
Perturbations for massive gravity theories

Pietro Guarato* and Ruth Durrer†

Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève,
24 quai Ernest Ansermet, CH-1211 Genève 4, Switzerland
(Received 9 September 2013; published 3 April 2014)

A theory of massive gravity depends on a nondynamical “reference metric” fμν which is often taken to
be the flat Minkowski metric. In this paper we examine the theory of perturbations on a background with
metric ḡμν which does not coincide with the reference metric fμν. We derive the mass term for general
perturbations on this background and show that it generically is not of the form of the Fierz-Pauli mass
term. We explicitly compute it for some cosmological situations and show that it generically leads to
instabilities.
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I. INTRODUCTION

In recent years, interest in massive gravity theory has
been rekindled. There are two main reasons for this: first, a
graviton mass weakens gravity on large scales and provides
a natural mechanism of “degravitation”which can solve the
cosmological constant problem [1–3]. If the graviton is
massive, the range of gravity is finite, and a cosmological
constant does not gravitate. Second, if one fine tunes the
graviton mass tomg ∼H0, whereH0 ≃ 1.5 × 10−42 GeV is
the value of the Hubble constant, gravity weakens around
this scale, and such a modified gravity theory can explain
the observed present accelerated expansion of the Universe
[4–8]; hence, it can play the role of dark energy [9–12].
In order to give the graviton, i.e., the degrees of freedom

of the metric of spacetime a mass, one has to introduce a
reference metric in order to define a potential which gives
energy to deviations away from the reference metric. For a
scalar field or a vector field, this reference point is usually
set to zero. For the metric this is not an option since the
metric fμν ¼ 0 is singular.
There is also the possibility to avoid the reference metric

but at the cost of nonlocal terms like for example
m2□−1Gμν in the equations of motion [13]. Such theories
are usually not ghost free, but recently a solution where
massive gravity can mimic dark energy for such a theory
has been found [14–16].
The most natural reference metric seems to be the

Minkowski metric, fμν ¼ ημν ¼ diagð−1; 1; 1; 1Þ, but in
principle the reference metric is general [17]; also, other
possibilities like a de Sitter reference metric [11,18] have
been considered. Moreover, since time translation invari-
ance is broken at very low energy, i.e., on cosmological
scales, this might be an indication for a more general, less
symmetric reference metric.

A generic quadratic term in the “metric perturbations”
gives rise not only to three additional propagating gravi-
tational modes which are necessary to complete the two
massless modes to a massive spin-2 particle, but to an
additional helicity-zero mode which is a ghost. To avoid
this ghost, one has to introduce a mass term of a very
specific form, the so-called Fierz-Pauli mass term [19], but
even in this case, as has been shown by Boulware and
Deser [20], the ghost reappears at the nonlinear level.
Recently, de Rham, Gabadadze, and Tolley (dRGT)

[21,22] have proposed a nonlinear, polynomial generali-
zation of the Fierz-Pauli mass term which is ghost free
for an arbitrary reference metric f and physical metric g.
They have shown that the interactions between the different
helicity modes can be at most fourth order in the
Langrangian. The action is written in the form

S ¼ M2
P

2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
½RðgÞ −Uðf; gÞ�; (1)

where the second term, added to the usual Einstein-Hilbert
action, takes into account the mass potential of the graviton.
This work has spurred a flurry of activity in massive gravity
theories.1 Especially, people want to investigate whether
massive gravity can be at the origin of the observed
accelerated cosmological expansion. For this, solutions
which lead to an expansion history close to the one of
the observable Universe have been studied [11,12,18].
To investigate cosmology inmassivegravity, we of course

cannot simply search for a background solution of massive
gravity which reproduces the observed cosmological
expansion history, but we also need to study perturbations
on this cosmology which are relevant for the anisotropies of
the cosmic microwave background anisotropies and large-
scale structure formation. This has been started for some
specific cases (e.g. in Refs. [10,23–25]).
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1Since 2010, 302 papers with “massive gravity” in the title
have been submitted to the arXiv at the time of this writing.
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This is also where the present work sets in. We derive the
generic form of the graviton mass term in perturbation
theory. For this we allow for an arbitrary reference metric
fμν and a background solution ḡμν. We consider the true
metric given by gμν ¼ ḡμν þ hμν, where hμν is a small
perturbation which we want to study up to quadratic order
in the Lagangian. The first-order terms vanish due to the
fact that ḡ solves the equations of motion, and we are only
interested in the second order. For the perturbed potential
we can write up to second order in hμνffiffiffiffiffiffiffiffiffiffiffiffiffi

− det g
p

Uðf; gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ḡ

p
½Uðf; ḡÞ þMμναβhμνhαβ�:

(2)

The main goal of this work is to determine the tensor
Mμναβðf; ḡÞ for arbitrary reference metric fμν and back-
ground ḡμν. We will find that for f ¼ ḡ, the mass term is, as
expected, the Fierz-Pauli combination. In this case, we
know that also the higher order terms in hμν are ghost free
by construction. We show that when f ≠ ḡ the quadratic
mass term does not satisfy the Fierz-Pauli tuning. However,
this does not imply the presence of a ghost. In this
nonperturbative case, it has to be checked that the con-
straint equations still project out the ghost. This has been
done previously in Ref. [17]. However, it has also been
shown recently that even the second scalar mode, which is
“healthy” in vacuum, can become ghostlike in certain cases,
e.g., in cosmology [26].
We finally discuss our mass term in a cosmological

setting, where we also solve the perturbation equations for a
special case.
The rest of the paper is organized as follows. In Sec. 2,

we derive the general form of Mαβμν. In Sec. 3, we apply
our result in cosmology and discuss it. In Sec. 4, we
conclude. Some lengthy calculations are deferred to
appendixes.

