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We derive the tensor gravitational waveform generated by a binary of nonspinning compact objects
(black holes or neutron stars) in a general class of scalar-tensor theories of gravity. The waveform is
accurate to second post-Newtonian order beyond the leading order quadrupole approximation. We use the
direct integration of the relaxed Einstein equations formalism, appropriately adapted to scalar-tensor
theories, along with previous results for the equations of motion in these theories. The self-gravity of the
compact objects is treated with an approach developed by Eardley. The scalar field causes deviations from
the general relativistic waveform that depend only on a small number of parameters. Among the effects of
the scalar field are new hereditary terms which depend on the past history of the source. One of these, a
dipole-dipole coupling, produces a zero-frequency “gravitational-wave memory” equivalent to the
Christodoulou memory of general relativity. In the special case of two black holes, the waveform reduces
to the general relativistic waveform. For a mixed (black hole-neutron star) system, the waveform is identical
to that of Einstein’s theory to first post-Newtonian order, with deviations at higher order depending only on

a single parameter. The behavior in these cases matches that found for the equations of motion.
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I. INTRODUCTION

Compact binaries are one of the most abundant and
interesting sources of gravitational waves (GWs). Systems
comprising stellar-mass black holes (mpy ~ 1-100M )
and/or neutron stars, which lie in the “high-frequency”
GW band (1-10° Hz), are likely to be the first detected.
Indeed, current rate estimates predict that ground-based
detectors like Advanced LIGO [1] and Advanced Virgo [2]
will see several to hundreds of these sources per year once
they become operational (although rates are very uncertain)
[3]. Higher mass binaries, containing massive or super-
massive black holes, can be detected by other means.
Systems with masses 10°-10’M, lie in the “low-
frequency” band (10~* — 1 Hz) and will be detected by
a space-based detector like the proposed eLISA mission
[4]. Heavier systems (mgy~ 103-10°M) could be
detected very soon by the timing of radio pulsars [5].

Detection of the GWs is very challenging: The waves
interact extremely weakly with matter, and there are many
sources of noise. The separation of signal from noise is
achieved by the matched filtering process, which requires
the generation of extremely accurate theoretical template
waveforms for the expected GW signal. For the inspiral of
compact binary systems, templates are expressed in the
post-Newtonian approximation to general relativity, an
expansion in powers of v/c ~ (Gm/rc*)'/?. Bach power
is considered to be one-half a post-Newtonian (PN) order.
Templates for nonspinning binary systems have been
constructed to O((v/c)®), or 3PN order [6], with partial
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results at 3.5PN order [7]. (For a comprehensive review,
see [8].) Numerical relativity codes provide the ability to
add waveforms for the final merger of the compact objects
to the end of the inspiral signal [9-11].

The use of extremely accurate template waveforms also
allows for the extraction of source parameters from the
measured GW signal. Parameter estimation studies show
that properties like compact object mass and spins, source
position, and luminosity distance can be determined with
high precision [12-14]. Alone, this information can probe
astrophysical regimes heretofore unexplored. In combina-
tion with a coincident electromagnetic detection, the utility
of GW measurements increases. For instance, an electro-
magnetically determined redshift and a gravitationally
determined luminosity distance allow for a unique probe
of cosmology [15].

For these reasons, detectors like Advanced LIGO
and eLISA are often considered to be exciting new
astrophysical observatories. However, they will also be
extremely important physics experiments. The comparison
of measured GW signals to highly accurate template
waveforms also allows for fundamental tests of the theory
itself. Einstein’s general relativity (GR) has been tested
extremely well in the regimes of the solar system and the
binary pulsar [16]. However, the environment of an
inspiraling, merging compact binary represents a strong-
field, dynamical regime in which GR has currently not
been tested. GW measurements will place constraints on
the validity of GR in this regime.

There are many ways by which one may test GR with the
GW signal of inspiraling compact binaries. One approach is

© 2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.89.084014
http://dx.doi.org/10.1103/PhysRevD.89.084014
http://dx.doi.org/10.1103/PhysRevD.89.084014
http://dx.doi.org/10.1103/PhysRevD.89.084014

RYAN N. LANG

simply to check the self-consistency of terms in the
post-Newtonian sequence [17]. However, such a test can
only find deviations from GR, not characterize them. Other
tests may involve putting constraints on parameters in
specific alternative theories of gravity [18-28]. A third
approach parametrizes the waveform in terms of generic,
theory-dependent parameters [29—-32], much like the para-
metrized post-Newtonian formalism did for solar-system
tests [16,33]. Most of these analyses have only relied on the
dominant, lowest order effects in the waveform model.

A particularly important alternative to GR is the collec-
tion of scalar-tensor theories of gravity [34]. They have a
long history, dating back over 50 years, and represent one
of the simplest possible modifications to Einstein’s theory.
While solar system and binary pulsar tests put strong
constraints on these theories [16], they, like all theories,
have not been tested in the strong-field, dynamical regime
of inspiraling compact binaries. Furthermore, they remain
well motivated. For instance, many so-called f(R) theories,
which modify the action of general relativity to allow
arbitrary functions of the Ricci scalar, can be expressed in
the form of a scalar-tensor theory [35]. These f(R) theories
may explain the acceleration of the universe without
resorting to dark energy. Scalar-tensor theories are also
potential low-energy limits of string theory [34].

This paper is part of a series which seeks to develop the
gravitational waveform for inspiraling compact binaries in
scalar-tensor theories to high order in the post-Newtonian
approximation. Specifically, we are interested in theories
described by the action

1
S=16 | |k =20 0,00.0) v=aax
£ S, (m,g0) (1)

where g, is the spacetime metric, g is its determinant, R is
the Ricci scalar derived from this metric, ¢ is the scalar
field, and o is the scalar-tensor coupling. Note that ® =
() is not a constant; that is, we are not restricting our
attention to Brans-Dicke theory. We do, however, restrict
ourselves only to massless scalar fields (i.e., those without a
potential). We have also written S, to represent the matter
action. Note that it depends only on the matter fields m and
the metric; the scalar field ¢ does not couple directly to the
matter. This means that (1.1) is expressed in the “Jordan”
frame, in which standard rods and clocks measure distances
and times. All of our work will be done in this frame. An
alternative representation is the “Einstein” frame, related to
the Jordan frame by a conformal transformation [36].
The first step in the construction of gravitational wave-
forms is to calculate the equations of motion for the
compact objects. This was the subject of the first paper
in this series [37]. Mirshekari and Will (hereafter MW)
computed the equations of motion to order (v/c)3 (2.5PN)
beyond the leading term. They made use of a method
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known as direct integration of the relaxed FEinstein
equations (DIRE), based on the original framework of
Epstein and Wagoner [38] and then extended by Will,
Wiseman, and Pati [39—42]. This approach has been shown
to give identical results to other methods, including
the “post-Minkowskian” method [8], the Hamiltonian
approach [43], the “strong-field point-particle limit”
strategy [44], and the “effective field theory” method
[45]. Tt is also easily adapted to scalar-tensor theories.

In the adapted DIRE method, the scalar-tensor field
equations are first rewritten in a “relaxed” form: flat-
spacetime wave equations for a “gravitational field” A"
and a modified scalar field ¢. The wave equations are
simplified by the choice of a particular coordinate system,
represented by a gauge condition on 7. Together, the
wave equations and gauge condition contain all the content
of the full field equations.

The wave equations are then solved formally using a
retarded Green’s function, valid everywhere in spacetime.
To convert them to a more useful form, however, these
formal solutions are evaluated differently in different
regions of spacetime: In the “near zone” close to the
source (defined in Sec. IIB below), the integrals are
expanded using a slow-motion approximation. Far away
from the source, in the “radiation zone,” a special coor-
dinate transformation is used to evaluate the solutions.
The total solution for each field (4" and ¢) is then the sum
of the two separate solutions; any terms dependent on the
arbitrary boundary between zones must cancel out.

In this paper, we calculate the tensor gravitational
waveform to order (v/c)* (2PN) beyond the leading-order
“Newtonian” quadrupole. In doing so, we also make use of
the adapted DIRE approach. The difference with MW is
fundamentally simple: In that paper, the gravitational field
W was evaluated in the near zone, in order to calculate
how it affects the motion of the compact bodies. We, by
contrast, evaluate h** (or more specifically, 4") in the
radiation zone, where it will be measured by a GW detector.
Our procedure very closely follows that of Wiseman and
Will [40] (hereafter WW), although the notation is updated
to match that of MW. Along the way, we must make use of
MW’s results for the equations of motion.

As discussed in MW, one key concern in this study is the
treatment of the compact bodies’ internal gravity. Since
scalar-tensor theories do not obey the strong equivalence
principle, the motion and gravitational-wave emission of a
binary depend on the internal composition of its constituent
bodies. To handle this effect, we have adopted the approach
of Eardley [46]. We treat the matter stress-energy tensor as
a sum of delta functions located at the position of each
compact object. However, instead of assigning each body a
constant mass, we let the mass be a function of the scalar
field, M, = M 4(¢). This gives the matter action an indirect
dependence on ¢, even though we still work in the Jordan
frame. In the final waveform, this dependence will appear
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as the “sensitivity” of the mass to variations in the scalar

field,

5y = <—dlnMA(¢)> : (1.2)

ding /,

as well as derivatives of this quantity. (The subscript 0
means that the derivative should be evaluated using the
asymptotic value of the scalar field, ¢,.) In the weak-field
limit, the sensitivity is proportional to the Newtonian self-
gravitational energy per unit mass of the body. For neutron
stars, the sensitivity depends on the mass and equation of
state of the star, with typical values 0.1-0.3 [47,48]. For
black holes, s = 0.5, and all derivatives vanish.

Recently, numerical simulations of compact binaries in
scalar-tensor gravity have shown that the sensitivities of
neutron stars can change dramatically during the late
inspiral [49-51]. This “dynamical scalarization” effect is
a generalization of the “spontaneous scalarization” of
individual stars discovered by Damour and Esposito-
Fareése [52,53]. Since we assume that the sensitivities are
constant in time, our work does not capture this effect. In
any case, dynamical scalarization only becomes relevant
during the late portion of the inspiral, when our use of the
post-Newtonian approximation also becomes invalid.

We find that, at OPN and 0.5PN order, the gravitational
waves are identical to those in general relativity, except
for two changes. First, each explicit factor of total mass
m = m; + m, contained in the expression is modified to
am, where

3+2(1)O (1-25‘1)(1-25‘2)
= . 1.3
= 20, T 4420 (1.3)

Here wy = w(¢). Second, the overall waveform is scaled
by (3 4 2w)/(4 + 2wg). At higher PN order, the devia-
tions become more complicated. However, they are still
described by a relatively small number of parameters, the
same as those used in MW to characterize differences
between the GR and scalar-tensor equations of motion.
Almost every term in the waveform has a counterpart in the
GR waveform with the same basic structure. Terms which
are entirely new result from the existence of a scalar dipole
moment Z! (defined in Sec. IVA 5 below). Unlike the
regular dipole moment Z*, the scalar dipole moment cannot
be made to vanish by choosing center-of-mass coordinates.
This is a direct consequence of scalar-tensor theories
violating the strong equivalence principle. While the main
impact of Z! is in the generation of scalar dipole radiation,
its presence also has a strong effect on the tensor waveform.

