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A theory of massive gravity depends on a nondynamical “reference metric” f,,, which is often taken to
be the flat Minkowski metric. In this paper we examine the theory of perturbations on a background with
metric g,, which does not coincide with the reference metric f,,. We derive the mass term for general
perturbations on this background and show that it generically is not of the form of the Fierz-Pauli mass
term. We explicitly compute it for some cosmological situations and show that it generically leads to

instabilities.
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I. INTRODUCTION

In recent years, interest in massive gravity theory has
been rekindled. There are two main reasons for this: first, a
graviton mass weakens gravity on large scales and provides
a natural mechanism of “degravitation” which can solve the
cosmological constant problem [1-3]. If the graviton is
massive, the range of gravity is finite, and a cosmological
constant does not gravitate. Second, if one fine tunes the
graviton mass to m, ~ Hy, where Hy = 1.5 x 107 GeV is
the value of the Hubble constant, gravity weakens around
this scale, and such a modified gravity theory can explain
the observed present accelerated expansion of the Universe
[4-8]; hence, it can play the role of dark energy [9-12].

In order to give the graviton, i.e., the degrees of freedom
of the metric of spacetime a mass, one has to introduce a
reference metric in order to define a potential which gives
energy to deviations away from the reference metric. For a
scalar field or a vector field, this reference point is usually
set to zero. For the metric this is not an option since the
metric f,, = 0 is singular.

There is also the possibility to avoid the reference metric
but at the cost of nonlocal terms like for example
m*07'G,, in the equations of motion [13]. Such theories
are usually not ghost free, but recently a solution where
massive gravity can mimic dark energy for such a theory
has been found [14-16].

The most natural reference metric seems to be the
Minkowski metric, f,, =n,, = diag(—1,1,1,1), but in
principle the reference metric is general [17]; also, other
possibilities like a de Sitter reference metric [11,18] have
been considered. Moreover, since time translation invari-
ance is broken at very low energy, i.e., on cosmological
scales, this might be an indication for a more general, less
symmetric reference metric.
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A generic quadratic term in the “metric perturbations”
gives rise not only to three additional propagating gravi-
tational modes which are necessary to complete the two
massless modes to a massive spin-2 particle, but to an
additional helicity-zero mode which is a ghost. To avoid
this ghost, one has to introduce a mass term of a very
specific form, the so-called Fierz-Pauli mass term [19], but
even in this case, as has been shown by Boulware and
Deser [20], the ghost reappears at the nonlinear level.

Recently, de Rham, Gabadadze, and Tolley (dRGT)
[21,22] have proposed a nonlinear, polynomial generali-
zation of the Fierz-Pauli mass term which is ghost free
for an arbitrary reference metric f and physical metric g.
They have shown that the interactions between the different
helicity modes can be at most fourth order in the
Langrangian. The action is written in the form

S:MT%/\/—detg[R(g)—U(f,g)], M

where the second term, added to the usual Einstein-Hilbert
action, takes into account the mass potential of the graviton.
This work has spurred a flurry of activity in massive gravity
theories. Especially, people want to investigate whether
massive gravity can be at the origin of the observed
accelerated cosmological expansion. For this, solutions
which lead to an expansion history close to the one of
the observable Universe have been studied [11,12,18].

To investigate cosmology in massive gravity, we of course
cannot simply search for a background solution of massive
gravity which reproduces the observed cosmological
expansion history, but we also need to study perturbations
on this cosmology which are relevant for the anisotropies of
the cosmic microwave background anisotropies and large-
scale structure formation. This has been started for some
specific cases (e.g. in Refs. [10,23-25]).

