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We derive the tensor gravitational waveform generated by a binary of nonspinning compact objects
(black holes or neutron stars) in a general class of scalar-tensor theories of gravity. The waveform is
accurate to second post-Newtonian order beyond the leading order quadrupole approximation. We use the
direct integration of the relaxed Einstein equations formalism, appropriately adapted to scalar-tensor
theories, along with previous results for the equations of motion in these theories. The self-gravity of the
compact objects is treated with an approach developed by Eardley. The scalar field causes deviations from
the general relativistic waveform that depend only on a small number of parameters. Among the effects of
the scalar field are new hereditary terms which depend on the past history of the source. One of these, a
dipole-dipole coupling, produces a zero-frequency “gravitational-wave memory” equivalent to the
Christodoulou memory of general relativity. In the special case of two black holes, the waveform reduces
to the general relativistic waveform. For a mixed (black hole-neutron star) system, the waveform is identical
to that of Einstein’s theory to first post-Newtonian order, with deviations at higher order depending only on
a single parameter. The behavior in these cases matches that found for the equations of motion.
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I. INTRODUCTION

Compact binaries are one of the most abundant and
interesting sources of gravitational waves (GWs). Systems
comprising stellar-mass black holes (mBH ∼ 1–100M⊙)
and/or neutron stars, which lie in the “high-frequency”
GW band (1–103 Hz), are likely to be the first detected.
Indeed, current rate estimates predict that ground-based
detectors like Advanced LIGO [1] and Advanced Virgo [2]
will see several to hundreds of these sources per year once
they become operational (although rates are very uncertain)
[3]. Higher mass binaries, containing massive or super-
massive black holes, can be detected by other means.
Systems with masses 104–107M⊙ lie in the “low-
frequency” band (10−4 − 1 Hz) and will be detected by
a space-based detector like the proposed eLISA mission
[4]. Heavier systems (mBH ∼ 108–109M⊙) could be
detected very soon by the timing of radio pulsars [5].
Detection of the GWs is very challenging: The waves

interact extremely weakly with matter, and there are many
sources of noise. The separation of signal from noise is
achieved by the matched filtering process, which requires
the generation of extremely accurate theoretical template
waveforms for the expected GW signal. For the inspiral of
compact binary systems, templates are expressed in the
post-Newtonian approximation to general relativity, an
expansion in powers of v=c ∼ ðGm=rc2Þ1=2. Each power
is considered to be one-half a post-Newtonian (PN) order.
Templates for nonspinning binary systems have been
constructed to Oððv=cÞ6Þ, or 3PN order [6], with partial

results at 3.5PN order [7]. (For a comprehensive review,
see [8].) Numerical relativity codes provide the ability to
add waveforms for the final merger of the compact objects
to the end of the inspiral signal [9–11].
The use of extremely accurate template waveforms also

allows for the extraction of source parameters from the
measured GW signal. Parameter estimation studies show
that properties like compact object mass and spins, source
position, and luminosity distance can be determined with
high precision [12–14]. Alone, this information can probe
astrophysical regimes heretofore unexplored. In combina-
tion with a coincident electromagnetic detection, the utility
of GW measurements increases. For instance, an electro-
magnetically determined redshift and a gravitationally
determined luminosity distance allow for a unique probe
of cosmology [15].
For these reasons, detectors like Advanced LIGO

and eLISA are often considered to be exciting new
astrophysical observatories. However, they will also be
extremely important physics experiments. The comparison
of measured GW signals to highly accurate template
waveforms also allows for fundamental tests of the theory
itself. Einstein’s general relativity (GR) has been tested
extremely well in the regimes of the solar system and the
binary pulsar [16]. However, the environment of an
inspiraling, merging compact binary represents a strong-
field, dynamical regime in which GR has currently not
been tested. GW measurements will place constraints on
the validity of GR in this regime.
There are many ways by which one may test GR with the

GW signal of inspiraling compact binaries. One approach is*lang@phys.ufl.edu
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simply to check the self-consistency of terms in the
post-Newtonian sequence [17]. However, such a test can
only find deviations from GR, not characterize them. Other
tests may involve putting constraints on parameters in
specific alternative theories of gravity [18–28]. A third
approach parametrizes the waveform in terms of generic,
theory-dependent parameters [29–32], much like the para-
metrized post-Newtonian formalism did for solar-system
tests [16,33]. Most of these analyses have only relied on the
dominant, lowest order effects in the waveform model.
A particularly important alternative to GR is the collec-

tion of scalar-tensor theories of gravity [34]. They have a
long history, dating back over 50 years, and represent one
of the simplest possible modifications to Einstein’s theory.
While solar system and binary pulsar tests put strong
constraints on these theories [16], they, like all theories,
have not been tested in the strong-field, dynamical regime
of inspiraling compact binaries. Furthermore, they remain
well motivated. For instance, many so-called fðRÞ theories,
which modify the action of general relativity to allow
arbitrary functions of the Ricci scalar, can be expressed in
the form of a scalar-tensor theory [35]. These fðRÞ theories
may explain the acceleration of the universe without
resorting to dark energy. Scalar-tensor theories are also
potential low-energy limits of string theory [34].
This paper is part of a series which seeks to develop the

gravitational waveform for inspiraling compact binaries in
scalar-tensor theories to high order in the post-Newtonian
approximation. Specifically, we are interested in theories
described by the action

S ¼ 1

16π

Z �
ϕR − ωðϕÞ

ϕ
gμν∂μϕ∂νϕ

� ffiffiffiffiffiffi−gp
d4x

þ Smðm; gμνÞ; (1.1)

where gμν is the spacetime metric, g is its determinant, R is
the Ricci scalar derived from this metric, ϕ is the scalar
field, and ω is the scalar-tensor coupling. Note that ω ¼
ωðϕÞ is not a constant; that is, we are not restricting our
attention to Brans-Dicke theory. We do, however, restrict
ourselves only to massless scalar fields (i.e., those without a
potential). We have also written Sm to represent the matter
action. Note that it depends only on the matter fieldsm and
the metric; the scalar field ϕ does not couple directly to the
matter. This means that (1.1) is expressed in the “Jordan”
frame, in which standard rods and clocks measure distances
and times. All of our work will be done in this frame. An
alternative representation is the “Einstein” frame, related to
the Jordan frame by a conformal transformation [36].
The first step in the construction of gravitational wave-

forms is to calculate the equations of motion for the
compact objects. This was the subject of the first paper
in this series [37]. Mirshekari and Will (hereafter MW)
computed the equations of motion to order ðv=cÞ5 (2.5PN)
beyond the leading term. They made use of a method

known as direct integration of the relaxed Einstein
equations (DIRE), based on the original framework of
Epstein and Wagoner [38] and then extended by Will,
Wiseman, and Pati [39–42]. This approach has been shown
to give identical results to other methods, including
the “post-Minkowskian” method [8], the Hamiltonian
approach [43], the “strong-field point-particle limit”
strategy [44], and the “effective field theory” method
[45]. It is also easily adapted to scalar-tensor theories.
In the adapted DIRE method, the scalar-tensor field

equations are first rewritten in a “relaxed” form: flat-
spacetime wave equations for a “gravitational field” ~hμν

and a modified scalar field φ. The wave equations are
simplified by the choice of a particular coordinate system,
represented by a gauge condition on ~hμν. Together, the
wave equations and gauge condition contain all the content
of the full field equations.
The wave equations are then solved formally using a

retarded Green’s function, valid everywhere in spacetime.
To convert them to a more useful form, however, these
formal solutions are evaluated differently in different
regions of spacetime: In the “near zone” close to the
source (defined in Sec. II B below), the integrals are
expanded using a slow-motion approximation. Far away
from the source, in the “radiation zone,” a special coor-
dinate transformation is used to evaluate the solutions.
The total solution for each field ( ~hμν and φ) is then the sum
of the two separate solutions; any terms dependent on the
arbitrary boundary between zones must cancel out.
In this paper, we calculate the tensor gravitational

waveform to order ðv=cÞ4 (2PN) beyond the leading-order
“Newtonian” quadrupole. In doing so, we also make use of
the adapted DIRE approach. The difference with MW is
fundamentally simple: In that paper, the gravitational field
~hμν was evaluated in the near zone, in order to calculate
how it affects the motion of the compact bodies. We, by
contrast, evaluate ~hμν (or more specifically, ~hij) in the
radiation zone, where it will be measured by a GW detector.
Our procedure very closely follows that of Wiseman and
Will [40] (hereafter WW), although the notation is updated
to match that of MW. Along the way, we must make use of
MW’s results for the equations of motion.
As discussed in MW, one key concern in this study is the

treatment of the compact bodies’ internal gravity. Since
scalar-tensor theories do not obey the strong equivalence
principle, the motion and gravitational-wave emission of a
binary depend on the internal composition of its constituent
bodies. To handle this effect, we have adopted the approach
of Eardley [46]. We treat the matter stress-energy tensor as
a sum of delta functions located at the position of each
compact object. However, instead of assigning each body a
constant mass, we let the mass be a function of the scalar
field,MA ¼ MAðϕÞ. This gives the matter action an indirect
dependence on ϕ, even though we still work in the Jordan
frame. In the final waveform, this dependence will appear
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as the “sensitivity” of the mass to variations in the scalar
field,

sA ≡
�
d lnMAðϕÞ

d lnϕ

�
0

; (1.2)

as well as derivatives of this quantity. (The subscript 0
means that the derivative should be evaluated using the
asymptotic value of the scalar field, ϕ0.) In the weak-field
limit, the sensitivity is proportional to the Newtonian self-
gravitational energy per unit mass of the body. For neutron
stars, the sensitivity depends on the mass and equation of
state of the star, with typical values 0.1–0.3 [47,48]. For
black holes, s ¼ 0.5, and all derivatives vanish.
Recently, numerical simulations of compact binaries in

scalar-tensor gravity have shown that the sensitivities of
neutron stars can change dramatically during the late
inspiral [49–51]. This “dynamical scalarization” effect is
a generalization of the “spontaneous scalarization” of
individual stars discovered by Damour and Esposito-
Farèse [52,53]. Since we assume that the sensitivities are
constant in time, our work does not capture this effect. In
any case, dynamical scalarization only becomes relevant
during the late portion of the inspiral, when our use of the
post-Newtonian approximation also becomes invalid.
We find that, at 0PN and 0.5PN order, the gravitational

waves are identical to those in general relativity, except
for two changes. First, each explicit factor of total mass
m ¼ m1 þm2 contained in the expression is modified to
αm, where

α≡ 3þ 2ω0

4þ 2ω0

þ ð1 − 2s1Þð1 − 2s2Þ
4þ 2ω0

: (1.3)

Here ω0 ≡ ωðϕ0Þ. Second, the overall waveform is scaled
by ð3þ 2ω0Þ=ð4þ 2ω0Þ. At higher PN order, the devia-
tions become more complicated. However, they are still
described by a relatively small number of parameters, the
same as those used in MW to characterize differences
between the GR and scalar-tensor equations of motion.
Almost every term in the waveform has a counterpart in the
GR waveform with the same basic structure. Terms which
are entirely new result from the existence of a scalar dipole
moment I i

s (defined in Sec. IVA 5 below). Unlike the
regular dipole moment I i, the scalar dipole moment cannot
be made to vanish by choosing center-of-mass coordinates.
This is a direct consequence of scalar-tensor theories
violating the strong equivalence principle. While the main
impact of I i

s is in the generation of scalar dipole radiation,
its presence also has a strong effect on the tensor waveform.
In general relativity, integration over the radiation zone

produces terms which enter the final waveform beginning at
1.5PN order. Some of these terms are “instantaneous”; that
is, they depend only on the binary’s state at a particular time.
(Because the waves travel at the speed of light c, they

depend on the binary’s state not at the current time t, but at a
retarded one τ ¼ t − R=c, where R is the distance to the
system.) Other terms are “hereditary”: They require an
integration of the binary’s behavior from an infinite time in
the past until the moment the waves are emitted. At 1.5PN
order, the hereditary contribution involves a logarithmic
factor and is known as the gravitational-wave “tail.” It arises
from a coupling between monopole and mass quadrupole
moments of the source and can be physically described as
backscattering of the outgoing radiation on the curved
spacetime of the binary. Monopole-mass octupole and
monopole-current quadrupole couplings create further tail
terms at 2PN order. Higher PN orders include more tails, as
well as “tails of tails” arising from three-moment couplings.
The addition of the scalar field to the radiation-zone

integrals produces no additional tail terms. However, it does
produce another kind of hereditary term, which involves an
integral of moments of the system over its entire past history
without a logarithmic multiplier. At 1.5PN order, the
hereditary term involves a mass dipole-mass dipole cou-
pling, while at 2PN order, the coupling is between the mass
dipole and the mass quadrupole. Both of these produce
oscillatory terms, like all the other pieces of the waveform.
However, the dipole-dipole integral also produces a zero-
frequency (DC) term, which grows secularly throughout the
inspiral. Such terms are often referred to as “nonlinear
gravitational-wave memory,” or “Christodoulou memory”
[54–57]. Unlike oscillatory terms, they cause a permanent
change in the state of a GW detector. In general relativity,
the nonlinear memory does not appear until 2.5PN order,
where it is driven by a mass quadrupole-mass quadrupole
coupling. Even with the new dipole-dipole effect, the
nonlinear memory formally enters the waveform at rela-
tively high post-Newtonian order. However, because it is
integrated over the past history of the binary, the memory’s
actual effect is comparable in magnitude to lower order
post-Newtonian terms. It is, therefore, potentially detectable
by gravitational-wave detectors [57,58].
One interesting limit of our results is the case where both

compact objects are black holes. In scalar-tensor theory,
isolated black holes behave identically to those in general
relativity. MW verified that a similar statement is true about
binary black holes. Specifically, they showed that the
2.5PN equations of motion in scalar-tensor theory are
identical to those in general relativity, except for an
unmeasurable rescaling of masses. They then conjectured
that the same should hold true for the gravitational waves
emitted by the binary. Our work shows that this conjecture
is correct for tensor gravitational waves, at least to 2PN
order. MW also found special results for mixed systems,
those containing one black hole and one neutron star. In
that case, the equations of motion are identical to GR, with
mass rescaling, up to 1PN order. Beyond that order, they
deviate from Einstein’s theory, but the deviation depends
only on a single parameter. Unfortunately, this parameter is
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the same in Brans-Dicke and more generalized scalar-
tensor theories. We have found that all of these properties
carry over to the tensor gravitational waves emitted by a
mixed system.
To find the gravitational-wave phasing, we require an

expression for the energy loss. That, in turn, requires the
scalar gravitational waveform. It will be considered in a
follow-up paper. While the procedure is the same as for the
tensor waveform, the actual calculation is somewhat more
complex and lengthy. With both tensor and scalar pieces in
hand, we can write down the full response of a detector to
the inspiral of a circular binary. Finally, we will be able to
use the final waveform in a parameter estimation study.
We wish to investigate how well detectors like Advanced
LIGO can measure differences between GR and scalar-
tensor theories, as well as how the additional terms in the
waveform influence the measurement of astrophysical
parameters, like those described above.
The outline of the paper is as follows: Section II presents

the field equations for the tensor and scalar fields, as
derived from the action (1.1). We cast them into a relaxed
form and show how they can be solved for field and source
points in different regions of spacetime. We also discuss
how the tensor and scalar fields affect a gravitational-wave
detector. Section III reviews the results from MW in the
near zone surrounding the source. Post-Newtonian expan-
sions of the near-zone source are needed to calculate the
gravitational waveform.
Section IV describes the calculation of the Epstein-

Wagoner moments, the fundamental pieces needed to
derive the near-zone contribution to the gravitational wave-
form. The calculation of the two-index moment IijEW is
described in some detail in order to clarify the major issues
involved. Section V shows how the moments can be
converted from a generic N-body scenario to the specific
two-body case we consider. We also discuss how the
equations of motion, taken from MW, are used to expand
time derivatives of the moments.
SectionVI leaves these pieces aside and presents the other

half of the puzzle: the radiation-zone contribution to the
gravitational waves. First, we must calculate the tensor and
scalar fields in the radiation zone, far from the compact
objects. They have both near-zone and radiation-zone
sources. Then these fields are used to calculate the GWs.
Terms produced here enter the final waveform at 1.5PN and
2PN orders and include the hereditary effects described
earlier (tails and memory). Finally, in Sec. VII, we present
the full 2PN tensor gravitational waveform for a nonspin-
ning compact binary in massless scalar-tensor theory. We
also discuss some features of the results in more detail.
In this paper, we use units in which c ¼ 1. We do not set

G ¼ 1; as we shall see, the effective Newtonian gravita-
tional constant depends on the asymptotic value of the
scalar field. Greek indices run over four spacetime values
(0, 1, 2, 3), while Latin indices run over three spatial values

(1, 2, 3). We use the Einstein summation convention, in
which repeated indices are summed over. We use a multi-
index notation for products of vector components:
xijk ≡ xixjxk. A capital letter superscript denotes a product
of that dimensionality: xL ≡ xk1xk2 � � � xkl . Angular brack-
ets around indices denote symmetric, trace-free (STF)
products (see Appendix B for details). Finally, we
use standard notation for symmetrized and antisymme-
trized indices, e.g. xðiyjÞ ≡ ðxiyj þ xjyiÞ=2 and x½iyj� ≡
ðxiyj − xjyiÞ=2. At times we use a bar to separate indices
which should be symmetrized from those which should not,
e.g. xðijyjzjkÞ ≡ ðxiyjzk þ xkyjziÞ=2.

