obtain the following evolution
equations for the time step n:

~qnþ1=2 ¼ ~qn þ
�
c2an∇2 ~χn−

c2a3n
2λ20

�
a3SSB
a3n

~χnηn − ~χn þ
~χ3n
a2n

�

þ
~H0
n

an
~χn

�
Δτ
2
; (24)

~χnþ1 ¼ ~χn þ ½anþ1=2 ~qnþ1=2�Δτ; (25)

~qnþ1 ¼ ~qnþ1=2 þ
�
c2anþ1∇2 ~χnþ1−

c2a3nþ1

2λ20

�
a3SSB
a3nþ1

~χnþ1ηnþ1

−~χnþ1 þ
~χ3nþ1

a2nþ1

�
þ

~H0
nþ1

anþ1

~χnþ1

�
Δτ
2
; (26)

wherewe divided the evolution of the variable q in two small
time steps as it is done in the standard RAMSES code for the
velocities of the particles. See Ref. [34] for the application of
the same scheme to the solution of the growth equation of
linear density perturbations in the modified gravity case. A
similar approach was also applied in the context of scalar
fields that are not coupled to matter [35].
Initial conditions have to be determined for the scalar

field and its time derivative. The scalar field is expected to
be screened in the early universe and thus, we chose
~χinitial ¼ 0 and qinitial ¼ n, where n is a small uniformly
distributed random number.
During cosmological evolution the scalar field oscillates

with a period that is much shorter than the time scales
associated to the evolution of matter and the metric itself.
In other words, a cosmological simulation run with a
nonstatic scalar field adds one more time scale to the
problem. In order to avoid recalculating gravitational forces
more than is needed, we included a new time step which is
used to advance only the scalar field within each of the
standard time steps. We determine this new time step by
estimating the period of the oscillations that are associated
to a uniform density field given by the maximum value in
the box. Under this condition and neglecting the expansion
term, the equation of motion of the scalar field [Eq. (17)]
takes the following form:

~χ00 ¼ −
a4c2

2λ20

�
a3SSB
a3

η − 1

�
~χ; (27)
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where we assume that the density is above symmetry
breaking and that the oscillations are small, which means
that one can approximate the effective potential with a
second order polynomial. Proposing a solution with the
following form,

~χ ¼ A expðiωτÞ; (28)

and defining the period as

P ¼ 2π

ω
; (29)

we obtain

P ¼ 2π

ffiffiffi
2

p
λ0

a2c
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a3SSB
a3 η − 1

q : (30)

The time step for the scalar field is then defined as a given
fraction of this period P, which was calibrated during the
testing phase of the development of the code.
For details in the implementation, we follow the algo-

rithm included in the standard RAMSES code [32]. The
following pseudocode describes in detail the complete
algorithm for a given time step N:
Calculate δN ¼ fðxNÞ
Solve Poisson’s equation for ~ΦN ¼ fðδN; aNÞ
//Do second half of previous step
pN ¼ fðpN−1=2;∇ ~ΦN; ~χn;∇~χn;ΔT=2Þ
//Do step N
Determine ΔT
T ¼ Tþ ΔT ⇒ DetermineaNþ1

pNþ1=2 ¼ fðpN;∇ ~ΦN; ~χn;∇~χn;ΔT=2Þ
xNþ1 ¼ fðxN; pNþ1=2;ΔTÞ
call advance_chi()

subroutine advance_chi()
f
Δτold ¼ Δτ
Determine Δτ ¼ fðδN;max; aNÞ and A ¼ ΔT=Δτ
for n ¼ 1 to A
f