'Since 2010, 302 papers with “massive gravity” in the title
have been submitted to the arXiv at the time of this writing.
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This is also where the present work sets in. We derive the
generic form of the graviton mass term in perturbation
theory. For this we allow for an arbitrary reference metric
fuw and a background solution g,,. We consider the true
metric given by g,, = g,, + h,, where h,, is a small
perturbation which we want to study up to quadratic order
in the Lagangian. The first-order terms vanish due to the
fact that g solves the equations of motion, and we are only
interested in the second order. For the perturbed potential
we can write up to second order in &,

V/—detgU(f.g) = /= detg[U(f.3) + M, hp).
2)

The main goal of this work is to determine the tensor
MHP(f g) for arbitrary reference metric f,, and back-
ground g,,. We will find that for f = g, the mass term is, as
expected, the Fierz-Pauli combination. In this case, we
know that also the higher order terms in #*, are ghost free
by construction. We show that when f # g the quadratic
mass term does not satisfy the Fierz-Pauli tuning. However,
this does not imply the presence of a ghost. In this
nonperturbative case, it has to be checked that the con-
straint equations still project out the ghost. This has been
done previously in Ref. [17]. However, it has also been
shown recently that even the second scalar mode, which is
“healthy” in vacuum, can become ghostlike in certain cases,
e.g., in cosmology [26].

We finally discuss our mass term in a cosmological
setting, where we also solve the perturbation equations for a
special case.

The rest of the paper is organized as follows. In Sec. 2,
we derive the general form of M%*#_ In Sec. 3, we apply
our result in cosmology and discuss it. In Sec. 4, we
conclude. Some lengthy calculations are deferred to
appendixes.

A. Notation

We use the metric signature (—, +, 4, +). The reduced
Planck mass Mp is given by M2 = (82G)~!, where G
denotes Netwon’s gravitational constant. Matrices are often
denoted without indices, g= (g,,). In order to avoid
confusion, determinants and traces are always clearly
indicated as such, detg and trK = [K].

II. METRIC PERTURBATIONS

Let us consider g,, to be a solution to a given massive
gravity theory with reference metric f,, and graviton
potential

U(f.g) = —2m*(U(K) + U3(K) + U4(K)).  (3)

where
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U (K) = [K], (5)

U(K) = 5 (I = [K2). ©

US(K) = £ (KT = 3KIK?) 42167, )

U4(0) = 5 (1~ 6P + 31K+ 8[K] K] — 6[K)
= det(K). (8)

Here we use the notation [K] = trkC = K¥,, [K?] = wK? =
K*,K*, and so forth. U; which does not appear in Eq. (3)
has been defined for later convenience. Notice that K and
therefore U(f, g) vanish when g = f.

The square root of the matrix g~'f is just some matrix
whose square is ¢~'f. In general, this is not unique.
However, if g~'f is close to the identity, g”'f =1 +¢
with |¢#,| < 1/d, where d denotes the dimension of the
matrix, we want to choose the root given by the convergent
Taylor series,

) l_k)(l_k+1)...l
Vite=14Y @b 2 (9)
2 G

The potential U(f, g) can be deformed by introducing
arbitrary coefficients in front of U; and Uy,

U(f.g9) = =2m*(Us(K) + ¢3U5(K) + c4U4(K)).  (10)

In Ref. [27] it is shown that this is the most general
potential for a ghost-free theory of massive gravity in four
dimensions.

We now want to consider linear perturbations around a
background solution with g, # f, for the massive gravity
theory with potential (10). To derive the linear perturbation
equations we develop the Lagrangian

L(g) 7\/—detg(R(g) -U(f.9)) (11)

to second order in h,,, the deviation of the true metric g
from the background, g,, = g,, + h,,. The kinetic term for
h,,, is determined by the Einstein operator, Emab in curved
spacetime [28]

V/ —detgR(g) = \/—detg[R(7) — h,,G"(7)
+ hy & (§) hep + V,VF] + O(h?),
(12)

with
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it (g) = =3 177 - 77" 0 + (7377
A A e VA
R I
+3 (9”“9”’ - Eg’waﬂ . (13)

Here the covariant derivatives are taken with respect
to the background metric g, and [0 = g’V V, is the
d’ Alembertian operator. The kinetic term in square brackets
in (13) is just the curved spacetime version of the well-
known FEinstein operator (see e.g. [21]), and the term
proportional to R gives a contribution to the potential
for h,, which vanishes in a flat background. This term
looks like a mass term which does not satisfy the Fierz-
Pauli tuning; however, this term is usually not harmful. G*
in Eq. (12) is the Einstein tensor which solves the back-
ground equations of motion, and the total derivative V, V¥
is irrelevant for the equations of motion.

