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We consider neutron-star-plus-wormhole configurations supported by a massless ghost scalar field.
The neutron fluid is modeled by an anisotropic equation of state. When the central energy density of
the fluid is of comparable magnitude to the one of the scalar field, configurations with an equator at
the center and a double throat arise. These double-throat wormholes can be either partially or
completely filled by the neutron fluid. In the latter case, the passage of light—radiated by the neutron
matter—through these wormholes is studied. A stability analysis indicates that all considered
configurations are unstable with respect to linear perturbations, independent of whether the fluid
is isotropic or anisotropic.
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I. INTRODUCTION

At the present time it is widely believed that the main
contributions to the total energy density of the Universe
come from dark energy (DE), dark matter (DM), and
ordinary matter. Distributed homogeneously over all of
space, DE contributes about 70% of the total energy
density. Since DE possesses a large negative pressure, it
drives the present accelerated expansion of the Universe. In
turn, DM contributes about 25% of the total energy density.
DM is gravitationally clustered in galaxies and galaxy
clusters and responsible for the formation of the large-scale
structure of the Universe. Finally, ordinary (baryonic)
matter forms the visible matter and represents about 5%
of the total energy density of the Universe.
The main feature of DE and DM is their extremely weak

ability to participate in the electromagnetic interaction,
which hampers considerably their direct observation.
However, like ordinary matter, these two substances take
part in the gravitational interaction, possibly leading to the
creation of localized compact objects composed of these
substances. Indeed various models of compact objects
consisting of dark energy [1], of dark matter [2], or of
interacting DE and DM [3] are considered in the literature.
The unusual physical properties of DE, which enable

us to model the accelerated expansion of the present
Universe, may lead to other interesting consequences as
well. In particular, when considering compact objects

composed of DE it is possible to obtain two essentially
different types of systems—exhibiting either a trivial or a
nontrivial topology of spacetime. The so-called dark
energy stars [1], which are modeled by some form of
matter possessing the properties of DE, belong to the
first type.
For these configurations the strong energy condition is

violated when the effective pressure p of such matter
satisfies the inequality p < −ε=3, where ε is the effective
energy density. When p < −ε, even the null energy
condition is violated. The matter is then called exotic.
The presence of exotic matter allows for compact configu-
rations with a nontrivial wormholelike topology. In the
simplest case such configurations can be supported by the
so-called ghost (or phantom) scalar fields, which may be
massless [4] or possess a potential energy [5]. (For further
discussion of different aspects of phantom field wormholes
see, e.g., Refs. [6–13], and a general overview on the
subject of Lorentzian wormholes can be found in the book
[14].) Ghost (or phantom) scalar fields also allow for “black
universes,” i.e., black holes with an expanding universe
inside the horizon [15–18].
Another possibility is to consider mixed configurations

with nontrivial topology which consist both of ordinary and
exotic matter. In Refs. [19–21] we have studied such mixed
compact configurations, where a wormhole (supported by a
ghost scalar field) is filled by neutron matter. The resulting
neutron-star-plus-wormhole configurations then possess
properties of wormholes and of ordinary stars. In particular,
as discussed in Ref. [21], such systems have an important
dimensionless parameter called B, which corresponds to
the ratio of the neutron matter energy density to that of the
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scalar field at the center. In Ref. [21] we have considered
configurations with B ≪ 1 for the case of a quartic
potential of the scalar field.
Here we study the case with B ∼ 1 and show that this can

lead to interesting consequences. In particular, we show
that the neutron-star-plus-wormhole configuration need no
longer possess a single throat located at the center. Instead,
an equator may arise at the center with two throats formed
away from the center, each associated with an asymptoti-
cally flat universe. The neutron matter may then fill the
wormhole beyond both throats, or it may be completely
confined within the space between the throats.
Let us here briefly comment on the terminology used in

the following. Ordinary stars with trivial topology possess a
true center, located at the point with radial coordinate
r ¼ 0. In contrast, for the configurations with nontrivial
topology considered here, the value r ¼ 0 does not describe
a center in the usual sense. Indeed, at r ¼ 0 the radius of a
two-sphere does not vanish, but assumes a (local) nonzero
extremum: a minimum in the case of a throat or a maximum
in the case of an equator. Previously, in Refs. [20,21] we
employed the term “core” for the region around the throat.
But since for the configurations considered here besides a
throat also an equator may reside at r ¼ 0, we will use the
term “center” when referring to r ¼ 0. The term center thus
refers to the extremal surface, located symmetrically
between the two asymptotically flat regions.
To construct the wormhole, we employ a massless ghost

scalar field, and for the ordinary matter we take a neutron
fluid with an anisotropic equation of state (EOS). Such an
EOS assumes that massive stellar objects may have a radial
pressure that is not equal to the tangential pressure at high
densities of the neutron matter. There are several physical
reasons for the appearance of an anisotropy (see Ref. [22]
for some of them). Thus one should take into account the
effects of an anisotropy, in particular, in modeling the solid
cores of neutron stars [23]. In turn, the presence of an
anisotropy of the fluid results in considerable changes of
the characteristics of relativistic stars, as considered, for
example, in Refs. [24–29]. Our goal here is to clarify the
question of how the presence of an anisotropy of the fluid
influences the properties of the mixed configurations under
consideration, e.g., their masses and sizes, and their
stability with respect to linear perturbations.
The paper is organized as follows. In Sec. II the state-

ment of the problem is presented. Here we describe the
matter components appearing in the system and write down
the corresponding field equations. In Sec. III we construct
explicit examples of regular static solutions describing
neutron-star-plus-wormhole configurations. We evaluate
their masses and sizes, consider the question of light
passing through the wormhole, and estimate the tidal
effects in the system. In Sec. IV a linear stability analysis
is performed for these solutions. Finally, in Sec. V we
summarize the results obtained.

