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Gravitational lens models with negative convergence inspired by modified gravity theories, exotic
matter, and energy have been recently examined in such a way that a static and spherically symmetric
modified spacetime metric depends on the inverse distance to the nth power (n ¼ 1 for Schwarzschild
metric, n ¼ 2 for Ellis wormhole, and n ≠ 1 for an extended spherical distribution of matter such as an
isothermal sphere) in the weak-field approximation. Some of the models act as if a convex lens, whereas the
others are repulsive on light rays like a concave lens. The present paper considers microlensed image
centroid motions by the exotic lens models. Numerical calculations show that, for large n cases in the
convex-type models, the centroid shift from the source position might move on a multiply connected curve
like a bow tie, while it is known to move on an ellipse for the n ¼ 1 case and to move on an oval curve for
n ¼ 2. The distinctive feature of the microlensed image centroid may be used for searching
(or constraining) localized exotic matter or energy with astrometric observations. It is shown also that
the centroid shift trajectory for concave-type repulsive models might be elongated vertically to the source
motion direction like a prolate spheroid, whereas that for convex-type models such as the Schwarzschild
one is tangentially elongated like an oblate spheroid.
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I. INTRODUCTION

The bending of light is among the first experimental
confirmations of the theory of general relativity. As one of
the important tools in modern astronomy and cosmology,
the gravitational lensing is widely used for investigating
extrasolar planets, dark matter, and dark energy.
The light bending is also of theoretical importance, in

particular for studying a null structure of a spacetime.
A rigorous form of the bending angle plays an important
role in understanding properly a strong gravitational
field [1–6,8,9]. For example, strong gravitational lensing
in a Schwarzschild black hole was considered by
Frittelli, Kling, and Newman [1], by Virbhadra and
Ellis [2], and more comprehensively by Virbhadra [3];
Virbhadra, Narasimha, and Chitre [4] studied distinctive
lensing features of naked singularities. Virbhadra and Ellis
[5] and Virbhadra and Keeton [6] later described the strong
gravitational lensing by naked singularities; DeAndrea and
Alexander [7] discussed the lensing by naked singularities
to test the cosmic censorship hypothesis; Eiroa, Romero,
and Torres [8] treated Reissner–Nordström black hole
lensing; Perlick [9] discussed the lensing by a Barriola–
Vilenkin monopole and also that by an Ellis wormhole.
One of peculiar features of general relativity is that the

theory admits a nontrivial topology of a spacetime, for
instance, a wormhole. An Ellis wormhole is a particular
example of the Morris–Thorne traversable wormhole class
[10–12]. Furthermore, wormholes are inevitably related
with violations of some energy conditions in physics [13].
For instance, dark energy is introduced to explain the

observed accelerated expansion of the Universe by means
of an additional energy-momentum component on the
right-hand side of the Einstein equation. Furthermore,
the left-hand side of the Einstein equation, equivalently
the Einstein– Hilbert action, could be modified in various
ways (nonlinear curvature terms, higher dimensions, and so
on) inspired by string theory, loop quantum gravity, and so
on. Because of the nonlinear nature of gravity, modifica-
tions to one (or both) side(s) of the Einstein equation might
admit spacetimes significantly different from the standard
Schwarzschild spacetime metric, even if the spacetime is
assumed to be asymptotically flat, static, and spherically
symmetric. One example is an Ellis wormhole (being an
example of traversable wormholes).
Many years ago, scattering problems in wormhole

spacetimes were discussed (for instance, Refs. [14,15]).
Interestingly, the Ellis wormhole has a zero mass at the
spatial infinity, but it causes the light deflection [14,15].
Moreover, the gravitational lensing by wormholes has been
recently investigated as an observational probe of such an
exotic spacetime [9,16–23]. Several forms of the deflection
angle by the Ellis wormhole have been recently derived and
often used [9,18–21,24,25]. A reason for such differences
has been clarified by several authors [26,27].
Small changes in gravitational lensing in modified

gravity theories such as fðRÞ and fourth-order gravity
have been studied (e.g., Refs. [28–31]). Furthermore,
Horvath, Gergely, and Hobill [32] studied lensing effects
with negative convergence by so-called tidal charges in the
Dadhich et al. solution, in which, for a braneworld black
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hole, the tidal charge arises from tidal forces acting at the
brane-bulk boundary [33]. A point is that negative con-
vergence in this case does not require any exotic matter.
Inspired by a number of works on modifications in