A. Notation

We use the metric signature ð−;þ;þ;þÞ. The reduced
Planck mass MP is given by M2

P ¼ ð8πGÞ−1, where G
denotes Netwon’s gravitational constant. Matrices are often
denoted without indices, g≡ ðgμνÞ. In order to avoid
confusion, determinants and traces are always clearly
indicated as such, det g and trK≡ ½K�.

II. METRIC PERTURBATIONS

Let us consider ḡμν to be a solution to a given massive
gravity theory with reference metric fμν and graviton
potential

Uðf; gÞ ¼ −2m2ðU2ðKÞ þ U3ðKÞ þU4ðKÞÞ; (3)

where

Kμ
ν ¼ δμν −

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
μ

ν
and (4)

U1ðKÞ ¼ ½K�; (5)

U2ðKÞ ¼ 1

2
ð½K�2 − ½K2�Þ; (6)

U3ðKÞ ¼ 1

6
ð½K�3 − 3½K�½K2� þ 2½K3�Þ; (7)

U4ðKÞ¼ 1

24
ð½K�4−6½K�2½K2�þ3½K2�2þ8½K�½K3�−6½K4�Þ

¼detðKÞ: (8)

Here we use the notation ½K� ¼ trK ¼ Kμ
μ, ½K2� ¼ trK2 ¼

Kμ
νKν

μ and so forth. U1 which does not appear in Eq. (3)
has been defined for later convenience. Notice that K and
therefore Uðf; gÞ vanish when g ¼ f.
The square root of the matrix g−1f is just some matrix

whose square is g−1f. In general, this is not unique.
However, if g−1f is close to the identity, g−1f ¼ 1þ ϵ
with jϵμνj < 1=d, where d denotes the dimension of the
matrix, we want to choose the root given by the convergent
Taylor series,

ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p ¼ 1þ
X∞
k¼0

ð1
2
− kÞð1

2
− kþ 1Þ � � � 1

2

ðkþ 1Þ! ϵkþ1: (9)

The potential Uðf; gÞ can be deformed by introducing
arbitrary coefficients in front of U3 and U4,

Uðf; gÞ ¼ −2m2ðU2ðKÞ þ c3U3ðKÞ þ c4U4ðKÞÞ: (10)

In Ref. [27] it is shown that this is the most general
potential for a ghost-free theory of massive gravity in four
dimensions.
We now want to consider linear perturbations around a

background solution with ḡμν ≠ fμν for the massive gravity
theory with potential (10). To derive the linear perturbation
equations we develop the Lagrangian

LðgÞ ¼ M2
P

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ðRðgÞ −Uðf; gÞÞ (11)

to second order in hμν, the deviation of the true metric g
from the background, gμν ¼ ḡμν þ hμν. The kinetic term for
hμν is determined by the Einstein operator, Eμναβ, in curved
spacetime [28]

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
RðgÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ḡ

p
½RðḡÞ − hμνGμνðḡÞ

þ hμνEμναβðḡÞhαβ þ∇μVμ� þOðh3Þ;
(12)

with
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EμναβðḡÞ ¼ −
1

2
½ðḡμαḡνβ − ḡμνḡαβÞ□þ ðḡμνḡαρḡβσ

þ ḡαβḡμρḡνσ − ḡμβḡνρḡασ−ḡανḡβρḡμσÞ∇ρ∇σ�

þ R̄
4

�
ḡμαḡνβ −

1

2
gμνḡαβ

�
: (13)

Here the covariant derivatives are taken with respect
to the background metric ḡ, and □ ¼ ḡρσ∇ρ∇σ is the
d’Alembertian operator. The kinetic term in square brackets
in (13) is just the curved spacetime version of the well-
known Einstein operator (see e.g. [21]), and the term
proportional to R̄ gives a contribution to the potential
for hμν which vanishes in a flat background. This term
looks like a mass term which does not satisfy the Fierz-
Pauli tuning; however, this term is usually not harmful. Gμν

in Eq. (12) is the Einstein tensor which solves the back-
ground equations of motion, and the total derivative ∇μVμ

is irrelevant for the equations of motion.
For Tμν ≠ 0, there also comes a contribution to the mass

term from the variation of the matter Langrangian which is
of the form

Mμναβ
mat ¼ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ∂2ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
LmÞ

∂gμν∂gαβ
����
g¼ḡ

¼ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ∂ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Tμν=2Þ

∂gαβ
����
g¼ḡ

; (14)

where Lm denotes the matter Lagrangian. In the following
we do not consider this model-dependent term. The result
which we obtain is however strictly only valid in vacuum.
This does not render it uninteresting as we expect that like
the massless Einstein equations, also the massive equations
have vacuum solutions where ḡ differs widely from f at
least in certain regions of spacetime, like, e.g., the
Schwarzschild solution. However, in a cosmological con-
text, this matter-induced mass term does in principle also
contribute.
We note in passing that the only difference of massive

gravity theory to a bimetric theory of gravity is that our
Lagrangian does not contain a kinetic term for the reference
metric f. Massive gravity is therefore a theory with a
“frozen-in” second metric f which is not a dynamical
element of the theory, but an “absolute spacetime.” This is
somewhat artificial. Actually, the beauty of general rela-
tivity where spacetime is dynamically determined by the
matter content of the Universe is lost. Cosmological
solutions for bimetric theories of gravity which add the
term ðM2

P=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p
RðfÞ to the above Langrangian have

also been studied [29–31].
The Einstein operator is symmetric under the exchange

ðμνÞ↔ðαβÞ. We could also symmetrize it in μν and in αβ,
but since we apply it only on the symmetric tensor hμν, this
does note make a difference. Furthermore, we omit the total
derivative in Eq. (12) for simplicity.