In general relativity, integration over the radiation zone
produces terms which enter the final waveform beginning at
1.5PN order. Some of these terms are “instantaneous’; that
is, they depend only on the binary’s state at a particular time.
(Because the waves travel at the speed of light ¢, they
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depend on the binary’s state not at the current time ¢, but at a
retarded one © =t — R/c, where R is the distance to the
system.) Other terms are “hereditary”: They require an
integration of the binary’s behavior from an infinite time in
the past until the moment the waves are emitted. At 1.5PN
order, the hereditary contribution involves a logarithmic
factor and is known as the gravitational-wave “tail.” It arises
from a coupling between monopole and mass quadrupole
moments of the source and can be physically described as
backscattering of the outgoing radiation on the curved
spacetime of the binary. Monopole-mass octupole and
monopole-current quadrupole couplings create further tail
terms at 2PN order. Higher PN orders include more tails, as
well as “tails of tails” arising from three-moment couplings.

The addition of the scalar field to the radiation-zone
integrals produces no additional tail terms. However, it does
produce another kind of hereditary term, which involves an
integral of moments of the system over its entire past history
without a logarithmic multiplier. At 1.5PN order, the
hereditary term involves a mass dipole-mass dipole cou-
pling, while at 2PN order, the coupling is between the mass
dipole and the mass quadrupole. Both of these produce
oscillatory terms, like all the other pieces of the waveform.
However, the dipole-dipole integral also produces a zero-
frequency (DC) term, which grows secularly throughout the
inspiral. Such terms are often referred to as “nonlinear
gravitational-wave memory,” or “Christodoulou memory”
[54-57]. Unlike oscillatory terms, they cause a permanent
change in the state of a GW detector. In general relativity,
the nonlinear memory does not appear until 2.5PN order,
where it is driven by a mass quadrupole-mass quadrupole
coupling. Even with the new dipole-dipole effect, the
nonlinear memory formally enters the waveform at rela-
tively high post-Newtonian order. However, because it is
integrated over the past history of the binary, the memory’s
actual effect is comparable in magnitude to lower order
post-Newtonian terms. It is, therefore, potentially detectable
by gravitational-wave detectors [57,58].

One interesting limit of our results is the case where both
compact objects are black holes. In scalar-tensor theory,
isolated black holes behave identically to those in general
relativity. MW verified that a similar statement is true about
binary black holes. Specifically, they showed that the
2.5PN equations of motion in scalar-tensor theory are
identical to those in general relativity, except for an
unmeasurable rescaling of masses. They then conjectured
that the same should hold true for the gravitational waves
emitted by the binary. Our work shows that this conjecture
is correct for tensor gravitational waves, at least to 2PN
order. MW also found special results for mixed systems,
those containing one black hole and one neutron star. In
that case, the equations of motion are identical to GR, with
mass rescaling, up to 1PN order. Beyond that order, they
deviate from Einstein’s theory, but the deviation depends
only on a single parameter. Unfortunately, this parameter is
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the same in Brans-Dicke and more generalized scalar-
tensor theories. We have found that all of these properties
carry over to the tensor gravitational waves emitted by a
mixed system.

To find the gravitational-wave phasing, we require an
expression for the energy loss. That, in turn, requires the
scalar gravitational waveform. It will be considered in a
follow-up paper. While the procedure is the same as for the
tensor waveform, the actual calculation is somewhat more
complex and lengthy. With both tensor and scalar pieces in
hand, we can write down the full response of a detector to
the inspiral of a circular binary. Finally, we will be able to
use the final waveform in a parameter estimation study.
We wish to investigate how well detectors like Advanced
LIGO can measure differences between GR and scalar-
tensor theories, as well as how the additional terms in the
waveform influence the measurement of astrophysical
parameters, like those described above.

The outline of the paper is as follows: Section II presents
the field equations for the tensor and scalar fields, as
derived from the action (1.1). We cast them into a relaxed
form and show how they can be solved for field and source
points in different regions of spacetime. We also discuss
how the tensor and scalar fields affect a gravitational-wave
detector. Section III reviews the results from MW in the
near zone surrounding the source. Post-Newtonian expan-
sions of the near-zone source are needed to calculate the
gravitational waveform.

Section IV describes the calculation of the Epstein-
Wagoner moments, the fundamental pieces needed to
derive the near-zone contribution to the gravitational wave-

form. The calculation of the two-index moment Igw is
described in some detail in order to clarify the major issues
involved. Section V shows how the moments can be
converted from a generic N-body scenario to the specific
two-body case we consider. We also discuss how the
equations of motion, taken from MW, are used to expand
time derivatives of the moments.

Section VIleaves these pieces aside and presents the other
half of the puzzle: the radiation-zone contribution to the
gravitational waves. First, we must calculate the tensor and
scalar fields in the radiation zone, far from the compact
objects. They have both near-zone and radiation-zone
sources. Then these fields are used to calculate the GWs.
Terms produced here enter the final waveform at 1.5PN and
2PN orders and include the hereditary effects described
earlier (tails and memory). Finally, in Sec. VII, we present
the full 2PN tensor gravitational waveform for a nonspin-
ning compact binary in massless scalar-tensor theory. We
also discuss some features of the results in more detail.

In this paper, we use units in which ¢ = 1. We do not set
G = 1; as we shall see, the effective Newtonian gravita-
tional constant depends on the asymptotic value of the
scalar field. Greek indices run over four spacetime values
(0, 1, 2, 3), while Latin indices run over three spatial values

PHYSICAL REVIEW D 89, 084014 (2014)

(1, 2, 3). We use the Einstein summation convention, in
which repeated indices are summed over. We use a multi-
index notation for products of vector components:
x'/F = x'x/xk. A capital letter superscript denotes a product
of that dimensionality: x> = x*1x%> . .. xk Angular brack-
ets around indices denote symmetric, trace-free (STF)
products (see Appendix B for details). Finally, we
use standard notation for symmetrized and antisymme-
trized indices, e.g. xUy/) = (x'y/ 4+ x/y?)/2 and xliy] =
(x'y/ — x/y") /2. At times we use a bar to separate indices
which should be symmetrized from those which should not,

e.g. xUly/zl) = (xiyizk + xkyizh) /2.

II. CONSTRUCTION AND SOLUTION OF THE
RELAXED SCALAR-TENSOR EQUATIONS

A. Field equations and relaxed form

The field equations for theories described by (1.1) are
given by

8 1
G;u/ fr— Eﬂ: w % <¢’ﬂ¢*y - Egﬂlz¢.ﬂ¢j)
1
+ $ (4’;/41/ - g/uzl:lg(ﬁ)’ (213)
1 or d
Dq¢:3—|—20}(¢)(8ﬂT_16ﬂ¢a§b_dZ; ’,147’/1)- (21b)

As stated above, we work in the Jordan representation of
the theory, so that g, is the physical metric. The quantity
G,, is the Einstein tensor constructed from this metric,
while ¢ is the scalar field, w(¢) is the coupling function,
T,, is the stress energy of matter and nongravitational
fields, and T = ¢*T ap 18 its trace. We use commas to
denote ordinary derivatives. Semicolons denote covariant
derivatives (taken using g, in the usual way), and L], =
g% 9,0, is the d’ Alembertian with indices raised by the metric.
In the Jordan representation, the derivative 97 /0¢ is not
present for normal matter, but will be present for gravitationally
bound bodies, as we will discuss in Sec. III B.

We assume that far away from the sources, the metric
reduces to the Minkowski metric, ##*, and the scalar field
tends to a constant ¢b,. We introduce a rescaled scalar field,

¢
p=—, 2.2)
bo
a conformally transformed metric,
Gy = PGy (2.3)

and a “gothic” version of that metric with its indices raised,

N

2.4)
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Here g is the determinant of g,,. We can then define the
gravitational field as

Y =g — . (2.5)
We use a tilde to differentiate this field from the gravita-
tional field defined in general relativity, #**, which has the
same definition but with g* =,/=gg" in place of g*.
[See, for instance, WW (2.2).] We impose the Lorenz gauge
condition
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where [, = ;7“/?80,813 is the flat-spacetime wave operator
and the source is

I
o = (—g) Lw 4 (A 4 A,
167z

2.8
0 28)

Here T*¥ is the stress energy of matter and nongravitational
fields. In our case, we have no other fields, so this
represents the compact piece of the source. The quantity
A#¥ represents the gravitational-field contribution to the
stress energy,

R, =0. (2.6)
Then the field equation (2.1a) reduces to N = 16a(=) 85 + 1 17— PR 4y (2.9)
0,7 = —16x7", Q7 where
|
(=9t = ﬁ 909" ilM./iiim,p + %@zaéﬂ yljllﬁ,pljlpa,ﬁ — 207" if)ﬁ,pilpa,z
+% (293 = 77 (2p,90c — gpgaﬁ»%ﬂiiz””.a] (2.10)
|
10 vt 5 5 ot it #03) =2 [ S

With this definition, A** will have the same fundamental
form as it does in general relativity, except that the
gravitational field is 7" instead of #**. The final piece
is the scalar contribution to the stress energy,

(3+2w)

v o |
A§ ET(P.a(P,ﬂ(Q’mgvﬁ—Eg’wgaﬂ). (2.11)

The scalar field equation (2.1b) can also be written as a
flat-spacetime wave equation,

U, = —8nzy, (2.12)
with source
1 @ oT 1
=— V=g—|T—=20-—) ——h"

5= T3 20 g¢0< ?a ) 8z b

1 d 342w

- % 7 2.13

167‘[d(p|: ( (,02 >:|(pa(p/ig ( )

B. Solution of the wave equations

The wave equations (2.7) and (2.12) can be solved formally
in all spacetime by using a retarded Green’s function,

) [P
b |X_X/| b

(2.14a)

The delta function in both these equations restricts the
integration to being over the past flat-spacetime null cone
C emanating from the field point (z,x). To obtain explicit
solutions, we divide the spacetime into two regions. Define
the characteristic size of the source as S. We assume the bodies
move at velocities v < 1. Then the near zone is defined as the
area with |x| = R < R, where R ~ S/ v is the characteristic
wavelength of gravitational radiation from the system.
(We use capital R to denote the distance from the binary’s
center of mass to a field point in order to avoid confusion later
with r, the orbital radius of the binary.) Everything outside the
near zone (R > R) is the radiation zone.

We carry out the integrals (2.14a) and (2.14b) in two
pieces: one integral over the near zone and one over the
radiation zone. Each is done by a fundamentally different
method. In the end, the final solution is the sum of the
two pieces. WW and [41] showed explicitly that any terms
dependent on the boundary radius R in one-half of the
integral would be exactly cancelled by pieces in the other
half of the integral, leaving the final answer, as expected,
independent of this arbitrary parameter. In our work, we
simply assume this property and ignore any terms which
depend on R.

The integrals are also evaluated differently depending on
what field point x we are interested in. For instance, MW

calculated 7" and ¢ at field points X in the near zone,
where the bodies are located. The near-zone fields were
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then used to calculate the equations of motion for the
bodies. In this paper, we are interested in the gravitational
waves, so we will ultimately want the fields evaluated in the
radiation zone. However, we will still need the near-zone

fields as source terms (see A and A above).

With two integration regions and two possibilities for
field points, there are a total of four distinct ways to
evaluate (2.14a) and (2.14b). For a complete description of
these methods, refer to WW and [41]. Here we give only a
brief summary. For field points in the near zone and
integration over the near zone, we can treat the retardation
as a small perturbation. Expanding 7#*(z — [x — x'|) in
powers of |x — x'|, we find

S (_l)m am 3
=4y [ X)Xy,

m=0

iz”N”(t, X)

(2.15a)
|

W x) =4 /12R+2R . /27z i /
C-N\" -
—2R 1
+4/ %T’“’T—{—R’ x')
r—7 —-N-x

7—2R+2R

— 2 1
venttx =2 [" " ae [Tay [
—2R 1
0@+ R.x)
+2 / ]{
t—7 —-N-x

where N'=x'/R' and é=(r—7)2R—-2R+1—7)/
(2RR). Here, the notation C — N denotes that this is the
integration over all pieces of the past null cone which do not
intersect the near zone; that is, they are in the radiation zone.
For each 7/, the inner pieces integrate over the intersection
of C with the future null cone emanating from the center of
mass of the system at time 7. The 7’ integration is then a
summation over all such future-directed null cones, starting
from the infinite past and continuing until the cones no
longer overlap. It turns out that the contributions from these
integrals only come into play at higher post-Newtonian
order than was considered in MW.