gravitational lensing, Kitamura et al. [34] assume, in a
phenomenological sense, that an asymptotically flat, static,
and spherically symmetric modified spacetime could
depend on the inverse distance to the power of positive
n in the weak-field approximation. The Schwarzschild
spacetime and the Ellis wormhole correspond to n ¼ 1
and n ¼ 2, respectively, so that these spacetimes can be
expressed as a one-parameter family. This one-parameter
model expresses a spherical mass distribution. Note that
Birkhoff’s theorem could say that cases n ≠ 1 might be
nonvacuum, if the models were interpreted in the frame-
work of the standard Einstein equation.
Kitamura et al. [34] have shown that demagnification

could occur for n > 1 including the Ellis wormhole case
(n ¼ 2). They have also shown that time-symmetric
demagnification parts might appear in light curves due
to gravitational microlensing effects by such exotic models,
where light curves are useful in microlensing observations
in our Galaxy. For cosmological situations, however, the
Einstein ring size becomes so large, and hence the typical
time scale is so long that light curves cannot be observable
in cosmology. On the other hand, the image separation
angle becomes sufficiently large so that it can be practically
measured. By using the latest result in the Sloan Digital Sky
Survey Quasar Lens Search, Takahashi and Asada have
recently set the first upper bound on the cosmic abundances
of Ellis wormholes and also negative-mass compact objects
[35]. In theoretical physics, negative mass is a hypothetical
concept of matter for which the mass is of opposite sign to
the mass of normal matter. Although possible negative
mass ideas have been often discussed since the 19th
century, there has been no evidence for them [36–39].
The negative masses might attract each other to form a
negative massive clump so that such clumps could reside in
cosmological voids (e.g., Ref. [40]). Gibbons and Kodama
[41] have shown that curvature-regular asymptotically flat
solitons with negative mass are contained in the Myers–
Perry family, although the soliton solutions in the odd
spacetime dimensions might not express real astrophysical
objects.
However, the information on the image separation angle

is not sufficient for distinguishing exotic lens models.
Hence, Izumi et al. [42] have investigated gravitational
lensing shear by an exotic lens object with negative
convergence or negative mass. They have shown that
images by the lens models for the gravitational pull
(like a convex lens in optics) are tangentially elongated,
whereas those by the repulsive ones (like a concave lens)
are radially distorted. Their study [42] might concern the
strong (or weak) lensing surveys at the extragalactic or
cosmological distance.

Therefore, the main purpose of the present paper is to
study microlensed image centroid motions by such exotic
gravitational lensmodels.Here, we focus on themicrolensing
in our Galaxy. Studies of centroid displacements of lensed
images have been often done for the Schwarzschild lens
[43–50]. Virbhadra and Keeton [6] have investigated the
centroid displacement for naked singularities by using the
Janis–Newman–Winicour solution. Toki et al. [20] have
studied the centroid motion by an Ellis wormhole. The main
results of the present paper are as follows. (1) For certain
exotic lens models, the centroid shift from the source
position might move on a multiply connected curve like a
bow tie for large n cases, while it is known to move on an
ellipse for the n ¼ 1 case [43,47] and to move on an oval
curve for n ¼ 2 [20]. (2) For concave-type repulsive lens
models, the centroid displacement might move on a simply
connected curve but might be elongated vertically to the
source velocity, while it is tangentially elongated for the
Schwarzschild case.
We take the units of G ¼ c ¼ 1 throughout this paper.

II. MODIFIED SPACETIME MODEL AND
MODIFIED LENS EQUATION

This section briefly summarizes the basics of the exotic
lens models [34,42].