We want to determine the second-order perturbation of
the potential. Up to second order in hμν the potential is of
the form

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Uðf; gÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ḡ

p
½Uðf; ḡÞ þMμνðf; ḡÞhμν

þMμναβðf; ḡÞhμνhαβ�; (15)

where

Mμνðf; ḡÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ∂ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Uðf; gÞÞ

∂gμν
����
g¼ḡ

; (16)

Mμναβðf; ḡÞ≡ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ∂2ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Uðf; gÞÞ

∂gμν∂gαβ
����
g¼ḡ

: (17)

We consider perturbations around a solution ḡ of the
equations of motion. The terms linear in hμν in the
Lagrangian therefore cancel due to the background equa-
tions of motion, and we omit them in our discussion.
For noncommuting matrices

ffiffiffiffiffiffiffi
AB

p
≠

ffiffiffiffi
A

p ffiffiffiffi
B

p
, and we

cannot simply expand
ffiffiffiffiffiffiffiffiffiffi
g−1f

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ hÞ−1ḡ−1f

p
in

h ¼ ðhμαÞ ¼ ðḡμνhναÞ. Following [24], we therefore use
the fact that the potential (10) can also be written in the
form

Uðf; gÞ ¼ −2m2
h
a0 þ a1U1

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
þ a2U2

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
þa3U3

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �i
; (18)

with

a0 ¼ 6þ 4c3 þ c4; a1 ¼ −ð3þ 3c3 þ c4Þ;
a2 ¼ 1þ 2c3 þ c4; a3 ¼ −c3 − c4: (19)

Furthermore, as one can easily verify by bringing
ffiffiffiffiffiffiffiffiffiffi
g−1f

p
into triangular form,

t1 ≡U1ð
ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þ ¼

X
i

λ1=2i ; (20a)

t2 ≡U2ð
ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þ ¼

X
i<k

λ1=2i λ1=2k ; (20b)

t3 ≡U3ð
ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þ ¼

X
i<k<l

λ1=2i λ1=2k λ1=2l ; (20c)

t4 ≡U4ð
ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1λ2λ3λ4

p
; (20d)

where λi are the eigenvalues of g−1f, and 1 ≤ i; k; l ≤ 4.
Hence, we can write Eq. (18) as
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Uðf; gÞ ¼ −2m2½a0 þ a1t1 þ a2t2 þ a3t3�: (21)

We define

s1 ≡ U1ðg−1fÞ ¼
X
i

λi; (22a)

s2 ≡U2ðg−1fÞ ¼
X
i<j

λiλj; (22b)

s3 ≡U3ðg−1fÞ ¼
X
i<j<k

λiλjλk; (22c)

s4 ≡ U4ðg−1fÞ ¼ λ1λ2λ3λ4: (22d)

We now use the following relations between the tj and si
(1 ≤ j ≤ 3, 1 ≤ i ≤ 4):

t21 ¼ s1 þ 2t2; (23a)

t22 ¼ s2 − 2
ffiffiffiffiffi
s4

p þ 2t1t3; (23b)

t23 ¼ s3 þ 2t2
ffiffiffiffiffi
s4

p
: (23c)

With this we can write the perturbations of tj in terms of
perturbations of si which in turn can be obtained from
g−1f ¼ ð1þ hÞ−1ḡ−1f. We have to go to second order in
the perturbations. The details of this lengthy calculation are
given in Appendix A; here we just present the result:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Uðf; gÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ḡ

p
½Uðf; ḡÞ þMμναβðf; ḡÞhμνhαβ� þOðh3Þ with (24)

Mμναβ ¼ −m2½a0Mμναβ
0 þ a1M

μναβ
1 þ a2M

μναβ
2 þ a3M

μναβ
3 �; (25)

Mμναβ
0 ¼ 1

4
ḡμνḡαβ −

1

4
ðḡμαḡνβ þ ḡμβḡναÞ (26)

Mμναβ
j ¼ t̄jM

μναβ
0 þ 1

2
ðḡμνtαβj þ ḡαβtμνj Þ þ 2tμναβj ; 1 ≤ j ≤ 3; (27)

tμνj ¼ ∂tj
∂gμν

����
g¼ḡ

; tμναβj ¼ 1

2

∂2tj
∂gμν∂gαβ

����
g¼ḡ

: (28)

Here Mμναβ
0 is the second-order perturbation of the

determinant
ffiffiffiffiffiffi−gp

, and the quantities tμνj and tμναβj are the
first- and second-order derivatives of tj w.r.t. the metric
components gμν. Their full expressions are very cumber-
some; they are given in Appendix A.
Using the expressions given in the Appendix, as a first

check one can verify that this new quadratic potential for
hμν reduces to the Fierz-Pauli mass term if ḡ ¼ f,

Mμναβðḡ; ḡÞ ¼ −
m2

4
½ḡμνḡαβ − 1

2
ðḡμαḡνβ þ ḡμβḡναÞ�; (29)

where we have explicitly symmetrized with respect to the
exchanges ðμ↔νÞ, ðα↔βÞ.
Since the mass term given in Eq. (25) is so complicated,

it is very unlikely that it is of the Fierz-Pauli form in
general. Nevertheless, as explained in the introduction, this
does not mean that the theory has a ghost, when ḡ ≠ f.