For TH* # 0, there also comes a contribution to the mass
term from the variation of the matter Langrangian which is
of the form

Mﬂvaotz/?' _ l 1 82( vV~ detng)
m 2y/=detg  09u09ap |4—g
:1 1 9(y/—detgT /2 (14)
=R T A

where L,, denotes the matter Lagrangian. In the following
we do not consider this model-dependent term. The result
which we obtain is however strictly only valid in vacuum.
This does not render it uninteresting as we expect that like
the massless Einstein equations, also the massive equations
have vacuum solutions where g differs widely from f at
least in certain regions of spacetime, like, e.g., the
Schwarzschild solution. However, in a cosmological con-
text, this matter-induced mass term does in principle also
contribute.

We note in passing that the only difference of massive
gravity theory to a bimetric theory of gravity is that our
Lagrangian does not contain a kinetic term for the reference
metric f. Massive gravity is therefore a theory with a
“frozen-in” second metric f which is not a dynamical
element of the theory, but an “absolute spacetime.” This is
somewhat artificial. Actually, the beauty of general rela-
tivity where spacetime is dynamically determined by the
matter content of the Universe is lost. Cosmological
solutions for bimetric theories of gravity which add the
term (M3%/2)+/—det fR(f) to the above Langrangian have
also been studied [29-31].

The Einstein operator is symmetric under the exchange
(uv)<>(ap). We could also symmetrize it in pv and in af,
but since we apply it only on the symmetric tensor £,,,, this
does note make a difference. Furthermore, we omit the total
derivative in Eq. (12) for simplicity.

PHYSICAL REVIEW D 89, 084016 (2014)

We want to determine the second-order perturbation of
the potential. Up to second order in A, the potential is of
the form

V—detgU(f. g) = /—detg[U(f.7) + M (f.9)h,

+ M”yaﬂ(f’ g)hﬂuh(lﬁ]’ (15)
where
oo _ 1 0(/=detgU(f.9))
M (f,g) = —detg 39, g:g_/’ (16)
1 1 9*y/=detgU(f.9))
vaf = _
M (f’g)_Zs/—detg 09,094 9=7 4

We consider perturbations around a solution g of the
equations of motion. The terms linear in A, in the
Lagrangian therefore cancel due to the background equa-
tions of motion, and we omit them in our discussion.

For noncommuting matrices VAB # VAVB, and we
cannot simply expand /¢ 'f = /(1 +h)'gf in
h = (h",) = (#"h,,). Following [24], we therefore use
the fact that the potential (10) can also be written in the
form

U(fvg):_zmz[QO"_alUl( g_lf> +a2U2( g_1f>
+asUs (v 1) . (18)
with

a0:6+4c3+c4,
ay =1+ 2c¢3+ ¢y,

a; = —(3 + 3C3 + C4)’

a3z = —C3 — C4. (19)

Furthermore, as one can easily verify by bringing \/¢~' f
into triangular form,

n=UGJg'H) = 4" (20a)

n=U,(\/g'f) =D 474", (20b)
i<k

=Us(\g ') =Y AR P02 o)
i<k<l

4 =Us(\ 7' f) = Vo dsds, (204d)

where 1; are the eigenvalues of g7'f, and 1 < i, k,[<4.
Hence, we can write Eq. (18) as
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U(f,g) = —2m2[a0 +a1t1 +612t2 +a3t3]. (21)

We define
s1=U (g —lf):Z , (22a)
5= Un(g7'f) =) Aidy, (22b)
i<j
= > hididy. (22¢)
i<j<k
Sq = U4(g_lf) = 11)42/1314. (22d)
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We now use the following relations between the #; and s;
(1<j<3,1<ig4)

l% =5 + 2t2, (233)
2 = 5, —2\/55 + 2111, (23b)
l% = S53 + 212\/5. (23C)

With this we can write the perturbations of #; in terms of
perturbations of s; which in turn can be obtalned from
g'f=0+h)" 1"‘1f We have to go to second order in
the perturbations. The details of this lengthy calculation are
given in Appendix A; here we just present the result:

s detgU(f.g) = /— det g[U(f, g) + MHb(f, D huhag) + O(h*)  with (24)
leaﬁ _ _mZ[aoMgv(lﬂ + alM/]wa/} + azMngﬂ + a3M§w(1ﬁ]’ (25)
1 1
My =297 -2 (797 + #75) 26)
M?Wﬁ t M/waﬁ 4z (g’“’ R Jrga/}t/w) +2t/4mﬂ 1<j<3, 27)
Ot 1 0%;

p e I o 7 (28)

Gg,w p zagyuagaﬂ 9=7

Here M is the second-order perturbation of the
determmant v/—9 and the quantities 7/ and t””“ﬂ are the
first- and second-order derivatives of t W.I.t. the metric
components g,,. Their full expressions are very cumber-
some; they are given in Appendix A.