II. CONSTRUCTION AND SOLUTION OF THE
RELAXED SCALAR-TENSOR EQUATIONS

A. Field equations and relaxed form

The field equations for theories described by (1.1) are
given by

Gμν ¼
8π

ϕ
Tμν þ

ωðϕÞ
ϕ2

�
ϕ;μϕ;ν − 1

2
gμνϕ;λϕ

;λ

�

þ 1

ϕ
ðϕ;μν − gμν□gϕÞ; (2.1a)

□gϕ¼ 1

3þ2ωðϕÞ
�
8πT−16πϕ

∂T
∂ϕ−

dω
dϕ

ϕ;λϕ
;λ

�
: (2.1b)

As stated above, we work in the Jordan representation of
the theory, so that gμν is the physical metric. The quantity
Gμν is the Einstein tensor constructed from this metric,
while ϕ is the scalar field, ωðϕÞ is the coupling function,
Tμν is the stress energy of matter and nongravitational
fields, and T ≡ gαβTαβ is its trace. We use commas to
denote ordinary derivatives. Semicolons denote covariant
derivatives (taken using gμν in the usual way), and □g ≡
gαβ∂α∂β is thed’Alembertianwith indices raisedby themetric.
In the Jordan representation, the derivative ∂T=∂ϕ is not
present fornormalmatter, butwill bepresent forgravitationally
bound bodies, as we will discuss in Sec. III B.
We assume that far away from the sources, the metric

reduces to the Minkowski metric, ημν, and the scalar field
tends to a constant ϕ0. We introduce a rescaled scalar field,

φ≡ ϕ

ϕ0

; (2.2)

a conformally transformed metric,

~gμν ≡ φgμν; (2.3)

and a “gothic” version of that metric with its indices raised,

~gμν ≡ ffiffiffiffiffiffi−~g
p

~gμν: (2.4)
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Here ~g is the determinant of ~gμν. We can then define the
gravitational field as

~hμν ≡ ημν − ~gμν: (2.5)

We use a tilde to differentiate this field from the gravita-
tional field defined in general relativity, hμν, which has the
same definition but with gμν ≡ ffiffiffiffiffiffi−gp

gμν in place of ~gμν.
[See, for instance, WW (2.2).] We impose the Lorenz gauge
condition

~hμν;ν ¼ 0: (2.6)

Then the field equation (2.1a) reduces to

□η
~hμν ¼ −16πτμν; (2.7)

where □η ≡ ηαβ∂α∂β is the flat-spacetime wave operator
and the source is

τμν ≡ ð−gÞ φ

ϕ0

Tμν þ 1

16π
ðΛμν þ Λμν

s Þ: (2.8)

Here Tμν is the stress energy of matter and nongravitational
fields. In our case, we have no other fields, so this
represents the compact piece of the source. The quantity
Λμν represents the gravitational-field contribution to the
stress energy,

Λμν ≡ 16πð−~gÞ~tμνLL þ ~hμα;β ~h
νβ

;α − ~hαβ ~hμν;αβ; (2.9)

where

ð−~gÞ~tμνLL ≡ 1

16π

�
~gλα ~gβρ ~h

μλ
;β
~hνα;ρ þ

1

2
~gλα ~gμν ~h

λβ
;ρ
~hρα;β − 2~gαβ ~gλðμ ~h

νÞβ
;ρ
~hρα;λ

þ 1

8
ð2~gμλ ~gνα − ~gμν ~gλαÞð2~gβρ ~gστ − ~gρσ ~gβτÞ ~hβτ ;λ ~hρσ ;α

�
(2.10)

is the Landau-Lifshitz tensor evaluated with conformal
(tilde) variables (2.3) and (2.5) instead of standard ones.
With this definition, Λμν will have the same fundamental
form as it does in general relativity, except that the
gravitational field is ~hμν instead of hμν. The final piece
is the scalar contribution to the stress energy,

Λμν
s ≡ ð3þ 2ωÞ

φ2
φ;αφ;β

�
~gμα ~gνβ − 1

2
~gμν ~gαβ

�
: (2.11)

The scalar field equation (2.1b) can also be written as a
flat-spacetime wave equation,

□ηφ ¼ −8πτs; (2.12)

with source

τs ≡− 1

3þ 2ω

ffiffiffiffiffiffi−gp φ

ϕ0

�
T − 2φ

∂T
∂φ

�
− 1

8π
~hαβφ;αβ

þ 1

16π

d
dφ

�
ln

�
3þ 2ω

φ2

��
φ;αφ;β ~gαβ: (2.13)

B. Solution of the wave equations

Thewave equations (2.7) and (2.12) can be solved formally
in all spacetime by using a retarded Green’s function,

~hμνðt;xÞ¼4

Z
τμνðt0;x0Þδðt0− tþjx−x0jÞ

jx−x0j d4x0; (2.14a)

φðt;xÞ ¼ 2

Z
τsðt0;x0Þδðt0 − tþ jx − x0jÞ

jx − x0j d4x0: (2.14b)

The delta function in both these equations restricts the
integration to being over the past flat-spacetime null cone
C emanating from the field point ðt;xÞ. To obtain explicit
solutions, we divide the spacetime into two regions. Define
thecharacteristic sizeof thesource asS.Weassume thebodies
move at velocities v ≪ 1. Then the near zone is defined as the
area with jxj ¼ R < R, whereR ∼ S=v is the characteristic
wavelength of gravitational radiation from the system.
(We use capital R to denote the distance from the binary’s
center ofmass to a field point in order to avoid confusion later
with r, the orbital radius of the binary.) Everything outside the
near zone (R > R) is the radiation zone.
We carry out the integrals (2.14a) and (2.14b) in two

pieces: one integral over the near zone and one over the
radiation zone. Each is done by a fundamentally different
method. In the end, the final solution is the sum of the
two pieces. WW and [41] showed explicitly that any terms
dependent on the boundary radius R in one-half of the
integral would be exactly cancelled by pieces in the other
half of the integral, leaving the final answer, as expected,
independent of this arbitrary parameter. In our work, we
simply assume this property and ignore any terms which
depend on R.
The integrals are also evaluated differently depending on

what field point x we are interested in. For instance, MW
calculated ~hμν and φ at field points x in the near zone,
where the bodies are located. The near-zone fields were
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then used to calculate the equations of motion for the
bodies. In this paper, we are interested in the gravitational
waves, so we will ultimately want the fields evaluated in the
radiation zone. However, we will still need the near-zone
fields as source terms (see Λij and Λij

s above).
With two integration regions and two possibilities for

field points, there are a total of four distinct ways to
evaluate (2.14a) and (2.14b). For a complete description of
these methods, refer to WW and [41]. Here we give only a
brief summary. For field points in the near zone and
integration over the near zone, we can treat the retardation
as a small perturbation. Expanding τμνðt − jx − x0jÞ in
powers of jx − x0j, we find

~hμνN ðt;xÞ ¼ 4
X∞
m¼0

ð−1Þm
m!

∂m

∂tm
Z
M

τμνðt;x0Þjx − x0jm−1d3x0;

(2.15a)

φN ðt;xÞ ¼ 2
X∞
m¼0

ð−1Þm
m!

∂m

∂tm
Z
M

τsðt;x0Þjx − x0jm−1d3x0:

(2.15b)

Here N is the three-dimensional hypersurface representing
the intersection of the past null cone C and the near-zone
world tube. After the expansion, the actual integration
takes place over M, the intersection of the hypersurface
t ¼ const with the near-zone world tube. Note that in the
near zone, the slow motion approximation v ≪ 1 means
that each time derivative corresponds to an increase of
one-half post-Newtonian order.
For field points in the near zone and integration over the

radiation zone, we recognize that the source contains only
field terms which are themselves retarded. Therefore, it is
prudent to change variables and integrate over τ0 ¼ t0 − R0,
where R0 ≡ jx0j. We find

~hμνC−N ðt;xÞ ¼ 4

Z
τ−2Rþ2R

τ−2R
dτ0

Z
2π

0

dϕ0
Z

1

1−ξ
τμνðτ0 þ R0;x0Þ
t − τ0 − N̂0 · x

½R0ðτ0;Ω0Þ�2d cos θ0

þ 4

Z
τ−2R

−∞
dτ0

I
τμνðτ0 þ R0;x0Þ
t − τ0 − N̂0 · x

½R0ðτ0;Ω0Þ�2d2Ω0; (2.16a)

φC−N ðt;xÞ ¼ 2

Z
τ−2Rþ2R

τ−2R
dτ0

Z
2π

0

dϕ0
Z

1

1−ξ
τsðτ0 þ R0;x0Þ
t − τ0 − N̂0 · x

½R0ðτ0;Ω0Þ�2d cos θ0

þ 2

Z
τ−2R

−∞
dτ0

I
τsðτ0 þ R0;x0Þ
t − τ0 − N̂0 · x

½R0ðτ0;Ω0Þ�2d2Ω0; (2.16b)

where N̂0 ≡ x0=R0 and ξ≡ ðτ − τ0Þð2R − 2Rþ τ − τ0Þ=
ð2RRÞ. Here, the notation C −N denotes that this is the
integration over all pieces of the past null cone which do not
intersect the near zone; that is, they are in the radiation zone.
For each τ0, the inner pieces integrate over the intersection
of C with the future null cone emanating from the center of
mass of the system at time τ0. The τ0 integration is then a
summation over all such future-directed null cones, starting
from the infinite past and continuing until the cones no
longer overlap. It turns out that the contributions from these
integrals only come into play at higher post-Newtonian
order than was considered in MW.
For field points in the radiation zone and integration over

the near zone, we expand the entire integrand in powers of
jx0j=R and find

~hμνN ðt;xÞ ¼ 4
X∞
q¼0

ð−1Þq
q!

�
1

R
Mμνk1���kq

�
;k1���kq

; (2.17a)

φμν
N ðt;xÞ ¼ 2

X∞
q¼0

ð−1Þq
q!

�
1

R
M

k1���kq
s

�
;k1���kq

; (2.17b)

where

Mμνk1���kqðτÞ≡
Z
M

τμνðτ;x0Þx0k1 � � � x0kqd3x0; (2.18a)

M
k1���kq
s ðτÞ≡

Z
M

τsðτ;x0Þx0k1 � � � x0kqd3x0: (2.18b)

Here M is again the intersection of the near-zone world
tube with a constant-time hypersurface; however, in this
case, that time is the retarded time τ ¼ t − R.
For gravitational waves, we can simplify (2.17a)

and (2.17b) in two ways: (1) We are only interested in
the spatial piece of the tensor, ~hij. (2) Gravitational-wave
detectors operate in the regime R ≫ R, which we call the
far-away zone. (It is, of course, a subset of the radiation
zone.) Therefore, we can expand (2.17a) and (2.17b) in
powers of 1=R, keeping only the lowest order term. The
results are

~hijN ðt;xÞ¼ 4

R

X∞
m¼0

1

m!

∂m

∂tm
Z
M
τijðτ;x0ÞðN̂ ·x0Þmd3x0; (2.19a)

φN ðt;xÞ¼ 2

R

X∞
m¼0

1

m!

∂m

∂tm
Z
M
τsðτ;x0ÞðN̂ ·x0Þmd3x0; (2.19b)
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where N̂≡ x=R is the direction from the source to the
detector. The Lorenz gauge condition implies a conservation
law for the source,

τμν;ν ¼ 0: (2.20)

Using this, we can rewrite the tensor equation as

~hijN ðt;xÞ ¼ 2

R
d2

dt2
X∞
m¼0

N̂k1 � � � N̂kmIijk1���kmEW ðτÞ; (2.21)

where the IMþ2
EW are known as “Epstein-Wagoner” (EW)

moments [38]. They are given by

IijEW ≡
Z
M

τ00xijd3xþ IijEW ðsurfÞ; (2.22a)

IijkEW ≡
Z
M
ð2τ0ðixjÞk − τ0kxijÞd3xþ IijkEW ðsurfÞ; (2.22b)

Iijk1���kmEW ≡ 2

m!

dm−2
dtm−2

Z
M

τijxk1���kmd3x ðm ≥ 2Þ: (2.22c)

The largest piece of the work in this paper is the calculation
of these EW moments to the necessary post-Newtonian
order. The use of the conservation law to rearrange the
two- and three-index EW moments results in the “surface”
moments IijEW ðsurfÞ and IijkEW ðsurfÞ,

d2

dt2
IijEW ðsurfÞ ¼

I
∂M

½4τlðixjÞ − ðτklxijÞ;k�R2n̂ld2Ω; (2.23a)

d
dt

IijkEW ðsurfÞ ¼
I
∂M

ð2τlðixjÞk − τklxijÞR2n̂ld2Ω: (2.23b)

They are evaluated on ∂M, a sphere of radius R bounding
the hypersurface M; n̂l is a radial unit vector pointing
outward from this boundary.
Finally, if the field point is in the radiation zone and the

integration is over the radiation zone, we can again use a
change of variable. The results are identical to (2.16a) and
(2.16b), except with a different limit of integration,

~hμνC−N ðt;xÞ ¼ 4

Z
τ

τ−2R
dτ0

Z
2π

0

dϕ0
Z

1

1−ξ
τμνðτ0 þ R0;x0Þ
t − τ0 − N̂0 · x

½R0ðτ0;Ω0Þ�2d cos θ0

þ 4

Z
τ−2R

−∞
dτ0

I
τμνðτ0 þ R0;x0Þ
t − τ0 − N̂0 · x

½R0ðτ0;Ω0Þ�2d2Ω0; (2.24a)

φC−N ðt;xÞ ¼ 2

Z
τ

τ−2R
dτ0

Z
2π

0

dϕ0
Z

1

1−ξ
τsðτ0 þ R0;x0Þ
t − τ0 − N̂0 · x

½R0ðτ0;Ω0Þ�2d cos θ0

þ 2

Z
τ−2R

−∞
dτ0

I
τsðτ0 þ R0;x0Þ
t − τ0 − N̂0 · x

½R0ðτ0;Ω0Þ�2d2Ω0: (2.24b)

To find the gravitational waves, we merely ignore all
nonspatial components (for the tensor waves) and consider
only terms with 1=R dependence. These radiation-zone
integrals will produce hereditary terms in the final GW
signal, including tail and memory effects.

C. Effect on GW detectors

To find the effect of the (tensor) gravitational field and
the scalar field on a GW detector, we first need to convert
back to the physical metric. The inverse metric is

gμν ¼ φ~gμν ¼ φffiffiffiffiffiffi−~g
p ~gμν: (2.25)

The determinant ~g is given by

~g ¼ det ~gμν ¼ −1þ ~hþOð ~h2Þ; (2.26)

where ~h≡ ημν ~h
μν is the trace of ~hμν. We are not concerned

with terms of order ~h2 and higher because we are working
in the far-away zone, where ~h ∼ 1=R. Putting everything
together, we get

gμν ¼ ημν − ~hμν þ 1

2
~hημν þΨημν þO

�
1

R2

�
: (2.27)

HereΨ≡ φ − 1, and we have also made use of the fact that
Ψ ∼ 1=R in the far-away zone. The physical metric is
therefore

gμν ¼ ημν þ ~hμν − 1

2
~hημν −Ψημν þO

�
1

R2

�
; (2.28)

where ~hμν ¼ ημαηνβ ~h
αβ is lowered using the Minkowski

metric.
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A gravitational-wave detector works by measuring the
separation ξ between test masses. If the distance between
the test masses is small compared to the wavelength of the
GWs, and the masses move slowly, the separation obeys the
equation

ξ̈i ¼ −R0i0jξ
j; (2.29)

where dots denote time derivatives and R0i0j are compo-
nents of the Riemann curvature tensor. We can use the
metric to calculate them,

R0i0j ¼ − 1

2

̈~hijTT − 1

2
Ψ̈ðN̂iN̂j − δijÞ: (2.30)

Here “TT” designates the transverse-traceless projection of
the gravitational field tensor, which satisfies the conditions

N̂i ~hijTT ¼ N̂j ~hijTT ¼ 0 ¼ δij ~hijTT: (2.31)

We can find the TT part of a tensor by using the projection
operator,

~hijTT ¼
�
PipPjq − 1

2
PijPpq

�
~hij; (2.32)

where Ppq ¼ δpq − N̂pN̂q is the transverse projection
operator. The fact that only the TT piece of ~hij contributes
to the measured GWs will allow us to simplify our
calculation by prematurely dropping terms which cannot
possibly produce a TT contribution at the end of the day.
Note that the scalar field Ψ will contribute a transverse
“breathing” mode to the GW signal; it will be treated in a
subsequent paper in the series.

III. CALCULATION OF THE
NEAR-ZONE SOURCE

In this section, we review results fromMW for the source
τμν in the near zone. These results are needed to calculate
the Epstein-Wagoner moments and thus the near-zone
contribution to the gravitational waveform.

A. Potentials, fields, and field source

Following MW, the compact source can be described in
terms of densities [59],

σ ≡ T00 þ Tii; (3.1a)

σi ≡ T0i; (3.1b)

σij ≡ Tij; (3.1c)

σs ≡−T þ 2φ
∂T
∂φ : (3.1d)

We can then define a number of Poisson-like potentials. For
example, given a generic Poisson integral for a function
fðt;xÞ,

PðfÞ≡ 1

4π

Z
M

fðt;x0Þ
jx − x0jd

3x0; (3.2)

then the basic “Newtonian” potential is

Uσ ≡ Pð4πσÞ ¼
Z
M

σðt;x0Þ
jx − x0j d

3x0: (3.3)

We also have a scalar equivalent,

Usσ ≡ Pð4πσsÞ ¼
Z
M

σsðt;x0Þ
jx − x0j d

3x0: (3.4)

The σ subscript clarifies that these potentials use the
densities defined in this section. Later, we will convert
to a new density which reflects the specific source
(compact binaries) we are studying. We delay defining
the rest of the potentials until then. Expressions for all
other σ-density potentials can be found in MW (3.12)
and (3.13). Note that the generic Poisson integral has
the property

∇2PðfÞ ¼ −f: (3.5)

This will be very useful throughout the calculation.
For convenience, we can rewrite the fields as

~h00 ≡ N; (3.6a)

~h0i ≡ Ki; (3.6b)

~hij ≡ Bij; (3.6c)

~hii ≡ B; (3.6d)

φ≡ 1þΨ: (3.6e)

We use this notation in all spacetime. In the near zone,
N ∼OðϵÞ, Ki ∼Oðϵ3=2Þ, Bij ∼ B ∼Oðϵ2Þ, and Ψ ∼OðϵÞ,
where the post-Newtonian counting parameter ϵ∼v2∼m=r.
Here m is the mass of the system, r is a typical distance
scale, and v is its characteristic speed. (Later, r will be the
orbital radius of a binary, and v will be the magnitude of
its relative velocity.)
To obtain expressions for the near-zone fields, we solve

(2.15a) and (2.15b) iteratively. At lowest order, we only
solve for N and Ψ, the other quantities being intrinsically
higher order. The sources only include compact terms:
τ00 ¼ σ=ϕ0 þOðρϵÞ and τs ¼ σs=½ϕ0ð3þ 2ω0Þ� þOðρϵÞ,
where ω0 ≡ ωðϕ0Þ. Using the definitions of the potentials,
we find
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N ¼ 4Uσ

ϕ0

þOðϵ2Þ ¼ 4Gð1 − ζÞUσ þOðϵ2Þ; (3.7a)

Ψ ¼ 2Usσ

ϕ0ð3þ 2ω0Þ
þOðϵ2Þ ¼ 2GζUsσ þOðϵ2Þ: (3.7b)

Here

G≡ 1

ϕ0

4þ 2ω0

3þ 2ω0

(3.8)

is the effective gravitational constant. The definition
is chosen so that, for a perfect fluid with no internal
gravitational binding energy, the metric component g00
matches the result from general relativity, g00 ¼−1þ 2GUσ . We do not set G equal to 1, since it depends
on the asymptotic value of the scalar field ϕ, which could
potentially vary in time. The other parameter is

ζ≡ 1

4þ 2ω0

: (3.9)

For the next order, we need to begin evaluating the field
terms of the source, Λμν and Λμν

s . These are given explicitly
in terms of N, Ki, Bij, B, and Ψ in MW (3.4) and (3.5). We
can plug in (3.7a) for N and (3.7b) for Ψ. This will be
enough to get the fields at next order, as shown in MW
(4.10). This procedure is iterated until the fields and sources
are obtained to the necessary order. In the next section, we
will need the expressions for τμν in order to calculate the
Epstein-Wagoner moments.