III. APPLICATION TO COSMOLOGY

A. The mass term

In this section we apply our finding in cosmo-
logical setting. To obtain a homogeneous and isotropic
solution, we first assume that both ḡ and f are of the

Friedmann-Lemaître form with the same conformal time
coordinate. To simplify the analysis we neglect curvature
and set

ḡμνdxμdxν ¼ a2ðtÞð−dt2 þ δijdxidxjÞ; (30)

fμνdxμdxν ¼ b2ðtÞð−dt2 þ δijdxidxjÞ: (31)

Since the two metrics are proportional to each other, the
mass term can only be of the form

Mμναβðf; ḡÞ ¼ −m2

�
αḡμνḡαβ þ β

2
ðḡμαḡνβ þ ḡμβḡναÞ

�
:

(32)

In the cosmological situation, α and β depend only on time,
but the expressions below in terms of rðtÞ ¼ bðtÞ=aðtÞ are
always correct when the two metrics ḡ and f are con-
formally related by f ¼ r2ḡ.
Using the expressions in the Appendix and Eq. (25), one

obtains
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αðtÞ ¼ 1

4
½1þ ð1 − rÞfð5 − rÞ þ c3ð4 − 2rÞ þ c4ð1 − rÞg�;

(33)

βðtÞ ¼ −
1

4
½1þ ð1 − rÞfð11 − 4rÞþc3ð8 − 7rþ r2Þ

þc4ð1 − rÞð2 − rÞg�: (34)

Evidently, for rðtÞ ¼ 1 or aðtÞ ¼ bðtÞ we recover the Fierz-
Pauli mass term with αðtÞ ¼ −βðtÞ ¼ 1=4, for arbitrary
values of c3 and c4, but since r is time dependent, this value
is not achieved in general. In Fig. 1 we show the behavior of
α and β as functions of r for some special values for c3
and c4.
In [32], it has been shown that on a fixed background the

mass term (32) for α ≠ −β indicates the presence of a ghost
with mass

m2
ghost ¼

ðαþ 4βÞ
2ðαþ βÞm

2: (35)

In our situation with f ≠ ḡ, this is no longer true, and the
presence or absence of a ghost has to be investigated by
other means (see e.g. Ref. [17]).
Let us contrast this result with the alternative possibility

that f and g have the same physical time, which of course is
not equivalent,

ḡμνdxμdxν ¼ −dτ2 þ a2ðτÞδijdxidxj; (36)

fμνdxμdxν ¼ −dτ2 þ b2ðτÞδijdxidxj: (37)

In this case the two metrics f and ḡ are no longer
proportional, and the mass term takes the more complicated
form

M0000 ¼ −m2γðτÞ; (38)

Mij00 ¼ −m2δðτÞḡij; (39)

Mi0j0 ¼ −m2ϵðτÞḡij; (40)

Mijkl ¼ −m2

	
ρðτÞḡijḡkl þ σðτÞ

2
½ḡikḡjl þ ḡilḡjk�



: (41)

Setting rðτÞ ¼ bðτÞ=aðτÞ we obtain

γðτÞ ¼ 1

4
½ð1 − rÞfð−6þ 3rÞ þ c3ð−4þ 5r − r2Þ

þ c4ð−1þ 2r − r2Þg�; (42)

δðτÞ ¼ −
1

4
½1þ ð1 − rÞfð5 − rÞ þ c3ð4 − 2rÞ

þ c4ð1 − rÞg�; (43)

ϵðτÞ ¼ 1

4

1

ð1þ rÞ ½1þ ð1 − rÞfð5þ 2r − r2Þ

þ c3ð4 − r − r2Þ þ c4ð1 − rÞg�; (44)

ρðτÞ ¼ 1

4
½1þ ð1 − rÞf2þ c3g�; (45)

σðτÞ ¼ −
1

4
½1þ ð1 − rÞfð5 − rÞ þ c3ð2 − rÞg�: (46)

All other components of Mμναβ are determined by its
symmetry under exchange μν↔αβ, μ↔ν and α↔β. Again,
when rðτÞ ¼ 1 or aðτÞ ¼ bðτÞ, we reach the Fierz-Pauli
tuning which corresponds to γ ¼ 0, ρ ¼ −δ ¼ −σ ¼ 1=4,
ϵ ¼ 1=8. Note that in terms of the ratio r δðrÞ ¼ −αðrÞ so
that when writing Mij00 ¼ −m2ϕðrÞḡijḡ00, we obtain the
same expression for ϕ in both cases, equivalent physical
time and equivalent conformal time. Interestingly, c4 does
not enter the expressions for ρ and σ. In Fig. 2 we show the

1 2 3 4 5
r

10

5

5

FIG. 1 (color online). The functions αðrÞ (red) and βðrÞ (blue)
are shown for two cases: c3 ¼ c4 ¼ 0 (solid lines) and c3 ¼ 1,
c4 ¼ 0 (dashed lines).

1 2 3 4 5
r

6

4

2

2

4

6

FIG. 2 (color online). The functions γðrÞ (red, solid line), δðrÞ
(purple, dashed line), ϵðrÞ (green, dotted line), ρðrÞ (black, dash-
dotted line), and σðrÞ (orange, long-dashed line) are shown for
the case c3 ¼ 1, c4 ¼ 0.
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behavior of δ, γ, ϵ, ρ, and σ as functions of r for the special
case c3 ¼ 1, c4 ¼ 0.
When aðτÞ ≠ bðτÞ, the perturbations of these solutions

again violate the Fierz-Pauli tuning.
For a cosmological situation where the time directions of

f and ḡ are boosted with respect to each other, the mass
term is more complicated. However, this case would not
allow for a homogeneous and isotropic solution and is
therefore not relevant. The most general cosmological
situation is dtf ¼ rðtgÞdtg, where tf and tg denote the
conformal times for the cosmological metrics f and ḡ.