Using the expressions given in the Appendix, as a first
check one can verify that this new quadratic potential for
h,,, reduces to the Fierz-Pauli mass term if g = f,

Ml (5,9) = [g””g"ﬂ (Wf" +377), (29)
where we have explicitly symmetrized with respect to the
exchanges (u<v), (a<>p).

Since the mass term given in Eq. (25) is so complicated,
it is very unlikely that it is of the Fierz-Pauli form in
general. Nevertheless, as explained in the introduction, this
does not mean that the theory has a ghost, when g # f.

III. APPLICATION TO COSMOLOGY

A. The mass term

In this section we apply our finding in cosmo-
logical setting. To obtain a homogeneous and isotropic
solution, we first assume that both g and f are of the

|

Friedmann-Lemaitre form with the same conformal time
coordinate. To simplify the analysis we neglect curvature
and set

Gudxtdxt = a*(1)(—dr? + 5;;dx'dx/), (30)

fudatdxt = b2(1)(=di + 5,;dx'dxd). 31)

Since the two metrics are proportional to each other, the
mass term can only be of the form

p

Mo (£, 5) = = |agp i +5 (7 + 7).

(32)

In the cosmological situation, a and  depend only on time,
but the expressions below in terms of r(¢) = b(t)/a(t) are
always correct when the two metrics g and f are con-
formally related by f = r2g.

Using the expressions in the Appendix and Eq. (25), one
obtains
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a(t) :%[1 + (1 =r){(5=7r)+c3(4=2r) + ca(1=1)}],
(33)

1) = -%[1 + (1= P){(11 = 45 (8 = Tr + 1)
tel=n@=n)) N

Evidently, for r(z) = 1 or a(t) = b(t) we recover the Fierz-
Pauli mass term with a(t) = —p(r) = 1/4, for arbitrary
values of ¢5 and ¢y, but since r is time dependent, this value
is not achieved in general. In Fig. 1 we show the behavior of
a and S as functions of r for some special values for c;
and ¢y.

In [32], it has been shown that on a fixed background the
mass term (32) for @ # —f indicates the presence of a ghost
with mass

,  _(a+4p) ,
mghost - 2((1 +ﬂ) m-. (35)

In our situation with f # g, this is no longer true, and the
presence or absence of a ghost has to be investigated by
other means (see e.g. Ref. [17]).

Let us contrast this result with the alternative possibility
that f and g have the same physical time, which of course is
not equivalent,

Gudxtdx’ = —de? + a?(7)8;;dxdx/, (36)
fudxtdx’ = —de? + b?(7)8;;dx'dx/. (37)
In this case the two metrics f and g are no longer

proportional, and the mass term takes the more complicated
form

MO0 = —my(c), (38)

~10}

FIG. 1 (color online). The functions a(r) (red) and f(r) (blue)
are shown for two cases: ¢c3 = ¢4 = 0 (solid lines) and ¢; =1,
¢4 = 0 (dashed lines).
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MU = —m?5(7)g", (39)

MO0 = —m?e(7)g", (40)

MK = —mz{p@)g"gk’ + %T) 59" +5'g"] } (41)

Setting r(z) = b(r)/a(r) we obtain

y(7) :%[(1 =) {(=6 +3r) + c3(=4 + 5r = 1?)