Calculate ∇2 ~χn
//Do second half of previous step
if(n ¼¼ 1)
~qn ¼ fðδN; ~χn; ~qn−1=2;∇2 ~χn; an;Δτold=2Þ

else
~qn ¼ fðδN; ~χn; ~qn−1=2;∇2 ~χn; an;Δτ=2Þ

//Do step n
~qnþ1=2 ¼ fðδN; ~χn; ~qn;∇2 ~χn; an;Δτ=2Þ
τ ¼ τ þ Δτ=2 ⇒ determine anþ1=2
~χnþ1 ¼ fð~χn; ~qnþ1=2; anþ1=2;ΔτÞ
τ ¼ τ þ Δτ=2 ⇒ determine anþ1

g
g

Here, the symbol f does not refer to a specific function,
but only denotes functional dependence between the differ-
ent variables. The variable T is the time that corresponds to
the large time steps (i.e., those that correspond to the
standard leapfrog included in the original RAMSES code).
Note that the particles’ positions are updated using the
instantaneous value of the scalar field. A different approach
could consist in using the mean value of the scalar field
taken over the large steps N or to kick the particles in every
short time step. The impact of different approaches in the
final solution is beyond the scope of this paper and left for
future work.

III. TESTS

In order to measure the quality of our numerical
solutions of the full equation of motion of the scalar field,
we compare them with solutions obtained using a Runge-
Kutta algorithm in two different contexts: with and without
linearizing of the equations. It is important to mention that
the change from a nonlinear to a linear code involves only
to change the source of Eq. (22) in the evolution scheme
and thus, it is trivial to implement. In this section we
provide a description of a set of analytic solutions and
compare them with the solutions provided by our new code.

A. Uniform density

The most straightforward test consists in studying the
oscillations of the scalar field when the density field is
uniform and equal to the mean density of the universe.
Analytic solutions can be obtained by linearizing the
equation; however, for this test we prefer to keep the
equation as it is in its original form [Eq. (12)] and use a
Runge-Kutta algorithm to obtain a solution that can be used
to compare with. The Runge-Kutta integration was made
using the eight order solver with variable steps that is
included in the open source library GSL [36] and using the
expansion factor as a time variable. During the test, the
density η was kept constant in time and equal to one.
The initial redshift of the test that we present here is

z ¼ 3.34 and the initial value for the perturbed scalar field
and its time derivative are ~χ ¼ 0.05 and q ¼ 0. Figure 1
shows the result of the test for the values that are close to
aSSB, when the scalar field changes from being screened to
not screened. The continuous black line is the result
obtained with the modified 3D RAMSES code, while the
dashed gray line is the Runge-Kutta solution. The dashed
black line corresponds to the minimum of the effective
potential which is given by

~χmin ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a3SSB
a3

s
: (31)

Both solutions agree with each other, showing that the code
can recover the oscillations of the background correctly.
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B. Nonuniform density

In order to test if the term that involves the Laplacian in
Eq. (22) is properly implemented, we repeated the test
using a 1D nonuniform density distribution. Runge-Kutta
solutions to be used for comparison can be obtained in
Fourier space after linearizing the equations. The lineari-
zation can be made by assuming that

a3SSB
a3

η ≪ 1; (32)

which is valid in situations when the scalar field is not
screened. In this case, the scalar field ~χ will oscillate around
its vacuum value which is equal to a in the supercomoving
frame. Thus, the solution can be written as

~χ ¼ aþ ϵ; (33)

where the perturbation ϵ is assumed to be much smaller
than one. By substituting this definition in Eq. (17) and
neglecting high order terms we get

ϵ00 − ~Hϵ0 − ~H0ϵ − c2a2∇2ϵ ¼ a4c2

2λ20

�
a3SSB
a3

ηþ 2ϵ

�
: (34)

The change

u ¼ ϵ0

a
(35)

gives

dϵ
dτ

¼ aq; (36)

dq
dτ

¼ H0

a
ϵþ ac2∇2ϵ −

a3c2

2λ20

�
a3SSB
a3

ηþ 2ϵ

�
; (37)

which is the equation that we included in RAMSES for the
test. Note that the difference between the linear equation
[Eq. (34)] and Eq. (17) used in the nonlinear version is only
in the source, and thus the algorithm used to solve them is
the same in both cases.
The Fourier space version of Eq. (34) is