B. Evolution of cosmological perturbations

From Eq. (11) we can derive the background equation of
motion,

Ḡμν þ M̄μν ¼ M−2
P T̄μν; (47)

where Ḡμν is the Einstein tensor for ḡμν, T̄μν ≡ TμνðḡÞ and
M̄μν is the contribution from the mass term, which is
calculated in Appendix B. For the cosmological form of the
metrics (36) and (37) and the energy momentum tensor

T̄μν ¼
�

ρ̄ 0

0 a2p̄δij

�
; (48)

where ρ̄ and p̄ are the background energy density and
pressure, respectively, we obtain the Friedmann equations

3H2 þm2½6 − 9rþ 3r2 þ c3ð4 − 9rþ 6r2 − r3Þ
þ c4ð1 − 3rþ 3r2 − r3Þ� ¼ M−2

P ρ̄ (49)

and

2 _H þ 3H2 þm2½3 − 4rþ r2 þ c3ð1 − 2rþ r2Þ�
¼ −M−2

P p̄; (50)

where H ≡ _a=a.
We are interested in the question of whether perturba-

tions of a cosmological solution have an instability due
to the mass term, a ghost, in addition to the usual instability
to gravitational clustering (Jeans instability). As is well
known, the ghost always shows up in the scalar sector.
Therefore, here we only analyze the scalar perturbation
equations. A more general analysis is presented in a
forthcoming paper [33].
The most general scalar perturbations of the metric (in

Fourier space) are of the form

hμν ≡ δgμν ¼
�

−2ϕ iakjB
iakiB 2a2ðψδij − kikjEÞ

�
: (51)

The perturbation equations resulting from this ansatz are
Eqs. (C6), (C7), (C8), and (C9) given in Appendix C. These
equations are still rather cumbersome, and a full analysis

with cosmological expansion is given in [33]. Here we
simply analyze the presence of a ghost due to the mass
term. For this, we simplify to the static solution H ≡ 0 and
matter domination p̄ ¼ 0. Inserting this in Eq. (50), we find
two possible solutions for r,

r ¼
	

1
3þc3
1þc3

¼ rc:
(52)

The first is simply Minkowski space with the Fierz-Pauli
tuning. For this case, a brief analysis of the perturbation
equations shows that there is no ghost but just one massive
degree of freedom, namely ψ, as expected, the helicity 0
mode of the massive graviton. For r ¼ rc, however, we
obtain a static solution due to the presence of the mass term,
which exists for c3 ≠ −1. The positivity of the energy
density ρ̄ together with Eq. (49) then requires

P1ðc3; c4Þ ¼ 3þ 2c3 þ 3c23 − 4c4 > 0:

We can eliminate ϕ and B using the constraint Eqs. (C6)
and (C7). We now consider the static case r ¼ rc with
vanishing matter perturbations δρ ¼ δp ¼ v − B ¼ 0 since
we want to study the evolution of the free gravitational
field. InsertingH ¼ 0 and r ¼ rc we obtain a system of the
form

d2

dt2

�
ψ
E

�
¼ ðm2A0 þ k2A2Þ

�
ψ
E

�
; (53)

where E ¼ m2E. The matrices A0 and A2 are given by

A0 ¼

0
B@

21þ10c3þ9c2
3
−12c4Þ

4ð1þc3Þ 0

Qðc3Þ − 4ð1þc3Þð2þc3Þ
rcP1ðc3;c4Þ rc

1
CA;

A2 ¼

0
B@ − 1þc3

2
− P1ðc3;c4Þ

4ð1þc3Þ
ð1þc3Þð−5þc3Þ2

r2cP1ðc3;c4Þ
−5þc2

3

2rcð3þc3Þ

1
CA; (54)

where

Qðc3Þ ¼
33þ 27c3 − c23 − 3c33

2ð3þ c3Þ2

The eigenvalues of A0 are

λ01 ¼
3þ c3
1þ c3

¼ rc (55)

λ02 ¼
21þ 10c3 þ 9c23 þ 12c4

4ð1þ c3Þ
; (56)

with eigenvectors
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v01 ¼
�
0

1

�
(57)

v02 ¼
 

3P1ðc3;c4Þ
4ð1þc3Þ
ðA0Þ21

!
: (58)

The fact that λ01 > 0 indicates an exponential instability for
small k.
The eigenvalues of A2 are

λ21 ¼ 0 (59)

λ22 ¼ −
7þ 3c3
r2cð1þc3Þ

; (60)

with eigenvectors

v21 ¼
�
− P1ðc3;c4Þ

2ð1þc3Þ2

1

�
; (61)

v22 ¼
�
− r2cP1ðc3;c4Þ

2ð−5þc2
3
Þ

1

�
: (62)

The nonvanishing eigenvalues are shown as functions of c3
for c4 ¼ 0 in Fig. 3. The situation for different values of c4
is similar. Typically, one or both eigenvalues of A0 are
positive, which indicates an instability.
The eigenvalue λ22 is negative for c3 > −1 so that high

momentum modes are stable. The value λ21 ¼ 0 reflects
the fact that in dRGT massive gravity, the second scalar
mode does not really propagate [21,22], but it also does not
decouple as it does in the Fierz-Pauli tuning. This comes
from the choice of the potential Uðf; gÞ. Nevertheless, as
we have seen in this analysis, the mass term still leads to
exponential instabilities as the eigenmodes of Eq. (53)
behave as expð� ffiffiffiffiffiffi

λ0i
p

mtÞ for small momenta.