+ (=1 +2r=r3}, (42)

e) = =3 1+ (1= {5 =)+ es(4 - 27)
el =), @3)

11 ,

6(1):Z(1+r)[1+(1—r){(5+2r—r)
bol-r-Pra(-n) @
PO =G+ -nNR+all @)

O'(T):—%[l-f—(l -n{(5=r)+c32-7r)}. (46)

All other components of M*% are determined by its
symmetry under exchange uv<>af}, p<>v and a<>f. Again,
when r(7) =1 or a(r) = b(z), we reach the Fierz-Pauli
tuning which corresponds to y =0, p = -6 = —6 = 1/4,
e = 1/8. Note that in terms of the ratio r 6(r) = —a(r) so
that when writing M7 = —m?¢(r)5/g”, we obtain the
same expression for ¢ in both cases, equivalent physical
time and equivalent conformal time. Interestingly, ¢, does
not enter the expressions for p and o. In Fig. 2 we show the

YOpoe

~va

FIG. 2 (color online). The functions y(r) (red, solid line), 5(r)
(purple, dashed line), e(r) (green, dotted line), p(r) (black, dash-
dotted line), and o(r) (orange, long-dashed line) are shown for
the case c; =1, ¢4 = 0.
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behavior of 8, v, €, p, and o as functions of r for the special
case c3 =1, ¢4 = 0.

When a(z) # b(z), the perturbations of these solutions
again violate the Fierz-Pauli tuning.

For a cosmological situation where the time directions of
f and g are boosted with respect to each other, the mass
term is more complicated. However, this case would not
allow for a homogeneous and isotropic solution and is
therefore not relevant. The most general cosmological
situation is dt; = r(t,)dt,, where t; and t, denote the
conformal times for the cosmological metrics f and g.

B. Evolution of cosmological perturbations

From Eq. (11) we can derive the background equation of
motion,

G, + M, =M>T,, 47)

where G, is the Einstein tensor for g,,, T, = T,,(7) and
M,, is the contribution from the mass term, which is
calculated in Appendix B. For the cosmological form of the
metrics (36) and (37) and the energy momentum tensor

= p 0
T;w - ( 0 02[—)5” )v (48)

where p and p are the background energy density and
pressure, respectively, we obtain the Friedmann equations

3H? + m*[6 —9r + 3r2 + c3(4 = 9r + 612 — %)
+ey(1 =3r+3r = 1) = Mz*p (49)

and

2H +3H? + m?[3 = 4r + 1 + ¢5(1 = 2r + 1?)]
= —M;’p. (50)

where H = a/a.

We are interested in the question of whether perturba-
tions of a cosmological solution have an instability due
to the mass term, a ghost, in addition to the usual instability
to gravitational clustering (Jeans instability). As is well
known, the ghost always shows up in the scalar sector.
Therefore, here we only analyze the scalar perturbation
equations. A more general analysis is presented in a
forthcoming paper [33].

The most general scalar perturbations of the metric (in
Fourier space) are of the form

(=2 iak;B
h/w - 5'9”” o (lale 2612(11161']' - klk]E) ) ’ (51)

The perturbation equations resulting from this ansatz are
Egs. (C6), (C7), (C8), and (C9) given in Appendix C. These
equations are still rather cumbersome, and a full analysis

PHYSICAL REVIEW D 89, 084016 (2014)

with cosmological expansion is given in [33]. Here we
simply analyze the presence of a ghost due to the mass
term. For this, we simplify to the static solution H = 0 and
matter domination p = 0. Inserting this in Eq. (50), we find
two possible solutions for r,

1
r = { 3+c; (52)

I4+c3 Te-

The first is simply Minkowski space with the Fierz-Pauli
tuning. For this case, a brief analysis of the perturbation
equations shows that there is no ghost but just one massive
degree of freedom, namely y, as expected, the helicity 0
mode of the massive graviton. For r = r., however, we
obtain a static solution due to the presence of the mass term,
which exists for c; # —1. The positivity of the energy
density p together with Eq. (49) then requires

PI(C3,C4) = 3 + 2C3 + 3C% —4C4 > O
We can eliminate ¢ and B using the constraint Egs. (C6)
and (C7). We now consider the static case r = r,. with
vanishing matter perturbations dp = 6p = v — B = 0 since
we want to study the evolution of the free gravitational

field. Inserting H = 0 and r = r, we obtain a system of the
form

d2
- ("é) — (m2A0+k2A2)<"é), (53)

where £ = m?E. The matrices A, and A, are given by

21+10L'3+9c§712£4)

ey 0
AO = 4(1+C )(2+C ) ’
0(c3) == hiterer e
_H__C3 _ P](C;,Q;)
A, — 2 4(1+c3) 54
27| et s | (
rePy(c3.c4) 2r.(34¢3)
where
o 33 + 276'3 — C% — 3C%
Q(c3) = TEENE
The eigenvalues of A, are
3 + C3
Aoy = = 55
01 1+ cs re ( )