A. Modified bending angle of light

Following Kitamura et al. [34], the present paper
assumes that an asymptotically flat, static, and spherically
symmetric modified spacetime could depend on the inverse
distance to the power of positive n in the weak-field
approximation. We consider the light propagation through
a four-dimensional spacetime, although the whole space-
time may be higher dimensional. The four-dimensional
spacetime metric is expressed as

ds2 ¼ −
�
1 −

ε1
rn

�
dt2 þ

�
1þ ε2

rn

�
dr2

þ r2ðdΘ2 þ sin2Θdϕ2Þ þOðε21; ε22; ε1ε2Þ; (1)

where r is the circumference radius and ε1 and ε2
are small bookkeeping parameters in iterative calculations.
The weak-field approximation means ε1=rn≪1 and
ε2=rn≪1. Namely, we study a far field from the lens
object as r ≫ ε1=n1 and r ≫ ε1=n2 . Note that Eq. (1) is not
valid in the strong field near r ¼ 0 (please see Ref. [51]
for more detail). Here, ε1 and ε2 may be either positive
or negative, respectively. Negative ε1 and ε2 for n ¼ 1
correspond to a negative mass (in the linearized
Schwarzschild metric).
Without loss of generality, we focus on the equatorial

plane Θ ¼ π=2, since the spacetime is spherically sym-
metric. The deflection angle of light is obtained at the linear
order as [34]
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α ¼ ε

bn

Z π
2

0

cosnψdψ þOðε2Þ; (2)

where the integral is positive definite, b denotes the impact
parameter of the light ray, and we define ε≡ nε1 þ ε2. By
absorbing the positive integral into the parameter ε, we
rewrite the linear-order deflection angle simply as
α ¼ ε̄=bn, where the sign of ε̄ is the same as that of ε.
This deflection angle recovers the Schwarzschild (n ¼ 1)
and Ellis wormholes (n ¼ 2) cases. For ε > 0, the deflec-
tion angle of light is always positive, which means that the
corresponding spacetime model causes the gravitational
pull on light rays. For ε < 0, on the other hand, it
is inevitably negative, which implies the gravitational
repulsion on light rays like a concave lens.
We mention an effective mass. A simple application of

the standard lens theory [52] suggests that the deflection
angle of light in the form of α ¼ ε̄=bn corresponds to a
convergence (scaled surface mass density) as

κðbÞ ¼ ε̄ð1 − nÞ
2

1

bnþ1
; (3)

which implies an extended spherical distribution of matter
(or energy) for n ≠ 1 and a singular source only for n ¼ 1.
For the weak-field Schwarzschild case (n ¼ 1), it fol-

lows that the convergence vanishes. For ε > 0 and n > 1,
the effective surface mass density of the lens object is
interpreted as negative in the framework of the standard
lens theory [34]. This means that the matter (and energy)
need to be exotic if ε > 0 and n > 1. Also when ε < 0 and
n < 1, the convergence is negative, and hence the matter
(and energy) need to be exotic. Interestingly, when ε < 0
and n > 1, the convergence is positive everywhere except
for the central singularity, and hence exotic matter (and
energy) is not required in the framework of the standard
lens theory, in spite of the gravitational repulsion on light
rays. Attraction (ε > 0) and repulsion (ε < 0) in the above
two-parameter models do not have a one-to-one corre-
spondence to positive convergence κ > 0 and a negative
one κ < 0. This point is summarized in Table I [42].

B. Modified Einstein radius

Under the thin lens approximation, it is useful to
consider the lens equation as [52]

β ¼ b
DL

−
DLS

DS
αðbÞ; (4)

where β denotes the angular position of the source and DL,
DS, andDLS are the distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively. Note that there is the mathematical
consistency of the use of the lens equation, Eq. (4), where
the trigonometric functions are approximated by their
leading terms. The present paper studies the leading term
in the deflection angle so that Eq. (4) can be mathematically
consistent. On the other hand, if one wishes to include the
next (and higher order) for the bending angle, the third-
order (or higher-order) terms in the expansion of the
trigonometric functions have to be taken into account in
the lens equation because of the mathematical consis-
tency [2,5,9].
For ε > 0, there is always a positive root corresponding

to the Einstein ring for β ¼ 0. The Einstein ring radius is
defined as [42]

θE ≡
�
ε̄DLS

DSDn
L

� 1
nþ1

: (5)

If ε < 0, on the other hand, Eq. (4) has no positive root for
β ¼ 0. This is because this case describes the repulsive
force. For later convenience in normalizing the lens
equation, we define the (tentative) Einstein ring radius
for ε < 0 as

θE ≡
�jε̄jDLS

DSDn
L

� 1
nþ1

; (6)

although the Einstein ring does not appear for this case.
This radius gives a typical angular size for ε < 0 lenses.
Like Schwarzschild lenses, there might exist a photon

sphere for ε > 0. The radius of the photon sphere for the
spacetime metric by Eq. (1) might become

Rps ¼
�ðnþ 2Þε1

2

�
1=n

: (7)

See Ref. [53] for a more thorough discussion on the photon
surfaces.