B. Matter source

The previous section describes a generic matter
source characterized by densities σ, σi, σij, and σs

(the “σ densities”). All of the expressions for near-zone
fields and sources in MW are written in terms of these
generic densities. We now convert to a more realistic source
for the situation we are considering: one made up of an
arbitrary number of compact objects. (We later specialize to
the two-body case, but many steps of the calculation are
valid for a general system.) Since a compact object is
gravitationally bound, its total mass depends on its internal
gravitational energy. This, in turn, depends on the effective
local value of the gravitational coupling. In scalar-tensor
theory, the coupling is controlled by the value of the scalar
field ϕ in the vicinity of the body.
To deal with this complication, we use the approach of

Eardley [46]. In his method, we consider the compact
objects to be point masses, with a mass MðϕÞ that is a
function of the scalar field. The stress-energy tensor is then
given by

TμνðxαÞ ¼ ð−gÞ−1=2X
A

Z
dτMAðϕÞuμAuνAδ4ðxαAðτÞ − xαÞ

¼ ð−gÞ−1=2X
A

MAðϕÞuμAuνAðu0AÞ−1δ3ðx − xAÞ:

(3.10)

Here uμA is the four-velocity of body A, and τ is the
proper time measured along its world line. (This is the
only instance in which we use the symbol τ for this
purpose.) The dependence of mass on ϕ is what leads to
the ∂T=∂ϕ term in (2.1b), which would not normally be
present in the Jordan frame. (Remember that in the
Jordan representation, the scalar field does not directly
couple to the matter. This indirect coupling is merely
a way of treating the complexity of the source in scalar-
tensor theory.)
We expand MAðϕÞ about the asymptotic value ϕ0,

MAðϕÞ ¼ MA0 þ
�
dMA

dϕ

�
0

δϕþ 1

2

�
d2MA

dϕ2

�
0

δϕ2 þ 1

6

�
d3MA

dϕ3

�
0

δϕ3 þ � � �

¼ mA

�
1þ sAΨþ 1

2
ðs2A þ s0A − sAÞΨ2 þ 1

6
ðs00A þ 3s0AsA − 3s0A þ s3A − 3s2A þ 2sAÞΨ3 þOðΨ4Þ

�

≡mA½1þ SðsA;ΨÞ�; (3.11)

where mA ≡MA0. We define the sensitivity and its
derivatives as

sA ≡
�
d lnMAðϕÞ

d lnϕ

�
0

; (3.12a)

s0A ≡
�
d2 lnMAðϕÞ
dðlnϕÞ2

�
0

; (3.12b)

s00A ≡
�
d3 lnMAðϕÞ
dðlnϕÞ3

�
0

; (3.12c)
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and so on. Note that s0 has the opposite sign of the
equivalent quantity in [33] and [60]. If we define a new
density

ρ� ≡X
A

mAδ
3ðx − xAÞ; (3.13)

the stress energy becomes

Tμν ¼ ρ�ð−gÞ−1=2u0vμvν½1þ Sðs;ΨÞ�; (3.14)

where vμ ¼ ð1; vÞ is the ordinary velocity. The various
velocities and the sensitivity s technically should have body
labels, but they will each pick one up when multiplied by
the delta function in ρ�. We use this convention frequently
in the steps to follow. Returning to the definitions of the σ
densities, we find

σ ¼ ρ�ð−gÞ−1=2u0ð1þ v2Þ½1þ Sðs;ΨÞ�; (3.15a)

σi ¼ ρ�ð−gÞ−1=2u0vi½1þ Sðs;ΨÞ�; (3.15b)

σij ¼ ρ�ð−gÞ−1=2u0vij½1þ Sðs;ΨÞ�; (3.15c)

σs ¼ ρ�ð−gÞ−1=2ðu0Þ−1½ð1 − 2sÞ þ Ssðs;ΨÞ�; (3.15d)

where

Ssðs;ΨÞ≡−2asΨ − bsΨ2 þOðΨ3Þ (3.16)

and

as ≡ s2 þ s0 − 1

2
s; (3.17a)

a0s ≡ s00 þ 2ss0 − 1

2
s0; (3.17b)

bs ≡ a0s − as þ sas: (3.17c)

With these quantities, we can also rewrite

Sðs;ΨÞ ¼ sΨþ 1

4
ð2as − sÞΨ2 þOðΨ3Þ: (3.18)

By substituting the metric into (3.15a)–(3.15d), the σ
densities can be written in terms of the ρ� density as a
post-Newtonian expansion. These expressions are given in
MW (5.12). We will need them to translate τμν from the
expressions in MW to the versions we need.
We also define new potentials based on the ρ� density.

For instance,

U ≡
Z
M

ρ�ðt;x0Þ
jx − x0j d

3x0; (3.19a)

Us ≡
Z
M

ð1 − 2sðx0ÞÞρ�ðt;x0Þ
jx − x0j d3x0: (3.19b)

More generally,

ΣðfÞ≡
Z
M

ρ�ðt;x0Þfðt;x0Þ
jx − x0j d3x0 ¼ Pð4πρ�fÞ; (3.20a)

ΣiðfÞ≡
Z
M

ρ�ðt;x0Þv0ifðt;x0Þ
jx − x0j d3x0 ¼ Pð4πρ�vifÞ;

(3.20b)

ΣijðfÞ≡
Z
M

ρ�ðt;x0Þv0ijfðt;x0Þ
jx − x0j d3x0 ¼ Pð4πρ�vijfÞ;

(3.20c)

ΣsðfÞ≡
Z
M

ð1 − 2sðx0ÞÞρ�ðt;x0Þfðt;x0Þ
jx − x0j d3x0

¼ Pð4πð1 − 2sÞρ�fÞ; (3.20d)

XðfÞ≡
Z
M

ρ�ðt;x0Þfðt;x0Þjx − x0jd3x0; (3.20e)

YðfÞ≡
Z
M

ρ�ðt;x0Þfðt;x0Þjx − x0j3d3x0; (3.20f)

plus natural generalizations of X and Y like Xi, Xs, etc.
All the potentials listed in this paper can be expressed
in terms of PðfÞ (3.2) or these basic forms. They are
listed in Appendix A. MW (5.13)–(5.22) show how to
convert between many σ-density and ρ-density potentials
(e.g., Uσ and U). These expressions will also be useful in
converting τμν.

IV. EPSTEIN-WAGONER MOMENTS

In this section, we calculate the Epstein-Wagoner
moments which are needed to generate the near-zone
contribution to the gravitational waveform.

A. Two-index moment IijEW
We begin with the two-index moment. Its lowest order

piece will produce the lowest order gravitational waves,
which we define as 0PN. It is given by

IijEW ¼
Z
M

τ00xijd3xþ IijEW ðsurfÞ ¼ IijC þ IijF þ IijS : (4.1)
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For clarity, the moment has been split into three pieces: (1) IijC , in which the integral is taken over the compact part of τ00;
(2) IijF , in which the integral is taken over the field part of τ00; and (3) IijS ≡ IijEW ðsurfÞ, the surface moment. To calculate the

first two pieces, we need the source τ00 evaluated to 2PN order, or Oðρϵ2Þ. This is found in MW (4.14a), but it is expressed
using the σ density. Converting to the ρ� density, we find

τ00 ¼ ρ�Gð1 − ζÞ
�
1þ 1

2
v2 þ 3Gð1 − ζÞU −Gζð1 − 2sÞUs þ

1

2
Gð1 − ζÞΦ1 − 3G2ð1 − ζÞ2Φ2 þ

1

2
Gζð1 − 2sÞΦs

1

þ G2ζð1 − ζÞð1 − 2sÞΦs
2 þ 4G2ζ2ð1 − 2sÞΣðasUsÞ þ

3

8
v4 þ 9

2
G2ð1 − ζÞ2U2 þ 7

2
Gð1 − ζÞv2U

− 4Gð1 − ζÞvkVk − 1

2
Gζð1 − 2sÞv2Us − 3G2ζð1 − ζÞð1 − 2sÞUUs þ

3

2
Gð1 − ζÞẌ − 1

2
Gζð1 − 2sÞẌs

þG2½−3ζð1 − ζÞ þ ζðζ þ 2λ1Þð1 − 2sÞ�Φs
2s þG2

�
1

2
ζðζ þ 2λ1Þð1 − 2sÞ þ 2ζ2as

�
U2

s

�

þ G2ð1 − ζÞ2
�
− 7

8π
ð∇UÞ2 − 5

8π
∇U · ∇Φ1 þ

3

4π
Gð1 − ζÞ∇U ·∇Φ2 þ

3

4π
Gζ∇U ·∇Φs

2s

þ 5

8π
_U2 − 1

π
UÜ − 2

π
_U;kVk þ 3

2π
Vk;lVl;k þ 1

2π
Vk;lVk;l þ 1

π
_VkU;k − 1

π
U;klΦkl

1 − 7

8π
∇U · ∇Ẍ

− 5

2π
Gð1 − ζÞUð∇UÞ2 − 1

π
Gð1 − ζÞU;klPkl

2

�

þ G2ζð1 − ζÞ
�
1

8π
ð∇UsÞ2 − 1

8π
∇Us · ∇Φs

1 − 1

4π
Gð1 − ζÞ∇Us ·∇Φs

2 − 1

4π
Gð2λ1 þ ζÞ∇Us ·∇Φs

2s

−
1

π
Gζ∇Us ·∇ΣðasUsÞ þ

1

2π
Gð1 − ζÞUð∇UsÞ2 þ

1

π
Gð1 − ζÞUs∇U ·∇Us − 1

π
Gð1 − ζÞU;klPkl

2s þ
1

8π
_U2
s

þ 1

8π
∇Us ·∇Ẍs

�
þOðρϵ5=2Þ: (4.2)

Recall that all the potentials are defined in Appendix A. We have introduced the quantity

λ1 ≡ ðdω=dφÞ0ζ
3þ 2ω0

: (4.3)

Later, we will also need

λ2 ≡ ðd2ω=dφ2Þ0ζ2
3þ 2ω0

: (4.4)

The compact moment can be written down by inspection,
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IijC ¼ Gð1 − ζÞ
X
A

mAx
ij
A

�
1þ 1

2
v2A þ

X
B≠A

GmB

rAB
½3ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�

�

þ 3

8
Gð1 − ζÞ

X
A

mAx
ij
Av

4
A

þ G2ð1 − ζÞ
X
A

X
B≠A

mAmB

rAB
xijA

�
1

2
½7ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�v2A þ 2ð1 − ζÞv2B

− 4ð1 − ζÞvA · vB − 1

2
½3ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�½aB · xAB þ ðvB · n̂ABÞ2�

þ
X
C≠A

GmC

rAC

�
9

2
ð1 − ζÞ2 − 3ζð1 − ζÞð1 − 2sAÞð1 − 2sCÞ þ 2ζ2asAð1 − 2sBÞð1 − 2sCÞ

þ 1

2
ζðζ þ 2λ1Þð1 − 2sAÞð1 − 2sBÞð1 − 2sCÞ

�

þ
X
C≠B

GmC

rBC
½−3ð1 − ζÞ2 þ ζð1 − ζÞð1 − 2sAÞð1 − 2sBÞ þ 4ζ2ð1 − 2sAÞasBð1 − 2sCÞ

−3ζð1 − ζÞð1 − 2sBÞð1 − 2sCÞ þ ζðζ þ 2λ1Þð1 − 2sAÞð1 − 2sBÞð1 − 2sCÞ�
�
: (4.5)

Here body A (for example) has position xA, velocity vA, and
acceleration aA. The distance between bodies A and B is
rAB, and the unit vector n̂AB ¼ xAB=rAB points from body
B to body A.
To calculate the field moment IijF , we must evaluate

a series of integrals involving the 1PN and 2PN poten-
tials. Examining (4.2), we see that there are 24 different
integrals. However, integrals such as

R
Mð∇UÞ2xijd3x andR

Mð∇UsÞ2xijd3x are essentially identical: The functional
form of the integrand is the same, with the only difference
being the addition of sensitivity factors 1 − 2s. If we count
such integrals together, there turns out to be 15 unique
pieces to compute. (Many of these also share similar
fundamental components, but we count them separately
due to different factors of velocity or acceleration.)

1. 1PN field integral

The simplest integral is the 1PN term
R
Mð∇UÞ2xijd3x.

(When discussing these integrals, we will ignore the
constants in front.) We will calculate it explicitly in order
to point out some techniques which will be used throughout
the calculation. First, we integrate by parts,

Z
M
ð∇UÞ2xijd3x ¼

I
∂M

UU;kxijd2Sk −
Z
M

UU;kkxijd3x

− 2

Z
M

UU;ðixjÞd3x: (4.6)

The surface integral is evaluated on the boundary of the
near zone at a constant (retarded) time; therefore, ∂M is a
sphere with radius R. We can write xi ¼ Rn̂i and

d2Sk ¼ R2n̂k, where n̂i is a unit vector normal to the
surface. We then expand U and U;k in inverse powers ofR
and look for any R-independent terms in the surface
integral. We find that

U ¼
X
A

mA

�
1

R
þ n̂axaA

R2
þ 1

2

ð3n̂ab − δabÞxabA
R3

þ � � �
�

∼
1

R
þ ϵ

n̂a

R2
þ 1þ n̂ab

R3
þ � � � : (4.7)

The center of mass (CM) of the system is defined as
xCM ¼ P

AmAxiA þOðρϵÞ. If we choose to work in coor-
dinates where xCM ¼ 0, then the second term in the above
expansion is one post-Newtonian order higher than the
others. We use the order parameter ϵ to mark this. With that
exception, we only care about the R scaling and the
number of unit vectors n̂i. The derivative of the potential
scales like

U;k ∼
n̂k

R2
þ ϵ

1þ n̂ck

R3
þ n̂c þ n̂cdk

R4
þ � � � : (4.8)

So the only R-independent terms in the surface integrand
scale like ϵn̂aij. When integrated over the surface, an odd
number of n̂i vanishes. (See Appendix B.) Therefore, the
surface integral makes no contribution.
The first volume integral can be simplified using

∇2U ¼ −4πρ� [see (3.5)], making it essentially a compact
integral. The solution is easily seen to be
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−
Z
M

UU;kkxijd3x ¼ 4π
X
A

X
B≠A

mAmB

rAB
xijA : (4.9)

The second volume integral can be integrated by parts again,

−2
Z
M

UU;ðixjÞd3x ¼ −
I
∂M

U2xðid2SjÞ þ
Z
M

U2δijd3x:

(4.10)

The surface integral again vanishes by virtue of integrating
an odd number of unit vectors. Meanwhile, the volume
integral can be ignored because it will not survive the
transverse-traceless projection. So (4.9) alone is the value of
the 1PN integral.
Throughout this work, we routinely drop terms which

will not, in the end, survive the transverse-traceless
projection. For convenience, we refer to these terms as
“non-TT.” Non-TT terms are easy to identify by sight: Any
term containing δij, N̂i, or N̂j is non-TT. [This can be
checked by applying the TT projection (2.32) to such
terms.] For the two-index moment, δij pieces are the only
ones we drop. For higher order moments, terms like δik, δjk,
δil, δjl;… are also dropped. This is because the final
expression for the waveform (2.21) contracts the EW
moments with direction vectors N̂k, N̂l;… for all dummy
indices (i.e., all those besides i and j). Therefore, a term like
δik will introduce N̂i in the final waveform, and that is non-
TT. Note that terms like δkl (or any other involving two
dummy indices) must be kept.
As discussed earlier, the integral

R
Mð∇UsÞ2xijd3x is

essentially the same as the one we have just calculated. One
slight difference does occur in the surface integrals:
Because

P
AmAð1 − 2sAÞxiA does not vanish, even to

lowest post-Newtonian order, the 1=R2 (1=R3) term in
the expansion ofUs (U

;k
s ) will be at the same order as all the

other terms. However, this makes no difference: The
surface integrals still vanish. The final answer is exactly
the same as (4.9), only with sensitivity factors added,

Z
M
ð∇UsÞ2xijd3x

¼ 4π
X
A

X
B≠A

mAð1 − 2sAÞmBð1 − 2sBÞ
rAB

xijA : (4.11)

2. 2PN two-potential field integrals

The other integrals enter at 2PN order. Eleven of them
involve only two potentials; of these, all but the one
involving Pkl

2 (or Pkl
2s) can be solved using a straightforward

procedure. Consider the following example:

Z
M

∇U ·∇Φ1xijd3x

¼
I
∂M

UΦ;k
1 x

ijd2Sk −
Z
M

UΦ;kk
1 xijd3x

− 2

Z
M

UΦ;ði
1 xjÞd3x: (4.12)

Here the surface integral vanishes for the same reason as
above (i.e., an odd number of n̂i). The first volume integral
is evaluated easily using ∇2Φ1 ¼ −4πρ�v2. The tricky part
is the second volume integral. We can write it as

− 2

Z
M

UΦ;ði
1 xjÞd3x

¼ 2
X
A;B

mAv2AmB

Z
M

1

jx − xBj
ðx − xAÞði
jx − xAj3

xjÞd3x: (4.13)

It can be evaluated using techniques developed in WW. We
first change integration variables from x to y ¼ x − xA.
Looking just at the main piece of the integral, this gives, in
our particular example,

Z
M

1

jx − xBj
ðx − xAÞði
jx − xAj3

xjÞd3x

¼
Z
My

1

jy þ xABj
ŷði

y2
ðyŷjÞ þ xjÞ

A Þd3y

−
I
∂My

1

jy þ xABj
ŷði

y2
ðyŷjÞ þ xjÞA Þðŷ · xAÞR2d2Ωy

þ 1

2

I
∂My

xA ·∇
�

1

jy þ xABj
ŷði

y2
ðyŷjÞ þ xjÞA Þ

�
ðŷ · xAÞ

×R2d2Ωy þ � � � : (4.14)

There are two cases to consider: A ¼ B and A ≠ B.
In both cases, the infinite series of surface integrals
vanishes: The terms either depend on R or average to
zero because of an odd number of unit vectors. When
A ¼ B, xAB ¼ 0, making the volume integral easy to
evaluate. It also vanishes, for the same reasons as the
surface integrals. When A ≠ B, we make use of the
following expansion:

1

jy þ xABj
¼

X
l;m

4π

2lþ 1

ð−r<Þl
rlþ1
>

Y�
lmðn̂ABÞYlmðŷÞ; (4.15)

where Ylm are the spherical harmonics, and r<ð>Þ denotes
the lesser (greater) of rAB and y. We substitute this
expansion into the volume integral and then express all
products of ŷi in terms of symmetric, trace-free (STF)
products ŷhL0i. (See Appendix B.) Here hL0i denotes an
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l0-dimensional STF combination. We can then perform the
angular integration using

X
m

Z
Y�
lmðn̂ABÞYlmðŷÞŷhL0id2Ωy ¼ n̂hLiABδ

ll0 : (4.16)

In our example, we find

Z
M

1

jx − xBj
ðx − xAÞði
jx − xAj3

xjÞd3x

¼ 4π

Z
R

0

�
1

5

r2<
r3>

yn̂hijiAB þ 1

3

1

r>
yδij − 1

3

r<
r2>

n̂ðiABx
jÞ
A

�
dy:

(4.17)

Finally, the radial integral is evaluated using

Z
R

0

rl<
rlþ1
>

yqdy ¼ 2lþ 1

ðlþ qþ 1Þðl − qÞ r
q
AB; (4.18)

where we have dropped terms dependent on R. For our
example, we find

Z
M

1

jx − xBj
ðx − xAÞði
jx − xAj3

xjÞd3x

¼ 4π

�
1

4
rABn̂

hiji
AB − 1

6
rABδij − 1

2
n̂ðiABx

jÞ
A

�

¼ 4π

�
1

4
rABn̂

ij
AB − 1

2
n̂ðiABx

jÞ
A

�
; (4.19)

where in the last step we have converted back to non-STF
notation and discarded the non-TT δij terms. This expres-
sion can then be used to evaluate the original integral, with
the mass and velocity factors added back in.
As stated above, ten of the two-potential integrals can

be evaluated with this step-by-step procedure: First,
integrate by parts so that one potential is undifferentiated.
(In some cases, this step is unnecessary because one
potential is already undifferentiated.) Next, if any piece
can be converted to a compact integral through relations
like ∇2Φ1 ¼ −4πρ�v2, evaluate that piece. Then write
out the potentials and their derivatives explicitly in terms

of masses, positions, velocities, and accelerations. When
two derivatives are taken, care must be taken to add
appropriate delta functions,

U;ij ¼ U;ij
norm − 4π

3

X
A

mAδ
ijδ3ðx − xAÞ; (4.20a)

_U;i ¼ _U;i
norm þ 4π

3

X
A

mAviAδ
3ðx − xAÞ; (4.20b)

Ü ¼ Ünorm − 4π

3

X
A

mAv2Aδ
3ðx − xAÞ; (4.20c)

Ẍ;ij ¼ Ẍ;ij
norm − 8π

15

X
A

mAðv2Aδij þ 2vijA Þδ3ðx − xAÞ;

(4.20d)

where “norm” denotes the derivative computed from
the definitions of the potentials. The extra terms are
needed to ensure the right answer when the doubly
differentiated potentials are integrated in a sphere around
the point mass position xA. [Compare ∇2ð1=jx − xAjÞ ¼−4πδ3ðx − xAÞ.]
Next, carefully examine any surface integrals. It turns out

that no surface integral contributes to the final answer, for
one of three reasons: (1) it has no R-independent terms,
(2) the R-independent terms vanish upon integrating over
the surface, or (3) the R-independent terms average to
something proportional to δij. The last type of term does
not vanish, but it is non-TT, and we can ignore it.
For the remaining volume integrals, change variables

from x to y ¼ x − xA, where A is the label on the
differentiated potential. Check that the surface integrals
so generated and A ¼ B volume integrals contribute
nothing, for one of the three reasons above. Then integrate
the A ≠ B volume integral over angle and radius using
(4.15), (4.16), and (4.18), keeping only TT terms at the
end of the calculation. Many of the A ≠ B integrals which
arise in this process appear in several of the ten “main”
integrals, and the results can be reused with the appropriate
coefficients multiplied in.

3. Pkl
2 field integral

The final two-potential integral is
R
MU;klPkl

2 x
ijd3x (and its counterpart with Pkl

2s),

Z
M

U;klPkl
2 x

ijd3x ¼
X
A

mA

Z
M

�
3
ðx − xAÞkl
jx − xAj5

− δkl

jx − xAj3
− 4π

3
δklδ3ðx − xAÞ

�

×

�
1

4π

Z
M

d3x0

jx − x0jU
0;kU0;ld3x0

�
xijd3x; (4.21)
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where U0 is the usual potential written as a function of x0. We can integrate over x (unprimed) first, using the techniques of
the previous section, except with xB → x0. Dropping the primes on the remaining integration variable, the result is

Z
M

U;klPkl
2 x

ijd3x ¼
X
A

mA

Z
M

d3xU;kU;l

�
1

6

ðxA − xÞklij
jxA − xj3 þ 1

6

ðxA − xÞkði
jxA − xj δjÞl þ 1

6

ðxA − xÞlði
jxA − xj δjÞk

−
1

6

ðxA − xÞij
jxA − xj δkl − 1

3
jxA − xjδkðiδjÞl − 1

2

ðxA − xÞklði
jxA − xj3 xjÞ

A − ðxA − xÞðk
jxA − xj δlÞðix jÞ

A

þ 1

2

ðxA − xÞði
jxA − xj x

jÞ
A δ

kl þ 1

2

ðxA − xÞkl
jxA − xj3 x

ij
A − 1

2

1

jxA − xj δ
klxijA

�
: (4.22)

Following WW (D5), we can rewrite this as

Z
M

U;klPkl
2 x

ijd3x ¼
X
A

mA

Z
M

d3xU;kU;l

�
− 1

6
ΦA;ijkl þΨA;kðiδjÞl − 1

2
ΨA;klðix jÞ

A þ 2XA;kδlðix jÞ
A

− 1

2
XA;klxijA − XAδkðiδjÞl

�
; (4.23)

where ΦA ≡ jx − xAj5=15, ΨA ≡ jx − xAj3=3, and
XA ≡ jx − xAj. These six terms can be evaluated individu-
ally. For the first four, we first integrate by parts and find a
vanishing surface integral, a simple-to-compute volume
integral (i.e., one involving a Laplacian), and a more
difficult volume integral. This last piece is integrated by
parts again, leading to another vanishing surface integral
and a final volume integral. The final volume integrals in
each case seem difficult to evaluate, but fortunately they
cancel in pairs when the four terms are combined.
The fifth term behaves similarly, except it is possible to

evaluate all the integrals eventually. It involves four
integrations by parts and three volume integrals which
convert to compact integrals by means of a Laplacian. The
sixth piece is the most difficult,

−X
A

mA

Z
M

U;iU;jXAd3x

¼ −X
A;B;C

mAmBmC

Z
M

UB;iUC;jXA; (4.24)

where UB ≡ 1=jx − xBj and UC ≡ 1=jx − xCj. (This
definition, excluding the mass, is equivalent to the earlier
definitions of ΦA, ΨA, and XA.) There are four cases to
consider. For A¼B¼C, we change variables to y¼x−xA
and find no contributions from either the main term or the
surface terms. For A ¼ C ≠ B (and A ¼ B ≠ C), we use
the same substitution (twice) after integrating by parts. The
evaluation proceeds much as in Sec. IVA 2 above.
For B ¼ C ≠ A, we make a slightly different substitution

(since B, not A, labels the differentiated potentials):
y ¼ x − xB. This gives

−X
A;B;C

mAmBmC

Z
M

UB;iUC;jXA

¼ −X
A

X
B≠A

mAm2
B

Z
My

ŷij

y2
jy þ xBAjdyd2Ωy; (4.25)

plus vanishing surface terms. To evaluate this, we use a new
expansion in spherical harmonics,

jy þ xBAj ¼
X
l;m

4π

2lþ 1

�
1

2lþ 3

ð−r<Þlþ2

rlþ1
>

− 1

2l − 1

ð−r<Þl
rl−1>

�

× Y�
lmðn̂BAÞYlmðŷÞ: (4.26)

The final case, A ≠ B ≠ C, is very complicated. It is
worked out in Appendix D of WW. Switching body labels
to match their notation, we get

−X
A;B;C

mAmBmC

Z
M

UA;iUB;jXC

¼ −π X
A≠B≠C

mAmBmC∂i
A∂j

BFðxAC;xBCÞ; (4.27)

where ∂i
A ≡ ∂=∂xiA and

FðxAC;xBCÞ≡− 2

3
½ðrAC þ rBCÞrAB − rACrBC

þ 2xAC · xBC lnðrAC þ rBC þ rABÞ�: (4.28)

This term is irrelevant for compact binaries, but we keep it
for completeness. The final answer for this field integral is

COMPACT BINARY SYSTEMS SCALAR-TENSOR … PHYSICAL REVIEW D 89, 084014 (2014)

084014-15



Z
M

U;klPkl
2 x

ijd3x ¼
X
A

X
B≠A

mAmB

�
r2AB

�
2π

3
n̂ijkAB − 8π

3
n̂ðiABδ

jÞk
�

þ rABð−2πn̂kðiAB þ 6πδkðiÞxjÞA þ 2πxijA n̂
k
AB

��
−X

C≠B

mCn̂kBC
r2BC

�

− 2π
X
A

X
B≠A

X
C≠B

mAmBmC

rABrBC
xijA þ π

X
A

X
B≠A

X
C≠A

mAmBmC

rABrAC
xijA

þ 3π
X
A

X
B≠A

m2
AmBn̂

ij
AB − π

X
A≠B≠C

mAmBmC∂i
A∂j

BFðxAC;xBCÞ: (4.29)

4. Three-potential field integrals

There are three field integrals involving the product of three potentials. The simplest is

Z
M

Uð∇UÞ2xijd3x ¼ 1

2

I
∂M

U2U;kxijd2Sk − 1

2

Z
M

U2U;kkxijd3x −
Z
M

U2U;ðixjÞd3x: (4.30)

The surface integral is non-TT, and the first volume integral
is trivial. Integrating the second volume integral by parts
gives another surface integral and another volume integral,
both of which are non-TT.
The other two field integrals are similar but involve

combinations of U and Us. To solve each individually, we
would have to compute a three-potential subintegral in the
manner of (4.24) above. However, when the two field
integrals are appropriately combined in the EW moment,
this subintegral cancels and can therefore be ignored.
Ignoring non-TT contributions, we find

Z
M
½Uð∇UsÞ2þ2Us∇U ·∇Us�xijd3x

¼−1

2

Z
M
U;kkU2

sxijd3x−
Z
M
UUsU

;kk
s xijd3x: (4.31)

Each of the subintegrals is trivial to evaluate. With the
evaluation of the three-body integrals, we have now
completed all 15 field integrals necessary to compute the
two-index EW moment.

5. Surface moment

We can rewrite the surface moment (2.23a) as

d2

dt2
IijEW ðsurfÞ ¼

1

16π

I
∂M

½2Λkði
T n̂jÞkR3 − Λkl

T ;ln̂
ijkR4�d2Ω;

(4.32)

where Λij
T ¼ Λij þ Λij

s . (Recall that the boundary of the
near zone is far beyond the compact source: R ≫ S.) We
are again only interested in terms which do not depend on
R. Since the first term of the integrand multiplies Λij

T by

R3, we look for pieces of Λij
T with R−3 dependence. The

second term of the integrand adds an extra factor of R, but
the derivative on Λij

T reduces the overall scaling by R to
compensate. To survive the angular integration, a piece of
Λij
T must contain an even number of unit vectors. The two

unit vectors in the first term retain the n̂ parity of Λij
T ; the

three unit vectors in the second term flip it, but the
derivative flips it back.
We begin with the first piece of the source, Λij. Because

of the two time derivatives, we need to know it to 3PN order
[i.e., Oðρϵ3Þ] in order to find the final moment to 2PN
order. Unfortunately, MW does not contain an expression
for Λij to this order. However, because of the way we have
defined our quantities, Λij will have exactly the same form
as the general relativistic version found in Eq. (4.4c) of
[41]. The only difference is that the fields N, Ki, Bij, and B
we plug into (4.4c) are pieces of our new gravitational field
~hμν instead of the GR field hμν.
We must expand Λij in the vicinity of r ¼ R and look for

terms with R−3 dependence. The first step is to expand the
individual fields ~hμν. For ~h00 ¼ N, the lowest order piece is
given above by (3.7a), and its expansion is just the
expansion of U given in (4.7). Higher order pieces of N
are given in MW (4.10a), (4.10e), and (4.15a). The various
potentials in these expressions, when converted to ρ� density,
can be expanded similarly to U. As with earlier surface
integrals, we only care about a term’s post-Newtonian order,
its dependence onR, and its number of unit vectors n̂i. With
this restriction, we see that all potentials of the same family
[i.e., P (or Σ), X, and Y] share the same basic expansion. The
only relevant differences occur for terms containingP

AmAxiA or its derivatives. As seen in the expansion of
U itself, these terms are one post-Newtonian order higher
than the others in the same expansion. In the end, we find
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N ∼ ϵ

�
1

R
þ n̂ðeÞ

R3
þ � � �

�
þ ϵ2

�
n̂ðeÞ

R
þ 1þ n̂ðoÞ

R2
þ n̂ðeþoÞ

R3
þ � � �

�
þ ϵ5=2

þ ϵ3
�
n̂ðeÞRþ n̂ðoÞ þ n̂ðeþoÞ

R
þ n̂ðeþoÞ

R2
þ n̂ðeþoÞ

R3
þ � � �

�
þOðϵ7=2Þ: (4.33)

For simplicity, we have omitted the exact factors of n̂. Instead, we just use the superscript ðeÞ to represent a sum of one or
more terms with even parity n̂ (e.g., 1þ n̂ab), ðoÞ for one or more terms with odd parity n̂, and ðeþ oÞ when terms are
present of both parities. Note that the Oðϵ5=2Þ term is different from the others; as seen in MW (4.10e), it contains no
potentials and is, in fact, independent of position x.
The other fields can be expanded as

Ki ∼ ϵ3=2
�
n̂ðoÞ

R2
þ n̂ðeÞ

R3
þ � � �

�
þ ϵ5=2

�
n̂ðoÞ þ n̂ðeÞ

R
þ n̂ðoÞ

R2
þ n̂ðeþoÞ

R3
þ � � �

�
þOðϵ3Þ; (4.34)

B ∼ ϵ2
�
1

R
þ 1þ n̂ðoÞ

R2
þ n̂ðeþoÞ

R3
þ � � �

�
þ ϵ5=2 þ ϵ3

�
Rþ n̂ðoÞ þ n̂ðeþoÞ

R
þ n̂ðeþoÞ

R2
þ n̂ðeþoÞ

R3
þ � � �

�
þOðϵ7=2Þ: (4.35)

The expansion for Bij, which we need only to Oðϵ2Þ, is the
same as for B. The Oðϵ5=2Þ piece of B, like that of N, is
independent of position. [See MW (4.10f).] To calculate
Λij, we need to take spatial and time derivatives of these
fields. For spatial derivatives, we merely divide each term
(excepting those independent of position) byR and change
the parity of n̂. Time derivatives add an extra factor of ϵ1=2

each, while also affecting the coefficients we have chosen
to ignore.
Only some of the pieces of Λij produce terms which

scale like R−3. Ignoring coefficients, these are N;iN;j,

δijð∇NÞ2, N;ði _KjÞ, δijN;k _Kk, N;ðiB;jÞ, δij∇N · ∇B, δij _N2,
NB̈ij, δij _N _B, and δijN _N2. The first six of these scale like
n̂ðoÞ=R3, the next three like ðδij þ n̂ðoÞÞ=R3, and the last
like δij=R3. (For NB̈ij, the δij factor is hidden inside Bij.)
Terms with an odd number of unit vectors will vanish
trivially during the angular integration of (4.32). The even
parity terms will not vanish. However, plugging into (4.32),
we see that the angular integral reduces to the average of
n̂ij. This produces δij, and so these terms are non-TT. We
conclude that Λij makes no relevant contributions to the
surface moment.