21+ 10c3 4 9¢3 + 12¢4

Ao = 4(1 4 c3) ’ 56)

with eigenvectors
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0
Vo = <1> (57)

3P (c3.¢4)
Vop = 4(1+c3) . (58)
(AO)ZI

The fact that 4y; > 0 indicates an exponential instability for
small k.
The eigenvalues of A, are

A =0 (59)

7 + 3C3
=, 60
. ra(l+cs) ©

with eigenvectors

_ P](CB-CAZ)

Uy = < 2Al+es) >’ (61)
1

_ 2P (03,?;)

Uy = ( 2(15+c§) > (62)

The nonvanishing eigenvalues are shown as functions of c;
for ¢, = 0 in Fig. 3. The situation for different values of ¢,
is similar. Typically, one or both eigenvalues of A, are
positive, which indicates an instability.

The eigenvalue 15, is negative for ¢; > —1 so that high
momentum modes are stable. The value 4,; = 0 reflects
the fact that in dRGT massive gravity, the second scalar
mode does not really propagate [21,22], but it also does not
decouple as it does in the Fierz-Pauli tuning. This comes
from the choice of the potential U(f, g). Nevertheless, as
we have seen in this analysis, the mass term still leads to
exponential instabilities as the eigenmodes of Eq. (53)
behave as exp(++/4g;mt) for small momenta.

FIG. 3 (color online). The eigenvectors Aq; (red, solid), Ay,
(blue, dashed), and 4,, (green, dotted) are shown as functions of
0 < ¢3 < 10 for the case ¢, = 0.
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At this point, it is not clear how the expansion of the
Universe can mitigate this instability. When the eigenvalue
for the momentum, 1,,, is negative, there is still the chance
that damping terms reduce the instability to a power law as
long as m?> < H?. Hence, it may be that the instability found
here is not a disaster for the phenomenology of the
observable, expanding Universe. We study this issue in
detail in a forthcoming publication [33].

IV. CONCLUSIONS

In this paper we have determined the form of the mass
matrix M*(f,g) for fluctuations about some back-
ground solution g. We have shown that for g = f we
obtain the Fierz-Pauli mass term, whereas for § # f a more
general mass term is found. In the simple case f = r2g the
mass term is of the form

M (f, 5) = —m? | ag G +§(§"“§”” +777)).
(63)

We have calculated the functions a and f in terms of r and
found that one recovers the Fierz-Pauli mass term only for
r = 1. Even if r is a constant, » = ¢ # 1, the mass term is
different.

We have also calculated the mass term in the cosmo-
logical setting when f and g have the same physical time
but different conformal time. Also, in this case, when
g # f, the mass term differs from the Fierz-Pauli one.

We have briefly analyzed the consequence of this mass
term in the case of “static cosmology” and have shown
that even in this case, the mass term generically leads to
instabilities.

In the future we want to study the contributions of matter,
T,, to the mass term. This can be relevant in the
cosmological cases studied here where matter can contrib-
ute significantly to the mass term. We plan to do this in a
forthcoming paper [33]. The main point of the present
paper is the full calculation of the mass term for perturba-
tions around an arbitrary background which can be used to
study linear perturbation theory around arbitrary back-
grounds and for an arbitrary reference metric.
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APPENDIX A: THE COMPUTATION
OF THE PERTURBED POTENTIAL

Here we present more details about the computation of
M (£, 5), and we give the detailed results. With the help
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of Eq. (23) we can express the first- and second-order  To simplify the expressions we also introduce
perturbations of 7; in terms of those of s;. Like for 7; we set

8.5'[

si" = , (A1) A =2V54(1) + 26(-1 + ), (A3)

agﬂ” 9=9

1 o
o =3 ﬁ (A2)  and the following combinations of first derivatives w.r.t. the
GuwOYap 4= background metric g:
|