II. STATEMENT OF THE PROBLEM

Here we consider a gravitating system consisting of a
wormhole supported by a ghost scalar field φ and filled by
ordinary matter in the form of a neutron fluid. For simplicity
we consider a massless scalar field. We know that in the
presence of a scalar field the effective pressure becomes
anisotropic (see, e.g., Ref. [30] and references therein).
Apart from this anisotropy associated with the scalar field,
we here assume that the neutron matter also possesses an
anisotropic pressure, where the radial and tangential com-
ponents of the pressure are not equal to each other.
The Lagrangian of this system can be chosen as follows:

L ¼ − c4

16πG
Rþ Lsf þ Lfl; (1)

with the curvature scalar R and Newton’s constant G, the
Lagrangian of the ghost scalar field Lsf ,

Lsf ¼ − 1

2
∂iφ∂iφ; (2)

and the Lagrangian of the fluid Lfl. Both matter sources
contribute to the right-hand side of the Einstein equations
described below.

A. Anisotropic fluid

Since at the moment there exists no reliable theory
modeling the anisotropy of a neutron fluid at high densities,
here we employ one of the approaches of Refs. [25,26]. In
this case the energy-momentum tensor of the neutron
matter is chosen in the form

Tk
iðflÞ ¼ ðε� þ pÞuiuk − δki pþ Θk

i : (3)

Here ε�, p, and ui are the energy density, the pressure, and
the four-velocity of the fluid, respectively, andΘk

i is a trace-
free “shear-stress” tensor, that assumes Θμ

μ ¼ 0, and p ¼
1=3pμ

μ (here the Latin indices run over i; k;… ¼ 0; 1; 2; 3
and the Greek indices μ; ν… ¼ 1; 2; 3). Following
Refs. [25,26], we assume Θk

i to be diagonal, and Θ0
0 þ

ε� ≡ ε to be the total energy density of the fluid. Also, we
assume that Θμ

ν has only one independent component
Θ1

1 ¼ αp, while the other two components can be
expressed in terms of Θ1

1, Θ2
2 ¼ Θ3

3 ¼ −ðα=2Þp [25,26].
In general, α can be a function of the matter variables and of
the coordinates, α ¼ αðε; xiÞ.
With this ansatz, we have the following components of

the fluid energy-momentum tensor:

T0
0ðflÞ ¼ ε; T1

1ðflÞ ¼ −pr; T2
2ðflÞ ¼ T3

3ðflÞ ¼ −pt;

(4)

where the radial and the tangential components of the
pressure are
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pr ¼ ð1 − αÞp; pt ¼ ð1þ α=2Þp: (5)

(These expressions show that one must choose−2 < α < 1
in order to have a positive fluid pressure.) With these
expressions one can eliminate p, which yields the follow-
ing relation between the pressure components:

pt ¼ ð1þ βÞpr; β ¼ 3

2

α

1 − α
: (6)

Thus β (or equivalently α) is the parameter determining the
anisotropy of the fluid (i.e., the anisotropy parameter).
The energy density ε and the pressure p appearing in the

expressions (4) and (5) are related by an equation of state
that is determined by the physical properties of the specific
matter considered and by the physical conditions under
which it is employed. Since we here consider essentially
relativistic objects, it is natural to assume that the matter
filling the wormholes should also be relativistic. Thus we
choose relativistic neutron matter for this kind of matter. In
much of the literature such matter is described by more or
less conventional equations of state, reflecting its general
properties at high densities and pressures. Various forms of
such equations of state can be found, for instance, in
Refs. [31–34].
For our purpose, we restrict ourselves to a simplified

variant of the EOS, where a more or less realistic neutron
matter EOS is approximated in the form of a polytropic
EOS. This EOS can be taken in the following form:

p ¼ Kρ1þ1=n
b ; ε ¼ ρbc2 þ np; (7)

with the constant K ¼ kc2ðnðchÞb mbÞ1−γ, the polytropic
index n ¼ 1=ðγ − 1Þ, and ρb ¼ nbmb denotes the rest-mass
density of the neutron fluid. Here nb is the baryon number
density, nðchÞb is a characteristic value of nb, mb is the
baryon mass, and k and γ are parameters whose values
depend on the properties of the neutron matter.
As in our previous works concerning mixed star-plus-

wormhole systems [20,21], we here, for simplicity, take
only one set of parameters for the neutron fluid. Namely,
we choose mb¼1.66×10−24g, nðchÞb ¼ 0.1 fm−3, k ¼ 0.1,
and γ ¼ 2 [35]. These parameters correspond to a gas of
baryons interacting via a vector-meson field, as described
by Zel’dovich [36,37]. We employ these values for the
parameters in the numerical calculations of Sec. III.

B. Field equations

For spherically symmetric systems, the metric can be
taken in the general form [38]

ds2 ¼ eνðdx0Þ2 − eλdr2 − eμdΩ2; (8)

where ν, λ, and μ are functions of the radial coordinate r
and the time coordinate x0 ¼ ct, and dΩ2 is the metric on

the unit two-sphere. We will use this metric below when
considering the question of linear stability in Sec. IV.
For the construction of equilibrium neutron-star-plus-

wormhole configurations it is convenient to use polar
Gaussian coordinates. The metric then reads

ds2 ¼ eνðdx0Þ2 − dr2 − eμdΩ2; (9)

where now ν and μ are functions of r only. Introducing
the new function R defined by eμ ¼ R2 and taking into
account the components of the energy-momentum tensor
of the fluid (4) and (5), the ð0

0
Þ, ð1

1
Þ, and ð2

2
Þ components

of the Einstein equations with the metric (9) take the
form

−
�
2
R00

R
þ
�
R0

R

�
2
�
þ 1

R2
¼ 8πG

c4
T0
0 ¼

8πG
c4

�
ε − 1

2
φ02

�
;

(10)

− R0

R

�
R0

R
þ ν0

�
þ 1

R2

¼ 8πG
c4

T1
1 ¼

8πG
c4

�
−ð1 − αÞpþ 1

2
φ02

�
; (11)

R00

R
þ 1

2

R0

R
ν0 þ 1

2
ν00 þ 1

4
ν02

¼ − 8πG
c4

T2
2 ¼

8πG
c4

��
1þ α

2

�
pþ 1

2
φ02

�
; (12)

where the prime denotes differentiation with respect to r.
Here the corresponding components of the scalar field
energy-momentum tensor have been obtained by varying
the Lagrangian (2) with respect to the metric.
The field equation for the scalar field is obtained by

varying the Lagrangian (2) with respect to φ:

1ffiffiffiffiffiffi−gp ∂
∂xμ

� ffiffiffiffiffiffi−gp
gμν

∂φ
∂xν

�
¼ 0: (13)