For field points in the radiation zone and integration over
the near zone, we expand the entire integrand in powers of
|x'|/R and find

WY(1,x) 42 )<M"”k‘ ) . (2.17a)
4=0 q! ok
ad ky-k,
Pt x) =2 < ) . (2.17b)
N ;; q! ok,

where
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8111
(7, X) —ZZ - 8t’”/MTS(t’X/>|X_X/|m_ld3x/-
(2.15b)

Here N is the three-dimensional hypersurface representing
the intersection of the past null cone C and the near-zone
world tube. After the expansion, the actual integration
takes place over M, the intersection of the hypersurface
t = const with the near-zone world tube. Note that in the
near zone, the slow motion approximation v < 1 means
that each time derivative corresponds to an increase of
one-half post-Newtonian order.

For field points in the near zone and integration over the
radiation zone, we recognize that the source contains only
field terms which are themselves retarded. Therefore, it is
prudent to change variables and integrate over 7’ = ' — R/,

where R’ = |x/|. We find
1 " / R/ !/
L/)[ R'(7,Q)]*d cos &
et—7—N
[ ’(1’,9’)]2d29’, (2163)
/ R/ !
(+7/)[ R'(7,Q)]?d cos &
el — 7 —N
[ /(T/’Q/>]2d2gl’ (2.16b)
|
MRk (1) E/ o (z,x')x'% - kdBx', (2.18a)
M
My (z) E/ r(r, X )% kB, (2.18b)
M

Here M is again the intersection of the near-zone world
tube with a constant-time hypersurface; however, in this
case, that time is the retarded time 7 =t — R.

For gravitational waves, we can simplify (2.17a)
and (2.17b) in two ways: (1) We are only interested in
the spatial piece of the tensor, h'. (2) Gravitational-wave
detectors operate in the regime R > R, which we call the
far-away zone. (It is, of course, a subset of the radiation
zone.) Therefore, we can expand (2.17a) and (2.17b) in
powers of 1/R, keeping only the lowest order term. The
results are

Zl 0 / 7 (z,x)(N-x')"d3x', (2.19a)

m'8tm

Z L9 / 7,(z.x")(N-x')"d3x, (2.19b)

m'atm
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where N = x/R is the direction from the source to the
detector. The Lorenz gauge condition implies a conservation
law for the source,

™, =0. (2.20)
Using this, we can rewrite the tensor equation as
Nij 2 d2 > k] ATk ijkl"'km
(1, RdZZN o NE gtk oy (2.21)

where the I]é”\,f,z are known as “Epstein-Wagoner” (EW)
moments [38]. They are given by

- 00
IEW=/ T
M

Ig\l,‘v = / (2700 i)k — 70K
M

XUdx + I

Wiy (2222)

X Bx + Iy () (2:220)

- 2 qn2 .
ijky -k — 1 xku K
IE]W =m!dlm2//\/lTJXk k d3x (m > 2). (2.220)

~ 27z
(%) _4/ / /
—2R 1
™ (7
+4/ 7{
t—7 —N-x

T 2
fen(tx) =2 / a7 /
—2R

Rl
+2/ ]{Tsf—i— /
r—7 —-N-

To find the gravitational waves, we merely ignore all
nonspatial components (for the tensor waves) and consider
only terms with 1/R dependence. These radiation-zone
integrals will produce hereditary terms in the final GW
signal, including tail and memory effects.

C. Effect on GW detectors

To find the effect of the (tensor) gravitational field and
the scalar field on a GW detector, we first need to convert
back to the physical metric. The inverse metric is

- (72
9" = 93" =—=4g". (2.25)
V=
The determinant g is given by
g=detd” = —1+h+ O(h?), (2.26)
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The largest piece of the work in this paper is the calculation
of these EW moments to the necessary post-Newtonian
order. The use of the conservation law to rearrange the
two- and three-index EW moments results in the “surface”

ijk
and Iy,

moments I}/

W (surf) (surf)?

&2 o y
— I (qur) = j{ [47!lix) — (Mx1T) |R?AIPQ, (2.23a)
dt oM ’

7{ (27l ix)k — 7K
oM

They are evaluated on M, a sphere of radius R bounding
the hypersurface M; 7' is a radial unit vector pointing
outward from this boundary.

Finally, if the field point is in the radiation zone and the
integration is over the radiation zone, we can again use a
change of variable. The results are identical to (2.16a) and
(2.16b), except with a different limit of integration,

d ijk

77 EW (suf) = XNR2AIPQ.  (2.23b)

1 ;w R/
e + . )[ R'(7,Q)]>d cos &
ct—7 —N-
/
PR, )[ R (7, Q)d<, (2.242)
1 /
Ts(T +R/ )[ ’(r’,Q’)]zdcose’
—et—7 =N
!/
x) SR Q)P (2.24b)

where h= ;7”,]1”” is the trace of /. We are not concerned
with terms of order h* and higher because we are working

in the far-away zone, where h~1 /R. Putting everything
together, we get

~ 1~ 1
g/u/ — ;,Iﬂl/ _ h/“’ + Ehnﬂb + QI”WJ + 0] (F) . (227)

Here U = ¢ — 1, and we have also made use of the fact that
U~ 1/R in the far-away zone. The physical metric is
therefore

~ 1- 1
G = NMw + h;w - Eh’/hw - \Ij’/llw +0 (F) s (2.28)

is lowered using the Minkowski

where izm, = nﬂanyﬂizaﬁ

metric.
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A gravitational-wave detector works by measuring the
separation £ between test masses. If the distance between
the test masses is small compared to the wavelength of the
GWs, and the masses move slowly, the separation obeys the
equation

éi = _R0i0j§j7

where dots denote time derivatives and Ry;y; are compo-
nents of the Riemann curvature tensor. We can use the
metric to calculate them,

(2.29)

1 =i 1. ... .
ROin == ——h'lzT —E\I/(NINJ —51‘1).

> (2.30)

Here “TT” designates the transverse-traceless projection of
the gravitational field tensor, which satisfies the conditions
N'hiy = N hi = 0 = 8 hi;. (2.31)

We can find the TT part of a tensor by using the projection
operator,

o L 1 .. -
Bl = (pwpm - Epupw> R @232)

where PP? = §"4 — NPNY is the transverse projection

operator. The fact that only the TT piece of 4" contributes
to the measured GWs will allow us to simplify our
calculation by prematurely dropping terms which cannot
possibly produce a TT contribution at the end of the day.
Note that the scalar field ¥ will contribute a transverse
“breathing” mode to the GW signal; it will be treated in a
subsequent paper in the series.

III. CALCULATION OF THE
NEAR-ZONE SOURCE

In this section, we review results from MW for the source
7# in the near zone. These results are needed to calculate
the Epstein-Wagoner moments and thus the near-zone
contribution to the gravitational waveform.

A. Potentials, fields, and field source

Following MW, the compact source can be described in
terms of densities [59],

6=T% 4 T7 (3.1a)

ol =T, (3.1b)

ol =T, (3.1¢)
T

g (3.1d)

GSE—T+2(/)8—¢.
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We can then define a number of Poisson-like potentials. For
example, given a generic Poisson integral for a function

f(1,%),

1 f(,x)
P(f)=— d*x, 3.2
=g [ K5 (2
then the basic “Newtonian” potential is
t !
U, = P(4ro) = / o ’X,) By, 3.3)
m|x = x|
We also have a scalar equivalent,
t,x'
U,, = P(4no,) = / L",)d%/. (3.4)
M [x =X'|

The o subscript clarifies that these potentials use the
densities defined in this section. Later, we will convert
to a new density which reflects the specific source
(compact binaries) we are studying. We delay defining
the rest of the potentials until then. Expressions for all
other o-density potentials can be found in MW (3.12)
and (3.13). Note that the generic Poisson integral has
the property

V2P(f) = .

This will be very useful throughout the calculation.
For convenience, we can rewrite the fields as

(3.5)

=N, (3.6a)
=K, (3.6b)
h' = BiJ, (3.6¢)
W' = B, (3.6d)

p=1+7. (3.6e)

We use this notation in all spacetime. In the near zone,
N~ O(e), K' ~0(e¥/?), BY ~B ~ O(€*), and ¥ ~ O(e),
where the post-Newtonian counting parameter € ~ v> ~m /.
Here m is the mass of the system, r is a typical distance
scale, and v is its characteristic speed. (Later, r will be the
orbital radius of a binary, and v will be the magnitude of
its relative velocity.)

To obtain expressions for the near-zone fields, we solve
(2.15a) and (2.15b) iteratively. At lowest order, we only
solve for N and W, the other quantities being intrinsically
higher order. The sources only include compact terms:
0 = 6/¢0 + 0(106) and Ty = 63/[(1)0(3 + 2&)0)} + 0(p€)’
where wy = w(¢y). Using the definitions of the potentials,
we find
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4U,
N=—240()=4G(1-)U, + 0(¢*), (3.7a)

0
v —L—kO(ez) =2G¢U,, + O(e*). (3.7b)

$o(3 + 2a) 7 -
Here
1 4 + 2(1)0

=— 3.8
4)0 3 + 2(00 ( )

is the effective gravitational constant. The definition
is chosen so that, for a perfect fluid with no internal
gravitational binding energy, the metric component g
matches the result from general relativity, g =
—1+2GU,. We do not set G equal to 1, since it depends
on the asymptotic value of the scalar field ¢, which could
potentially vary in time. The other parameter is

1

(3.9)

For the next order, we need to begin evaluating the field
terms of the source, A* and A{”. These are given explicitly
in terms of N, K/, BV, B, and ¥ in MW (3.4) and (3.5). We
can plug in (3.7a) for N and (3.7b) for W. This will be
enough to get the fields at next order, as shown in MW
(4.10). This procedure is iterated until the fields and sources
are obtained to the necessary order. In the next section, we
will need the expressions for 7#* in order to calculate the
Epstein-Wagoner moments.

B. Matter source

The previous section describes a generic matter
source characterized by densities o, o', oY, and o,
|

I
57 + -
)45

B dM , 1 /(d*M,
My(¢p) = Myo + <W> 05¢ + 5 < dg?

mA[l +S(SA;\I]>L

where my = M,o. We define the sensitivity and its
derivatives as

SA = <M> , (3.12a)
0

dlng

PHYSICAL REVIEW D 89, 084014 (2014)

(the “o densities”). All of the expressions for near-zone
fields and sources in MW are written in terms of these
generic densities. We now convert to a more realistic source
for the situation we are considering: one made up of an
arbitrary number of compact objects. (We later specialize to
the two-body case, but many steps of the calculation are
valid for a general system.) Since a compact object is
gravitationally bound, its total mass depends on its internal
gravitational energy. This, in turn, depends on the effective
local value of the gravitational coupling. In scalar-tensor
theory, the coupling is controlled by the value of the scalar
field ¢ in the vicinity of the body.

To deal with this complication, we use the approach of
Eardley [46]. In his method, we consider the compact
objects to be point masses, with a mass M(¢) that is a
function of the scalar field. The stress-energy tensor is then
given by

THY ( x(z)

(~)°Y / de M ()it (35 () — x7)
A
= (—g)7V2Y My (p)uyuy (ud) 163 (x — x,).