At this point, it is not clear how the expansion of the
Universe can mitigate this instability. When the eigenvalue
for the momentum, λ22, is negative, there is still the chance
that damping terms reduce the instability to a power law as
long asm2 ≲H2. Hence, it may be that the instability found
here is not a disaster for the phenomenology of the
observable, expanding Universe. We study this issue in
detail in a forthcoming publication [33].

IV. CONCLUSIONS

In this paper we have determined the form of the mass
matrix Mμναβðf; ḡÞ for fluctuations about some back-
ground solution ḡ. We have shown that for ḡ ¼ f we
obtain the Fierz-Pauli mass term, whereas for ḡ ≠ f a more
general mass term is found. In the simple case f ¼ r2ḡ the
mass term is of the form

Mμναβðf; ḡÞ ¼ −m2

�
αḡμνḡαβ þ β

2
ðḡμαḡνβ þ ḡμβḡναÞ

�
:

(63)

We have calculated the functions α and β in terms of r and
found that one recovers the Fierz-Pauli mass term only for
r ¼ 1. Even if r is a constant, r ¼ c ≠ 1, the mass term is
different.
We have also calculated the mass term in the cosmo-

logical setting when f and ḡ have the same physical time
but different conformal time. Also, in this case, when
ḡ ≠ f, the mass term differs from the Fierz-Pauli one.
We have briefly analyzed the consequence of this mass

term in the case of “static cosmology” and have shown
that even in this case, the mass term generically leads to
instabilities.
In the future we want to study the contributions of matter,

Tμν, to the mass term. This can be relevant in the
cosmological cases studied here where matter can contrib-
ute significantly to the mass term. We plan to do this in a
forthcoming paper [33]. The main point of the present
paper is the full calculation of the mass term for perturba-
tions around an arbitrary background which can be used to
study linear perturbation theory around arbitrary back-
grounds and for an arbitrary reference metric.
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APPENDIX A: THE COMPUTATION
OF THE PERTURBED POTENTIAL

Here we present more details about the computation of
Mμναβðf; ḡÞ, and we give the detailed results. With the help

2 4 6 8 10
c3

4

2

2

4

6

8

10

FIG. 3 (color online). The eigenvectors λ01 (red, solid), λ02
(blue, dashed), and λ22 (green, dotted) are shown as functions of
0 < c3 < 10 for the case c4 ¼ 0.
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of Eq. (23) we can express the first- and second-order
perturbations of tj in terms of those of si. Like for tj we set

sμνi ¼ ∂si
∂gμν

����
g¼ḡ

; (A1)

sμναβi ¼ 1

2

∂2si
∂gμν∂gαβ

����
g¼ḡ

: (A2)

To simplify the expressions we also introduce

A ¼ 2
ffiffiffiffiffi
s̄4

p ðt̄1Þ2 þ 2t̄3ð−t̄1 t̄2 þ t̄3Þ; (A3)

and the following combinations of first derivatives w.r.t. the
background metric ḡ:

Bμν
1 ¼ ðs̄4 t̄1 −

ffiffiffiffiffi
s̄4

p
t̄2t̄3Þsμν1 −

ffiffiffiffiffi
s̄4

p
t̄3s

μν
2 −

ffiffiffiffiffi
s̄4

p
t̄1s

μν
3 þ ðt̄3 − t̄1t̄2Þsμν4 ; (A4a)

Bμν
2 ¼ −

ffiffiffiffiffi
s̄4

p
t̄23s

μν
1 −

ffiffiffiffiffi
s̄4

p
t̄3t̄1s

μν
2 −

ffiffiffiffiffi
s̄4

p
t̄21s

μν
3 þ ðt̄3 − t̄1t̄2Þt̄1sμν4 ; (A4b)

Bμν
3 ¼ −s̄4 t̄3s

μν
1 − s̄4t̄1s

μν
2 þ ffiffiffiffiffi

s̄4
p ðt̄3 − t̄1t̄2Þsμν3 þ ð ffiffiffiffiffi

s̄4
p

t̄1 þ t̄2ðt̄3 − t̄1 t̄2ÞÞsμν4 : (A4c)

With this the first derivatives of the tj can be written as

tμνj ¼ 1

A
ffiffiffiffiffi
s̄4

p Bμν
j : (A5)

To obtain the second derivatives we have to derive Eq. (23) a second time. A rather cumbersome but straightforward
calculation leads finally to

tμναβ1 ¼
�
t̄2t̄3
A3s̄4

−
t̄1

A3
ffiffiffiffiffi
s̄4

p
�
Bμν
1 Bαβ

1 −
t̄3

A3s̄4
ðBμν

1 Bαβ
3 þ Bαβ

1 Bμν
3 − Bμν

2 Bαβ
2 Þ þ t̄1

A3s̄4
Bμν
3 Bαβ

3 −
t̄1

2A2s̄4
ðBμν

2 sαβ4 þ Bαβ
2 sμν4 Þ

þ
�

t̄1t̄2
4As̄3=24

−
t̄3

4As̄3=24

�
sμν4 sαβ4 þ

� ffiffiffiffiffi
s̄4

p
t̄1

A
−
t̄2t̄3
A

�
sμναβ1 −

t̄3
A
sμναβ2 −

t̄1
A
sμναβ3 þ

�
t̄3

A
ffiffiffiffiffi
s̄4

p −
t̄1 t̄2
A
ffiffiffiffiffi
s̄4

p
�
sμναβ4 ; (A6a)