Using the metric (9), this equation is integrated to give

φ02 ¼ D2

R4
e−ν; (14)

where D is an integration constant.
Because of the conservation of energy and momentum,

Tk
i;k ¼ 0, not all of the Einstein field equations are

independent. Taking the i ¼ 1 component of the conser-
vation equations gives

dT1
1

dr
þ 1

2
ðT1

1 − T0
0Þν0 þ 2

R0

R

�
T1
1 − 1

2
ðT2

2 þ T3
3Þ
�
¼ 0:

(15)
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Taking into account the expressions for the components
T0
0, T1

1, and T2
2 ¼ T3

3 [see the right-hand sides of
Eqs. (10)–(12)], and also Eq. (14), we obtain from Eq. (15)

ð1 − αÞ dp
dr

þ 1

2
½εþ ð1 − αÞp� dν

dr
− 3α

R0

R
p ¼ 0: (16)

Thus we have four unknown functions—R, ν, p, and
φ—for which there are five equations, (10)–(12), (14),
and (16), only four of which are independent.
For the numerical calculations it is convenient to rewrite

these equations in terms of dimensionless variables. For the
case considered here the massless scalar field φ can be
taken, without loss of generality, equal to zero at the center
of the configuration, i.e., at r ¼ 0, while its derivative at
r ¼ 0 is nonzero. The potential of the scalar field can be
expanded in the neighborhood of the center as

φ ≈ φ1rþ
1

6
φ3r3;

where φ1 is the derivative at the center, the square of which
corresponds to the “kinetic” energy of the scalar field. Then
it is convenient to use new dimensionless variables
expressed in units of φ1. Namely, introducing

ξ ¼ r
L
; Σ ¼ R

L
; ϕðξÞ ¼

ffiffiffiffiffiffiffiffiffi
8πG

p

c2
φðrÞ; where

L ¼ c2ffiffiffiffiffiffiffiffiffi
8πG

p
φ1

; (17)

and using the new reparametrization of the fluid density
[37],

ρb ¼ ρbcθ
n; (18)

where ρbc is the density of the neutron fluid at the center of
the configuration, we rewrite Eqs. (10)–(12), (14), and (16)
in the dimensionless form

−
�
2
Σ00

Σ
þ
�
Σ0

Σ

�
2
�
þ 1

Σ2
¼ Bð1þ σnθÞθn − 1

2
ϕ02; (19)

− Σ0

Σ

�
Σ0

Σ
þ ν0

�
þ 1

Σ2
¼ −Bσð1 − αÞθnþ1 þ 1

2
ϕ02; (20)

Σ00

Σ
þ 1

2

Σ0

Σ
ν0 þ 1

2
ν00 þ 1

4
ν02 ¼ Bσ

�
1þ α

2

�
θnþ1 þ 1

2
ϕ02;

(21)

ϕ02 ¼ eνc−ν
ðΣ=ΣcÞ4

; (22)

σðnþ1Þð1−αÞθ0 þ1

2
½1þσðnþ1−αÞθ�ν0−3ασθ

Σ0

Σ
¼0:

(23)

Here B ¼ ðρbcc2Þ=φ2
1 is the dimensionless ratio of the fluid

energy density to that of the scalar field at the center; Σc and
νc are the central values of the corresponding functions [see
Eq. (25)]; the integration constant from (14) is chosen as
D2 ¼ ðc4=8πGφ1Þ2Σ4

ceνc to provide ϕ0 ¼ 1 at the center;
σ ¼ Kρ1=nbc =c2 ¼ pc=ðρbcc2Þ is a constant, related to the
pressure pc of the fluid at the center. The values of the fluid
parameters appearing here are taken from the end of
Sec. II A.

C. Boundary conditions

We here consider neutron-star-plus-wormhole configu-
rations that are asymptotically flat and symmetric under
ξ → −ξ. The metric function ΣðξÞ may be considered as a
dimensionless circumferential radial coordinate.
Asymptotic flatness requires that ΣðξÞ → jξj for large
jξj. Because of the assumed symmetry of the configura-
tions, the center of the configurations at ξ ¼ 0 should
correspond to an extremum of ΣðξÞ, i.e., Σ0ð0Þ ¼ 0. If ΣðξÞ
has a minimum at ξ ¼ 0, then ξ ¼ 0 corresponds to the
throat of the wormhole. If, on the other hand, ΣðξÞ has a
local maximum at ξ ¼ 0, then ξ ¼ 0 corresponds to an
equator. In that case, the wormhole will have a double
throat surrounding a belly (see, e.g., Refs. [39,40]).
Expanding the metric function Σ in the neighborhood of

the center

Σ ≈ Σc þ 1=2Σ2ξ
2

and using Eqs. (19) and (20), we find the relations

Σc ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=2 − Bσð1 − αÞp ;

Σ2 ¼
Σc

2
f1 − B½1þ σðnþ 1 − αÞ�g: (24)

Thus the sign of the expansion coefficient Σ2 determines
whether the configurations possess a single throat at the
center or an equator surrounded by a double throat.
Equations (19)–(23) are solved for given parameters of

the fluid σ, n, and B, subject to the boundary conditions at
the center of the configuration ξ ¼ 0,

θð0Þ ¼ 1; Σð0Þ ¼ Σc; Σ0ð0Þ ¼ 0;

νð0Þ ¼ νc; ϕð0Þ ¼ 0; ϕ0ð0Þ ¼ 1: (25)

Note here that, using (17), we can express the dimensional
value of the derivative φ1 as follows:
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φ2
1 ¼

c4

8πG
1

L2
:

Thus the dimensional “kinetic” energy of the scalar field
depends only on the value of the characteristic length L,
which can be chosen arbitrarily subject to some physically
reasonable assumptions. Substituting this φ2

1 into the
expression for B [see Eq. (23) below], we find

B ¼ 8πGρbcðL=cÞ2:
It is seen from the above expressions for φ2

1 and B that by
fixing L, one automatically determines the value of φ2

1. But
the value of B can still change depending on the central
value of the fluid density ρbc. Therefore one can consider B
as a parameter describing the ratio of the fluid energy
density at the center to the energy density of the scalar field
at the center.