(3.10)

Here i/, is the four-velocity of body A, and 7 is the
proper time measured along its world line. (This is the
only instance in which we use the symbol 7 for this
purpose.) The dependence of mass on ¢ is what leads to
the 0T /0¢ term in (2.1b), which would not normally be
present in the Jordan frame. (Remember that in the
Jordan representation, the scalar field does not directly
couple to the matter. This indirect coupling is merely
a way of treating the complexity of the source in scalar-
tensor theory.)
We expand M, (¢) about the asymptotic value ¢y,

1 1
my [1 + 5,0+ E(si + 5, —54) V% + ‘ (s 4 3s/ys4 — 3/ + 53 — 355 +25,) 0 + 0(\114)]

ML\
W
(3.11)
. (> InMy ()
sl = (W)o’ (3.12b)
L, (dInMy(¢)
s = (cl(lr1</>)3>o’ (3.12¢)
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and so on. Note that s’ has the opposite sign of the
equivalent quantity in [33] and [60]. If we define a new
density

pr= mad(x —xy), (3.13)
A
the stress energy becomes
T = p*(—g)~ ' 2ulv*v*[1 + S(s; V)], (3.14)

where »* = (1,v) is the ordinary velocity. The various
velocities and the sensitivity s technically should have body
labels, but they will each pick one up when multiplied by
the delta function in p*. We use this convention frequently
in the steps to follow. Returning to the definitions of the ¢
densities, we find

o= p*(—=g) V2l (1 + v*)[1 + S(s; V)], (3.152)
o' = p*(—g)2ulv[1 + S(s; W), (3.15b)
o'l = p*(—g)2ulv[1 + S(s; V)], (3.15¢)
oy = p*(—g) 2 (u0)7M[(1 —25) + Sy(s: W), (3.15d)
where
S,(s;¥) = —2a,V — b, V2 + O(T?) (3.16)
and
a,=s>+s — %s, (3.17a)
a,=s"+2ss —%s’, (3.17b)
by =d, —a, + sa,. (3.17¢)
With these quantities, we can also rewrite
S(s;0) = s¥ +%(2as —5)U2 4+ O(T3). (3.18)

By substituting the metric into (3.15a)-(3.15d), the o
densities can be written in terms of the p* density as a
post-Newtonian expansion. These expressions are given in
MW (5.12). We will need them to translate 7#¥ from the
expressions in MW to the versions we need.

We also define new potentials based on the p* density.

For instance,
* t, x/
U = / p ( /) d3xl’
M[x =X

(3.19a)

PHYSICAL REVIEW D 89, 084014 (2014)

U, z/ (1 =2s0Np (EX) a0 (3.19b)
R P el S
More generally,
S(f) = / PN 3 plagpp), (3:200)
M x — x|

v = [ LX) o = Plamp i),

x —x'|

(3.20b)

Zl.jmE/Mp*(t,X’)v"'jf(f,X') & = P(Azp i),

x—x
(3.20c)
e [ AR,
= P(4n(1 - 2s5)p°f). (3.20d)
X(f) = /M P (X f( X)X — XY, (3.200)
Y(f) = /M P (LX) f(x)x — X Pdx, (3.200)

plus natural generalizations of X and Y like X', X|, etc.
All the potentials listed in this paper can be expressed
in terms of P(f) (3.2) or these basic forms. They are
listed in Appendix A. MW (5.13)—(5.22) show how to
convert between many o-density and p-density potentials
(e.g., U, and U). These expressions will also be useful in
converting 7.

IV. EPSTEIN-WAGONER MOMENTS

In this section, we calculate the Epstein-Wagoner
moments which are needed to generate the near-zone
contribution to the gravitational waveform.

A. Two-index moment I},

We begin with the two-index moment. Its lowest order
piece will produce the lowest order gravitational waves,
which we define as OPN. It is given by

Iy = / OXdBx + Iy oy = 1+ T+ @)
M
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For clarity, the moment has been split into three pieces: (1) 7 g in which the integral is taken over the compact part of 7%;
(2) I}/, in which the integral is taken over the field part of 79 and 3) I g/ = I;:jw (surf)? the surface moment. To calculate the

first two pieces, we need the source 7% evaluated to 2PN order, or O(pe?). This is found in MW (4.14a), but it is expressed
using the ¢ density. Converting to the p* density, we find

0 = p*G(1 — (;){1 +%1ﬂ +3G(1 = 0)U —Ge(1 — 25)U, +%G(1 — ), —3G3(1 — ()2, +%GC(1 — 25)®

+G*(1=¢)(1 —25)®5 + 4G (1 — 25)Z(a,Uy) +%v4 +§G2(1 —{)*U? —|—%G(1 e at

—4G(1 = O)vkvk — %GC(I —25)02U, — 3G2¢(1 = ¢)(1 = 25)UU, +%G(1 —0X - %G@(l —29)%,

O =0) 4 E(E+ 2)(1 = 2908, + C[3EC+ 201 - 29) + 2%, 3

+GA(1 =) {—ﬁgl(vy)2 —SiVU -V, +4iG(1 — VU -V, +4iG§VU VPS5,
T T T T

5., 1 . 2.
+—U*——UU-=U*V* +
T T T

5 1
- 2G(1- VU2 —-G(1 — Kl pkl
5-G(1=OQUVUP ——G(1 - QU 2}

3

27

1 1. 1 7 ..
Vk,lvl,k 4+ Vk,lvk,l 4= Vk U,k _ U.,qu)lld —— VU -VX
2 bis bs 8

+G*(1-¢) [I(VUX)2 — iVUS -V —LG(I - VU, - Vs — iG(2/11 + VU, - VOS5
8 8w 4z 47

1 1 1 1 1.
——G¢VU, - VZE(a,U —G(1=OUVU)*+-G(1 =UNU -VU, ——G(1 =) UXPK + — [?
~GLVU, - VE(a,U,) +5_G(1 = HU(VU, +-G(1 = U, VU - VU, = —G(1 = HUHPY + -~ 02
1 .
v, vxs] + 00, (4.2)
7
Recall that all the potentials are defined in Appendix A. We have introduced the quantity
(do/dg)o¢
M=—. 4.3
T3 2w, *-3)
Later, we will also need
(o/dy*)o?
h=—— 4.4
2T 34 2m @9

The compact moment can be written down by inspection,
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’ . 1 Gm
E=G(1=0> maxfql+5m+> ——
o ( C)AmAxA{ +2UA+

BZA 'AB

3 ;
+ gG(l - C)Zq:mAxA]vf1

PHYSICAL REVIEW D 89, 084014 (2014)

B(1=¢)— (1251 —zsm}

0= 05 Y11= 0 - €1 - 250)(1 - 25023 + 201 - )5

A Bia 'AB

—4(1 = {)vy - vg —%[3(1 —{) = ¢(1 —254)(1 = 2sp)][ag - Xap + (Vg - ﬁAB)z]

Gmc |:9

C#A r'ac 2

S (=02 =30(1 = O)(1 = 2s4) (1 = 25¢) + 282, (1 — 2s) (1 = 2s¢)

L+ 20)(1 — 25,)(1 ~255)(1 - 2Sc>}

Gmc

czp "BC

301 = O)(1 = 2s5)(1 = 25¢) 4+ C(C 4+ 2) (1 = 25)(1 = 255)(1 —2sc>1}.

Here body A (for example) has position x4, velocity v4, and
acceleration a,. The distance between bodies A and B is
rap, and the unit vector fiyz = X,5/r4p points from body
B to body A.

To calculate the field moment I%, we must evaluate
a series of integrals involving the 1PN and 2PN poten-
tials. Examining (4.2), we see that there are 24 different
integrals. However, integrals such as [,,(VU)*x"d*x and
S (VU;)*x'dPx are essentially identical: The functional
form of the integrand is the same, with the only difference
being the addition of sensitivity factors 1 — 2s. If we count
such integrals together, there turns out to be 15 unique
pieces to compute. (Many of these also share similar
fundamental components, but we count them separately
due to different factors of velocity or acceleration.)

1. IPN field integral

The simplest integral is the 1PN term [, (VU)?x"d’x.
(When discussing these integrals, we will ignore the
constants in front.) We will calculate it explicitly in order
to point out some techniques which will be used throughout
the calculation. First, we integrate by parts,

/(VU)zxijd3x:?{ UU'kxi/JZSk—/ UU Xt g3 x
M oM M

-2 / UUx) dx. (4.6)
M

The surface integral is evaluated on the boundary of the

near zone at a constant (retarded) time; therefore, OM is a

sphere with radius R. We can write x' = Ra' and

=31 = £ + £(1 = §)(1 = 25,)(1 — 2s5) +4¢3(1 — 25,)ap(1 — 2s¢)

4.5)

|

d?SF = R2ik, where A’ is a unit vector normal to the
surface. We then expand U and U°* in inverse powers of R
and look for any TR-independent terms in the surface
integral. We find that

1 A%d 1 (3% —§9)x4b

U:XA:mA(ﬁJr =7 t5 =3 +-
1 A% 14 n
~N—d st —a—+ . 4.7
R +e 7 + o + 4.7
The center of mass (CM) of the system is defined as
Xem = Damaxy + O(pe). If we choose to work in coor-
dinates where xc,; = 0, then the second term in the above
expansion is one post-Newtonian order higher than the
others. We use the order parameter e to mark this. With that
exception, we only care about the R scaling and the

number of unit vectors 7. The derivative of the potential
scales like

Ak 1Ak a4 acdk
R’ R

o (4.8)

So the only R-independent terms in the surface integrand
scale like en%’/. When integrated over the surface, an odd
number of 7/’ vanishes. (See Appendix B.) Therefore, the
surface integral makes no contribution.

The first volume integral can be simplified using
V2U = —4np* [see (3.5)], making it essentially a compact
integral. The solution is easily seen to be
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—/ UUxlid3x = 47[2 ZMXX.
M A B#A 'AB

(4.9)

The second volume integral can be integrated by parts again,

-2 / UU\ix)d3x = — 74 U2xUg2si) + / U257 dPx.
M oM M

(4.10)

The surface integral again vanishes by virtue of integrating
an odd number of unit vectors. Meanwhile, the volume
integral can be ignored because it will not survive the
transverse-traceless projection. So (4.9) alone is the value of
the 1PN integral.

Throughout this work, we routinely drop terms which
will not, in the end, survive the transverse-traceless
projection. For convenience, we refer to these terms as
“non-TT.” Non-TT terms are easy to identify by sight: Any
term containing &7, N, or N/ is non-TT. [This can be
checked by applying the TT projection (2.32) to such
terms.] For the two-index moment, 8 pieces are the only
ones we drop. For higher order moments, terms like 5k 5k,
o, !, ... are also dropped. This is because the final
expression for the waveform (2.21) contracts the EW
moments with direction vectors Nk, N! , ... for all dummy
indices (i.e., all those besides i and j). Therefore, a term like
5% will introduce N' in the final waveform, and that is non-
TT. Note that terms like 6% (or any other involving two
dummy indices) must be kept.