ϵ̂00 − ~Hϵ̂0 − ~H0ϵ̂þ c2a2k2ϵ̂ ¼ a4c2

2λ20

�
a3SSB
a3

η̂þ 2ϵ̂

�
: (38)

By defining

v ¼ ϵ̂0

a
; (39)

we can write

dϵ̂
dτ

¼ av; (40)

dq
dτ

¼ H0

a
ϵ̂ − ac2k2ϵ̂ −

a3c2

2λ20

�
a3SSB
a3

η̂þ 2ϵ̂

�
; (41)

which is the system that we solve using the Runge-Kutta
method. The comparison of this solution with the one
provided by our numerical code was made in real space. To
this end, we converted back this solution by using the open
source library FFTW [37].

1. Choosing a density

In order to fully specify the test to be made, we still need
to fix a density distribution. We use a Gaussian distribution
with its maximum located the center of the box:

η ¼ A exp ð−ðx − x0Þ2=b2Þ: (42)

To avoid dealing with translations in Fourier space, we
obtained the Runge-Kutta solution by fixing x0 ¼ 0. The
constant b was fixed to 1 Mpc and the normalization A was
specified by requiring the mean value of the overdensity to
be equal to zero, which is equivalent to

hηi ¼ 1

B3

Z
Box

ηd3x ¼ 1; (43)

where B is the size of the box at redshift z ¼ 0. This
gives us
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FIG. 1. Result of the test with uniform density. The continuous
black and dashed gray lines correspond to the solution obtained
with the new solver and the Runge-Kutta solution used for
comparison. The dashed black line shows the minimum of the
effective potential.
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A ¼ B
b

ffiffiffi
π

p
erfðB

2bÞ
; (44)

where the erf function is defined as

erfðxÞ ¼ 2ffiffiffi
π

p
Z

t

0

expð−t2Þdt: (45)

2. Results of the test

We run simulations with the above-mentioned setup
using the 3D code. The density was defined on the grid
using its analytic expression. In order to keep its value
constant, we decoupled during the test the scalar field
solver from the time evolution of the particles. We run three
simulations with different resolutions with 64, 128 and 256
nodes per dimension. To complete the setup, we need to
specify the size of the time steps. We use 60 steps in every
period of the oscillations defined as in Eq. (30). The
simulations were run starting from redshift z ¼ zSSB ¼ 1
up to redshift z ¼ 0.

Figure 2 shows the result of the test at four different
stages for the three different resolutions. The upper-left and
bottom-right panels show initial condition and final con-
figuration at redshift z ¼ 0. The continuous line is the
Runge-Kutta solution and the points the solution extracted
from the 3D box of the full simulation. The overall form of
the numerical solution agrees very well with the analytics.
Comparison between the three resolutions shows that
increasing resolution brings numerical and analytic solu-
tions closer, which shows that the code converges to the
right solution when increasing the resolution. Furthermore,
the plot shows that the low resolution runs, while they
cannot reproduce exact details of the solution, give the
same overall shape and mean value.

IV. COSMOLOGICAL SIMULATIONS

In order to determine the consequences of including
nonstatic terms in the equation of motion of the scalar field
we run a set of cosmological simulations using standard
gravity and with the symmetron field in its static and
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FIG. 2. Solution of the linear equation for a Gaussian density distribution at different stages. The upper-left panel is the initial
condition and the bottom right the final result at redshift z ¼ 0. The continuous line is the analytic solution and the points the numerical
solution obtained using the 3D code with different resolutions. The redshift that corresponds to every panel is shown in the upper left
corner. Here zSSB ¼ 1.
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nonstatic limits. The static simulation was run using the
solver that is described in detail in [22]. The background
evolution in all the simulations is given by a flat ΛCDM
cosmology (Ωm ¼ 0.267,ΩΛ ¼ 0.733 andH0 ¼ 71.9 km=
sec =Mpc). The initial conditions were generated using
Zeldovich approximation with standard gravity with the
code MPGRAFIC [38]. We use 5123 particles in a box of
128 Mpc/h. The particular symmetron parameters employed
are the same that were used by [31]: zSSB ¼ 0.5 and
λ0 ¼ 1 Mpc. We also specified the coupling constant that
was not employed by [31] to be β ¼ 3. The nomenclature
and details of the simulations are summarized in Table I.
The authors of [31] have shown that the nonstatic