We turn next to potential contributions from Λij
s . We will need to expand it to Oðρϵ3Þ first. The result is

Λij
s ¼ ð3þ 2ω0Þ

�
Ψ;iΨ;j − 1

2
δijð∇ΨÞ2

�

− ð3þ 2ω0Þ
�
2

�
1 − ω0

0

3þ 2ω0

�
Ψ
�
Ψ;iΨ;j − 1

2
δijð∇ΨÞ2

�
− 1

2
δij _Ψ2

�

þ ð3þ 2ω0Þ
��

3 − 4ω0
0

3þ 2ω0

þ ω0
00

3þ 2ω0

�
Ψ2

�
Ψ;iΨ;j − 1

2
δijð∇ΨÞ2

�
−
�
1 − ω0

0

3þ 2ω0

�
δijΨ _Ψ2

− 2Ψ;kΨ;ðiBjÞk þ 1

2
ð∇ΨÞ2Bij þ 1

2
δijΨ;kΨ;lBkl − 2 _ΨΨ;ðiKjÞ þ δij _ΨΨ;kKk þ 1

2
δij _Ψ2N

�
þOðρϵ4Þ: (4.36)

The expansion of Ψ is

Ψ ∼ ϵ

�
1

R
þ n̂ðoÞ

R2
þ n̂ðeÞ

R3
þ � � �

�
þ ϵ2

�
n̂ðoÞ þ n̂ðeÞ

R
þ 1þ n̂ðoÞ

R2
þ n̂ðeþoÞ

R3
þ � � �

�
þ ϵ5=2½n̂ðoÞRþ 1�

þ ϵ3
�
n̂ðoÞR2 þ n̂ðeÞRþ n̂ðoÞ þ n̂ðeþoÞ

R
þ n̂ðeþoÞ

R2
þ n̂ðeþoÞ

R3
þ � � �

�
þOðϵ7=2Þ: (4.37)
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As with N and B, the Oðϵ5=2Þ term does not contain a
potential; in this case, it has a term linearly dependent
on the position (so that n̂ðoÞ ¼ n̂a) in addition to one
independent of the position.
We again find a number of terms which scale like R−3.

They derive from the Ψ;iΨ;j, δijð∇ΨÞ2, δij _Ψ2, δij _Ψ2N, and
δijΨ _Ψ2 pieces of Λij

s . When inserted into (4.32), all of these
but one either vanish because of odd n̂ parity or are ignored
because they produce something which is non-TT. The
surviving term is ð3þ 2ω0Þ½Ψ;iΨ;j − δijð∇ΨÞ2=2�, applied
to the OðϵÞ piece of Ψ and the linear-in-position Oðϵ5=2Þ
piece of Ψ. Notably, the latter piece depends on three time
derivatives of the scalar dipole moment,

I i
s ≡

Z
M

τsxid3x: (4.38)

Plugging into (4.32), we find that the only contribution to
the surface moment is

d2

dt2
IijEW ðsurfÞ

¼ − 2

9
G2ζð1 − ζÞ

X
A;B

mAð1 − 2sAÞmBð1 − 2sBÞxðiA _ajÞB :

(4.39)
6. Final two-index EW moment

We now add up the results for the 15 field integrals (and
their variations), multiplied by the appropriate coefficients,
to find the total field moment IijF . We then add this to the
compact moment IijC and the surface moment IijS to form the
total two-index EW moment. It contains pieces at 0PN,
1PN, 1.5PN, and 2PN order,

IijEW ¼ Gð1 − ζÞ
X
A

mAx
ij
A

�
1þ 1

2
v2A − 1

2

X
B≠A

GmB

rAB
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�

�

−
2

9
G2ζð1 − ζÞ

�
d
dt

�−2�X
A;B

mAð1 − 2sAÞmBð1 − 2sBÞxðiA _ajÞB
�

þ 3

8
Gð1 − ζÞ

X
A

mAx
ij
Av

4
A

þ G2ð1 − ζÞ
X
A

X
B≠A

mAmB

rAB
xijA

�
1

3
½7ð1 − ζÞ − 2ζð1 − 2sAÞð1 − 2sBÞ�v2A

−
1

12
½11ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�v2B − 1

6
½11ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�ðvA · vBÞ

−
1

12
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðvA · n̂ABÞ2 þ

1

6
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðvB · n̂ABÞ2

−
1

6
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðvA · n̂ABÞðvB · n̂ABÞ þ

1

6
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðaA þ aBÞ · xAB

þ
X
C≠B

GmC

rBC

�
1

2
ð1 − ζÞ2 þ 1

2
ζð1 − ζÞð1 − 2sAÞð1 − 2sBÞ þ 2ζ2ð1 − 2sAÞasBð1 − 2sCÞ

þ 1

2
ζð1 − ζÞð1 − 2sBÞð1 − 2sCÞ þ

1

2
ζðζ þ 2λ1Þð1 − 2sAÞð1 − 2sBÞð1 − 2sCÞ

��

þ G2ð1 − ζÞ
X
A

X
B≠A

mAmB

rAB

�
− 1

12
½7ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�v2AxðiAxjÞB

þ 2

3
ð1 − ζÞv2BxðiAxjÞB þ 1

12
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðvA · vBÞxðiAxjÞB

þ 1

12
½7ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�ðvA · n̂ABÞ2xðiAxjÞB

−
2

3
ð1 − ζÞðvB · n̂ABÞ2xðiAxjÞB − 1

12
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðvA · n̂ABÞðvB · n̂ABÞxðiAxjÞB

−
1

3
½5ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�½ðvA þ vBÞ · xAB�vðiAxjÞA
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−
1

6
½11ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�½ðvA þ vBÞ · xAB�vðiAxjÞB

þ 1

6
½13ð1 − ζÞ þ ζð1 − 2sAÞð1 − 2sBÞ�r2ABvijA − 1

12
½49ð1 − ζÞ þ ζð1 − 2sAÞð1 − 2sBÞ�r2ABvðiAvjÞB

�

þG2ð1 − ζÞ
X
A

X
B≠A

mAmBrAB

�
− 1

12
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðaA · n̂ABÞxðiA n̂jÞAB

− 1

6
½11ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�aðiAxjÞA − 1

12
½23ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�aðiBxjÞA

�

þG3ð1 − ζÞ2
X
A

X
B≠A

m2
AmB

�
−3ð1 − ζÞ − 1

3
ζð1 − 2sAÞ2 − 8

3
ζð1 − 2sAÞð1 − 2sBÞ

�
n̂ijAB

þG3ð1 − ζÞ2
X

A≠B≠C
mAmBmC½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�∂i

A∂j
BFðxAC;xBCÞ: (4.40)

The notation ðd=dtÞ−2 means that two antiderivatives must
be taken of the following expression. In practice, we do not
need to worry about doing this, since we will eventually
take two time derivatives of IijEW when evaluating (2.21).
In the GR limit ζ ¼ 0 (and for completeness, G ¼ 1),

this expression reduces to WW (4.17). [Note that (4.17) of
WW has a sign error on the term containing
fðvA þ vBÞ2 − ½ðvA þ vBÞ · n̂AB�g=2.] There are two impor-
tant caveats about this expression. First, the surface
moment has been written using the lowest order piece of
I i
s. Note also that the terms −PC≠BmCn̂kBC=r

2
BC from

(4.29) do not appear in that form. Similar terms occur in the
related integral involving Pkl

2s. The two sets of terms can be
combined and then simplified using

aiB ¼ −X
C≠B

½1 − ζ þ ζð1 − 2sBÞð1 − 2sCÞ�
GmCn̂iBC

r2BC
:

(4.41)

This is the Newtonian equation of motion as defined in
MW (6.1). With this substitution, IijEW is simpler and easier
to compare to the WW results (which use the same trick).
Because of these two choices, (4.40) is good only for
calculations at 2PN order. When going to higher order, the
expression should be reverted to its more generic form (not

shown) before adding the explicit higher order contribu-
tions; otherwise, the final answer will not be accurate.

B. Three-index moment IijkEW
The rest of the moments are calculated in much the same

way as IijEW. For the three-index moment, it is useful to
rewrite it as

IijkEW ¼ ~IijkEW þ ~IjikEW − ~IkijEW; (4.42)

where

~IijkEW ¼
Z
M

τ0ixjkd3xþ ~IijkS : (4.43)

Here the volume integral can again be split into compact
and field components, ~IijkC and ~IijkF . The surface moment is
given by

d
dt

~IijkS ¼
I
∂M

Λli
T n̂

jklR4d2Ω: (4.44)

To get IijkEW to 2PN order, we technically need to know the
source τ0i to Oðρϵ2Þ. However, there are no terms at that
order, so really we need it only to Oðρϵ3=2Þ. Converting
MW (4.12b) to the ρ� density, we find

τ0i ¼ ρ�viGð1 − ζÞ
�
1þ 1

2
v2 þ 3Gð1 − ζÞU −Gζð1 − 2sÞUs

�

þ Gð1 − ζÞ
�
Gð1 − ζÞ

�
2

π
U;jV ½j;i� þ 3

4π
_UU;i

�
− 1

4π
Gζ _UsU

;i
s

�
þOðρϵ5=2Þ: (4.45)

The compact moment is given by
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~IijkC ¼ Gð1 − ζÞ
X
A

mAviAx
jk
A

�
1þ 1

2
v2A þ

X
B≠A

GmB

rAB
½3ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�

�
: (4.46)

There are only two types of field integral, and both can be
calculated by the method of Sec. IVA 2.
Finally, we must investigate the surface moment. The

procedure is similar to that for the two-index surface
moment, with three essential differences. First, there is
only one time derivative, compared to two in the two-index
case. This means that we only need to consider Λij

T to
Oðρϵ5=2Þ. Second, we are interested in terms in Λij

T which
haveR−4 dependence. Finally, if a piece of Λij

T is to survive
the angular integration, it must have an odd number of unit
vectors. Again, only one term contributes to the surface
moment: the one involving the scalar dipole (4.38). The
final expression is given by

d
dt

~IijkS ¼ 1

15
G2ζð1 − ζÞ

X
A;B

mAð1 − 2sAÞmB

× ð1 − 2sBÞð2xiðjA _akÞB − 3_aiBx
jk
A Þ: (4.47)

Like the two-index surface moment, this expression uses
only the lowest order form of I i

s. This is sufficient for our
purposes, but care must be taken in any future work to
higher post-Newtonian order.
Adding everything up, we get a final expression

for ~IijkEW. It contains pieces at 0.5PN, 1.5PN, and 2PN
order,

~IijkEW ¼ Gð1 − ζÞ
X
A

mAviAx
jk
A

�
1þ 1

2
v2A − 1

2

X
B≠A

GmB

rAB
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�

�

−
1

2
G2ð1 − ζÞ

X
A

X
B≠A

mAmB

rAB
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðvA · n̂ABÞn̂iABxjkA

−
1

12
G2ð1 − ζÞ

X
A

X
B≠A

mAmBrABf2½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðvA · n̂ABÞn̂ijkAB

þ½11ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�ð2viAn̂jkAB − vjAn̂
ik
AB − vkAn̂

ij
ABÞg

þ 1

2
G2ð1 − ζÞ

X
A

X
B≠A

mAmBf½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðvA · n̂ABÞn̂iðjABxkÞA

þ½7ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�ðviAxðjA n̂kÞAB − vðjA x
kÞ
A n̂

i
ABÞg

þ 1

15
G2ζð1 − ζÞ

�
d
dt

�−1�X
A;B

mAð1 − 2sAÞmBð1 − 2sBÞð2xiðjA _akÞB − 3_aiBx
jk
A Þ

�
: (4.48)

This reduces to WW (4.22) in the GR limit.

C. Four-index moment IijklEW

To evaluate the four-index moment, we need τij to Oðρϵ2Þ, which is not given in MW. We use Eq. (4.4c) of [41] and
(4.36) to find

τij ¼ ð−gÞ φ

ϕ0

Tij þ 1

16π
Λij þ 1

16π
Λij
s

¼ Gð1 − ζÞσijð1þ N − 3ΨÞ

þ 1

16π

�
1

4

�
N;iN;j − 1

2
δijð∇NÞ2

�
þ 2Kk;ðiKjÞ;k − Kk;iKk;j − Ki;kKj;k þ 2N;ði _KjÞ þ 1

2
N;ðiB;jÞ

− 1

2
N

�
N;iN;j − 1

2
δijð∇NÞ2

�
− δij

�
Kl;kK½k;l� þ N;k _Kk þ 3

8
_N2 þ 1

4
∇N ·∇B

��

þ 1

16π

�
ð3þ 2ω0Þ

�
Ψ;iΨ;j − 1

2
δijð∇ΨÞ2

�
− ð3þ 2ω0Þ

�
2

�
1 − ω0

0

3þ 2ω0

�
Ψ

�
Ψ;iΨ;j − 1

2
δijð∇ΨÞ2

�
− 1

2
δij _Ψ2

��

þOðρϵ5=2Þ: (4.49)
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We can ignore all terms with δij, because they will be non-TT. Substituting for N, Ki, B, and Ψ, and changing to the ρ�
density, we find an “effective” source,

τijeff ¼ ρ�vijGð1 − ζÞ
�
1þ 1

2
v2 þ 3Gð1 − ζÞU −Gζð1 − 2sÞUs

�

þG2ð1 − ζÞ2
�
1

4π
U;iU;j þ 3

4π
U;ðiΦ;jÞ

1 − 1

2π
Gð1 − ζÞU;ðiΦ;jÞ

2 − 1

2π
GζU;ðiΦs;jÞ

2s þ 1

4π
U;ðiẌ;jÞ

þ 2

π
Vk;ðiVjÞ;k − 1

π
Vk;iVk;j − 1

π
Vi;kVj;k þ 2

π
U;ði _VjÞ

�

þG2ζð1 − ζÞ
�
1

4π
U;i

sU
;j
s − 1

4π
U;ði

s Φs;jÞ
1 − 1

2π
Gð1 − ζÞU;ði

s Φs;jÞ
2 − 1

2π
Gð2λ1 þ ζÞU;ði

s Φs;jÞ
2s

− 2

π
GζU;ði

s ðΣðasUsÞÞ;jÞ þ
1

4π
U;ði

s Ẍ;jÞ
s

�
þOðρϵ5=2Þ: (4.50)

The compact moment is

IijklC ¼ Gð1 − ζÞ
X
A

mAv
ij
Ax

kl
A

�
1þ 1

2
v2A þ

X
B≠A

GmB

rAB
½3ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�

�
: (4.51)

There are eight different field integrals, although some are very similar. They can also be evaluated using the methods of
Sec. IV A 2. Adding everything up, we find the final result, which contains 1PN and 2PN terms,

IijklEW ¼ Gð1 − ζÞ
X
A

mAxklA

�
vijA − 1

2

X
B≠A

GmB

rAB
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�n̂ijAB

�

þ 1

12
G2ð1 − ζÞ

X
A

X
B≠A

½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�mAmBrABn̂
ij
ABðn̂klAB − δklÞ

þ 1

2
Gð1 − ζÞ

X
A

mAv2Av
ij
Ax

kl
A

þG2ð1 − ζÞ
X
A

X
B≠A

mAmB

rAB
xklA

�
− 1

2
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�vijA

−
1

4
½7ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�v2An̂ijAB

þ 1

2
n̂ijAB

X
C≠A

GmC

rAC
½ð1 − ζÞ2 þ ζð1 − ζÞð1 − 2sAÞð1 − 2sCÞ þ ζð1 − ζÞð1 − 2sAÞð1 − 2sBÞ

þ ζð2λ1 þ ζÞð1 − 2sAÞð1 − 2sBÞð1 − 2sCÞ þ 4ζ2asAð1 − 2sBÞð1 − 2sCÞ�

þ 1

2
n̂ijAB

X
C≠B

GmC

rBC
½ð1 − ζÞ2 þ ζð1 − ζÞð1 − 2sBÞð1 − 2sCÞ þ ζð1 − ζÞð1 − 2sAÞð1 − 2sBÞ

þ ζð2λ1 þ ζÞð1 − 2sAÞð1 − 2sBÞð1 − 2sCÞ þ 4ζ2ð1 − 2sAÞasBð1 − 2sCÞ�

þ ½3ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�ðvA · n̂ABÞvðiA n̂jÞAB þ 3

4
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðvA · n̂ABÞ2n̂ijAB
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−
1

2
½7ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�aðiAxjÞAB − 1

4
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðaA · xABÞn̂ijAB
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½7ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�aðiAxjÞAB

−
1
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þ 4

3
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½ð1 − ζÞ2 þ ζð1 − ζÞð1 − 2sAÞð1 − 2sCÞ þ ζð1 − ζÞð1 − 2sAÞð1 − 2sBÞ

þ ζð2λ1 þ ζÞð1 − 2sAÞð1 − 2sBÞð1 − 2sCÞ þ 4ζ2asAð1 − 2sBÞð1 − 2sCÞ�
þ 3

8
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðvA · n̂ABÞ2 − 1

8
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðaA · xABÞ

− 1

3
ð1 − ζÞðvA · vBÞ

�

þ G2ð1 − ζÞ
X
A

X
B≠A

mAmBn̂
ðk
ABx

lÞ
A

�
1

6
½11ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�v2An̂ijAB

þ 2

3
½5ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�vijA − 4

3
½2ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�ðvA · nABÞvðiA n̂jÞAB

− ½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðvA · n̂ABÞ2n̂ijAB þ 2

3
½5ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�aðiAxjÞAB

þ 1

3
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðaA · xABÞn̂ijAB þ 4ð1 − ζÞðvB · n̂ABÞvðiA n̂jÞAB

�

þ G2ð1 − ζÞ
X
A

X
B≠A

mAmBrABn̂
ij
AB

�
1

6
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðvA · n̂ABÞvðkA n̂lÞAB

þ 1

12
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�vklA − 1

12
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�aðkA xlÞAB

þ 1

6
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�aðkA xlÞA

�

þ G2ð1 − ζÞ
X
A

X
B≠A

mAmBrABn̂klAB

�
− 1

12
½13ð1 − ζÞ − 3ζð1 − 2sAÞð1 − 2sBÞ�vijA

þ 1

6
½5ð1 − ζÞ − 3ζð1 − 2sAÞð1 − 2sBÞ�ðvA · n̂ABÞvðiA n̂jÞAB
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− 1

12
½13ð1 − ζÞ − 3ζð1 − 2sAÞð1 − 2sBÞ�aðiAxjÞAB − 4

3
ð1 − ζÞðvB · n̂ABÞvðiA n̂jÞAB − 2

3
ð1 − ζÞvðiAvjÞB

�

þ G2ð1 − ζÞ
X
A

X
B≠A

mAmBrAB

�
1

3
½3ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�vðiA n̂jÞABvðkA n̂lÞAB

− 4

3
ð1 − ζÞvðiA n̂jÞABvðkB n̂lÞAB

�

þ G2ð1 − ζÞ
X
A

X
B≠A

mAmB

�
− 2

3
½5ð1 − ζÞ − ζð1 − 2sAÞð1 − 2sBÞ�vðiA n̂jÞABvðkA xlÞA

− 1

3
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�ðvA · n̂ABÞn̂ijABvðkA xlÞA þ 4ð1 − ζÞvðiA n̂jÞABvðkB xlÞA

�
: ð4:52Þ

This reduces to WW (4.26) in the GR limit.