As discussed earlier, the integral [,,(VU,)*xVd’x is
essentially the same as the one we have just calculated. One
slight difference does occur in the surface integrals:
Because > ,m,(1—2s,)x), does not vanish, even to
lowest post-Newtonian order, the 1/R? (1/R?) term in
the expansion of U (U ) will be at the same order as all the
other terms. However, this makes no difference: The
surface integrals still vanish. The final answer is exactly
the same as (4.9), only with sensitivity factors added,

/ (VU )x" d3x
M
—47[ZZmA 2SA mB(l —2SB)XZ‘

A B#A

@.11)

2. 2PN two-potential field integrals

The other integrals enter at 2PN order. Eleven of them
involve only two potentials; of these, all but the one
involving P4! (or P) can be solved using a straightforward
procedure. Consider the following example:

PHYSICAL REVIEW D 89, 084014 (2014)

/ VU -V, x'd*x
M

= ]{ U xd>Sk — / U xiidx
oM M

—2/ Uq)‘l([xj)d3x
M

Here the surface integral vanishes for the same reason as
above (i.e., an odd number of 7). The first volume integral
is evaluated easily using V?>®, = —4zp*v?. The tricky part
is the second volume integral. We can write it as

—2 / U x)d3x
M
(x —x,)0

= ZZ
’“’"/ X — x| [x — x4

It can be evaluated using techniques developed in WW. We
first change integration variables from X to y = X — x,.
Looking just at the main piece of the integral, this gives, in
our particular example,

4.12)

dPx. (4.13)

(x_xA)(

1 i
X
/M Ix —xp| [x —XA|3

R AP S
= | =5 0 +x)dy
//vty |Y+XAB|)’2( »)

DdBx

L3t e
— = (yp) + ¥ - x4 R*d*Q,
%)M vV + X4p] y? 2 - ’
3 e
+= Xp - V|—— () + ) [(§-x
2 Jom, |y + Xa5] 2 2 A) §-x4)

X ’Rzaaﬂy BRI 4.14)
There are two cases to consider: A =B and A # B.
In both cases, the infinite series of surface integrals
vanishes: The terms either depend on R or average to
zero because of an odd number of unit vectors. When
A =B, x,3 =0, making the volume integral easy to
evaluate. It also vanishes, for the same reasons as the
surface integrals. When A # B, we make use of the
following expansion:

1 B 4z (—r<)l -
ly + Xa5] T 2041 it i

(A45) Y1 (). (4.15)

where Y, are the spherical harmonics, and r_(. denotes
the lesser (greater) of rup and y. We substitute this
expansion into the volume integral and then express all
products of jf in terms of symmetric, trace-free (STF)
products $). (See Appendix B.) Here (L') denotes an

084014-13



RYAN N. LANG

I'-dimensional STF combination. We can then perform the
angular integration using

Z / B Y@L d2Q, = als!. (416
In our example, we find
/ [ —XA)(; D dBx
M X = Xp| [x — x4
R[1r2 N L L TS SN
:47TA [Sriy J+§*)’5"—3 2< fiypXy | dy.
4.17)

Finally, the radial integral is evaluated using

R rl 21+1
ddy = a 4.18
A ’“y (PR IRl 19

where we have dropped terms dependent on R. For our
example, we find

/ 1 (x—xA)i"x,-)d3x
M [X = Xp[ [x — x4

=dr |:4 rABnﬁ‘g —gr 511 _Eﬁl(qulg)]

= 4n E raphlly — %ﬁXBxf()} , (4.19)
where in the last step we have converted back to non-STF
notation and discarded the non-TT &"/ terms. This expres-
sion can then be used to evaluate the original integral, with
the mass and velocity factors added back in.

As stated above, ten of the two-potential integrals can
be evaluated with this step-by-step procedure: First,
integrate by parts so that one potential is undifferentiated.
(In some cases, this step is unnecessary because one
potential is already undifferentiated.) Next, if any piece
can be converted to a compact integral through relations
like V>®, = —4zp*v?, evaluate that piece. Then write
out the potentials and their derivatives explicitly in terms
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of masses, positions, velocities, and accelerations. When
two derivatives are taken, care must be taken to add
appropriate delta functions,

U = Uphn — = ZmAcsu(s* X—x,).  (4.200)
i i 4r i3
U' = Ulom + ?;mA Vi 8 (X — X,), (4.20b)
U=0 —4—”Zm 25 (x — x4) (4.20¢)
norm 3 - AYA A)s .

T kY4 . i
X=X - E;’W(”i&” +20])8 (x — x,),
(4.20d)
where ‘“norm” denotes the derivative computed from

the definitions of the potentials. The extra terms are
needed to ensure the right answer when the doubly
differentiated potentials are integrated in a sphere around
the point mass position x4. [Compare V2(1/[x —x4|) =
—478° (X — x4).]

Next, carefully examine any surface integrals. It turns out
that no surface integral contributes to the final answer, for
one of three reasons: (1) it has no R-independent terms,
(2) the R-independent terms vanish upon integrating over
the surface, or (3) the R-independent terms average to
something proportional to 6. The last type of term does
not vanish, but it is non-TT, and we can ignore it.

For the remaining volume integrals, change variables
from x to y=Xx—Xx4, where A is the label on the
differentiated potential. Check that the surface integrals
so generated and A = B volume integrals contribute
nothing, for one of the three reasons above. Then integrate
the A # B volume integral over angle and radius using
(4.15), (4.16), and (4.18), keeping only TT terms at the
end of the calculation. Many of the A # B integrals which
arise in this process appear in several of the ten “main”
integrals, and the results can be reused with the appropriate
coefficients multiplied in.

3. P! field integral

The final two-potential integral is [

UMPXxidPx (and its counterpart with P4l),

(x —xy4)K Skl 4

UK P xii 3y = m / [3 _ —
/M : ZA: A ML x=x4P

1 / X'
X —_—
A o |x — X/|

U/,k U/’ld3x/:| xijd3x,

|X — XA|3 — ?5]{153()( — XA)

4.21)
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where U’ is the usual potential written as a function of x’. We can integrate over x (unprimed) first, using the techniques of
the previous section, except with xz — x’. Dropping the primes on the remaining integration variable, the result is

1 (xy — x)kii

1 (x, — x)U 1 (x4 —x)

UXPKXTdBx = mA/
f o=y

BPx UkUl[
M

6 |x4—x?

SN 4 — Sk

6 X4 — X| 6 x4 —X]|

1(xy —x)¥ 1 . 1 (x, — x)KCGE x—x)k
_E%it%rw__kA_“y%N_iﬂg—;P Q_ﬂg_;ymd)
1(xA—x) 1(xg—x)" 1 1 i
5kl - V2 Sk 4.22
2k —x] 4% Tk, —x|* 2]x, — x| A (422)
Following WW (D5), we can rewrite this as
kl pkl .ij 73 3 kyr.l 1 A,ijkl Ak(i )1 1 AKl(i .J) Ak sl(i y.J)
UMPYxIdx = "my | dxUrU — g OV L WA — SRl 42Xl
M A M
;XA"Z i XAS"(’(S”} (4.23)

where @4 =[x —x,[°/15, ¥4 =|x—x4*/3, and
XA = |x — x4]. These six terms can be evaluated individu-
ally. For the first four, we first integrate by parts and find a
vanishing surface integral, a simple-to-compute volume
integral (i.e., one involving a Laplacian), and a more
difficult volume integral. This last piece is integrated by
parts again, leading to another vanishing surface integral
and a final volume integral. The final volume integrals in
each case seem difficult to evaluate, but fortunately they
cancel in pairs when the four terms are combined.

The fifth term behaves similarly, except it is possible to
evaluate all the integrals eventually. It involves four
integrations by parts and three volume integrals which
convert to compact integrals by means of a Laplacian. The
sixth piece is the most difficult,

= my / UiUIXAdx
A M

==Y mymgme / UBIUCIXA,  (4.24)
AB.C M

where U =1/|x —xp| and U®=1/|x —x¢|. (This
definition, excluding the mass, is equivalent to the earlier
definitions of ®4, WA, and X“.) There are four cases to
consider. For A= B =C, we change variables to y=Xx—X,
and find no contributions from either the main term or the
surface terms. For A= C # B (and A = B # C), we use
the same substitution (twice) after integrating by parts. The
evaluation proceeds much as in Sec. IVA 2 above.

For B = C # A, we make a slightly different substitution
(since B, not A, labels the differentiated potentials):
y = X — Xp. This gives

—ZmAmBmc/ UB’iUC"iXA
M

A.B,C

ij
== > mym} / 7 ¥ + Xpa|dyd®Q,, (4.25)

A B#A

plus vanishing surface terms. To evaluate this, we use a new
expansion in spherical harmonics,

_Z 4n 1 (_r<)l+2_ 1 (_r<)l
2012043 A 20—1 it

(4.26)

|y + Xpal
x Y5, (i)Y, (§).

The final case, A # B # C, is very complicated. It is
worked out in Appendix D of WW. Switching body labels
to match their notation, we get

—ZmAmBmc/ UA’iUB’jXC

AB,C

=7 Z mampmc040pF (Xac. Xpe).
A#B#C

(4.27)

where 9, = 9/0x!, and

F(X4c,Xpc) = —3 [(rac + rBc)Tag — racTsc

+2X4c - XpeIn(rac + rge + rap)]. (4.28)

This term is irrelevant for compact binaries, but we keep it
for completeness. The final answer for this field integral is
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A B#A
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3 4B 3

87 i
nilk —”ﬁng)

Ak
+ rap(— 27tnA3+6m5k ) X—I—ZﬂxAnAB]( Z%)

RO

S 5y e

C#B I'sc
mampeinc i

A B#A CzB 'ABTBC A BZA Cza TABTAC

+ 3”2 Z mimyiiy —n Z mamymcdy OpF (Xac, Xpc).

A B#A

(4.29)
A#B#C

4. Three-potential field integrals

There are three field integrals involving the product of three potentials. The simplest is

N 1 . 1 . -
/ U(VU)*x'dPx = - 7{ UPU x> Sk — / UPU X dPx — / UPUx) dPx.
M 2 Jom 2 /m M

The surface integral is non-TT, and the first volume integral
is trivial. Integrating the second volume integral by parts
gives another surface integral and another volume integral,
both of which are non-TT.

The other two field integrals are similar but involve
combinations of U and Uj. To solve each individually, we
would have to compute a three-potential subintegral in the
manner of (4.24) above. However, when the two field
integrals are appropriately combined in the EW moment,
this subintegral cancels and can therefore be ignored.
Ignoring non-TT contributions, we find

/[U(VUS)Z+2USVU-VUS]xijd3x
M

1 y 5
=—c / U U2 xii P x — / UU,UMxid3x.  (4.31)
2 m M

Each of the subintegrals is trivial to evaluate. With the
evaluation of the three-body integrals, we have now
completed all 15 field integrals necessary to compute the
two-index EW moment.

5. Surface moment

We can rewrite the surface moment (2.23a) as

@ 1 ini N
ar Igw (su) ~ 67 [2A]}< AR — AK AURRA2Q,
T s

(4.32)

where A = A + AY. (Recall that the boundary of the
near zone is far beyond the compact source: R > S.) We
are again only interested in terms which do not depend on
R. Since the first term of the integrand multiplies A7 by

(4.30)

|

R3, we look for pieces of A with R dependence. The
second term of the integrand adds an extra factor of 'R, but
the derivative on A} reduces the overall scaling by R to
compensate. To survive the angular integration, a piece of
A7 must contain an even number of unit vectors. The two
unit vectors in the first term retain the fi parity of AT’, the
three unit vectors in the second term flip it, but the
derivative flips it back.