BYY = (5411 — V/5ulol3)sy" — V/5ulash = /Salysy + (13 = 111)sly (Ada)
= —VaBs\ — Aatstysh — Sats 4 (- 1h)1sY (Adb)
ng = —3’4;35'/1“/ - 54;15';”/ + \/a(f:; - iliz)slgy + (\/ﬂ?l + iz(?:; — 21;2))5/1”. (A4C)

With this the first derivatives of the 7; can be written as

v 1 v
N i (AS)

To obtain the second derivatives we have to derive Eq. (23) a second time. A rather cumbersome but straightforward
calculation leads finally to

vafp ;2i3 U paf E3 UU paf aff ppv U paf U paf E1 g (z/f aff v
# <A3 A3\/_>B BY — a5 (BUBY + BYBY - BB )+A3_ B" B¢ —2A2§4(B + BP)
11 t Sty bt t t 13 RE
4 4
3 1t
b — A;_ BB - Ag 5 (B"“BY + BB — BYBY )+ A3_ B””Bg’ﬁ —2A2_ (By's + BY s
it 113 ) wap B owep 03 s T s (tltS it ) wap
== |y sy =8 =85, T =55+ , (A6b)
<4A§Z/2 4453%) AT A2 A AV AVE
afp [i af 1 aff af aff ;1 ;2 af
z/;y AS\/’_BI‘DBI AB\/"(B”DB + B B”V BIZWBQ ) + <A3 A3— >BIWB‘
t3 _ tlt2 ( B aﬁ + Baﬁ /u/) + ?ﬁ% _ E1 t2[3 suusaﬁ \/ﬁf& sﬂuaﬁ _ \/ﬁl sﬂuaﬁ
2A%5, 2A%3, 4AFY? 4A5, 4A—3/2 474 A ! A 2
LAWY 1 bl 1,13 ﬂuaﬂ
= —— . Abc
G- G 49

With this we have expressed the derivatives of the quantities 7; in terms of those of the s;, but the latter can be obtained
directly by expanding the matrix

g f =@ +h)"fr(l-h+h)g'f.

Here h denotes (h*,) = (§"hy,). We apply the formula (5) to (8) for U;(g™"f). These are given in terms of g=' = (¢**).
Using that for an arbitrary function F(g~') we have

oF OF
— _pa gy T A7
99, 9y 9g7 (A7)
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a direct evaluation of s;, and their first and second derivatives leads to

51 = f/wgm/’ (A8a)
S = =G . (A8b)
1
s = 3ok [0 77T + (o) + (aop) + (uov)(@op)| + [ (k. v) < (@ )},
= sym{f,,5"" 53"} (A8c)
1
52 :Efaﬁfﬂb(gaﬂgﬂv - 7g"), (A8d)
sh' = Foaf (@755 — 77 5°5"), (A8e)
l/aﬂ _ Sym{fpo-f/lr/ <gyagv/)gﬁng)uy 4= gypgwr a/lg/?r/ Ma v/)gﬁlgﬂr/ _ _gypgwl (mg/}n) } (ASf)
1
S3 =g fapf ol o205 + GG G = 357G ), (A8g)
1 1
sy = fonf pifap (9’“’9””9’7’19@ -7g7g"g" + EQ”GQ””QP“ZJ’W - 59””9””@“”@“’3) (A8h)
s = Sym{fyefpzfgq [g”yg”"g“g’f”g‘” + 377G+ 5 g"“ i
1 1 1
+5975" =075 - F g F g~ 2975 7T~ 77 “GPGG } } (A81)
5, = det (g7 f), (A8))
S = 5,5 (A8K)
sy = (gﬂ”gaﬁ +579 +5 gmg”ﬂ> (A8])

The operator sym{---} indicates symmetrization in
(pov), (aep) and (p,v)<(a, f).

These are the expressions for the derivatives of the s;s
which have to be inserted in the formulas for the variations
of de ;s which in turn enter in the expression for Ml
Not surprisingly, the expressions for the variations of s, and
s3 are quite cumbersome. We did not find any further
significant simplifications for them in the general case.