C. Modified lens equation: ε > 0 case

Following Izumi et al. [42], let us begin with the ε > 0
case. As already stated, the matter (and energy) needs to be
exotic if n > 1. In the units of the Einstein ring radius,
Eq. (4) is rewritten in the vectorial form as

β̂ ¼ θ̂ −
θ̂

θ̂nþ1
ðθ̂ > 0Þ; (8)

TABLE I. The sign of the convergence κ. It is the same as that
of εð1 − nÞ according to Eq. (3).

κ > 0 ε > 0 & n < 1
ε < 0 & n > 1

κ ¼ 0 n ¼ 1
κ < 0 ε > 0 & n > 1

ε < 0 & n < 1
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β̂ ¼ θ̂ −
θ̂

ð−θ̂Þnþ1
ðθ̂ < 0Þ; (9)

where we normalize β̂≡ β=θE and θ̂≡ θ=θE for the
angular position of the image θ≡ b=DL, and β̂ and θ̂
denote the corresponding vectors. There is always
one image for θ̂ > 0, while the other image appears for
θ̂ < 0 [34].

D. Modified lens equation: ε < 0 case

Next, let us mention the ε < 0 case [42]. In the units of
the Einstein ring radius, Eq. (4) is rewritten in the vectorial
form as

β̂ ¼ θ̂þ θ̂

θ̂nþ1
ðθ̂ > 0Þ; (10)

β̂ ¼ θ̂þ θ̂

ð−θ̂Þnþ1
ðθ̂ < 0Þ: (11)

Without loss of generality, we assume β̂ > 0. Then,
Eq. (11) has no root satisfying θ̂ < 0, while Eq. (10) has

FIG. 1 (color online). Repulsive lens model (ε < 0). Solid
curves denote 1=θ̂n, and straight lines mean θ̂ − β̂. Their
intersections correspond to image positions that are roots for
the lens equation. There are three cases: no image for a small β̂
(dotted-dashed line), a single image for a particular β̂ (dotted
line), and two images for a large β̂ (dashed line). The two images
are on the same side of the lens object.

FIG. 2. Centroid motions as ðθ̂pc;x; θ̂pc;yÞ for ε > 0 (convex-type attractive models). The solid and dashed curves correspond to β̂0 ¼ 3
and β̂0 ¼ 0.3, respectively. The horizontal axis along the source linear motion is θ̂pc;x, and the vertical axis is θ̂pc;y. Top left: n ¼ 0.5 Top
right: n ¼ 1. Bottom left: n ¼ 3. Bottom right: n ¼ 10.
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at most two positive roots. Figure 1 shows that there are
three cases of the image number. For a large impact
parameter case, two images appear on the same side with
respect to the lens position, while no image appears for a
small impact parameter. The only one image appears only
when the impact parameter takes a critical value. Let us
focus on the two image cases, from which the single image
case can be discussed in the limit as the impact parameter
approaches the particular value.

III. MICROLENSED IMAGE CENTROID

A. Image centroid

Let us study the microlensed image centroid motions.
In any case of ε > 0 and ε < 0, the image positions are
denoted by θ̂1 and θ̂2, and the corresponding amplification
factors are denoted by A1 and A2. Without loss of general-
ity, we take θ̂1 > θ̂2. In analogy with the center of the mass
distribution, the centroid position of the light distribution of
a gravitationally microlensed source is given by

θ̂pc ¼
A1θ̂1 þ A2θ̂2

Atot
; (12)

where Atot denotes the total amplification as A1þA2. The
corresponding scalar is defined as θ̂pc≡ðA1θ̂1þA2θ̂2ÞA−1

tot .
Note that θ̂pc is positive, when the centroid is located on the
same side of the source with respect to the lens center.

FIG. 3. Centroid shifts δθ̂pc for ε > 0 (convex-type attractive models). The solid and dashed curves correspond to β̂0 ¼ 3 and
β̂0 ¼ 0.3, respectively. The horizontal axis along the source velocity is δθ̂pc;x, and the vertical axis is δθ̂pc;y. Top left: n ¼ 0.5 Top right:
n ¼ 1. Bottom left: n ¼ 3. Bottom right: n ¼ 10.