We begin with the first piece of the source, A"/, Because
of the two time derivatives, we need to know it to 3PN order
li.e., O(pe)] in order to find the final moment to 2PN
order. Unfortunately, MW does not contain an expression
for A to this order. However, because of the way we have
defined our quantities, A"/ will have exactly the same form
as the general relativistic version found in Eq. (4.4c) of
[41]. The only difference is that the fields N, K, B/, and B
we plug into (4.4c) are pieces of our new gravitational field
K" instead of the GR field A,

We must expand A in the vicinity of » = R and look for
terms with R~ dependence. The first step is to expand the
individual fields #**. For 1 = N, the lowest order piece is
given above by (3.7a), and its expansion is just the
expansion of U given in (4.7). Higher order pieces of N
are given in MW (4.10a), (4.10e), and (4.15a). The various
potentials in these expressions, when converted to p* density,
can be expanded similarly to U. As with earlier surface
integrals, we only care about a term’s post-Newtonian order,
its dependence on R, and its number of unit vectors 7'. With
this restriction, we see that all potentials of the same family
[i.e., P (or X), X, and Y] share the same basic expansion. The
only relevant differences occur for terms containing
S amyxiy or its derivatives. As seen in the expansion of
U itself, these terms are one post-Newtonian order higher
than the others in the same expansion. In the end, we find
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1 7@ 5 a1 plo) pleto) 52
N~ce¢ ﬁ—FE‘F"' +e W_FT_FW_'—“' +e€
e o ”,‘l<6+0) ";l(e+0) ";l(eJra)
+é {n< IR+ Al + 7t T T } + 0(e7?). (4.33)

For simplicity, we have omitted the exact factors of fi. Instead, we just use the superscript () to represent a sum of one or
more terms with even parity A (e.g., 1 + 729?), (o) for one or more terms with odd parity A, and (e + o) when terms are
present of both parities. Note that the O(¢*/?) term is different from the others; as seen in MW (4.10e), it contains no

potentials and is, in fact, independent of position x.
The other fields can be expanded as

) alo) gl o ale)  plo)  pleto)
K ~€3/2|:R2 +ﬁ+"‘:| +€5/2|:n< ) + R +ﬁ+7+”.:| +0(€3), (4.34)
1 1+ o) pleto) o pleto)  pleto)  pleto)
B~€2{ﬁ+7+?+~~] +e5/2+e3[R+n< ) + 7 Tt +} +0(e"?).  (4.35)

The expansion for B, which we need only to O(¢?), is the
same as for B. The O(e?) piece of B, like that of N, is
independent of position. [See MW (4.10f).] To calculate
A/, we need to take spatial and time derivatives of these
fields. For spatial derivatives, we merely divide each term
(excepting those independent of position) by R and change
the parity of fi. Time derivatives add an extra factor of ¢'/?
each, while also affecting the coefficients we have chosen
to ignore.

Only some of the pieces of A"/ produce terms which
scale like R~3. Ignoring coefficients, these are NN,

|
SU(VN)2, NUKD, §iNkKE, NGB, §IVN - VB, §iN?,
NB, 5N B, and §/NN?. The first six of these scale like
7l9)/R3, the next three like (6 4+ 2(?))/R3, and the last
like 6 /R3. (For NBY, the 6" factor is hidden inside B.)
Terms with an odd number of unit vectors will vanish
trivially during the angular integration of (4.32). The even
parity terms will not vanish. However, plugging into (4.32),
we see that the angular integral reduces to the average of
A"/, This produces 6"/, and so these terms are non-TT. We
conclude that AY makes no relevant contributions to the
surface moment.

We turn next to potential contributions from AY. We will need to expand it to O(pe?) first. The result is

AY = (34 2mp) {\Iw‘\lw' - ;5if(V\If)2}

~(3+ 2w0){2(1 —

3+20)0

4(1)0/ (O "

T3 2w, 131 20,

/

+ 3+ 20

) 1 [\p-fq»f — %5'7 (V\I/)Z] - %5'7\1/2}

!
>\112 {\I/”'\IN' —%51'1(%1/)2] - (1 S—

SUP?
3 + 2(1)0)

| N 1.
— 22Uk gk 3 (VU)?2BI + E&”\Iﬁ"\IIJB“ — 22U UKD 4 §UTTRKE 4 56’/\IIZN} + O(pe*). (4.36)

The expansion of U is

pleto)  pleto)

1+ al)  pleto)

T—F?‘f‘"'] +€5/2[ﬁ(O)R+1]

1 al) plo ale)
\If~€|:%+ﬁ+ﬁ+"':| +€2|:ﬁ(0) +%+
fileto)
+ 63 |:;',\L(())R2 + ",\L(e)R 4 ﬁ((}) 4 = +

R2

+ 4. :| + 0(67/2). 4.37)

R3
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As with N and B, the O(¢’/?) term does not contain a
potential; in this case, it has a term linearly dependent
on the position (so that A®) = 49) in addition to one
independent of the position.

We again find a number of terms which scale like R 3.
They derive from the W | §(V)2, §502%, §5U*N, and
S p? pieces of A / ‘When inserted into (4.32), all of these
but one either vanish because of odd f parity or are ignored
because they produce something which is non-TT. The
surviving term is (3 + 2w, [V W7 — 57 (V¥)? /2], applied
to the O(e) piece of ¥ and the linear-in-position O(e>/?)
piece of W. Notably, the latter piece depends on three time
derivatives of the scalar dipole moment,

IéE/ T xdx.
M

1

(4.38)
|
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Plugging into (4.32), we find that the only contribution to
the surface moment is

d_2 1
dr2 EW (surf)

2 .
= —§G2§(1 — C)ZmA(l —2s4)mp(1 — ZSB)xgaQ.
AB

(4.39)
6. Final two-index EW moment

We now add up the results for the 15 field integrals (and
their variations), multiplied by the appropriate coefficients,
to find the total field moment /}}. We then add this to the
compact moment /¢ and the surface moment /¢ to form the
total two-index EW moment. It contains pieces at OPN,
1PN, 1.5PN, and 2PN order,

I =G —¢ ZmAx{ #30d = I - gl - 2501 - 250

2 23#.4 r'AB

9

3
8 G(1— ZmAxAUA

dt

-exa-a(g)” [;mm - 2501 = 255

LG ¢ ZZmAmB u{ [7(1 = &) —2L(1 — 254)(1 — 2sp)]0%

A BZA |AB

(1 =) = (1 —2s4)(1 —2sp)]

_E[

— 1 —=¢+&(1—2s4)(1 —2sp)](

- 12[ V4 'ﬁAB)2

—é[l =+ (1 —=254)(1 —255)](V4 - igg)(Vp - figp)

-0~

O 221 = £)(1 —253)(1 — 254) + 2831~ 25,)a (1

L —2s)( —2s)l(v

(1 =252)(1 = 255)](Va - V5)

=g L= 2001 = 250 s

b=+ 0= 25000~ 250) (a0 + 25) X

—2s¢)

#5201 = 25001 = 250)(1 = 250)] |

C(1—2s4)(1 - 2SB)]”/24XXXQ

— C (1 = 250)(1 = 255)] (V4 - v)xc)

nAB)2 Xx{;)

A Dup) (Vg - ﬁAB)x/(;xQ

czp 'BC 2
1
+58(1 =) (1 = 2s5)(1 = 2s¢)
G2(1 — mAmB{ L oa_eg-
+G( c>2AjBZ# r Ul =0
2 Ca 1
+§(1 = )vpax) +45 1
1
+§[7(1—C)—(,“(l—ZsA)(l—ZsB)](
2 i
g(l - Z:)(VB : ﬁAB)z‘x.Elx/) 12
1 L
= 31501 = 0) = (1 = 25,)(1 = 2s)][(Va + Vi) - xpp)0 i)
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Lo g+ ¢ —2s)(1 - 2s3>}ri3v5§v£}

1 ind
+G* (1~ ZZmAmBrAB{ B (1= C+ (1= 25,)(1 = 255)](ag - figp)xy 23

Lsa-g-

£ = 25)(1 = 255)a ;2}

CPY_ ) mimy {—3(1 =9 —%(:(1 —25,)? —25(1 —2s5,)(1 = 2SB)] Al

1 i
— 101 =) = £(1 = 25,)(1 = 2s)][(va + Va) - Xl
1
6[13(1—C)+C(1—2SA)(1—2SB)]rfxBUA
A B#A
1 i
— (1= ) = £(1 = 25,)(1 = 2s)]alix] —
+G*(1 -
A B#A
+G(1-0)

A#£B#C

The notation (d/dt)~? means that two antiderivatives must
be taken of the following expression. In practice, we do not
need to worry about doing this, since we will eventually
take two time derivatives of Iy, when evaluating (2.21).

In the GR limit { = 0 (and for completeness, G = 1),
this expression reduces to WW (4.17). [Note that (4.17) of
WW has a sign error on the term containing
{(vq +vg)* = [(v4 + vg) - figp]}/2.] There are two impor-
tant caveats about this expression. First, the surface
moment has been written using the lowest order piece of
Zi. Note also that the terms —>_c.zmchfc/rpe from
(4.29) do not appear in that form. Similar terms occur in the
related integral involving P4, The two sets of terms can be
combined and then simplified using

dly = =31 = £+ (1 - 255)(1 — 250 L1 5.
C#B T'sc
“4.41)

This is the Newtonian equation of motion as defined in
MW (6.1). With this substitution, I}y, is simpler and easier
to compare to the WW results (which use the same trick).
Because of these two choices, (4.40) is good only for
calculations at 2PN order. When going to higher order, the
expression should be reverted to its more generic form (not

Z mampme[l = ¢ + (1= 254)(1 = 255)]04OpF (Xac, Xpc)-

(4.40)

shown) before adding the explicit higher order contribu-
tions; otherwise, the final answer will not be accurate.

B. Three-index moment I”k

The rest of the moments are calculated in much the same
way as Igy,. For the three-index moment, it is useful to
rewrite it as

Iy = Ty + T — Ty (4.42)

where

Iy = / Ok + T (4.43)
M

Here the volume 1ntegral can agaln be split into compact
and field components, 1 and T%/*. The surface moment is
given by

_Iljk

1S (4.44)

% Alzn1k1R4d2Q

To get IiJy, to 2PN order, we technically need to know the

source 1'0’ to O(pe?). However, there are no terms at that
order, so really we need it only to O(pe*/?). Converting
MW (4.12b) to the p* density, we find

= piG(1 = ¢) {1 +%v2 +3G(1 -U - GE(1 - ZS)Us}

+61-0)|601-0)(Zuvs

The compact moment is given by

3 . . 1 . .
+— UU”) — - GLU, U] + 0(pe™?).
T

e (4.45)
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7ijk G(1-¢ ZmAvA {1—1—;%4—2”

B#A AB

There are only two types of field integral, and both can be
calculated by the method of Sec. IVA 2.

Finally, we must investigate the surface moment. The
procedure is similar to that for the two-index surface
moment, with three essential differences. First, there is
only one time derivative, compared to two in the two-index
case. This means that we only need to consider A’ to
O(pe’/ 2) Second, we are interested in terms in Aj J Wthh
have R~* dependence. Finally, if a piece of A’} i7is to survive
the angular integration, it must have an odd number of unit
vectors. Again, only one term contributes to the surface
moment: the one involving the scalar dipole (4.38). The
final expression is given by
|

PHYSICAL REVIEW D 89, 084014 (2014)

OB 1301 — &) = £(1 = 25,)(1 —253)]}. (4.46)
|
d -~ Uk 2
15 G £(1— ZmA 1—25,)mp
x (1 —2s5)(2x'Val) — 3a0,x0%). (4.47)

Like the two-index surface moment, this expression uses
only the lowest order form of Z%. This is sufficient for our
purposes, but care must be taken in any future work to
higher post-Newtonian order.