III. NUMERICAL RESULTS

In Ref. [21] we studied mixed neutron-star-plus-worm-
hole systems supported by a ghost scalar field with a quartic
potential, restricting our investigations to small values of B,
B≲ 0.1. Here our aim is to study such mixed configura-
tions, in particular, also for large values of B. Moreover, we
here study the effect of anisotropy.
We solve the system of equations (19)–(23) numerically

using the boundary conditions (24) and (25). In doing so,
the configurations under consideration can be subdivided
into two regions: (i) the internal one, where both the scalar
field and the fluid are present; (ii) the external one, where
only the scalar field is present. Correspondingly, the
solutions in the external region are obtained by using
Eqs. (19)–(22), in which θ is set to zero.
The internal solutions must be matched with the external

ones at the boundary of the fluid, ξ ¼ ξb, by equating the
corresponding values of the functions ϕ, Σ, ν and their
derivatives. The boundary of the fluid ξb is defined by
pðξbÞ ¼ 0. Knowledge of the asymptotic solutions in turn
allows one to determine the value of the integration
constant νc at the center, proceeding from the requirement
of asymptotic flatness of the external solutions.
Even without solving the equations, we see already from

(24) that there exists a critical value of B, Bcrit, at which
Σc → ∞. Physical solutions exist only for B < Bcrit. In fact,
we find three possible types of solutions:
(1) For small values of B, where Σ2 > 0, there is a single

throat, located at the center of the configuration. Its
size is Σth ¼ Σc [see Fig. 1(a)].

(2) For increasing values of B a particular value B1 <
Bcrit is encountered, where Σ2 changes sign. For B >
B1 the center of the configuration no longer repre-
sents a throat but instead corresponds to an equator.
On each side of the equator a minimal area surface
and thus a throat is located, i.e., Σth < Σc. The

resulting configurations represent double-throat sys-
tems, where the throats are still filled by the fluid;
see Fig. 1(b).

(3) Finally, for still larger values of B there exists
another special value B2, that lies in the range
B1 < B2 < Bcrit, where the fluid just reaches up to
the throats. For B > B2 the throats are then located
beyond the fluid, i.e., the fluid is completely hidden
in the belly region between the throats [see
Fig. 1(c)].

We exhibit several examples for neutron-star-plus-
wormhole solutions in Fig. 2. In particular, we show the
metric function gtt ¼ eν, the total energy density T0

0, and
the fluid energy density Bð1þ σnθÞθn versus the relative
radius ξ=ξb. The values of the parameter B are taken from
Figs. 1(a)–1(c), respectively, both for an isotropic fluid
(β ¼ 0) and an anisotropic fluid (β ¼ 2).
As seen in the figure, the graphs of the total energy

density exhibit a characteristic kink at the boundary of the
fluid ξ ¼ ξb. This is because the energy density of the fluid
is equal to zero at that point, whereas its derivative differs
from zero. This feature is typical for polytropic fluids.
Beyond the fluid, there exists the scalar field “tail” whose
energy density goes to zero as ξ → ∞. Correspondingly,
the spacetime becomes asymptotically flat with gtt → 1.
The positions of the throat ξth and of the boundary of the

fluid ξb shown in Fig. 1 correspond to the three selected
values of B (or equivalently ρbc). In Fig. 3 the behavior of
these characteristic physical quantities is shown as a
function of B. The numerical calculations indicate that
for the values of the fluid parameters and of the anisotropy
parameter β used here, the central value Σc → ∞ as
B → Bcrit, but the size of the throat Σth, and correspond-
ingly the mass of the throat, remain finite. In order to
understand why this happens, let us consider the masses
associated with the various components appearing in the
system.

A. Masses

Following Visser [14], we define the total massM of the
configuration in terms of an integral at spatial infinity,
representing the Arnowitt-Deser-Misner mass. Thus M
corresponds to the asymptotic mass as measured by an
observer in one of the asymptotically flat regions. Since we
here consider symmetric wormholes, in both asymptoti-
cally flat regions the same value for the mass is found. In
the following, we therefore consider only the region r ≥ 0
in detail, keeping in mind that the region r ≤ 0 has identical
properties.
For the spherically symmetric metric (9), we consider a

volume enclosed by a sphere with circumferential radius
Rc, corresponding to the center of the configuration, and
another sphere with circumferential radius R > Rc. The
mass mðrÞ associated with this volume can then be defined
as follows:
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mðrÞ ¼ c2

2G
Rc þ

4π

c2

Z
r

Rc

T0
0R

2dR: (26)

When B < B1, the circumferential radius Rc corresponds
to the radius of the wormhole throat defined by Rc ¼
minfRðrÞg. However, when B1 < B < Bcrit, as mentioned
above, Rc correspond to an equator, while the two throats
are located symmetrically away from the center.
In the dimensionless variables of Eqs. (17) and (18) the

expression (26) takes the form

mðξÞ ¼ M�
�
Σc þ

Z
ξ

0

�
Bð1þ σnθÞθn − 1

2
ϕ02

�
Σ2

dΣ
dξ0

dξ0
�
;

(27)

where the coefficient M� in front of the curly brackets has
the dimension of mass

M� ¼ c3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

8πG3ρbc

s
:

Note that the total massM is then obtained by taking the
upper limit of the integral to infinity, since the energy
density of the scalar field becomes equal to zero only
asymptotically, as Σ → ∞. Note also that in evaluating the
above integral it is necessary to perform the calculations in
the internal and external regions separately.
While the asymptotic value M ¼ limξ→∞mðξÞ corre-

sponds to the total mass of the configuration, we would
now like to subdivide this expression into the following
four dimensionless components:

M ¼ M�ðMc þMfl þMsfint þMsfextÞ; (28)

where we associate

Mc ¼ Σc

FIG. 1. Examples of positions of the throat(s) Σth depending on the value of the parameter B (or equivalently ρbc). The shaded areas
represent the regions where the fluid is present. Here ξth and ξb correspond to the positions of the throat(s) and the boundary of the fluid,
respectively. For all plots, the characteristic size L is taken as 10 km, and the value of the anisotropy parameter α is taken to be zero.
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with the boundary at the circumferential radius of the center
of the configuration Σc. Further, we associate