solution for the symmetron scalar field contains patterns
that do not strictly follow the density distribution (e.g.,
domain walls). This is a situation that is highly difficult to
handle with standard density based refinement criteria.
Therefore, we run the nonstatic simulation using only the
domain grid of the code with 5123 nodes per dimension.
We determine the limitations of this approach, by compar-
ing results from the Newtonian and static simulations with a
pair of simulations that were run using seven levels of
refinements (runs run_newt_ref and run_static_ref).
Domain walls are known to have their own dynamics,

which cannot be reproduced using a static solver. In order
to avoid biasing the results with unrealistic domain walls,
we forced the static solver to provide a positive solution in
the whole domain; in other words, we choose only one of
the two possible solutions when symmetry is broken. On
the other side, the nonstatic solution was left free to take
negative and positive values.

V. RESULTS

A. Static simulations

Before concentrating on the effects that the nonstatic
terms of the Klein-Gordon equation have on the distribu-
tion of matter, we study differences between Newtonian
and static symmetron evolution. The impact of the nonstatic
terms will be presented afterward as a correction to the
differences found here. We concentrate our study only in
the global and local power spectrum. Figure 3 shows the
relative difference between the power spectrum of the static
symmetron and ΛCDM simulations. The estimation of the
power spectrum was made using a grid with 512 nodes per

dimension and following the Fourier based techniques and
corrections presented in Ref. [39]. The continuous line
corresponds to the difference between the simulations that
do not include refinements (run_newt and run_static),
while the dashed line is given by the refined simulations
(run_newt_ref and run_static_ref). The general behavior of
the power spectrum when including the fifth force is the
same as shown for instance in Ref. [40]: there is an increase
of the power on small scales, while the normalization given
by the large scales is left unchanged. The reason for the
difference between the refined and nonrefined simulation is
that the resolution reached in the nonrefined simulation is
not high enough to resolve the screened region of the
objects and thus the screening is less effective. This gives
higher values for the fifth force, which results in an increase
in power at the smallest scales. From the plot we can see
that the nonrefined simulations that will be used in the
analysis of the nonstatic field can only be trusted up to
frequencies k ∼ 2.
The intensity of the effects associated to the symmetron

model are known to have an environmental dependence
(see for instance Ref. [41]). This means that the strength of
the fifth force in a given halo is a function not only of its
own matter distribution, but also of the surroundings in
which the halo is immersed. This bring us to a different
observable that could be used to test the model, which is
the localized power spectrum. We calculated this quantity
by filtering the density distribution before to calculate its
Fourier transform by multiplying it with Gaussians cen-
tered at different positions in the box. In other words, we
calculated the power spectrum of the following overdensity
distributions:

TABLE I. Nomenclature and solvers used in the simulations.

Name Solver Refinements

run_newt Newtonian No
run_static Symmetron static No
run_full Symmetron nonstatic No
run_newt_ref Newtonian Yes
run_static_ref Symmetron static Yes
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FIG. 3. Relative difference between the static symmetron and
ΛCDM power spectra.
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δ0ðxÞ ¼ ðδðxÞ þ 1Þ × expð−ðx − x0Þ=ð2σ2ÞÞ − 1; (46)

where the overdensity δ is obtained from the position of the
particles by means of a standard cloud in cell scheme, e.g.,
[42]. The dispersion that we choose is σ ¼ 32 Mpc=h,
which corresponds to a quarter of the box size. Figure 4
shows the relative difference between this local power
spectrum of the static symmetron and Newtonian simu-
lations for 64 different positions x0 of the Gaussian filter.
The values of x0 are given by a 3D uniform grid of four
nodes per dimension. The gray thick line corresponds to the
global power spectrum already shown in Fig. 3 while the
left and right panels are results from the nonrefined and
refined simulations respectively. Owing to the fact that we
are studying the relative difference withΛCDM simulations
and that the initial conditions are exactly the same for all the
simulations, the plots should not be affected by cosmic
variance. The dispersion that can be seen between the
power spectra at different positions is physical and related
to the environmental dependence of the fifth force.