FIG. 4. Image centroid θ̂pc and β̂ for ε > 0 (convex-type
attractive models). The dotted-dashed, solid, dashed, and dotted
curves denote n ¼ 0.5, 1, 3, and 10, respectively. The horizontal
axis denotes the source position β̂ normalized by the Einstein
radius, and the vertical axis denotes θ̂pc.
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The relative displacement of the image centroid with
respect to the source position is written as

δθ̂pc ¼ θ̂pc − β̂: (13)

Henceforth, this is referred to as the centroid shift. The
corresponding scalar is defined as δθ̂pc ≡ θ̂pc − β̂. δθ̂pc is
positive when θ̂pc is larger than β̂.
By taking account of the relation between the lens and

source trajectory in the sky, the time dependence of β̂ is
written as

β̂ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̂20 þ ðt − t0Þ2=tE2

q
; (14)

where β̂0 is the impact parameter of the source trajectory
and t0 is the time of closest approach. Here, the source is
assumed to be in uniform linear motion. We choose t0 ¼ 0.
tE is the Einstein radius crossing time given by

tE ¼ RE=vT; (15)

where vT is the transverse velocity of the lens relative to the
source and observer. In the following numerical computa-
tions, time is normalized by the Einstein ring radius
crossing time.
In making numerical figures, we employ x − y coordi-

nates, such that the coordinate origin is chosen as the lens
center, the x axis is taken along the direction of the source

FIG. 5. Image centroid shift δθ̂pc and β̂ for ε > 0 (convex-type
attractive models). The dotted-dashed, solid, dashed, and dotted
curves denote n ¼ 0.5, 1, 3, and 10, respectively. The horizontal
axis denotes the source position β̂ normalized by the Einstein
radius, and the vertical axis denotes δθ̂pc.

FIG. 6. Centroid motions as ðθ̂pc;x; θ̂pc;yÞ for ε < 0 (repulsive models). The solid and dashed curves correspond to β̂0 ¼ 3
and β̂0 ¼ 0.3, respectively. The horizontal axis along the source linear motion is θ̂pc;x, and the vertical axis is θ̂pc;y. The dashed
curves do not exist for small β̂, where no images appear. Top left: n ¼ 0.5 Top right: n ¼ 1. Bottom left: n ¼ 3. Bottom right: n ¼ 10.
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motion, and the y axis is perpendicular to the source
motion.

B. Numerical computations: ε > 0 case

Let us begin with the ε > 0 case. See Fig. 2 for the image
centroid trajectories by ε > 0 models for β̂0 ¼ 0.3 and 3.
Figure 3 shows the image centroid shift by the ε > 0
models. For β̂0 ¼ 0.3, for instance, the maximum vertical
shift of the image centroid position by the exotic lens
models is 0.2ðn ¼ 0.5Þ, 0.14ðn ¼ 1Þ, 0.07ðn ¼ 3Þ, and
0.02ðn ¼ 10Þ in the units of the Einstein ring radius,
respectively. For β̂0 ¼ 3, it is nearly 0.5ðn ¼ 0.5Þ,
0.3ðn ¼ 1Þ, −0.01ðn ¼ 3Þ, and −0.02ðn ¼ 10Þ. These
results suggest that the astrometric lensing by the exotic
models with large n is relatively weak compared with that
by the Schwarzschild one (n ¼ 1). In the weak-field region,
one can understand the suppression of the anomalous shift
of the image centroid position for large n because the
bending angle by the large n models is proportional to the
inverse impact parameter to the power of n, whereas that by
the Schwarzschild lens depends on the inverse impact
parameter.