Mfl ¼
Z

ξb

0

Bð1þ σnθÞθnΣ2
dΣ
dξ0

dξ0

with the mass of the fluid,

Msfint ¼ − 1

2

Z
ξb

0

ϕ02Σ2
dΣ
dξ0

dξ0

with the internal part of the mass of the scalar field, and

Msfext ¼ − 1

2

Z
∞

ξb

ϕ02Σ2
dΣ
dξ0

dξ0

with the external part of the mass of the scalar field.
For B < B1, the throat is located at the center, and its

mass is Mth ¼ Mc. In this case, since dΣ=dξ > 0, the
expression for Mfl is positive, and it may be interpreted as
the total mass of the fluid. However, for B > B1, we obtain
dΣ=dξ < 0 either in a part of the interval 0 < ξ < ξb where
the neutron matter is located, or even in the full interval
0 < ξ < ξb. Consequently, we here obtain either a negative

FIG. 3. The positions of the throat Rth ¼ Lξth and of the
boundary of the fluid Rb ¼ Lξb (both in kilometers) for the
anisotropy parameter β ¼ 0 (solid lines) and β ¼ 2 (dashed
lines). The thin vertical lines correspond to B ¼ Bcrit at which
Σc → ∞. Above the points of intersection of the curves Rth and
Rb (shown by the bold dots), the throats are located beyond
the fluid.

FIG. 2. The metric function gtt ¼ eν (dashed-dotted lines), the total energy density T0
0 (solid lines) from the right-hand side of Eq. (19)

(in units of φ2
1), and the fluid energy density Bð1þ σnθÞθn (dashed lines) are shown as functions of the relative radius ξ=ξb for the

isotropic fluid with β ¼ 0 (left panel) and for the anisotropic fluid with β ¼ 2 (right panel). Since the solutions are symmetric with
respect to ξ ¼ 0, the graphs are shown only for ξ > 0. The curves marked by (a), (b), and (c) are obtained with the values of the
parameter B from Figs. 1(a), 1(b), and 1(c), respectively. The thin vertical lines correspond to the boundary of the fluid. For all plots, the
characteristic size L is taken as 10 km. Asymptotically, as ξ → �∞, the spacetime is flat with Σ → jξj and eν → 1 from below.
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contribution to the integral forMfl, or even a negative value
for the full integral. It is clear that in this case the
interpretation of Mfl as the total mass of the fluid is
problematic. However, the expression for the total mass of
the system (28) does give the correct value.
For this reason, it is interesting to consider the proper

mass Mprop of the neutron matter:

Mprop ≡mbN ¼ 4π

Z
rb

0

ρbR2dr ¼ 4πρbcL3

Z
ξb

0

θnΣ2dξ:

(29)

Mprop is equal to the mass which the baryons of the star
would possess altogether, if they were dispersed throughout
a volume so large that all types of interactions between
them could be neglected. Evaluating the expression (29) for
the proper mass, we find the number of neutrons N in the
system.
We exhibit the total mass M (28) and the proper mass of

the neutron matter Mprop (29) versus the parameter B in
Fig. 4. It is seen from this figure that the total mass M
remains finite, when B → Bcrit. On the other hand, the
values of Σc and thusMc diverge, when B → Bcrit. Clearly,
this divergence must be canceled by another diverging term
to yield the observed finite total mass.
Let us introduce the mass of the throat for these

configurations:

Mth ¼ Mc þMneg
fl þMneg

sfint þMneg
sfext:

Here the expressions for the masses with the index “neg”
refer to the values of the corresponding mass integrals with

negative derivative dΣ=dξ. Thus these integrals are evalu-
ated inside the belly region up to the throat.
When B → Bcrit the integrals Mneg

sfint and Mneg
sfext also

diverge to plus infinity, and even much stronger than Mc.
However, at the same time the integral Mneg

fl diverges very
strongly to minus infinity. Indeed, Mneg

fl cancels precisely
the divergence of Mc, M

neg
sfint, and Mneg

sfext, to yield a finite
value of the mass of the throat Mth.
The divergence of Mneg

fl in turn is accompanied by a
divergence of the proper mass of the neutron matter,
Mprop → ∞, and correspondingly by a growth of the
number of neutrons N → ∞. Thus configurations with B
close to Bcrit must contain a huge number of particles. Since
for B2 < B < Bcrit the neutron matter is located completely
in the belly region inside the throats, any light radiated from
the star should pass through the throats. The lensing effects
arising in this case are considered in the next subsection.

B. Light passing through the throat

We now consider the case B > B2, where the two throats
are located outside the fluid [see Fig. 1(c)]. Thus the
neutron matter (the star) is located in the belly region
between the two throats, and any light radiated by the fluid
should pass through the throats to escape to a distant
observer. We would now like to know the intensity
distribution of such radiation.
Following Refs. [41–43], we consider light passing

through the throat in the equatorial plane, i.e., in the plane
θ ¼ π=2 (not to be confused with the fluid density). In our
case the source of the radiation is the surface of the neutron
star located at �ξb inside the throats, which themselves are
located at �ξth; see Fig. 1(c).
The path of a light ray in the spherically symmetric

gravitational field described by the metric (8) is determined
by the geodesic equation obtained from the Lagrangian

−2L ¼ eνc2_t2 − _r2 − R2ð_θ2 þ sin2θ _φ2Þ ¼ 0; (30)

where for geodesics in the equatorial plane θ ¼ π=2 and the
dot denotes the derivative with respect to an affine
parameter. The cyclic coordinates t and φ (not to be
confused with φ used earlier for the scalar field) yield
the conserved energy and the conserved angular momen-
tum, proportional to Ē ¼ eνc2_t and Φ̄ ¼ R2 _φ, respectively.
Insertion of these constants of motion into Eq. (30) leads to
the radial equation

_r2 ¼ Ē2

c2eν
− Φ̄2

R2
: (31)

From _φ and _r we now obtain the dependence of the angle φ
on the radial coordinate r:

FIG. 4. The total mass of the configuration M and the proper
mass of the neutron matterMprop (both in solar mass units) for the
anisotropy parameter β ¼ 0 (solid lines) and β ¼ 2 (dashed
lines). The thin vertical lines correspond to B ¼ Bcrit.
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dφ
dr

¼ Φ̄

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ē2

c2eν − Φ̄2

R2

q : (32)