B. Effects of nonstatic terms in the
distribution of matter

We now concentrate on the effects that the time deriv-
atives of the scalar field and the presence of domain walls
have in the matter distribution at redshift z ¼ 0. Figure 5
shows the impact of the domain walls formed in the
simulation run_full on the matter distribution. The
upper-left and bottom panels show the overdensity (top)
and scalar field (bottom) in the plane that passes through
the center of the box extracted from the grid that was used

during the simulation. The scalar field χ is shown at two
different redshifts (z ¼ 0.583 to the left and z ¼ 0.315 to
the right), while the density distribution is given at redshift
z ¼ 0. It is possible to see the formation of a wall which
survives from a redshift close to zSSB (when the scalar field
starts to oscillate away from zero) up to z ∼ 0.3. After that
moment, the wall collapses releasing its energy in scalar
waves. The plot shows that the spatial configuration of the
wall is not independent of matter as standard domain walls,
but that the coupling to matter in the Klein-Gordon
equation makes it more stable in places where the sym-
metry is restored. Thus, the domain walls follow closely the
distribution of halos and filaments.
The effects that the fifth force associated with this

domain wall have on the matter distribution can be seen
in the top-right panel of the same figure. In there, we plot
color coded the absolute displacement between the particles
of the static and nonstatic symmetron simulations (run_
static and run_full) at the position of each particle in a
2 Mpc/h thick slice that passes through the center of the
box. It is possible to see that the larger displacements (up to
half a Mpc/h) occur in the position of the wall. While the
wall does not survive until redshift zero, the extra kick that
it gives to the particles during its relatively short lifetime is
enough to produce changes in the density distribution that
can last until redshift z ¼ 0. Note that the fifth force in the
symmetron model is proportional to ∇χ2 (as opposed to
∇χ) and thus, the domain walls do not push in only one
direction, but have an attractive behavior.
In order to check the impact that these differences

found in the position of the particles have in statistical
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FIG. 4. Relative difference between power spectrum of static symmetron and ΛCDM simulations after filtering the density with
Gaussian distributions located in a grid of four nodes per dimension. The thick gray line corresponds to the global power spectrum.
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CLAUDIO LLINARES AND DAVID F. MOTA PHYSICAL REVIEW D 89, 084023 (2014)

084023-8



observables, we calculated and compare the global and
local power spectra in the same way as done before for
the static simulation. Here, instead of comparing against the
Newtonian simulation, we do the comparison between the
static and nonstatic simulations, without making reference
to the Newtonian one. Figure 6 shows the relative differ-
ence between the power spectrum of these two simulations.
The differences are below the percent level in the whole
domain of scales that we study. The apparent offset of 0.2%
has contributions from two separate effects. The small scale
offset is physical produced by the presence of the domain
wall. On the other hand, the large scale offset is numerical.
It is related to the fact that the routine advance_chi (see
pseudocode) uses values of the density that were obtained

at the beginning of the large time step, while the static code
uses the old and new density in each half of the time steps.
In any case, the differences are negligible in the sense that
are beyond the precision that can be reached with present
and near future observations. Thus, the static simulation
technique is safe in the case that only the global power
spectrum is to be calculated (at least within the range of
model parameters that are close to the ones studied here).
Extension of this result to more general models is left for
future work.
The situation is different when local perturbations are

studied. Figure 7 shows the relative difference between the
local power spectrum of the static and nonstatic simulations
calculated in the same way as for the comparison between

FIG. 5 (color online). Upper left: Density distribution at redshift z ¼ 0 in a plane that passes though the center of the box (i.e., with
coordinate z ¼ 64). Upper right: Displacements between the position of the particles of the static and nonstatic runs at redshift z ¼ 0.
The particles shown belong to a slice of 2 Mpc/h thickness that passes through the center of the box. Bottom: Scalar field at z ¼ 0.58
(left) and z ¼ 0.32 (right) in the same place shown in the upper panels. See text for an explanation.
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static and Newtonian simulations. Now it is possible to see
differences of the order of 1% in the region in which the
simulations can be trusted (i.e., the region where refined
and nonrefined simulations give consistent power spectra).