A distinctive feature is that in ε > 0 and n > 2 cases bow
knots might be added into the centroid shift trajectory,
while the trajectory is known to be an ellipse for the n ¼ 1

case [43,47] and to be oval for n ¼ 2 [20]. Such a multiply
connected shape of the centroid shift orbit would be an
evidence of the corresponding exotic lens in astrometric
observations. Figure 3 shows the bow-tie shape might
disappear when the impact parameter becomes sufficiently
large, for instance β̂ ∼ 3. For ε > 0 and n ¼ 3, the centroid
shift could be negative for the β̂0 ¼ 3 case. This is partly
because A2 becomes large compared with the n ¼ 1 case.
At the center of the bow tie in the centroid shift, the

image centroid position is the same as the intrinsic
(unlensed) source position. At which time (and the corre-
sponding source position) does the image centroid position
agree with the source position? For a Schwarzschild lens,
the image centroid position agrees with the source position
only at t ¼ �∞, namely, β ¼ ∞. To study this coincidence
time (and source position), it is convenient to use Fig. 4 for
θ̂pc and β̂ and Fig. 5 for δθ̂pc and β̂. Roughly speaking, the
coincidence occurs at β̂ ∼ 1–3, namely, a few times the
Einstein crossing time. This time scale might be used for
applications to observations.

FIG. 7. Centroid shifts δθ̂pc for ε < 0 (concave-type repulsive models). The solid and dashed curves correspond to β̂0 ¼ 3 and
β̂0 ¼ 0.3, respectively. The horizontal axis along the source velocity is δθ̂pc;x, and the vertical axis is δθ̂pc;y. The dashed curves are not
closed because no images appear for small β̂. Top left: n ¼ 0.5 Top right: n ¼ 1. Bottom left: n ¼ 3. Bottom right: n ¼ 10.
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C. Numerical computations: ε < 0 case

Next, we consider the ε < 0 case. Figure 6 shows the
image centroid motion by the ε < 0 models. Note that the
centroid curve does not exist for small β̂ because of no
images. See also Fig. 1 for no-image cases. Such a peculiar
event might be misinterpreted as an eclipse in astronomy.
Figure 7 shows the image centroid shift by the ε < 0

models. There does not appear any bow-tie shape. Note that
the image centroid shift is always negative because the
effective force is repulsive. For unseen lens objects,
the negative shift can be hardly distinguished from the
positive one.
The centroid shift trajectory for the repulsive models

might be elongated vertically to the source motion direction
like a prolate spheroid as shown by Fig. 7, whereas that for
convex-type attractive models such as the Schwarzschild
one is tangentially elongated like an oblate spheroid (see
Fig. 3). Figures 3 and 7 show that the size of the centroid
shift by the repulsive models for each n and β̂0 is
comparable to that for the corresponding ε > 0 models.

D. Parameter estimations

Equations (5) and (6) are rewritten as

jε̄j
Rn
E
¼ DSRE

DLSDL

¼ DSθE
DLS

: (16)

Here, DL, DS, DLS, and RE ¼ DLθE are observables in
astronomy, while ε̄ and n are not direct observables but
model parameters. Note that ε̄=Rn

E is comparable to the
typical size of the deflection angle.
The right-hand side of Eq. (16) consists of the observ-

ables, and it is a dimensionless quantity. Hence, Eq. (16)
allows us to investigate jε̄j=Rn

E from observations. See
Tables II and III for the Einstein ring size and Einstein

radius crossing time, respectively. Near-future astrometry
space missions such as Gaia and JASMINE are expected to
have angular sensitivity of a few microarcseconds, for
which the relevant parameter combination is limited as

TABLE II. Einstein radii and model parameters for Bulge and
LMC lensings. θE is the angular Einstein radius, RE is the
Einstein radius, and ε̄ and n are the two model parameters. DS ¼
8 kpc and DL ¼ 4 kpc are assumed for Bulge. DS ¼ 50 kpc and
DL ¼ 25 kpc are assumed for LMC.

Bulge LMC

θE (mas) RE (km) ε̄
Rn
E

RE (km) ε̄
Rn
E

10−3 6.0 × 105 1.0 × 10−11 3.7 × 106 1.0 × 10−11

10−2 6.0 × 106 1.0 × 10−10 3.7 × 107 1.0 × 10−10

10−1 6.0 × 107 1.0 × 10−9 3.7 × 108 1.0 × 10−9

1 6.0 × 108 1.0 × 10−8 3.7 × 109 1.0 × 10−8

10 6.0 × 109 1.0 × 10−7 3.7 × 1010 1.0 × 10−7

102 6.0 × 1010 1.0 × 10−6 3.7 × 1011 1.0 × 10−6

103 6.0 × 1011 1.0 × 10−5 3.7 × 1012 1.0 × 10−5

TABLE III. Einstein radius crossing times for Bulge and LMC
lensings. tE is the Einstein radius crossing time. DS¼8kpc and
DL¼4kpc are assumed for Bulge. DS¼50kpc and DL ¼ 25 kpc
are assumed for LMC. vT ¼ 220 km=s is assumed for Bulge and
LMC. In this table, the Einstein radius is calculated by RE ¼
vT × tE from the definition of the Einstein radius crossing time.
Here, the input is tE ∼ 10−3–103ðdayÞ, namely, 1ðminÞ–3ðyrÞ.
tE (day) RE (km) ε̄