Adding everything up, we get a final expression
for Ig\li\, It contains pieces at 0.5PN, 1.5PN, and 2PN
order,

Uk _ k }7 __1 (;nnB _ _ _
=G(1 ZmAvAxf {1 +2 22 [1—¢+&(1—2s5,)(1 —2s5)]
161~ O30S (1 — ¢ £(1 = 250) (1 = 259)] (Vs - sk
A B#A
_EG2 (1- ZZmAmBrAB{z[l =+ 8(1=254)(1 = 2s5))(Va - nAB)”Ag
A B#A
(1= 8) = £(1 = 2s2)(1 = 255)) (20}t — vhlky — vhip)}

1 i
+ 3G =0 > mamp{[1 = £+ (1 =254)(1 = 255))(va - Bag)i

A B#A

+[7(1-¢) -

1 d
+BG2§(1 —C)<

dt

This reduces to WW (4.22) in the GR limit.

(1 —25,)(1 = 2s55)] (v} 2 Al —

) {ZmA (1 —2s4)mp(1 — 2SB)(2)CA( aB) 3akxl)|.

”A xA nAB>}

(4.48)

Jikl

C. Four-index moment Iy,

To evaluate the four-index moment, we need 77/ to O(pe?), which is not given in MW. We use Eq. (4.4¢) of [41] and

(4.36) to find
il = (—g) LT A
bo 16ﬂ 167
=G(1=0)6(1 + N —30)
1
1671'
1

{ [N NJ — 5(SU(VN) ] + 2KMUKDk — ghighi — gikRIk 4 oN-GKT) 4 EN’“B’J)

N . 3.1
—5N {N-’N’J — 5(S’J(VN)Z} — 8 [K”‘KV"’] + N*K* 4 gN2 +7 VN - VB] }

+ % {(3 + 2ay) [\IN\I/J — %5'7 (V\If)2] — (3 +2ay) [2 (1 - > v (\I/’i\I/*f - %517 (V\Il)2> - %&hjﬂ] }

+ O0(pe/?).

3 +»2am
(4.49)
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We can ignore all terms with 6"/, because they will be non-TT. Substituting for N, K’, B, and ¥, and changing to the p*
density, we find an “effective” source,

e = pvIG(1 - () {1 +%v2 +3G(1—OU - G¢(1 — 2s)US}

13 ] P PO
GX(1 =02 |—UUd + —Uie?) — —G(1 — ) Uid)) — —Geuias) + — Uik
+ G &) {471 +47r ! 2 ( &) 2 2n ¢ 28 +47T
+% yhliyik _ ! ykiyki _ ! yikyik o 2 U,(if/j)}
T V3 V4 /4
2 Vo 4 g _ 1 (igs) _ 1 5.J)
+ G = Q)| ViU = U@ =~ G(1 - Uy, ——G(2/11+§)US 5
——GCU {(2(a,Uy))Y) +EU:§"X:J)} + 0(pe/?). (4.50)
The compact moment is
ijkl ij Kkl 1, GmB
1 =G(1=2) “myviixf L4503 +Z 31=8)—&(1 —2s,)(1 —2s5)] b 4.51)
A Bza TAB

There are eight different field integrals, although some are very similar. They can also be evaluated using the methods of
Sec. IV A 2. Adding everything up, we find the final result, which contains 1PN and 2PN terms,

’Jkl =G(1-¢ ZmAx{ lZGmB[l_C+C(1_2SA)(1_2sB)m,l4jB}

2B¢A 'AB

1
t15 G2 1 - ZZ (1= ¢+ ¢(1—254)(1 = 2sp)|mampraghiiy(akly — 64)
A BZA

J (ki
G(l1-¢ EmAvAvAxA

+G*(1-¢ ZZmAmB kl{ S = ¢+ (1 —2s,)(1 — 2s5)]0Y

A BZa TAB

_%[7(1 =) —C(1 —=2s4)(1 — 233)}”3}’%28

3,3 (1 =g+ €1 = )1 = 260)(1 = 256) + E(1 = )1 = 250)(1 = 255)
cza A
+ 024+ O)(1 = 254) (1 = 255)(1 = 25¢) + 4% aa(1 = 2s5)(1 — 2s¢)]
AXBZGmC 24+ (1 =)0 —2s)(1 = 25¢) 4+ C(1 = &)(1 —25,)(1 — 2sp)
2 c#B "'BC

+ 024+ O)(1 = 254)(1 = 255)(1 = 25¢) + 487 (1 = 254)a;p(1 — 25¢)]

. 3 N
+[3(1=¢) = (1 —254)(1 —255)](Va - nAB)U,(An,A)B + 2 [1 =+ (1 —254) (1 —255)](Va - ipp) Ay

2l
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1 iy 1 i
=571 =0) = £(1 = 25,)(1 = 2sg)]ajiochy =7 [1 = ¢+ (1 = 254)(1 = 2s5)] (a4 - Xan) g
—4(1={)(vp - ﬁAB)U,(qiﬁ/'A)B +2(1=8)(va 'VB>ﬁ/i4jB}

+G*(1 - C)ZZmAmBrAByd{_iW(l =) —4(1—2s4)(1 - 253)]”/4?’23

A B#A 24

il IO = £ 4 £ =01 = 254)(1 ~25¢) + £ = £)(1 — 25,) (1~ 2s5)
Cza Tac

+ 824 + (1 —=254)(1 = 255) (1 = 25¢) 4+ 4ag (1 — 255)(1 — 25¢)]

L - - 25001 - 2510 +1[3<1 ) = £(1 = 250)(1 = 25)] (Vs - Bg) oA

12 6
1 1 L
g = E (1 = 250) (1= 2s9))(Va - fuap) il + 55 (71 = &) = (1 = 254)(1 = 25)]ax)p
1 D P
g 1= CH 0 =250 (1= 25)] (a4~ Xag)illy — 3 (1= ) (Vi - Boan) vy
4 1 i
3(1—5) vy ) g(l— )(VA'VB)ﬁXB}

#G201= 0% S mamaraail { =5 1501 = 0) = €01 = 25,)(1 = 25013

A B#A
Gmc

6

[(1=0)? +2(1 =) (1 = 254)(1 = 25¢) + {(1 = {)(1 = 254) (1 — 2sp)

c#a Tac
+ 824 4+ ) (1 =254)(1 = 255) (1 — 25¢) + 4¢%a,u (1 — 255) (1 — 25¢)]

F0 = £ = 250) (1= 259)](Va g 1= €+ £ = 25,)(1 = 253)] (a4 - Xa)

S IEIURA)

1 )
+G(1-0Y mAmBn/(&xA){ [11(1=¢) = ¢(1 = 25,)(1 — 2sp)]02 A7,
A B#A 6

2101 =0) = €01 = 25,)(1 = 255} = 31201 = £) = €1 = 252)(1 = 255)] (%1 - mag) ey
-1

=+ L1 =254)(1 = 255)] (V4 - Biap)? nAB+%[5(1—C)—C(1—2SA)(1—2SB)]61X e

3

I ’ y
3 (1= ¢4 (1 —254)(1 —2s5)](as - Xap)ityp +4(1 = {)(vg - ﬁAB)”E;”,{a)B}

(1
+ G (1~ C)ZZmAmBVABﬁXB{[I =+ (1 —254)(1 —2sp)](va 'ﬁAB)v,(AkﬁQB

A B#A

[1 — &+ (1 —254)(1 —2s5)] 0 ——[1 —{+¢(1—2s54)(1 _2SB)]anAB

12 12

+1[1 =+ —254)(1 = 253)]“2]("2}

@)

G*(1 - Z:)ZZmAmBrABﬁ,]ZZB{_% [13(1 = &) —3¢(1 —2s4)(1 — ZSB)]UX

A B#A

A\| —

4= [5(1=¢) = 3L(1 = 2s4)(1 — 255)] (Vs - Bgp) 0 )
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1 g 4 NN P
— 5 [13(1 = 0) = 3¢(1 = 25,)(1 = 2s5p)] i) —§<1—c><v3-nAB>v2nQB—§(1—c>v§,vQ}

+ G2 11— ZZmAmBrAB{ 3(1=08) —¢(1—2s4)(1 _ZSB)}UX’%QBUY”QB
A B#A

4 in))  (kal
-3 0idyelial |

+ G- ZZmAmB{— (1=¢) = (1 = 25)(1 — 255)] o Al x)

A B#A

1 1 LA
=3 (1= C L0 = 250)(1 = 255))(va - Bam) g ] +4(1 c>v;n£Bv2"xiﬁ} (4.52)

This reduces to WW (4.26) in the GR limit.

D. Five-index moment I”klm

Because of the time derivative in (2.22c), we only need the source to O(pe/?). However, there is no contribution at that
order, so O(pe) will suffice,

= g G — &)+ - GE(1 — £)? {U"U'f - 15ii(vy>2} + - [U-;'Ug' - 15ff(vys)2} L 0(e). (4.53)
4 2 4z 2

We can, of course, discard the delta function terms, which are non-TT. There is only one type of field integral to calculate.
The final five-index moment is entirely 1.5PN order,

ijklm m Gm Al
L :_G(l— dt{ZmAxkl [A ZZ Z 1_C+C(1_ZSA)(1_2SB)]7L,L{B:|

B#a TAB

+ zz 3" Gmamprag(l — & + £(1 = 2s,)(1 — 2s5)] sy (Al - 6’"”)} (4.54)
A B#A
This reduces to WW (4.27a) in the GR limit.

E. Six-index moment 17"

With two time derivatives, we only need the source to O(pe), (4.53). There is again only one field integral to calculate,
although it is the most difficult by far. The final moment is entirely 2PN order,

’ | Gm ’
ijklmn mn B Al
" =15 G( dz{ZmA { [A %gw (1= +¢(1 = 250)(1 = 259)]A
i (kl, mn mn
523 Gmamaraalt = 0 = 25,)(1 = 250)] i )~ )
A BZA
1 ~klmn A~ (Kl mn) (kI smn)
— <o xAn Akl — 205 — kigm) | b (4.55)

This reduces to WW (4.27b) in the GR limit.

V. TWO-BODY EW MOMENTS binaries. We define the masses m, of the bodies as m;
So far we have written down expressions for the EW Znng ",nz' They have positions x; and x; and velocities v,
2.

moments which are fully general and can be applied to a It will be useful to have the moments expressed in terms

of relative variables, r = rj5, X = X; — X,, 0 = M), = X/7,
the moments to the two-body case relevant for compact  and v = v, — v,. (Note that we no longer use fi to represent

system with any number of compact objects. Now we convert
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unit normals at the surface of M.) In general relativity,
the relationship between the individual variables and the
relative variables can be fixed by writing down the
conserved linear momentum. The loss of momentum to
gravitational waves occurs at 2.5PN order, beyond what
we need to worry about. However, in scalar-tensor
theory, dipole radiation reaction enters at 1.5PN order,
so it must be taken into account. From MW (6.9) and
(6.10), we find that the individual and relative velocities are
related by

vl ="200 4 (5.1a)
m
v =—"lyi g g, (5.1b)
m
with
1 ém {(2 Gam> - Gam . ]
O ==—-n—-1/_(v" — v — 5 rx'
2 ' m r r
2 1) G 2
—ZoS. <5+ +—’"5_)( “m> il + 0(&).
3 m r
5.2)
Here
a=1-¢+¢(1—25)(1—2s,) (5.3)

is a scalar-tensor parameter that enters the equations of
motion at Newtonian order. We also have defined

S, =a'(1—s,—s,), (5.4a)

S_=a (s, —s). (5.4b)
Finally, we have the usual variables m = m; + m,,
U=mymy/m,n = pu/m, and dm = m,; — m,. The first term
in (5.2) is of relative 1PN order and the second term,
representing the dipole radiation, is of relative 1.5PN
order. We can find an antiderivative and write down the
corresponding position relations,

xp =200y 5 (5.52)
m
Xy =——Lxi 44, (5.5b)
m
with
15 G .
O =—n— <1)2 —am>x’
2 m r
2 B .
+56nS- <S+ + —m3> Gamv' + 0(e).  (5.6)
m
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It may seem that we would need the O(e?) terms in §' and
5% in order to calculate 2PN gravitational waves. As it turns
out, the 2PN piece of &' is not needed anywhere, while the
2PN piece of 5% is only needed in the first (OPN) term of
Iy, where it cancels exactly.