Introducing the impact parameter b ¼ cΦ=E ¼ cΦ̄=Ē and
changing to dimensionless variables, we obtain for the
deflection angle of a photon emitted from the surface of
the star

δφ ¼
Z

∞

ξb

h

Σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−ν − h2=Σ2

p dξ; (33)

where h ¼ b=L is the dimensionless impact parameter.
Next, following Refs. [42,43], we determine the change

in the total intensity of the light from different directions Itot
as a function of the impact parameter:

dItot
dh

≡ IhðhÞ ¼
dItot
dδφ

dδφ
dh

¼ const
dδφ
dh

;

where the intensity density per unit angle Iδφ ≡ dItot=dδφ
is taken to be constant, since the intensity is assumed to be
isotropic. Using Eq. (33), we find

IhðhÞ ¼ const
Z

∞

ξb

dξ

Σ2eνðe−ν − h2=Σ2Þ3=2 : (34)

A distant observer will see light from the neutron star,
whose intensity has a minimum at zero impact parameter
and a maximum for a value of the impact parameter hmax,
that is determined by the vanishing of the radicand in
Eq. (33). Like all other characteristics of the neutron-star-
plus-wormhole configurations, the value of hmax depends
ultimately on the value of the parameter B. Figure 5 shows
the distributions of the intensity as obtained from Eq. (34)
for different values of B > B2.
The numerical calculations indicate that, as B (and hence

the central density of the fluid) increases, the size of the
throat increases, which implies a growing impact parameter
hmax. The presence of such an effect in gravitational lensing
is visible to a distant observer, who will see a radiating
object in the form of a ring of light with sharp external
boundaries and diffuse internal boundaries (see Fig. 5, and
also Fig. 3 in Ref. [43]).

C. Tidal accelerations

Let us now address the tidal accelerations in the
gravitational field of the neutron-star-plus-wormhole con-
figurations. Any two separate points of a body embedded in
an inhomogeneous gravitational field are subject to slightly
different accelerations. This results in the appearance of a
tidal force. We here estimate the tidal accelerations for the
neutron-star-plus-wormhole configurations.
Following Ref. [14], we consider the radial and trans-

verse components of the tidal acceleration, which in the
metric (9) are given by

1

c2
ðΔaÞ∥ ¼ R0̂ 1̂ 0̂ 1̂ðΔxÞ∥ ¼ − 1

2

�
ν00 þ 1

2
ν02

�
ðΔxÞ∥; (35)

1

c2
ðΔaÞ⊥ ¼ 1

1 − ðv=cÞ2 ½R2̂ 0̂ 2̂ 0̂ þ ðv=cÞ2R2̂ 1̂ 2̂ 1̂�ðΔxÞ⊥

¼ 1

1 − ðv=cÞ2
�
− 1

2
ν0
R0

R
þ ðv=cÞ2 R

00

R

�
ðΔxÞ⊥

(36)

[see Eqs. (13.4) and (13.6) of Ref. [14], here rewritten with
our signature of the metric]. The hats on the indices of the
Riemann tensor indicate the use of an orthonormal frame;
ðΔxÞ∥ and ðΔxÞ⊥ correspond to distances between two
points of the body in the radial and transverse directions,
respectively; v is the three-dimensional radial velocity of
the body.
Since we here consider only static configurations, for

which the neutron matter is at rest, we set v ¼ 0. Then
Eqs. (35) and (36) can be rewritten in the dimensionless
variables of Eq. (17) as follows:

ðΔaÞ∥ ¼ − c2

2L

�
ν00 þ 1

2
ν02

�
ðΔxÞ∥; (37)

ðΔaÞ⊥ ¼ − c2

2L
ν0
Σ0

Σ
ðΔxÞ⊥; (38)

where the bar on Δx denotes the dimensionless quantity.
Let us now compare the tidal accelerations of the

following two systems: (i) the neutron-star-plus-wormhole

FIG. 5. The distribution of the intensity IhðhÞ (normalized
to the corresponding intensity at h ¼ 0) of the light passing
through the throat versus the impact parameter h. The curves
with B ≈ 1.02 (ρbc ¼ 5.5 × 1014 g cm−3), B ≈ 1.12 (ρbc ¼ 6×
1014 g cm−3), and B ≈ 1.21 (ρbc ¼ 6.5 × 1014 g cm−3) are shown
from left to right. The anisotropy parameter is chosen as β ¼ 0.
The inset shows how a distant observer would see such a
configuration.
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configuration considered here and (ii) an ordinary neutron
star modeled by the same EOS (7). For simplicity, let us
consider only the case where the neutron fluid is isotropic,
i.e., β ¼ α ¼ 0. The central values of the tidal accelerations
will then be

(i) for the mixed star-plus-wormhole system

ðΔaÞ∥jc ¼ − c2

2L
B½1þ σðnþ 3Þ�ðΔxÞ∥; (39)

ðΔaÞ⊥jc ¼ 0; (40)

(ii) for the neutron star

ðΔaÞ∥jc ¼ − c2

2L
½1=2þ σð1þ n=2Þ�ðΔxÞ∥; (41)

ðΔaÞ⊥jc ¼ − c2

2L
½1=2þ σð1þ n=2Þ�ðΔxÞ⊥: (42)

Thus the neutron star has the same values for both
components of the tidal acceleration.

To compare the two systems, it is convenient to use the
same scale for the characteristic length L. Since in con-
sidering the neutron-star-plus-wormhole systems we used
L ¼ 10 km, we take the same L for the neutron star. This
choice corresponds to a neutron star with a central density
ρbc ≈ 5.37 × 1014 g cm−3 and a total mass M ≈ 3.16M⊙,
close to the maximum mass of a neutron star for such an
EOS (cf. Fig. 3 in Ref. [20]).
Since for such neutron stars the maximum (modulus) of

the tidal accelerations will occur at the center, it is
convenient to normalize the tidal accelerations of our
mixed configurations with respect to these central values.
We then obtain

ðrelative radial tidal accelerationÞ ¼ ½Eq: ð37Þ for the mixed system�
½the modulus of Eq: ð41Þ� ¼ − ν00 þ ν02=2

1=2þ σð1þ n=2Þ ; (43)

ðrelative transverse tidal accelerationÞ ¼ ½Eq: ð38Þ for the mixed system�
½the modulus of Eq: ð42Þ� ¼ − ν0Σ0=Σ

1=2þ σð1þ n=2Þ : (44)

The results of the numerical calculations are shown in
Fig. 6. Indeed, the maximum (modulus) of the tidal
accelerations occurs in the central regions of our mixed
configurations. They are comparable in size to those of the
neutron stars used here for comparison. Even in the case
when B → Bcrit, the radial tidal acceleration is by only a
factor of approximately 3.3 larger than that of an ordinary
neutron star.