Rn
E
[Bulge] ε̄

Rn
E
[LMC]

10−3 1.9 × 104 3.1 × 10−13 5.0 × 10−14

10−2 1.9 × 105 3.1 × 10−12 5.0 × 10−13

10−1 1.9 × 106 3.1 × 10−11 5.0 × 10−12

1 1.9 × 107 3.1 × 10−10 5.0 × 10−11

10 1.9 × 108 3.1 × 10−9 5.0 × 10−10

102 1.9 × 109 3.1 × 10−8 5.0 × 10−9

103 1.9 × 1010 3.1 × 10−7 5.0 × 10−8

FIG. 8. Image centroid shift δθ̂pc and β̂ for ε > 0 (convex-type
attractive models). The solid, dotted-dashed, dashed, and dotted
curves denote n ¼ 2.0, 2.1, 2.2, and 2.3, respectively. The
horizontal axis denotes the source position β̂ normalized by
the Einstein radius, and the vertical axis denotes δθ̂pc. Top:
β̂ ∈ ½0; 10�. Bottom: β̂ ∈ ½100; 200�.
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jε̄j=Rn
E > 10−11. Roughly speaking, the mission lifetime is

several years, for which the relevant time scale is limited as
tE < a fewyears, andTable III thus tells the limit as jε̄j=Rn

E <
10−7 (for Bulge) and < 10−8 [for Large Magellanic Cloud
(LMC)]. In total, the parameter range relevant for the near-
future missions is 10−11 < jε̄j=Rn

E < 10−7.
Before closing this section, we mention how large n

models could lead to a multiply connected curve of
the microlensed centroid shift. Numerical calculations
suggest that n > 2 and ε > 0 models could produce a
bow-tie shape. See also Fig. 8 for numerical computa-
tions in the vicinity of n ¼ 2 as n ¼ 2.0, 2.1, 2.2, and
2.3. The numerical calculations suggest that the bow-tie
shape could appear if n > 2. Numerical computations
for other parameter values suggest that the maximum
numbers of the loops and the knots in the centroid curve
are 3 and 1, respectively, which are actually achieved by
the n ¼ 3 model.

IV. DISCUSSION AND CONCLUSION

We examined gravitational lens models inspired by
modified gravity theories, exotic matter, and energy. By
using an asymptotically flat, static, and spherically
symmetric spacetime model of which metric depends
on the inverse distance to the power of positive n, it was
shown in the weak-field and thin-lens approximations
that, for large n cases in the convex-type models, the
centroid shift from the source position might move on a
multiply connected curve like a bow tie, while it is
known to move on an ellipse for the n ¼ 1 case and to

move on an oval curve for n ¼ 2. This bow-tie shape by
the convex-type exotic lens models is distinguishable
from standard ones due to binary motions or due the
microlensing by a Schwarzschild lens. The distinctive
feature such as the bow-tie shape may be used for
searching (or constraining) localized exotic matter or
energy with astrometric observations.
The parameter range relevant for the current and near-

future missions such as Gaia and JASMIME is 10−11 <
jε̄j=Rn

E < 10−7, where we assume that the accuracy in
astrometry will reach a few microarcseconds and the
mission lifetime will be several years.
It was shown also that the centroid shift trajectory for

concave-type repulsive models might be elongated verti-
cally to the source motion direction like a prolate spheroid,
whereas that for convex-type attractive models such as the
Schwarzschild one is tangentially elongated like an oblate
spheroid. The image centroid shift by the repulsive models
is always negative because the effective force is repulsive.
For unseen lens objects, the negative shift can be hardly
distinguished from the positive one. In this sense, it might
be relatively difficult to investigate the repulsive models in
astrometry.
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