D. Five-index moment IijklmEW

Because of the time derivative in (2.22c), we only need the source to Oðρϵ3=2Þ. However, there is no contribution at that
order, so OðρϵÞ will suffice,

τij ¼ ρ�vijGð1 − ζÞ þ 1

4π
G2ð1 − ζÞ2

�
U;iU;j − 1

2
δijð∇UÞ2

�
þ 1

4π
G2ζð1 − ζÞ

�
U;i

sU
;j
s − 1

2
δijð∇UsÞ2

�
þOðρϵ2Þ: (4.53)

We can, of course, discard the delta function terms, which are non-TT. There is only one type of field integral to calculate.
The final five-index moment is entirely 1.5PN order,

IijklmEW ¼ 1

3
Gð1 − ζÞ d

dt

�X
A

mAxklmA

�
vijA − 1

2

X
B≠A

GmB

rAB
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�n̂ijAB

�

þ 1

4

X
A

X
B≠A

GmAmBrAB½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�n̂ijABxðkA ðn̂lmÞ
AB − δlmÞÞ

�
: (4.54)

This reduces to WW (4.27a) in the GR limit.

E. Six-index moment Iijklmn
EW

With two time derivatives, we only need the source to OðρϵÞ, (4.53). There is again only one field integral to calculate,
although it is the most difficult by far. The final moment is entirely 2PN order,

Iijklmn
EW ¼ 1

12
Gð1 − ζÞ d

2

dt2

�X
A

mAxklmn
A

�
vijA − 1

2

X
B≠A

GmB

rAB
½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�n̂ijAB

�

þ 1

2

X
A

X
B≠A

GmAmBrAB½1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ�
�
n̂ijABx

ðkl
A ðn̂mnÞ

AB − δmnÞÞ

− 1

10
xijABð2n̂klmn

AB − 2n̂ðklABδ
mnÞ − δðklδmnÞÞ

��
: (4.55)

This reduces to WW (4.27b) in the GR limit.

V. TWO-BODY EW MOMENTS

So far we have written down expressions for the EW
moments which are fully general and can be applied to a

systemwith any number of compact objects. Nowwe convert

the moments to the two-body case relevant for compact

binaries. We define the masses mA of the bodies as m1

and m2. They have positions x1 and x2 and velocities v1
and v2.
It will be useful to have the moments expressed in terms

of relative variables, r ¼ r12, x ¼ x1 − x2, n̂ ¼ n̂12 ¼ x=r,
and v ¼ v1 − v2. (Note that we no longer use n̂ to represent

COMPACT BINARY SYSTEMS SCALAR-TENSOR … PHYSICAL REVIEW D 89, 084014 (2014)

084014-23



unit normals at the surface of M.) In general relativity,
the relationship between the individual variables and the
relative variables can be fixed by writing down the
conserved linear momentum. The loss of momentum to
gravitational waves occurs at 2.5PN order, beyond what
we need to worry about. However, in scalar-tensor
theory, dipole radiation reaction enters at 1.5PN order,
so it must be taken into account. From MW (6.9) and
(6.10), we find that the individual and relative velocities are
related by

vi1 ¼
m2

m
vi þ δi; (5.1a)

vi2 ¼ −m1

m
vi þ δi; (5.1b)

with

δi ¼ 1

2
η
δm
m

��
v2 −Gαm

r

�
vi −Gαm

r2
_rxi

�

− 2

3
ζηS−

�
Sþ þ δm

m
S−

��
Gαm
r

�
2

n̂i þOðϵ2Þ:
(5.2)

Here

α≡ 1 − ζ þ ζð1 − 2s1Þð1 − 2s2Þ (5.3)

is a scalar-tensor parameter that enters the equations of
motion at Newtonian order. We also have defined

Sþ ≡ α−1=2ð1 − s1 − s2Þ; (5.4a)

S− ≡ α−1=2ðs2 − s1Þ: (5.4b)

Finally, we have the usual variables m≡m1 þm2,
μ≡m1m2=m, η≡ μ=m, and δm≡m1 −m2. The first term
in (5.2) is of relative 1PN order and the second term,
representing the dipole radiation, is of relative 1.5PN
order. We can find an antiderivative and write down the
corresponding position relations,

xi1 ¼
m2

m
xi þ δix; (5.5a)

xi2 ¼ −m1

m
xi þ δix; (5.5b)

with

δix ¼
1

2
η
δm
m

�
v2 −Gαm

r

�
xi

þ 2

3
ζηS−

�
Sþ þ δm

m
S−

�
Gαmvi þOðϵ2Þ: (5.6)

It may seem that we would need the Oðϵ2Þ terms in δi and
δix in order to calculate 2PN gravitational waves. As it turns
out, the 2PN piece of δi is not needed anywhere, while the
2PN piece of δix is only needed in the first (0PN) term of
IijEW, where it cancels exactly.
To simplify our expressions, we introduce other scalar-

tensor parameters from MW,

γ̄ ≡−2α−1ζð1 − 2s1Þð1 − 2s2Þ; (5.7a)

β̄1 ≡ α−2ζð1 − 2s2Þ2ðλ1ð1 − 2s1Þ þ 2ζs01Þ; (5.7b)

β̄2 ≡ α−2ζð1 − 2s1Þ2ðλ1ð1 − 2s2Þ þ 2ζs02Þ; (5.7c)

δ̄1 ≡ α−2ζð1 − ζÞð1 − 2s1Þ2; (5.7d)

δ̄2 ≡ α−2ζð1 − ζÞð1 − 2s2Þ2; (5.7e)

χ̄1 ≡ α−3ζð1 − 2s2Þ3½ðλ2 − 4λ21 þ ζλ1Þð1 − 2s1Þ
− 6ζλ1s01 þ 2ζ2s001�; (5.7f )

χ̄2 ≡ α−3ζð1 − 2s1Þ3½ðλ2 − 4λ21 þ ζλ1Þð1 − 2s2Þ
− 6ζλ1s02 þ 2ζ2s002�: (5.7g)

We also use the notation

ξþ ≡ 1

2
ðξ1 þ ξ2Þ; (5.8a)

ξ− ≡ 1

2
ðξ1 − ξ2Þ; (5.8b)

where ξ is one of β̄, δ̄, or χ̄. (This notation should not be
confused with Sþ and S−.) Note that the χ̄ parameters do
not occur in the EW moments; however, they do appear in
the equations of motion, which we will need shortly.
Since acceleration terms only appear at 1.5PN (in IijEW)

or 2PN order (in IijEW, IijkEW , and IijklEW), we can replace
them with the Newtonian expressions,

ai1 ¼ −Gαm2

r2
n̂i; (5.9a)

ai2 ¼
Gαm1

r2
n̂i: (5.9b)

This will bring the expressions in line with WW (6.6) and
allow an easy comparison. Finally, we evaluate (4.42) to get
the total three-index moment. The result is a set of
simplified, two-body EW moments expressed in relative
coordinates,
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IijEW ¼ Gð1 − ζÞμxij
�
1þ 1

2
ð1 − 3ηÞv2 − 1

2
ð1 − 2ηÞGαm

r

�

−
8

3
Gð1 − ζÞμηζS2−

�
d
dt

�−2��Gαm
r

�
2
�
_rn̂ij − 1

3
n̂ðivjÞ

��

þGð1 − ζÞμxij
�
3

8
ð1 − 7ηþ 13η2Þv4 þ

�
1

12
ð28 − 79η − 54η2Þ þ 1

2
γ̄ð3 − 10ηÞ

�
v2

Gαm
r

þ
�
− 1

4
ð5þ 27η − 4η2Þ − 2

3
γ̄ð1þ 6ηÞ − 1

12
γ̄2 − 1

3

�
δ̄þ þ δm

m
δ̄−

�
þ η

�
β̄þ þ δm

m
β̄−

���
Gαm
r

�
2

− 1

12
ð1 − 13ηþ 30η2Þ_r2Gαm

r

�

þG2ð1 − ζÞαμmr

��
1

6
ð13þ 23ηÞ þ γ̄ð1þ 2ηÞ

�
vij −

�
5

3
þ γ̄

�
ð1 − 4ηÞ_rvðin̂jÞ

�
; (5.10a)

IijkEW ¼ Gð1 − ζÞμ δm
m

�
xijvk − 2vðixjÞk − vðixjÞk

�
ð1 − 5ηÞv2 þ 1

3
ð7þ 12ηþ 6γ̄ÞGαm

r

�

þ 1

2
xijvk

�
ð1 − 5ηÞv2 þ 1

3
ð17þ 12ηþ 12γ̄ÞGαm

r

�
þ 1

6
ð1 − 6ηÞGαm

r2
_rxijk

�

þ 2

3
G2ð1 − ζÞαμ2ζS−

�
Sþ þ δm

m
S−

��
2vijxk −Gαm

r3
xijk

�

þ 2

15
Gð1 − ζÞμηζS−

�
Sþ − δm

m
S−

��
d
dt

�−1�ðGαmÞ2
r

ð−3_rn̂ijk þ 6vðin̂jÞk − 5n̂ijvkÞ
�
; (5.10b)

IijklEW ¼ Gð1 − ζÞμxklð1 − 3ηÞ
�
vij − 1

3
n̂ij

Gαm
r

�
− 1

6
G2ð1 − ζÞαμmrn̂ijδkl

þ Gð1 − ζÞμxkl
�
1

2
ð1 − 9ηþ 21η2Þv2vij þ

�
− 1

24
ð13 − 46ηþ 36η2Þ − 1

3
γ̄ð1 − 3ηÞ

�
v2n̂ij

Gαm
r

þ
�
1

4
ð7 − 10η − 36η2Þ þ 4

3
γ̄ð1 − 3ηÞ

�
vij

Gαm
r

þ
�
1

6
ð7 − 12η − 36η2Þ þ 2

3
γ̄ð1 − 3ηÞ

�
_rvðin̂jÞ

Gαm
r

þ 1

8
ð1 − 6ηþ 12η2Þ_r2n̂ij Gαm

r

þ
�
1

24
ð37 − 122ηþ 48η2Þ þ 2

3

�
γ̄ þ β̄þ − δm

m
β̄−

�
ð1 − 3ηÞ

�
n̂ij

�
Gαm
r

�
2
�

þ G2ð1 − ζÞαμmrδkl
��

1

12
ð7 − 46ηÞ þ 1

3
γ̄ð1 − 6ηÞ

�
vij þ

�
− 1

24
ð7þ 2ηÞ − 1

6
γ̄

�
v2n̂ij

þ
�
1

6
ð3þ 2ηÞ þ 1

3
γ̄

�
_rvðin̂jÞ þ 1

24
ð1 − 2ηÞ_r2n̂ij þ

�
− 3

8
þ 1

3

�
−γ̄ þ β̄þ − δm

m
β̄−

��
n̂ij

Gαm
r

�

þ G2ð1 − ζÞαμmr

�
1

12
ð1 − 2ηÞn̂ijvkl − 1

6
ð1 − 4ηÞ_rn̂ijvðkn̂lÞ

þ
�
− 1

3
ð7 − 20ηÞ − 4

3
γ̄ð1 − 3ηÞ

�
vðin̂jÞvðkn̂lÞ

�
; (5.10c)
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IijklmEW ¼ − 1

3
Gð1 − ζÞμ δm

m
d
dt

�
ð1 − 2ηÞ

�
vij − 1

4
n̂ij

Gαm
r

�
xklm − 1

4
Gαmrn̂ijxðkδlmÞ

�
; (5.10d)

Iijklmn
EW ¼ 1

12
Gð1 − ζÞμ d2

dt2

�
ð1 − 5ηþ 5η2Þ

�
vij − 1

5
n̂ij

Gαm
r

�
xklmn − 1

10
ð3 − 10ηÞGαmrn̂ijxðklδmnÞ

þ 1

10
GαmrxijδðklδmnÞ

�
: (5.10e)

For the most part, these moments have the same basic forms
as those in WW, with the coefficients altered to include the
scalar-tensor parameters (5.3), (5.4), and (5.7). As we saw
in Sec. IV, both IijEW and IijkEW have new terms at 1.5PN and
2PN order, respectively, resulting from the nonvanishing
surface moments. The conversion to relative coordinates
introduces another new term in IijkEW at 2PN order. It arises
because of the interaction between the lowest order (0.5PN)
piece of IijkEW and the 1.5PN (dipole radiation) terms in (5.2)
and (5.6). No such new term is created in the two-index
moment: The 1.5PN piece of (5.6) cancels out just like the
(unshown) 2PN piece.
The final step is to take time derivatives. The equation for

~hij, (2.21), shows that we must take two derivatives of each
moment. The five- and six-index moments also contain
their own time derivatives. Along the way, we need to
substitute the relative equation of motion for each accel-
eration ai. We take this result from MW, keeping terms up
to 2PN order,

ai ¼ −Gαm
r2

n̂i þ Gαm
r2

ðAPNn̂i þ BPN _rviÞ

þ 8

5
η
ðGαmÞ2

r3
ðA1.5PN _rn̂i − B1.5PNviÞ

þGαm
r2

ðA2PNn̂i þ B2PN _rviÞ; (5.11)

where APN, BPN, A1.5PN, B1.5PN, A2PN, and B2PN are given in
MW (1.5). Of these, APN, A2PN, and B2PN depend on time,
while the others are constant. It turns out that only APN is
differentiated in the process of calculating the GWs. From
xi ¼ rn̂i, we can also find

̈r ¼ v2

r
− _r2

r
−Gαm

r2
þ Gαm

r2
ðAPN þ _r2BPNÞ

þ 8

5
η
ðGαmÞ2

r3
_rðA1.5PN − B1.5PNÞ

þGαm
r2

ðA2PN þ _r2B2PNÞ: (5.12)

While the Newtonian, 1PN, and 2PN terms are modified
from the GR equations of motion, the 1.5PN terms, caused

by dipole radiation reaction, are entirely new. They will
cause the introduction of more new terms in the waveform,
arising from the two-index EW moment (at 1.5PN order)
and the three-index EW moment (at 2PN order). We hold
off on presenting the final results until Sec. VII.

VI. RADIATION-ZONE INTEGRALS

So far, our calculation of the gravitational waveform
has only considered the contribution from the near zone.
We must also calculate the contribution from the radi-
ation zone. To do so, we will need to evaluate (2.24a)
for ~hij, dropping all terms which fall off faster than
1=R.
The first step is to derive an expression for the source τij

in the radiation zone. Since there are no compact sources at
R > R, τij is composed purely of field terms. The fields
N ¼ ~h00, Ki ¼ ~h0i, Bij ¼ ~hij, and Ψ ¼ φ − 1 themselves
can be found by summing near-zone and radiation-zone
contributions.