tμναβ2 ¼ t̄23
A3s̄4

Bμν
1 Bαβ

1 −
t̄1 t̄3
A3s̄4

ðBμν
1 Bαβ

3 þ Bαβ
1 Bμν

3 − Bμν
2 Bαβ

2 Þ þ t̄21
A3s̄4

Bμν
3 Bαβ

3 −
t̄21

2A2s̄4
ðBμν

2 sαβ4 þ Bαβ
2 sμν4 Þ

þ
�

t̄21t̄2
4As̄3=24

−
t̄1t̄3

4As̄3=24

�
sμν4 sαβ4 −

t̄23
A
sμναβ1 −

t̄1t̄3
A

sμναβ2 −
t̄21
A
sμναβ3 þ

�
t̄1t̄3
A
ffiffiffiffiffi
s̄4

p −
t̄21 t̄2
A
ffiffiffiffiffi
s̄4

p
�
sμναβ4 ; (A6b)

tμναβ3 ¼ t̄3
A3

ffiffiffiffiffi
s̄4

p Bμν
1 Bαβ

1 −
t̄1

A3
ffiffiffiffiffi
s̄4

p ðBμν
1 Bαβ

3 þ Bαβ
1 Bμν

3 − Bμν
2 Bαβ

2 Þ þ
�
t̄1 t̄2
A3s̄4

−
t̄3

A3s̄4

�
Bμν
3 Bαβ

3

þ
�

t̄3
2A2s̄4

−
t̄1t̄2
2A2s̄4

�
ðBμν

2 sαβ4 þ Bαβ
2 sμν4 Þ þ

�
t̄1t̄22

4As̄3=24

−
t̄1

4As̄4
−

t̄2 t̄3
4As̄3=24

�
sμν4 sαβ4 −

ffiffiffiffiffi
s̄4

p
t̄3

A
sμναβ1 −

ffiffiffiffiffi
s̄4

p
t̄1

A
sμναβ2

þ
�
t̄3
A
−
t̄1 t̄2
A

�
sμναβ3 þ

�
t̄1
A
þ t̄2t̄3
A
ffiffiffiffiffi
s̄4

p −
t̄1t̄22
A
ffiffiffiffiffi
s̄4

p
�
sμναβ4 : (A6c)

With this we have expressed the derivatives of the quantities tj in terms of those of the si, but the latter can be obtained
directly by expanding the matrix

g−1f ¼ ðḡð1þ hÞÞ−1f ≈ ð1 − hþ h2Þḡ−1f:
Here h denotes ðhμνÞ ¼ ðḡμαhανÞ. We apply the formula (5) to (8) for Ujðg−1fÞ. These are given in terms of g−1 ¼ ðgμνÞ.
Using that for an arbitrary function Fðg−1Þ we have

∂F
∂gμν ¼ −gμαgνβ

∂F
∂gαβ ; (A7)
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a direct evaluation of si, and their first and second derivatives leads to

s̄1 ¼ fμνḡμν; (A8a)

sμν1 ¼ −ḡμαḡνβfαβ; (A8b)

sμναβ1 ¼ 1

8
fρσf½ḡμρḡνβḡσα þ ðμ↔νÞ þ ðα↔βÞ þ ðμ↔νÞðα↔βÞ� þ ½� � ��ððμ; νÞ↔ðα; βÞÞg;

≡ symffρσ ḡμρḡναḡβσg (A8c)

s̄2 ¼
1

2
fαβfμνðḡαβḡμν − ḡμαḡβνÞ; (A8d)

sμν2 ¼ fρσfληðḡμρḡνλḡση − ḡμρḡνσ ḡληÞ; (A8e)

sμναβ2 ¼ sym

	
fρσfλη

�
ḡμαḡνρḡβσ ḡλη þ 1

2
ḡμρḡνσ ḡαλḡβη − ḡμαḡνρḡβλḡση −

1

2
ḡμρḡνλḡασgβη

�

; (A8f)

s̄3 ¼
1

6
fαβfρνfσμð2ḡμαḡβρḡνσ þ ḡαβḡνρḡμσ − 3ḡαβḡμρḡνσÞ; (A8g)

sμν3 ¼ fσηfρλfαβ

�
ḡμσ ḡνρḡηλḡαβ − ḡμσ ḡνρḡηαḡλβ þ 1

2
ḡμσ ḡνηḡραḡλβ −

1

2
ḡμσ ḡνηḡρλḡαβ

�
; (A8h)

sμναβ3 ¼ sym

	
fγϵfρλfση

�
ḡμγ ḡνρḡαϵḡβσ ḡλη þ ḡμγ ḡναḡβρḡϵσ ḡλη þ 1

2
ḡμαḡνγ ḡβϵḡρλḡση

þ 1

2
ḡμγ ḡνϵḡαρḡβλḡση−ḡμγ ḡναḡβρḡϵλḡση − ḡμγ ḡνρḡασ ḡβηḡϵλ −

1

2
ḡμγ ḡνρḡαϵḡβλḡση −

1

2
ḡμαḡνγ ḡβϵḡλσ ḡηρ

�

; (A8i)

s̄4 ¼ det ðḡ−1fÞ; (A8j)

sμν4 ¼ −s̄4ḡμν (A8k)

sμναβ4 ¼ s̄4
2

�
ḡμνḡαβ þ 1

2
ḡμαḡνβ þ 1

2
ḡναḡμβ

�
: (A8l)

The operator symf� � �g indicates symmetrization in
ðμ↔νÞ, ðα↔βÞ and ðμ; νÞ↔ðα; βÞ.
These are the expressions for the derivatives of the sis

which have to be inserted in the formulas for the variations
of de tjs which in turn enter in the expression for Mμναβ.
Not surprisingly, the expressions for the variations of s2 and
s3 are quite cumbersome. We did not find any further
significant simplifications for them in the general case.