IV. LINEAR STABILITY ANALYSIS

We now consider spherically symmetric perturbations of
the above equilibrium configurations. In our previous work
[21] we performed the linear stability analysis for the case
of an isotropic neutron fluid and a scalar field with a quartic
potential. One can find there a detailed derivation of the
corresponding equations for the perturbations. Therefore
we here simply employ the equations from Ref. [21],
except for a small change necessary to incorporate the
anisotropy of the fluid.
It is convenient to use the general form of metric (8), in

which the components of the four-velocity of the fluid can
be written as follows [44]:

u0 ¼ e−ν0=2; u0 ¼ eν0=2; u1 ¼ e−ν0=2v;

u1 ¼ −eλ0−ν0=2v;

with the three-velocity

v ¼ dr
dx0

≪ 1:

The index 0 on the metric functions indicates the static,
zeroth-order solutions of the Einstein equations. Then the
functions ν, λ, μ, ε, p, and φ appearing in the system can be
presented in the harmonic form

y ¼ y0 þ ypðξÞeiωx0 ; (45)

where y denotes any one of the above functions, ypðξÞ
depends only on the spatial coordinate ξ, the index p
indicates the perturbation, and ω is the frequency of the
radial oscillations.
Next, using the gauge choice λ0 ¼ 0 and νp ¼ λp − 2μp,

one can derive the following set of perturbed equations (for
details, see Ref. [21]): the scalar field equation

ϕ00
p þ

1

2
ðν00 þ 2μ00Þϕ0

p þ ω2e−ν0ϕp ¼ 0; (46)

the perturbed (0-0) and (2-2) components of the Einstein
equations,
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μ00p þ
1

2
μ00ð3μ0p − λ0pÞ −

�
μ000 þ

3

4
μ020

�
λp þ e−μ0μp ¼ −nB

�
1

θ0
þ σðnþ 1Þ

�
θn0θp þ ϕ0

0

�
ϕ0
p − 1

2
ϕ0
0λp

�
; (47)

λ00p − μ00p þ
1

2
ν00ðλ0p − 3μ0pÞ − λp

�
μ000 þ ν000 þ

1

2
ðμ020 þ ν020 þ μ00ν

0
0Þ
�
þ ω2e−ν0ðμp þ λpÞ

¼ 2

�
Bσðnþ 1Þ

�
1þ α

2

�
θn0θp þ ϕ0

0

�
ϕ0
p − 1

2
ϕ0
0λp

��
; (48)

and, finally, the equation which follows from the i ¼ 1 component of the law of conservation of energy and momentum,
Tk
i;k ¼ 0,

1

2
ω2e−ν0 ½2μ0p − μ00λp þ ðμ00 − ν00Þμp� − Bσðnþ 1Þð1 − αÞ d

dξ
ðθn0θpÞ

þ ϕ00
0

�
ϕ0
p − 1

2
ϕ0
0λp

�
þ ϕ0

0

�
ϕ00
p − 1

2
ðϕ00

0λp þ ϕ0
0λ

0
pÞ
�
− 1

2
Bθn0

�
n
θ0

þ σðnþ 1Þðnþ 1 − αÞ
�
θpν

0
0

− 1

2
Bθn0½1þ σðnþ 1 − αÞθ0�ðλ0p − 2μ0pÞ þ

1

2
ϕ02
0 ðλ0p − 2μ0pÞ þ ν00ϕ

0
0

�
ϕ0
p − 1

2
ϕ0
0λp

�

þ μ00

�
3

2
αBσðnþ 1Þθn0θp þ 2ϕ0

0

�
ϕ0
p − 1

2
ϕ0
0λp

��
þ μ0p

�
3

2
αBσθnþ1

0 þ ϕ02
0

�
¼ 0: (49)

FIG. 6. The relative radial tidal acceleration from Eq. (43) (left panel) and the relative transverse tidal acceleration from Eq. (44)
(right panel) are shown versus the relative radius ξ=ξb. In the left panel the curves correspond to ρbc ¼ 6.6754 (B ≈ Bcrit ≈ 1.243),
ρbc ¼ 6 (B ≈ 1.12), ρbc ≈ 5.37 (B ¼ 1), ρbc ¼ 4 (B ≈ 0.75), and ρbc ¼ 1 (B ≈ 0.19) (all values of ρbc are in units of 1014 g cm−3), from
bottom to top. (For the corresponding distributions of the neutron matter, see Fig. 1.) In the right panel the same values of ρbc are used,
but the order of the curves is reversed (the top and the bottom curves correspond, respectively, to the largest and to the smallest ρbc).
The negative and positive values of the accelerations correspond to compressive and stretching tidal forces, respectively. The thin
vertical lines indicate the boundary of the fluid. Asymptotically the accelerations go to zero like �ξ−3, where the plus (minus) sign
corresponds to the radial (transverse) tidal accelerations.
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Thus, for the four functions ϕp, λp, μp, θp, we have the
set of four equations (46)–(49) to investigate the stability of
the configurations. For this set of equations, we choose the
following boundary conditions at ξ ¼ 0:

λpð0Þ ¼ λp0; μpð0Þ ¼ μp0; θpð0Þ ¼ θp0;

ϕpð0Þ ¼ 0; ϕ0
pð0Þ ¼ ϕp1; (50)

where λp, μp, and θp are even functions, while ϕp is an odd
function. The value of ϕp1 can be found from the perturbed
(1-1) component of the Einstein equations in the following
form:

ϕp1 ¼ Bσðnþ 1Þð1− αÞθp0 þ
1

2
λp0 −

�
ω2e−νc þ 1

Σ2
c

�
μp0:

Thus the system contains three free parameters: λp0, μp0,
and θp0. Their values are chosen such that the following
conditions are satisfied. (i) At the boundary of the fluid,
ξ ¼ ξb, the value of θp should remain finite to ensure that
pp ¼ Kðnþ 1Þρ1þ1=n

bc θn0θp meets the condition pp ¼ 0 at
the boundary where θ0 ¼ 0 [see, e.g., Eq. (60) in Ref. [44]].
(ii) Asymptotically, as ξ → ∞, the perturbations λp, μp, and
ϕp should tend to zero. In this connection it is useful to
determine the asymptotic behavior of the solutions. This
can be given in analytic form.
(A) Static solutions.—

8<
:

ϕ0 → C1 − C2=ξ;

Σ0 → ξ; Σ0
0 → 1 − C3=ξ;

eν0 → 1 − 2C3=ξ:

(B) Perturbations.—

8>><
>>:

ϕp → C4 exp ð−
ffiffiffiffiffiffiffiffiffi
−ω2

p
ξÞ=ξ;

μp → C5 exp ð−
ffiffiffiffiffiffiffiffiffi
−ω2

p
ξÞ;

λp → −C5

ffiffiffiffiffiffiffiffiffi
−ω2

p
ξ exp ð−

ffiffiffiffiffiffiffiffiffi
−ω2

p
ξÞ:

Here the Ci are integration constants. Note that in the above
expressions the frequency ω2 carries a minus sign under the
square root. Therefore, to obtain decaying solutions for
the perturbations,ω2 should be negative. If this were not the
case, the perturbations would be oscillating along the
radius. In such a case the derivative of the scalar field
perturbation ϕ0

p could become asymptotically larger than
the static solution ϕ0

0, which would be in contradiction to
the essence of the perturbation method. Thus the perturba-
tion method employed here works only for negative ω2.
Let us now use Eqs. (46)–(49) together with the

boundary conditions (50) to find the eigenvalue ω2. The
question of stability is thus reduced to a study of

the possible values of ω2. If any of the values of ω2 are
found to be negative, then the perturbations will grow and
the configurations in question will be unstable against
radial oscillations.
The results of the calculation of the lowest eigenvalue ω2

0

are shown in Fig. 7, where ω2
0 is presented as a function of

the parameter B. As background solutions we employ the
static solutions obtained in Sec. III. The initial value μpð0Þ
in Eq. (50) is chosen to be μp0 ¼ 1, and the values λp0 and
θp0 are chosen in such a way that the solutions exhibit the
asymptotic behavior shown in (B).
It is seen from Fig. 7 that the square of the eigenfre-

quency remains always negative, independent of B. One
might naively expect that the inclusion of an anisotropy of
the fluid, which allows one to increase the central fraction
of the fluid in the system (that provides the possibility of
obtaining solutions with larger B), would favor the stabi-
lization of the solutions. This does not happen, however,
and ω2

0 remains always negative up to the critical values
Bcrit. Thus, the configurations under consideration are
always unstable against linear perturbations.

V. CONCLUSION

In the present paper we have considered neutron-star-
plus-wormhole systems in which a wormhole, supported by
a massless ghost scalar field, is threaded by ordinary
(neutron) matter. In contrast to the configurations consid-
ered in Ref. [21], we have here extended those studies to the
case where the central densities of the scalar field and the
neutron fluid are comparable, i.e., where the parameter B is
large, B ∼ 1. This has allowed us to obtain systems with
double-throat wormholes. Also, for a more realistic mod-
eling of the neutron matter at high densities, we have

FIG. 7. The lowest eigenvalue ω2
0 is shown as a function of B

for the anisotropy parameter β ¼ 0 (solid line) and β ¼ 2 (dashed
line). The thin vertical lines correspond to B ¼ Bcrit.

FOLOMEEV et al. PHYSICAL REVIEW D 89, 084018 (2014)

084018-12



employed an anisotropic equation of state for the neutron
matter, where the radial and tangential pressures of the fluid
are not equal.
Our main results are the following:
(1) There exist static regular asymptotically flat solu-

tions describing neutron-star-plus-wormhole sys-
tems in which the neutron matter is concentrated
in a finite-size region. In the simplest case such
configurations may be regarded as consisting of a
neutron star with a wormhole at its core, with the
neutron matter filling the wormhole throat. For these
systems, the parameter B is small, and the throat is
located at the center of the system (ξth ¼ 0); see
Fig. 1(a). For larger values of the parameter B
double-throat wormholes arise, where the throats
are either still lying within the fluid [see Fig. 1(b)] or
where they are located outside the fluid [see
Fig. 1(c)].

(2) In the latter case, presented in Fig. 1(c), the neutron
matter is completely hidden inside the belly region
between the throats. When the neutron matter
radiates light passing through the throats, this is
subjected to gravitational lensing. This leads to a
characteristic intensity distribution (see Fig. 5),
where the apparent brightness increases from the
center to the limb of the star. Note that the distri-
bution of the intensity of the light passing through
the throat differs from the one obtained when
considering the case where radiation does not pass
through a throat (see, e.g., Fig. 2 from Ref. [45]). In
principle, such an effect could be observed by
instruments with sufficiently high resolution.

(3) The tidal accelerations present in the neutron-star-
plus-wormhole systems are comparable to those of
neutron stars modeled by the same EOS (7). From
this point of view the neutron-star-plus-wormhole
configurations appear to be viable.

(4) According to the linear stability analysis of Sec. IV,
the square of the lowest eigenfrequency of the
perturbations is negative. This indicates that the
neutron-star-plus-wormhole configurations are un-
stable. This holds independent of whether the fluid is
isotropic or anisotropic.

One might expect that in order to obtain stable neutron-
star-plus-wormhole systems one should start from stable
wormholes (see, e.g., Refs. [46–48]). Static wormhole
configurations obtained from massless ghost scalar fields
are known to be unstable with respect to linear [49,50] and
nonlinear perturbations [51]. Nevertheless, in this case
stabilization of the wormhole solutions might possibly
be achieved by including rotation into the system, as we
recently showed for rapid rotation of five-dimensional
wormholes [52]. Thus one might expect that a rapid
rotation might also stabilize the neutron-star-plus-worm-
hole systems in four dimensions. This question should be
considered in our future studies.
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