APPENDIX B: THE COMPUTATION OF M*

In this Appendix we present more details about the
computation of the mass term M* = M (f, g) defined in
Eq. (16) and used in Eq. (47). We have

_/\_/l;w:{ 1 6(V_deth(g’f))}| .
-~ |W/~detg 09 9=9
1
= JU(97 = 2@ + 0 + at). B

where we have used ” detg \/—det gg" and, from
Eq. (21),
sU(f.9)

— o2 (5(61111 + arty + Cl3t3)>
9=7 G
= =2m* (a1 + arth’ + azty’).

59;41/ 9=9

(B2)

The quantities 7/ can be written in terms of s%” [see
Egs. (A4) and (A5) which are given in Eq. (A8)].

APPENDIX C: THE EQUATIONS OF MOTION
FOR THE COSMOLOGICAL PERTURBATIONS

Here we present the derivation of the equations of motion
for the perturbations at first order based on the second-order
perturbed part of the action (11). In complete generality,
these equations of motion have the form
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oG+, + SM* , = 8aGoT* (C1H
where 6G*,, 6M*, and 6T*, stand for the first-order
perturbation of the usual Einstein tensor G*,, the first-
order perturbation of the mass term and the first-order
perturbation of the energy-momentum tensor, respectively.
The perturbations 6G*, and 6T*, can be found in the
literature (see e.g. [34-36]). For the mass term we have

oM, = 5<Mﬂpgpv) = 5Mﬂpgpv —+ Mﬂpégpw (C2)
where
o
M = (M ghg) = 2MPPhgy (C3)

Hp

M has already been calculated in Appendix B. We
choose the background metric g, given by Eq. (36), while
the metric f,, is given by Eq. (37) so that we can use
Eq. (38) for the components of the mass tensor M**®* We
are interested in scalar perturbations of the metric g,, which
we decompose into Fourier components that evolve

|

PHYSICAL REVIEW D 89, 084016 (2014)

independently. Note that we cannot fix a particular gauge
since the mass term in the action is not gauge invariant a
priori (see, however, the discussion about the “hidden
symmetry” for perturbations on Minkowski or de Sitter
spacetime in Ref. [32]). Gauge invariance can be restored
by means of the Stiickelberg trick [37,38], but we are not
doing this here. The metric perturbation of a Fourier
component is

B ( =2¢ iak;B
I’l/w(t, k) = 5.9;41/ - (ldle 2az(l//5ij - klkjE) > ' (C4)

The energy-momentum tensor up to first order in scalar
perturbations is given by

—p —op

y —a(p + p)(ik;v — ik;B)
= (a‘l(i)ﬂ‘a)ik"v (P )

+6p)d;
(C5)

The first-order perturbation equation, 6G%, + sM°, =
M726T,, then becomes

2k? 2HK?
{612+3m2(2c3(r—2)(r— 1)+ cu(r—1)> 4 72 —6r+6)}1//+ p B

—m*{2c5(r=2)(r—=1) 4+ c4(r—1)> + r* —6r + 6 }k*E

—{6H? 4+ m*(r — 1)(ca(r—1)>+ c5(r —4)(r = 1) = 3r + 6) }¢p — 2HK’E + 6Hyjr = M325p.

Equation §G°; + SM°; = M326T; is

, (r=1)r2(e3(r=3) +cq(r—1)) + (3 =2r)r? 2H

(Co)

" r+1

Equation §G'; + SM'; = M3*6T'; reads

2
B+—¢——y = Mp*(p+p)(v - B). (C7)

. k2
m*{c3(r=3)(r=1)+r> = 8r+9}k*E + {—3m2(203(r—2)(r— 1) +cy(r=1+r*=6r+6)+12H + 18H* — 2?}45

K2 .. . .
— {3m2(c3(r—3)(r— 1)+r2=8r+9) +2;}y/+2k2E— 18Hyr + 6Hep — 6y + 6HK’E

Finally, the longitudinal, traceless part of the (ij) component of the equation of motion,

N A . ol T\

(where k; is the unit wave vector), reads

B . :
m?*{cs(r — 1)r—|—r2—2r}E+—+£2—E—3HE+
a a

(8)
; (©9)
% + 27HB =0. (C10)

For the static situation, H = H = 0 and vanishing matter perturbations, this system reduces to (53).
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