APPENDIX B: THE COMPUTATION OF M̄μν

In this Appendix we present more details about the
computation of the mass term M̄μν ≡Mμνðf; ḡÞ defined in
Eq. (16) and used in Eq. (47). We have

M̄μν ≡
	

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p δð ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Uðg; fÞÞ

δgμν



jg¼ḡ

¼ 1

2
Uðf; ḡÞḡμν − 2m2ða1tμν1 þ a2t

μν
2 þ a3t

μν
3 Þ; (B1)

where we have used
δ
ffiffiffiffiffiffiffiffiffiffi
− det g

p
δgμν

¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
gμν and, from

Eq. (21),

δUðf; gÞ
δgμν

����
g¼ḡ

¼ −2m2

�
δða1t1 þ a2t2 þ a3t3Þ

δgμν

�����
g¼ḡ

¼ −2m2ða1tμν1 þ a2t
μν
2 þ a3t

μν
3 Þ: (B2)

The quantities tμνj can be written in terms of sμνj [see
Eqs. (A4) and (A5) which are given in Eq. (A8)].

APPENDIX C: THE EQUATIONS OF MOTION
FOR THE COSMOLOGICAL PERTURBATIONS

Here we present the derivation of the equations of motion
for the perturbations at first order based on the second-order
perturbed part of the action (11). In complete generality,
these equations of motion have the form
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δGμ
ν þ δMμ

ν ¼ 8πGδTμ
ν; (C1)

where δGμ
ν, δMμ

ν and δTμ
ν stand for the first-order

perturbation of the usual Einstein tensor Gμ
ν, the first-

order perturbation of the mass term and the first-order
perturbation of the energy-momentum tensor, respectively.
The perturbations δGμ

ν and δTμ
ν can be found in the

literature (see e.g. [34–36]). For the mass term we have

δMμ
ν ¼ δðMμρgρνÞ ¼ δMμρḡρν þ M̄μρδgρν; (C2)

where

δMμρ ¼ δ

δhμρ
ðMτσαβhτσhαβÞ ¼ 2Mμραβhαβ: (C3)

M̄μρ has already been calculated in Appendix B. We
choose the background metric ḡμν given by Eq. (36), while
the metric fμν is given by Eq. (37) so that we can use
Eq. (38) for the components of the mass tensor Mμναβ. We
are interested in scalar perturbations of the metric gμν which
we decompose into Fourier components that evolve

independently. Note that we cannot fix a particular gauge
since the mass term in the action is not gauge invariant a
priori (see, however, the discussion about the “hidden
symmetry” for perturbations on Minkowski or de Sitter
spacetime in Ref. [32]). Gauge invariance can be restored
by means of the Stückelberg trick [37,38], but we are not
doing this here. The metric perturbation of a Fourier
component is

hμνðt; kÞ≡ δgμν ¼
�

−2ϕ iakjB
iakiB 2a2ðψδij − kikjEÞ

�
: (C4)

The energy-momentum tensor up to first order in scalar
perturbations is given by

Tμ
ν ¼

�
−ρ̄ − δρ −aðρ̄þ p̄Þðikjv − ikjBÞ

a−1ðρ̄þ p̄Þikiv ðp̄þ δpÞδij

�
(C5)

The first-order perturbation equation, δG0
0 þ δM0

0 ¼
M−2

P δT0
0, then becomes

	
2k2

a2
þ 3m2ð2c3ðr − 2Þðr − 1Þ þ c4ðr − 1Þ2 þ r2 − 6rþ 6Þ



ψ þ 2Hk2

a
B

−m2f2c3ðr − 2Þðr − 1Þ þ c4ðr − 1Þ2 þ r2 − 6rþ 6gk2E
− f6H2 þm2ðr − 1Þðc4ðr − 1Þ2 þ c3ðr − 4Þðr − 1Þ − 3rþ 6Þgϕ − 2Hk2 _Eþ 6H _ψ ¼ M−2

P δρ: (C6)

Equation δG0
i þ δM0

i ¼ M−2
P δT0

i is

m2
ðr − 1Þr2ðc3ðr − 3Þ þ c4ðr − 1ÞÞ þ ð3 − 2rÞr2

rþ 1
Bþ 2H

a
ϕ −

2

a
_ψ ¼ M−2

P ðp̄þ ρ̄Þðv − BÞ: (C7)

Equation δGi
i þ δMi

i ¼ M−2
P δTi

i reads

m2fc3ðr− 3Þðr− 1Þ þ r2 − 8rþ 9gk2Eþ
	
−3m2ð2c3ðr− 2Þðr− 1Þ þ c4ðr− 1Þ2 þ r2 − 6rþ 6Þ þ 12 _Hþ 18H2 − 2

k2

a2



ϕ

−
	
3m2ðc3ðr− 3Þðr− 1Þ þ r2 − 8rþ 9Þ þ 2

k2

a2



ψ þ 2k2Ë− 18H _ψ þ 6H _ϕ− 6ψ̈ þ 6Hk2 _E

−
2k2

a
_B−

4Hk2

a
B¼ 3M−2

P δp: (C8)

Finally, the longitudinal, traceless part of the (ij) component of the equation of motion,�
k̂ik̂

j −
1

3
δji

�
ðδGi

j þ δMi
jÞ ¼ M−2

P

�
k̂ik̂

j −
1

3
δji

�
δTi

j (C9)

(where k̂i is the unit wave vector), reads

m2fc3ðr − 1Þrþ r2 − 2rgEþ
_B
a
þ ψ

a2
− Ë − 3H _Eþ ϕ

a2
þ 2H

a
B ¼ 0: (C10)

For the static situation, H ¼ _H ¼ 0 and vanishing matter perturbations, this system reduces to (53).
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