To clarify the reason for the differences found, we high-
lighted with color lines the curves corresponding to
representative places that lie inside and outside a domain
wall (see Fig. 5 for reference). The presence of the domain
wall is responsible for the lack of power in the nonstatic
simulations.

VI. CONCLUSIONS

This work is a companion paper to our earlier article [31]
where we presented a new N-body code within the
framework of scalar-tensor theories which takes into
account the temporal derivatives of the scalar degree of
freedom. Previous papers on N-body cosmological simu-
lations with scalar-tensor theories for gravity have the static
approximation as their main assumption, which means that
the time derivatives in the Klein-Gordon equation are
neglected. The impact of nonstatic effects is still unclear,
especially in the nonlinear regime of cosmological evolu-
tion. Here we propose to test the validity of this assumption
by running cosmological simulations including nonstatic
terms in the Klein-Gordon equation for the scalar field.
Our analysis is based in the symmetron model, however our
techniques can be easily generalized to others.
A large part of this paper is devoted to the description of

the algorithms that we use to solve the complete Klein-
Gordon equation. The paper also presents the modifications
that we made to the ISIS-RAMSES N-body code as well as
the tests that we made to confirm that these modifications
were properly implemented.
We determine the importance of nonstatic effects by

comparing results obtained with this new code with static
simulations that were run using the static solver presented
in Ref. [22]. Nonstatic cosmological simulations were
already reported by [31]. However, that particular study
concentrated only in the properties of the nonstatic sol-
utions for the scalar field and there was no mention to the
impact that these new solutions have on the matter
distribution. Here we run similar simulations, but including
the fifth force in the geodesics equation. Furthermore, we
increased the resolution by a factor of 4 with respect to this
previous study.
In the first place, we studied the impact that the static

fifth force has on the matter distribution with respect to
standard Newtonian gravity. To this end, we used the static
symmetron code that is described in detail in [22]. We
studied the global and local power spectrum and found that,
for the particular set of parameters used in this paper, there
is a global increase of the power which can go up to 20% at
the smallest scales studied. The local power spectrum
shows that environmental effects give a large variance to
the power spectrum in addition to the known cosmic
variance. In other words, the extra bit of evolution produced
by the symmetron field is a function of the position
in space.
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The nonstatic simulation that we run with the new
nonstatic code recovers results of the previous study in
the sense that the scalar field develops domain walls which
not only have a dynamics that cannot be recovered with
static solutions, but that can also collapse releasing their
energy in scalar waves. Regarding the effects of nonstatic
terms in the matter distribution, we found almost no
deviation in the global matter power spectrum between
the static and nonstatic simulations. However, we find that
the fifth force induced by the domain walls does change the
distribution of matter. These effects can be seen in the local
power spectrum, which shows deviations of the order of 1%
in the region of the frequency space in which we can trust
the simulations. For comparison, note that for these
frequencies, the local power spectrum has a dispersion
of around 5% when comparing the symmetron and
Newtonian simulations in the static limit.
Given the results that we obtained for the symmetron

model, we can attempt to extrapolate our conclusions to
similar scalar-tensor models such as chameleons or

Galileons. Our analysis of the local power spectrum
shows that the larger differences between static and
nonstatic power spectra are produced by the presence
of domain walls, which do not form in any of these other
models. The global power spectrum shows that the
domain walls affect the spectrum in only 0.2%. Thus,
we expect that usual cosmological probes such as power
spectrum for present day experiments will not have
enough precision to detect any difference. However, there
may be other observables which can be affected by the
nonstatic terms.
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