A. Radiation-zone fields: Near-zone contributions

The near-zone contributions can be found using (2.17a)
and (2.17b). Recall that the Epstein-Wagoner construction
(2.21) is a special case of (2.17a) for ~hij in the far-away
zone. Now we want expressions for all of the fields at
arbitrary R.
We need to evaluate the various moments defined in

(2.18a) and (2.18b). We begin with the moments of τ00. We
use the expression in (4.2), but we only need it to OðρϵÞ.
[Actually, all the sources need to be evaluated to Oðρϵ3=2Þ,
but only τ0i has terms at that order.] The integration over the
field terms uses the same strategies we used in calculating
the EW moments. We find

M00 ¼ Gð1 − ζÞ
X
A

mA

�
1þ 1

2
v2A − 1

2

X
B≠A

GαABmB

rAB

�

≡Gð1 − ζÞðmþ EÞ; (6.1)

where αAB ≡ 1 − ζ þ ζð1 − 2sAÞð1 − 2sBÞ. In the second
step, we rewrite the moment in terms of m≡P

AmA, the
total mass of the system, and E, the (lowest order)
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conserved energy. [See MW (6.4).] The rest of the moments
M00Q can be renamed IQ, following the definition in
MW (3.7a). We have

M00i ≡ I i

¼ Gð1 − ζÞ
X
A

mAxiA

�
1þ 1

2
v2A − 1

2

X
B≠A

GαABmB

rAB

�
;

(6.2)

which, to the required order, is equal to zero in the CM
frame. (This is the argument used earlier to reduce the order
of

P
AmAxiA in surface integrals.) Finally, the next few

integrals are only needed to lowest order,

M00ij ≡ I ij ¼ Gð1 − ζÞ
X
A

mAx
ij
A ; (6.3a)

M00ijk ≡ I ijk ¼ Gð1 − ζÞ
X
A

mAx
ijk
A : (6.3b)

The τ0i moments require the source to Oðρϵ3=2Þ, (4.45).
We find

M0i ¼ Gð1 − ζÞ
X
A

mA

�
viA

�
1þ 1

2
v2A − 1

2

X
B≠A

GαABmB

rAB

�

− 1

2

X
B≠A

GαABmB

rAB
n̂iABðvA · n̂ABÞ

�
: (6.4)

This is proportional to the total momentum [see MW
(6.5)], and we can set it equal to zero. The other moments
are only needed to lowest order,

M0ij ¼ Gð1 − ζÞ
X
A

mAviAx
j
A ¼ 1

2
ð _I ij − ϵijaJ aÞ; (6.5a)

M0ijk ¼ Gð1 − ζÞ
X
A

mAviAx
jk
A ¼ 1

3
ð _I ijk − 2ϵikaJ ajÞ;

(6.5b)

where ϵijk is the totally antisymmetric Levi-Civita symbol
(ϵ123 ¼ þ1). The current moments J iQ are defined in
MW (3.7b) as

J iQ ≡ ϵiab
Z
M

τ0bxaQd3x: (6.6)

Note that, unlike the exact equivalence of M00Q and IQ,
the equality between M0Q, IQ, and J Q−1 is valid only to
lowest order in the post-Newtonian expansion.
The τij moments require the source to OðρϵÞ, (4.53). We

need them only to leading order,

Mij ¼ Gð1 − ζÞ
X
A

mA

�
vijA − 1

2

X
B≠A

GαABmB

rAB
n̂ijAB

�

¼ 1

2
Ï ij; (6.7a)

Mijk ¼ Gð1 − ζÞ
X
A

mA

�
vijAx

k
A − 1

2

X
B≠A

GαABmB

rAB
n̂ijABx

k
A

�

¼ 1

6
Ï ijk − 2

3
ϵðijka _J ajjÞ: (6.7b)

Here again, equality between MQ, IQ, and (potentially)
J Q−1 only holds to the lowest post-Newtonian order.
Finally, the scalar moments require τs to OðρϵÞ. Taken

from MW (4.9e) and converted to the ρ� density, it is
given by

τs ¼ ρ�Gζ
�
ð1 − 2sÞ − 1

2
ð1 − 2sÞv2 −Gð1 − ζÞð1 − 2sÞU þ Gζð1 − 2s − 4asÞUs − 4Gλ1ð1 − 2sÞUs

�

þ 1

2π
G2ζðλ1 − ζÞð∇UsÞ2: (6.8)

The lowest order moment is

Ms ¼ Gζ
X
A

mA

�
ð1 − 2sAÞ − 1

2
ð1 − 2sAÞv2A

−X
B≠A

GmB

rAB
½ð1 − ζÞð1 − 2sAÞ þ ζð1 − 2sA þ 4asAÞð1 − 2sBÞ þ 2λ1ð1 − 2sAÞð1 − 2sBÞ�

�

≡Gζðms þms1Þ; (6.9)

where we have defined a “scalar mass”
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ms ¼
X
A

mAð1 − 2sAÞ (6.10)

weighted by sensitivity factors. We also letms1 be the rest ofMs (when calculated to 1PN order). The rest of theMQ
s can be

renamed IQ
s , following MW (3.7d). To the orders we need, they are

Mi
s ≡ I i

s ¼ Gζ
X
A

mAxiA

�
ð1 − 2sAÞ − 1

2
ð1 − 2sAÞv2A

−X
B≠A

GmB

rAB
½ð1 − ζÞð1 − 2sAÞ þ ζð1 − 2sA þ 4asAÞð1 − 2sBÞ þ 2λ1ð1 − 2sAÞð1 − 2sBÞ�

�
; (6.11a)

Mij
s ≡ I ij

s ¼ Gζ
X
A

mAð1 − 2sAÞxijA ; (6.11b)

Mijk
s ≡ I ijk

s ¼ Gζ
X
A

mAð1 − 2sAÞxijkA : (6.11c)

All of these moments can be plugged back into (2.17a) and
(2.17b) to produce the radiation-zone fields, as calculated
from near-zone integrals,

NN ¼ ~h00N ¼ 4Gð1 − ζÞmþ E
R

þ 2

�
I ij

R

�
;ij

− 2

3

�
I ijk

R

�
;ijk

þ � � � ; (6.12a)

Ki
N ¼ ~h0iN

¼ −2
�
_I ij − ϵijaJ a

R

�
;j
þ 2

3

�
_I ijk − 2ϵikaJ aj

R

�
;jk

þ � � � ;

(6.12b)

Bij
N ¼ ~hijN ¼ 2

Ï ij

R
− 2

3

�
Ï ijk − 4ϵðijka _J ajjÞ

R

�
;k
þ � � � ;

(6.12c)

ΨN ¼ 2Gζ
ms þms1

R
− 2

�
I i
s

R

�
;i
þ
�
I ij
s

R

�
;ij

− 1

3

�
I ijk
s

R

�
;ijk

þ � � � : (6.12d)

It is worth pointing out the relative post-Newtonian orders
of the terms in these expressions. The lowest order terms,
which will serve as the reference, are those involvingm and
ms. Relative to those, the other terms in NN enter at 1PN
(those containing E and I ij) and 1.5PN (I ijk) order. The
first term in Ki

N and Bij
N is 1PN, while the second in each is

1.5PN beyond the leading order. For ΨN , the ms1 piece is
1PN. The dipole term has contributions at both 0.5PN and
1.5PN order. The quadrupole piece is relative 1PN order,
and the octupole is 1.5PN.

B. Radiation-zone fields: Radiation-zone contributions

We must also calculate the radiation-zone contributions
to the radiation-zone fields using (2.24a) and (2.24b). In the
radiation zone, there are no compact sources, so τμν and τs
are made up purely of field terms. For τμν, we can use
MW (3.4) and (3.5), which write Λμν and Λμν

s generically in
terms of N, Ki, Bij, B, and Ψ. For these, we substitute
(6.12a)–(6.12d).
We start with ~h00. To lowest order, we find

τ00 ¼ − 7

8π
G2ð1 − ζÞ2m

2

R4
þ 1

8π
G2ζð1 − ζÞm

2
s

R4
: (6.13)

This source has the generic form

τμνðl; nÞ ¼ 1

4π

fμνðτÞ
Rn N̂hLi; (6.14)

with l ¼ 0 and n ¼ 4. If we restrict ourselves to sources of
this form, (2.24a) can be rewritten as

~hμνC−N ¼ 4

R
N̂hLi

�Z
R

0

fμνðτ − 2sÞAðs; RÞdsþ
Z

∞

R
fμνðτ − 2sÞBðs; RÞds

�
; (6.15)
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where

Aðs; RÞ≡
Z

Rþs

R

PlðξÞ
pn−1 dp; (6.16a)

Bðs; RÞ≡
Z

Rþs

s

PlðξÞ
pn−1 dp; (6.16b)

and

ξ≡ Rþ 2s
R

− 2sðRþ sÞ
Rp

: (6.17)

In the l ¼ 0 case, this is easy, and we find

NC−N ¼ ~h00C−N ¼ 7G2ð1 − ζÞ2m
2

R2
−G2ζð1 − ζÞm

2
s

R2
:

(6.18)

These terms are 1.5PN beyond the leading order term in
(6.12a). Since we kept no higher order terms in that
expression, we can also stop here. The total field N ¼
~h00 in the radiation zone is just the sum of (6.12a) and
(6.18). The second term in (6.18) is obviously new to
scalar-tensor theory. As we shall see, it turns out not to have
an impact on the final gravitational waves. Otherwise, N in
the radiation zone has exactly the same form as in GR,
modified only by the addition of the factors Gð1 − ζÞ, both
explicitly and in the definitions of IQ.
It turns out that there are no relevant radiation-zone

contributions to Ki; to the order we need, (6.12b) is the
complete expression in the radiation zone. To calculate
Bij
C−N , we use

τij ¼ 1

4π

�
G2ð1− ζÞ2m

2

R4
þG2ζð1− ζÞm

2
s

R4

��
N̂hiji − 1

6
δij

�
:

(6.19)

We use the same method as for NC−N , except that here we
have two different ðl; nÞ combinations, (2, 4) and (0, 4), and
thus two integrals (6.15) to evaluate. Doing so gives

Bij
C−N ¼ ~hijC−N ¼ G2ð1 − ζÞ2m

2

R2
N̂ij þ G2ζð1 − ζÞm

2
s

R2
N̂ij:

(6.20)

These terms are added to (6.12c) to produce the final
expression for Bij. They enter at 1.5PN beyond the leading
order. Finally, for the scalar, we need τs to lowest order. It is
given by

τs ¼
1

16π

�
2ω0

0

3þ 2ω0

− 2

�
ð∇ΨÞ2 ¼ 1

2π
G2ζðλ1 − ζÞm

2
s

R4
:

(6.21)

For a source of the form (6.14), (2.24b) reduces to

ΨC−N ¼ 2

R
N̂hLi

�Z
R

0

fðτ − 2sÞAðs; RÞds

þ
Z

∞

R
fðτ − 2sÞBðs; RÞds

�
; (6.22)

with Aðs; RÞ and Bðs; RÞ defined just as in (6.16a)
and (6.16b). The source has ðl; mÞ ¼ ð4; 0Þ, and the
result is

ΨC−N ¼ −2G2ζðλ1 − ζÞm
2
s

R2
; (6.23)

which adds to ΨN , (6.12d), at 1.5PN order.

C. Radiation-zone contributions to the GWs

Now that we have the fields in the radiation
zone, we need to evaluate the gravitational waveform.
Fundamentally, this just means continuing the procedure
for calculating ~hij in Sec. VI B to higher order. While doing
so, we drop non-TT terms and terms that drop off faster
than 1=R.
For simplicity, we will treat contributions from Λij and

Λij
s separately. We will also do the calculation order by

order. We must be careful doing so: The expressions for Λij

and Λij
s in MW are sorted by post-Newtonian order in the

near zone. In the radiation zone, the ordering can be slightly
different. For instance, whileKi is at 0.5PN order relative to
N in the near zone, it is at 1PN relative order in the radiation
zone. Furthermore, time derivatives in the radiation zone do
not increase the post-Newtonian order relative to spatial
derivatives.
The lowest order term in Λij is proportional to N;iN;j.

(Now that we are dealing with GWs, we can ignore
the non-TT δij term.) We first plug in the 0PN mono-
pole pieces of N. As seen in Sec. VI B, the resulting ~hij

scales like 1=R2 and, as such, dies off in the far-away
zone. At the next order, N;iN;j generates cross terms
between the 0PN piece of N and the 1PN pieces
(including both the energy E and the mass quadrupole I ij).
Other terms which contribute at the same order are
N;ði _KjÞ, N;ðiB;jÞ, and NB̈ij, all featuring the 0PN piece
of N and the 1PN piece of the other field. The last term
is found in (4.4c) of [41]; its two time derivatives place it
at higher order in the near-zone counting scheme.
Our expressions for the fields have several unevaluated

spatial derivatives; the expression for Λij adds more.
When we evaluate them, we must remember that the
moments are functions of retarded time, τ ¼ t − R,
so that, for instance, ∂cIab ¼ − _IabN̂c. Completing all
the derivatives and converting products of N̂i to STF
products, we find

COMPACT BINARY SYSTEMS SCALAR-TENSOR … PHYSICAL REVIEW D 89, 084014 (2014)

084014-29



τij ¼ � � � þ 1

2π
G2ð1 − ζÞ2 mE

R4
N̂hiji þ 1

4π
Gð1 − ζÞ m

R2

��
15

Iab

R4
þ 15

_Iab

R3
þ 6

Ïab

R2
þ I⃛ab

R

�
N̂habiji

þ
�
− 6

7

Iaa

R4
− 6

7

_Iaa

R3
þ 6

7

Ïaa

R2
þ 8

7

I⃛aa

R

�
N̂hiji þ

�
18

7

Iaði

R4
þ 18

7

_Iaði

R3
− 18

7

Ïaði

R2
− 24

7

I⃛aði

R

�
N̂hjÞai

− 6

5

Ï ij

R2
− 6

5

I⃛ ij

R
− 2I

ð4Þ
ij

�
þ � � � : (6.24)

Here we have ignored δij terms, which are non-TT.
Careful examination shows that we also should ignore
terms proportional to N̂hiji, which will only produce
non-TT terms in ~hij. This eliminates the term with
monopole-monopole coupling (i.e., the one proportional
to mE) and leaves only those with monopole-mass
quadrupole couplings. In the end, we have to evaluate
(6.15) for l ¼ 4; n ¼ 3–6; l ¼ 2; n ¼ 3–6; and l ¼ 0;
n ¼ 2–4. Adding everything up, changing from N̂hLi

back to N̂L, and discarding more non-TT terms which
arise along the way, we find

~hij ¼ 4Gð1 − ζÞm
R

�
11

12
I⃛ ij þ

Z
∞

0

ds I
ð4Þ

ijðτ − sÞ ln s
2Rþ s

�
:

(6.25)

We have made a slight change of variable from (6.15):
s → s=2. This is done to match the first term in WW
(5.8); we see that the two expressions are equal except
for a factor G2ð1 − ζÞ2 in the scalar-tensor case. [Recall
that the moment I ij contains the factor Gð1 − ζÞ.] Later,
we will also bring the first term under the integral, as in

WW, but for now we leave it separate. This is to
emphasize the difference in the two pieces: The first
relies on the instantaneous (but retarded) value of I⃛ ij,

while the second requires a weighted integral of I
ð4Þ

ij over
the entire past history of the source. It is the lowest order
“tail” term.
The expression (6.25) turns out to be 1.5PN order

beyond the Newtonian quadrupole. Therefore, we only
need to go one-half order higher to find the 2PN wave-
form. In this case, the source will include contributions
from the same four terms in Λij as before, but they will now
be cross terms between the 0PN piece of N and the 1.5PN
pieces of N, Ki, B, and Bij. Note that all of the 1.5PN
pieces coming from radiation-zone integrals (those propor-
tional to m2 or m2

s) will generate only non-TT terms in ~hij.
Similarly, the term NN;iN;j in Λij should contribute at this
order, but any piece of ~hij it generates will also be non-TT.
In the end, the relevant piece of the source will contain
only monopole-mass octupole and monopole-current
quadrupole couplings. After a great deal of algebra, we
find it to be

τij ¼ � � � þ 1

4π
Gð1 − ζÞ m

R2

��
35

Iabc

R5
þ 35

_Iabc

R4
þ 15

Ïabc

R3
þ 10

3

I⃛abc

R2
þ 1

3

I
ð4Þ

abc

R

�
N̂habciji

þ
�
25

3

Iabði

R5
þ 25

3

_Iabði

R4
− 25

9

I⃛abði

R2
− 10

9

I
ð4Þ

abði

R

�
N̂hjÞabi

þ
�
− 10

7

Ï ija

R3
− 10

7

I⃛ ija

R2
− 8

7

I
ð4Þ

ija

R
− 2

3
I
ð5Þ

ija

�
N̂a

þ
�
8
_J ca

R3
þ 8

J̈ ca

R2
þ 8

3

J⃛
ca

R

�
N̂habðiiϵjÞbc

þ
�
8

5

_J cði

R3
þ 8

5

J̈ cði

R2
þ 16

5

J⃛ cði

R
þ 8

3
J
ð5Þ

cði
�
ϵjÞacN̂a

�
þ � � � : (6.26)

We must evaluate (6.15) for l ¼ 5; n ¼ 3–7; l ¼ 3; n ¼ 3–7; and l ¼ 1; n ¼ 2–5. The final result for the GWs is
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~hij ¼ 4Gð1 − ζÞm
R

�
97

180
I
ð4Þ

ijaN̂a þ 1

3
N̂a

Z
∞

0

ds I
ð5Þ

ijaðτ − sÞ ln s
2Rþ s

− 14

9
ϵðijabJ

��� bjjÞ
N̂a

− 4

3
N̂aϵðijab

Z
∞

0

dsJ bjjÞ
ð4Þ

ðτ − sÞ ln s
2Rþ s

�
: (6.27)

These terms are again identical to the GR results [the remainder of WW (5.8)], except for a factor of G2ð1 − ζÞ2.
Now we examine the waveform produced by the Λij

s piece of τij. We will mainly be concerned with the term in Λij
s which

is proportional to Ψ;iΨ;j. The lowest order contribution from this term involves the 0PN monopole pieces of Ψ. The
resulting ~hij was calculated in Sec. VI B and shown to scale like 1=R2, making it irrelevant in the far-away zone. Because
Ψ contains nonvanishing dipole terms, the next highest order source is only 0.5PN beyond the leading order. It consists of
monopole-dipole couplings,

τij ¼ � � � þ 1

4π
Gð1 − ζÞms

R2

��
6
Ia
s

R3
þ 6

_Ia
s

R2
þ 2

Ïa
s

R

�
N̂haiji þ

�
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5

I ði
s

R3
þ 2

5

_I ði
s

R2
þ 4

5

Ï ði
s

R

�
N̂jÞ

�
þ � � � : (6.28)

However, each piece of this source will generate a term in ~hij proportional to N̂i, N̂j, or δij, all of which are non-TT. Moving
on to the next order, there are three types of terms in τij: a monopole-monopole coupling (the cross term of ms and ms1),
monopole-quadrupole couplings, and dipole-dipole couplings. The first generates only non-TT terms in ~hij. The second is
analogous to the monopole-quadrupole terms in Λij, while the third has no counterpart there. The total source at this order
(without non-TT terms) can be written as

τij ¼ � � � þ 1
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This requires integrals with l ¼ 4; n ¼ 2–6; l ¼ 2; n ¼ 2–6; and l ¼ 0; n ¼ 2–6. Many of these can be reused from earlier
calculations; however, some are brand new. The final expression for the GWs is

~hij ¼ 4Gð1 − ζÞms

R

�
− 1

12
I⃛ ij
s

�
þ 4

R
1 − ζ

ζ

�
1

6
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Ï i
sðτ0ÞÏ j

sðτ0Þdτ0 − 1
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s − 1

18
I ði
s I⃛

jÞ
s

�
: (6.30)

(Recall that the scalar dipole moment I i
s includes a factor of ζ, which will cancel the 1=ζ in front of the second term.) This is

an entirely new contribution to the GWs at 1.5PN order, featuring a new type of hereditary integral without a logarithmic
factor. We will discuss it further in Sec. VII B.
At the next order, the ΨΨ;iΨ;j term in Λij

s begins to contribute to the source. However, like the NN;iN;j piece of Λij, it
produces only non-TT terms in ~hij and can be ignored. In the Ψ;iΨ;j term, we have monopole-dipole couplings (0PN
monopole–1.5PN dipole and 1PN monopole–0.5PN dipole), a triple-monopole coupling (from ΨC−N ), monopole-octupole
couplings, and dipole-quadrupole couplings. The first and second of these produce only non-TT terms in the final
waveform. The other two types of terms give
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Ïabði
s

R3
þ 11

9

I⃛abði
s

R2
þ 2

9

I
ð4Þ

abði
s

R

�
N̂hjÞabi

þ
�
6

35
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bði
s

R5
− 2
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Ïa
s Ï
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This requires integrals with l ¼ 5; n ¼ 2–7; l ¼ 3; n ¼ 2–7; and l ¼ 1; n ¼ 2–7. The final answer is
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: (6.32)

This is a new piece of the waveform at 2PN order.

VII. RESULTS

A. Final tensor waveform

To find the final tensor waveform, we add the contributions from the near and radiation zones. The near-zone contribution
is found by inserting the differentiated two-body Epstein-Wagoner moments into (2.21). For the radiation-zone pieces
(6.25), (6.27), (6.30), and (6.32), we bring the instantaneous terms inside the integrals. Then we write the moments IQ, J Q,
IQ
s , and their derivatives explicitly in terms of relative two-body variables. Finally, we sum the four pieces to find the

complete radiation-zone contribution.
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The final tensor waveform can be written as a post-Newtonian expansion,

~hij ¼ 2Gð1 − ζÞμ
R

½ ~Qij þ P1=2Qij þ PQij þ P3=2Qij
N þ P3=2Qij

C−N þ P2Qij
N þ P2Qij

C−N þOðϵ5=2Þ�TT; (7.1)

where the superscripts on P denote the PN order of each term. For clarity, we have separated out the 1.5PN and 2PN
near-zone terms from the radiation-zone terms at the same order. We find

~Qij ¼ 2

�
vij −Gαm

r
n̂ij

�
; (7.2a)

P1=2Qij ¼ δm
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; (7.2b)
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B. Discussion

We can check that the expressions above reduce to the
correct GR result, WW (6.11), by taking α ¼ 1 and
ζ ¼ S− ¼ γ̄ ¼ β̄i ¼ δ̄i ¼ χ̄i ¼ 0. The expressions have
been arranged to facilitate this comparison. (For a complete
comparison, we also set G ¼ 1.)
At Newtonian order, the only difference from GR is the

presence of α multiplying the total mass m and the total
factor of 1 − ζ out front. The same is true at 0.5PN order.
More substantial differences begin at 1PN order, with the
appearance of the parameters γ̄ and β̄i. The quantities Sþ
and S− show up at 1.5PN order, with δ̄i and χ̄i appearing at
2PN order. Although the expressions are very complicated,
especially at 1.5PN order and above, they still depend only
on this relatively small set of parameters. The parameter set
is also identical to that needed to describe the equations of
motion; there are no additional dependences on the
coupling ωðϕÞ or the sensitivities of the bodies.
Most of the terms have the same form as in general

relativity, albeit with highly modified coefficients. The first
exception occurs at 1.5PN order. For IijEW to contribute to
the GWs at this order, one of four pairings must exist: a
1.5PN term in the two-body EW moment with the 0PN
equations of motion, a 1PN term with 0.5PN equations of
motion, a 0.5PN term with 1PN equations of motion, or a
0PN term with 1.5PN equations of motion. In general
relativity, IijEW contains no terms at 0.5PN and 1.5PN order.
There are also no 0.5PN or 1.5 PN terms in the equations of
motion, so IijEW does not contribute to the waves at 1.5PN

order. (Only the three- and five-index moments contribute.)
However, in scalar-tensor theory, IijEW contains a 1.5PN
contribution arising from the surface moment. This is a
consequence of the Oðρϵ5=2Þ term in τij, which scales like
three time derivatives of the scalar dipole moment I i

s. In
addition, dipole radiation reaction introduces 1.5PN terms
in the equations of motion. Together, both of these effects
produce a new 1.5PN term in the final gravitational
waveform. This is the last term in (7.2d); note how it does
not depend on the direction to the source N̂. [If one
constructs the waveform using (2.19a) instead of (2.21),
the same term comes solely from theOðρϵ5=2Þ piece of τij.]
The scalar dipole moment also affects the contribution

from IijkEW, producing terms in the final waveform at 2PN
order which were not present in GR. They can be seen in
(7.2f) as those which depend only on one power of N̂. Here,
the scalar dipole enters in three ways: First, the surface
moment produces a 2PN term, again a consequence of I⃛ i

s in
τij. Second, as discussed in Sec. V, the radiation of linear
momentum at 1.5PN order affects the conversion to relative
coordinates, generating another 2PN piece in the two-body
moment. Finally, the 1.5PN piece of the equations of
motion enters time derivatives of the lowest order
(0.5PN) piece of IijkEW .
Other interesting deviations from general relativity occur

in (7.2e) and (7.2g). The radiation-zone integrals produce
two types of terms, those which depend on the instanta-
neous (but retarded) values of the source moments and
those which depend on the integrated history of the source
up until the waves are emitted. The latter terms are known
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as hereditary terms. (The distinction is best seen in Sec. VI
C, since the final results have the instantaneous terms
brought inside the integrals.) In GR, all hereditary terms up
to 2PN order are so-called “tail integrals,” with logarithmic
factors in their integrands. Tails result from the scattering
of the waves off the background curvature. They arise from
the final term in (2.9). If moved to the left-hand side of
the reduced wave equation, it represents a modification
of the flat-spacetime wave operator. The tails thus ensure
that the waves propagate outward on the true null cones of
the background spacetime, rather than the null cones of
the fictitious flat spacetime used to formulate the relaxed
field equations. At 1.5PN order, the tail term arises from
a coupling of the monopole and mass quadrupole.
The instantaneous terms at that order have the same
coupling. At 2PN order, both tail and instantaneous terms
feature monopole-mass octupole and monopole-current
quadrupole couplings.
Scalar-tensor theory adds no new tail integrals to the

ones already present in general relativity. While we do find
a new monopole-mass quadrupole coupling at 1.5PN order,
as well as a new monopole-mass octupole coupling at 2PN
order (this time involving the quantities ms, I

ij
s , and I ijk

s ),
these terms are all instantaneous. Instead, we find an
entirely different type of hereditary term at 1.5PN and
2PN orders, one which does not have a logarithmic factor in
the integrand. Terms like these are sourced by the energy of
the gravitational waves themselves. In general relativity, the
first one appears at 2.5PN order, with a mass quadrupole-
mass quadrupole coupling. It contains the lowest order
piece of the nonlinear gravitational-wave memory, or
Christodoulou memory [54–57]. Specifically, the multipli-
cation of the two quadrupole moments leads to a contri-
bution at zero frequency (a “DC” term), in addition to the
usual oscillatory terms. This DC term grows secularly
throughout the inspiral of the system and causes a perma-
nent change in a detector, a “memory” of the passing GW
signal. While the memory term formally enters the wave-
form at 2.5PN order, its effective post-Newtonian order is
reduced by the integration over the entire history of the
system. In fact, because the memory integrand is approx-
imately multiplied by the (2.5PN) radiation-reaction time
scale, the lowest order memory term effectively enters the
GR waveform at 0PN order. With such a strong signal,
it may be possible to detect the memory effect with
gravitational-wave detectors [57,58].
In scalar-tensor theory, the 1.5PN nonlogarithmic inte-

gral contains a new, lower order memory effect with a mass
dipole-mass dipole coupling. Because the lowest order
radiation reaction is now also at 1.5PN order, this term
should effectively enter the waveform at 0PN order, with
the quadrupole-quadrupole memory at higher order.
(The exact PN ordering of the memory terms will depend
on the specifics of the scalar-tensor theory and the compact
object sensitivities.) Scalar-tensor theory also produces

instantaneous dipole-dipole terms at 1.5PN order. Like
the hereditary term, they contain DC components; however,
since they are not integrated over the binary’s history, their
effect remains at 1.5PN order. They are equivalent to the
nonhereditary, zero-frequency terms Arun et al. discovered
at 2.5PN order in general relativity [61].
By contrast, the new 2PN hereditary term does not

contain a memory effect. While it has the same basic form
as the 1.5PN term (i.e., no logarithm in the integrand), the
beating between the mass dipole and mass quadrupole
produces no DC component. The same is true for the new
instantaneous terms with this coupling. This result is
equivalent to the lack of a 0.5PN memory effect (appearing
formally at 3PN order) in general relativity: In that case, the
beating is between the mass quadrupole and mass octupole,
resulting in no zero-frequency terms [6].
It is instructive to examine the waveform in a few special

cases. For binary black holes, s1 ¼ s2 ¼ 1=2, and all sensi-
tivity derivativesvanish.Thismeans thatα ¼ 1 − ζ, and all of
the rest of our scalar-tensor parameters (γ̄, β̄i, δ̄i, χ̄i, Sþ, and
S−) vanish. The 2.5PN equations of motion derived in MW
then have the exact same form as in general relativity, except
for a factor 1 − ζ multiplying each instance of the total mass
m. That is, the equations of motion for a binary with masses
ðm1; m2Þ ingeneral relativity are identical to those for abinary
with rescaled masses ðm1=ð1 − ζÞ; m2=ð1 − ζÞÞ in scalar-
tensor theory. Since the masses of the bodies are defined by
their Keplerian motion, this rescaling is unmeasurable.
Therefore, to 2.5PN order, the motion of two black holes
in scalar-tensor theory is indistinguishable from themotion in
GR. MW predicted that the gravitational waves produced by
binary black holes would be similarly indistinguishable from
those produced in GR. We see here that the conjecture is
correct, at least to 2PNorder in the tensor gravitationalwaves.
As discussed inMW, this result is not surprising. Hawking

originally showed that stationary, asymptotically flat black
holes in vacuum are identical in both theories [62], leading to
conjectures that the samemight be true forblackholebinaries.
Still, this work shows only that the theories are indistinguish-
able to 2.5PN order in the dynamics and 2PN order in the
radiation. It remains for future work to investigate whether
indistinguishability holds to all post-Newtonian orders. (See
MW for precise details of a conjecture on this point.) There is
goodevidence that it does:Yunes et al. [27] proved it, but only
to lowest order in the mass ratio. Healy et al. [63] used
numerical relativity simulations to show that any initial scalar
field in the system is quickly radiated away, after which the
holesbehave identically to thegeneral relativity case.Possible
caveats which may break indistinguishability include the
introductionof a potential for the scalar fieldor a time-varying
scalar field at infinity [64,65]. It would be interesting to
investigate the dynamics and radiation in such scenarios.
For a system containing one neutron star (say, body 1) and

one black hole (body 2), s2 ¼ 1=2; s02 ¼ 0, and s200 ¼ 0.
Then α ¼ 1 − ζ, and all other parameters vanish except
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δ̄1 ¼
ζ

1 − ζ
ð1 − 2s1Þ2 ≡Q (7.3)

and

Sþ ¼ S− ¼ 1

2
α−1=2ð1 − 2s1Þ: (7.4)

For the opposite choice of bodies, S− has the opposite
sign. Notably, S2þ ¼ S2− ¼ SþS− ¼ Q=ð4ζÞ. Through
1PN order, only α, γ̄ ¼ 0, and β̄i ¼ 0 appear in the
expressions for the waves, and so the waves are identical
to those in GR (after mass rescaling). At 1.5PN order,
deviations start to occur. However, the deviations are
always parametrized by δ̄1, ζS2þ, ζS2−, or ζSþS−.
Therefore, through 2PN order, the tensor waveform for
a mixed black hole-neutron star system differs from the
general relativity waveform only by the single parameter
Q. This is again equivalent to a result found by MW for
the equations of motion. Because Q contains no infor-
mation on the derivatives of the coupling function ωðϕÞ
(i.e., the parameters λ1 and λ2), we cannot, at 2PN order,
formally distinguish the waveform produced in the Brans-
Dicke theory [ωðϕÞ ¼ ω0] from that produced in a
general scalar-tensor theory of the type we consider.
The only difference will be that for a given neutron star
of a certain central density and total number of baryons,
different scalar-tensor theories will produce different
results for the neutron star mass m1 and sensitivity s1.
One can imagine using gravitational waves to measure
masses and sensitivities for a wide variety of sources
and then producing a mass-sensitivity relation, much like
the neutron-star mass-radius relations used to study the
nuclear equation of state. This relation could then
be used to rule out various models of the coupling
function ωðϕÞ.
Before we can completely understand what the meas-

urement of gravitational waves from a compact binary
will tell us about scalar-tensor theories of gravity, we
must first derive the gravitational-wave phasing. To do
so, we will need the rate at which the binary loses energy
to gravitational waves, both tensor and scalar. The next
paper in our series will derive the scalar waves. The
process is identical to that presented in this paper, with
two complications. First, we cannot eliminate non-TT
terms in the scalar case; indeed, for a scalar, TT is not
defined. This will lead to more surviving terms and a
need for care when reusing parts of this analysis.
Second, and more daunting, the scalar “EW moments”
defined by (2.19b) begin with a monopole moment,
which has relative order -1PN compared to the tensor
two-index moment. The next piece, a dipole moment, has
order -0.5PN. Therefore, to obtain the 2PN scalar wave-
form, we will need to compute the source τsðτ;x0Þ to
Oðρϵ3Þ, or 3PN order.
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APPENDIX A: POTENTIALS

Here we present a list of potentials which appear in MW
and this paper. All potentials are defined in terms of the ρ�
density. The fundamental integrals are defined in (3.2) and
(3.20a)–(3.20f). Some of the potentials involve generaliza-
tions of these fundamental integrals, like Xs, or Xij, which
are defined in the obvious ways.

U ≡ Σð1Þ; Us ≡ Σsð1Þ;
Vi ≡ Σið1Þ; Φij

1 ≡ Σijð1Þ;
Φ1 ≡ Σiið1Þ; Φs

1 ≡ Σsðv2Þ;
Φ2 ≡ ΣðUÞ; Φs

2 ≡ ΣsðUÞ;
Φ2s ≡ ΣðUsÞ; Φs

2s ≡ ΣsðUsÞ;
X ≡ Xð1Þ; Xs ≡ Xsð1Þ;
Vi
2 ≡ ΣiðUÞ; Vi

2s ≡ ΣiðUsÞ;
Φi

2 ≡ ΣðViÞ; Y ≡ Yð1Þ;
Xi ≡ Xið1Þ; X1 ≡ Xiið1Þ;
X2 ≡ XðUÞ; X2s ≡ XðUsÞ;
Xs
2 ≡ XsðUÞ; Xs

2s ≡ XsðUsÞ;

Pij
2 ≡ PðU;iU;jÞ; P2 ≡ Pii

2 ¼ Φ2 − 1

2
U2;

Pij
2s ≡ PðU;i

sU
;j
s Þ; P2s ≡ Pii

2s ¼ Φs
2s − 1

2
U2

s ;

G1 ≡ Pð _U2Þ; G1s ≡ Pð _U2
sÞ;

G2 ≡ PðUÜÞ; G2s ≡ PðUÜsÞ;
G3 ≡−Pð _U;kVkÞ; G3s ≡−Pð _U;k

s VkÞ;
G4 ≡ PðVi;jVj;iÞ; G5 ≡−Pð _VkU;kÞ;
G6 ≡ PðU;ijΦij

1 Þ; G6s ≡ PðU;ij
s Φij

1 Þ;

Gi
7 ≡ PðU;kVk;iÞ þ 3

4
PðU;i _UÞ;

H ≡ PðU;ijPij
2 Þ; Hs ≡ PðU;ijPij

2sÞ;
Hs ≡ PðU;ij

s Pij
2 Þ; Hs

s ≡ PðU;ij
s Pij

2sÞ: (A1)
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APPENDIX B: PRODUCTS OF UNIT VECTORS

Both (4.16) and (6.15) rely on the use of symmetric,
trace-free (STF) products of unit vectors. They can be
found using the formula

n̂hLi ≡X½l=2�
p¼0

ð−1Þp ð2l − 2p − 1Þ!!
ð2l − 1Þ!! ½n̂L−2PδP þ symðqÞ�:

(B1)

Angle braces on indices define a tensor as being STF.
Here we use the convention that capital letters denote the
dimensionality of products: There are l indices on the STF
tensor, p Kronecker deltas (with 2p total indices among
them), and l − 2p unit vectors. We use ½l=2� to denote the
largest integer less than or equal to l=2. The expression
symðqÞ stands for all the other distinct terms which result
from permuting the indices on n̂L−2PδP. There are a total of
q ¼ l!=½ðl − 2pÞ!ð2pÞ!!� terms, including the one shown.
The STF tensors we need are

n̂hiji ¼ n̂ij − 1

3
δij; (B2a)

n̂hijki ¼ n̂ijk − 1

5
ðn̂iδjk þ n̂jδik þ n̂kδijÞ; (B2b)

n̂hijkli ¼ n̂ijkl − 1

7
½n̂ijδkl þ symð6Þ�

þ 1

35
ðδijδkl þ δikδjl þ δilδjkÞ; (B2c)

n̂hijklmi ¼ n̂ijklm − 1

9
½n̂ijkδlm þ symð10Þ�

þ 1

63
½n̂iδjkδlm þ symð15Þ�; (B2d)

n̂hijklmni ¼ n̂ijklmn − 1

11
½n̂ijklδmn þ symð15Þ�

þ 1

99
½n̂ijδklδmn þ symð45Þ�

− 1

693
½δijδklδmn þ symð15Þ�: (B2e)

These expressions can be used to convert back and forth
between STF and non-STF products as needed.
Many times in this work we need to evaluate averages of

unit tensors over a spherical surface. Defining

hhΨii≡ 1

4π

Z
Ψðθ;ϕÞd2Ω; (B3)

it can be shown that

hhn̂hLiii ¼ 0: (B4)

Converting to non-STF tensors, we find

hhn̂Lii ¼ 1

ðlþ 1Þ!! ½δ
L=2 þ symðqÞ�; (B5)

where q ¼ ðl − 1Þ!!, for l even. Specifically, we need the
following:

hhn̂ijii ¼ 1

3
δij; (B6a)

hhn̂ijklii ¼ 1

15
ðδijδkl þ δikδjl þ δilδjkÞ: (B6b)

For l odd, hhn̂Lii ¼ 0.
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