To simplify our expressions, we introduce other scalar-
tensor parameters from MW,

7=—2a""¢(1 —2s,)(1 = 2s,), (5.7a)
Br=a20(1—25,)%(3 (1 —25y) +2¢s)),  (5.7b)
Br=a20(1—25)) (A (1 —2s,) + 2¢s5), (5.7¢)
Si=a2¢(1=0)(1—2s5), (5.7d)
Sy =a2¢(1-0)(1—2s5,)2, (5.7¢)
1 =a70(1=25,)° (A — 447 + C4) (1 = 25)

—6{A1s) + 28], (5.7f)

T =a (1 —251)%[(Ay — 447 + $41) (1 — 25,)

— 60455 + 252s’2’]. (5.7g)
We also use the notation
1
&y 55(51 + &), (5.8a)
1
& =5E-8) (5.80)

where £ is one of /3, 8, or 7. (This notation should not be
confused with S, and S_.) Note that the ¥ parameters do
not occur in the EW moments; however, they do appear in
the equations of motion, which we will need shortly.

Since acceleration terms only appear at 1.5PN (in /gy,
or 2PN order (in Iiy, Iy, and ), we can replace
them with the Newtonian expressions,

. G )

= — (ann (5.92)
. G .

= T, (5.9b)

This will bring the expressions in line with WW (6.6) and
allow an easy comparison. Finally, we evaluate (4.42) to get
the total three-index moment. The result is a set of
simplified, two-body EW moments expressed in relative
coordinates,
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i . 1 1 G
Iy = GO = O3 142 (1 =30 = (1= 2) =
2 2 r
8 d\72[ (Gam\? S L
—2G(1 = 2 il — Zplipd)
sot-ames ()| (577) (750
.. 3 2N\ 4 1 2 1 = 2
+ G(1 —{)ux" §(1—717+13r] Jo* + 5(28—7911—5411 )—1—57/(3—1017) v

I 2 [ A 5.+ )| (Gem)
+[_Z(5+27:1—4f12)—§7( +61) =57 _§<5++7m5>+”<ﬁ++?mﬁ>}< "””>

r

Gam

1 Gam
. (1=1 2\:2
12( 3n + 30n°)F . }

+G*(1 - C)aﬂmr{ [é (13 +23n) +7(1 + 2;7)} v — <§ + 7) (1— 4;7);»v<fﬁf>}, (5.10a)

1) . o o 1 G
g\lfv =G(1=Q)u Wm {x”vk — 2plix )k — plixi)k [(1 —5n)v? + 5(7 + 125 + 67) ?}

1 1 G 1 Gam . ..
5t {(1 =502 + 2 (174 129 + 127) ﬂ} o (1-6n) o 'rx’/"}
r r

+ %Gz(l —)au*eS_ <S+ + 5_m5_> <21}’7xk — G}f#xijk)

-1 2
+ % G(1 — OuncS. ( - —S > (jt) {(Go’rm) (=3iAl* + 6ulip)k — Spii vk)} . (5.10b)

1 .
Iy =G —C)ﬂxkl(l—%)( ‘f—gﬁ’f G“m) £ GX(1 = Oaumrits"
r

Gam
r

1 . 1 1
+G(1— C)uxkl{i(l — 9+ 21*)v* 0 + [—ﬁ(B — 46n + 36n%) -37

71— 3n)| 2

Gam

+

SSIN )

4 1
(7—10n —36n%) + 577(1 - 311)} il 24 [8 (7—12n—360%) +=7(1 — 311)} oAl

A=

(1 — 654 1272)i27i
1 2/ - om - Gam
+ —4(37—12217+4811) 3<y+ﬁ+—;ﬂ )(1—377)] < ) }

+G*(1— C)aymr&”{ {% (7 —46n) +

+

, OO —

[OSHIE

1
-]+ [ 2

214(1—2;»,)rnv+[—g %( 7+ B, — mB)]ﬁl’f'Gam}

1 1 .
+ [6 (3+2n) + 57] Folial) 4

1 1 g
+G*(1— C)aymr{lz (1 —2n)aliyk — g (1 — 4n)iatip*ah

1 4 -
n [_5 (7—200) —37(1 - 3,1)} v(lﬁl)v(kﬁl)}, (5.10¢)
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i om d
ki
Ilj m

dt

g 1 d? 1
Il./klmn — G(1 — 1—5 5 2 l] Rl

1 y
+ g Gam rxi 5kl gmn) } .

For the most part, these moments have the same basic forms
as those in WW, with the coefficients altered to include the
scalar-tensor parameters (5 3) (5.4), and (5.7). As we saw
in Sec. 1V, both I}y, and I}/ have new terms at 1.5PN and
2PN order, respectively, resultlng from the nonvanishing
surface moments. The convers1on to relative coordinates
introduces another new term in I w at 2PN order. It arises
because of the interaction between the lowest order (0.5PN)
piece of Ig\l,‘v and the 1.5PN (dipole radiation) terms in (5.2)
and (5.6). No such new term is created in the two-index
moment: The 1.5PN piece of (5.6) cancels out just like the
(unshown) 2PN piece.

_ The final step is to take time derivatives. The equation for
h',(2.21), shows that we must take two derivatives of each
moment. The five- and six-index moments also contain
their own time derivatives. Along the way, we need to
substitute the relative equation of motion for each accel-
eration a’. We take this result from MW, keeping terms up
to 2PN order,

) Gam . Gam
al = — r2 n' +r—(Ale’l +BPNrU)
8 (Gam)? s .
+ i (A spnit' — By spyv')
Gam

+7(A2PNﬁi +BzPNi'7}i), (511)
where APN’ BPN’ AI.SPN’ B] 5PN» Asz, and BQPN are given in
MW (1.5). Of these, Apn, Aspn, and Bopy depend on time,
while the others are constant. It turns out that only Apy is
differentiated in the process of calculating the GWs. From
x! = ritt, we can also find

2

. v° 1 Gam Gam
r—7—7—7+ 2 (Apn + *Bpy)
8 (Gam
+§’7¥ (A1 spn — Bispn)
r
G

am .
+ 2 (Agpn + I Bopn). (5.12)

While the Newtonian, 1PN, and 2PN terms are modified
from the GR equations of motion, the 1.5PN terms, caused

— st -ou e f - (w4
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G 1 .
am) Kim _ — Gamriiixkgm) }, (5.10d)
r 4
aI71> kimn _ _—_ (3 _ 1017)Gamrﬁ”x(“5m”>
r 0
(5.10e)

by dipole radiation reaction, are entirely new. They will
cause the introduction of more new terms in the waveform,
arising from the two-index EW moment (at 1.5PN order)
and the three-index EW moment (at 2PN order). We hold
off on presenting the final results until Sec. VIIL.

VI. RADIATION-ZONE INTEGRALS

So far, our calculation of the gravitational waveform
has only considered the contribution from the near zone.
We must also calculate the contribution from the radi-
ation_zone. To do so, we will need to evaluate (2.24a)
for h", dropping all terms which fall off faster than
1/R.

The first step is to derive an expression for the source 7'/
in the radiation zone. Since there are no compact sources at
R > R, 7 is composed purely of field terms. The fields

hOO K =h" Bi=h" and U = ¢ — 1 themselves
can be found by summing near-zone and radiation-zone
contributions.

A. Radiation-zone fields: Near-zone contributions

The near-zone contributions can be found using (2.17a)
and (2.17b). Recall that the Epstein- Wagoner construction
(2.21) is a special case of (2.17a) for A" in the far-away
zone. Now we want expressions for all of the fields at
arbitrary R.

We need to evaluate the various moments defined in
(2.18a) and (2.18b). We begin with the moments of 7%°. We
use the expression in (4.2), but we only need it to O(pe).
[Actually, all the sources need to be evaluated to O(pe/?),
but only 7% has terms at that order.] The integration over the
field terms uses the same strategies we used in calculating
the EW moments. We find

1 1 G
M~ G(1 —C)ZmA{l +1if —EZM}
A

B#A AB

=G(1-¢)(m+E), (6.1)
where ayp=1—¢+ (1 —2s4)(1 —2sp). In the second
step, we rewrite the moment in terms of m =) ,my, the
total mass of the system, and E, the (lowest order)
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conserved energy. [See MW (6.4).] The rest of the moments
M2 can be renamed Z9, following the definition in
MW (3.7a). We have

MO = Ti

‘ 1 I—G
=G(1 —C)ZmAxg{l +§vf‘ —ZZ(ZABmB},
A

B#A T'AB

(6.2)

which, to the required order, is equal to zero in the CM
frame. (This is the argument used earlier to reduce the order
of > ,muxi, in surface integrals.) Finally, the next few
integrals are only needed to lowest order,

(1- C)ZmAxij,
A
G(1— ZmAx”k.

The 7% moments require the source to O(pe’/?), (4.45).
We find

. Gaspm
0i __ AB'*B
M”" =G(1—-¢ E mA{vA{1+2vA—§E 7}

B#A 'AB

GaABmB A A~
2 . (Vs - figp) o
B#A AB

MY =TI =G (6.3a)

MOOijk = Z'ijk (63b)

(6.4)

This is proportional to the total momentum [see MW
(6.5)], and we can set it equal to zero. The other moments
are only needed to lowest order,

M =G(1-¢ ZmAvAxA_E IV —€lieg®),  (6.5)

PHYSICAL REVIEW D 89, 084014 (2014)

MOijk 1_ E mAUAx — Z’Uk ikajaj)’

(6.5b)

where €/¥ is the totally antisymmetric Levi-Civita symbol
('3 = +1). The current moments J'¢ are defined in
MW (3.7b) as

JQ zei“b//\/erbx“Qd3x. (6.6)

Note that, unlike the exact equivalence of M%°C and 79,
the equality between M°C, 72, and 72! is valid only to
lowest order in the post-Newtonian expansion.

The 7/ moments require the source to O(pe), (4.53). We
need them only to leading order,

G
Mii = G(l _ ZmA{UA ZZ appip AXB}

B#A r'AB
1

— Ejij’ (6.7a)

. Ga,gm
ijk _ ij k AB BAlj k
M G(1 E mA{vAxA 25 ———— T Xy

B#A r'AB

_ ZFijk _% ilka 77alj)
= 6I SeH TV, (6.7b)
Here again, equality between M2, 79, and (potentially)
J 2! only holds to the lowest post-Newtonian order.

Finally, the scalar moments require 7, to O(pe). Taken
from MW (4.9¢) and converted to the p* density, it is
given by

T, = p*GC[(l —2s) —%(1 —25)02 = G(1 = &)(1 = 25)U + G¢(1 — 25 — 4a,)U, — 4G, (1 — 25)U

Lo copn )
+5- G = O)(VU,). (68)
The lowest order moment is
1
M, = Ga;mA{U ~25,) 3 (12553
=S g)(1 = 20,) 4 (1 = 25y + )1 = 25 + 241 = 25,)(1 = 25)]
B#A AB
= Gg(ms + ms1>7 (69)

where we have defined a “scalar mass”
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mg = ZmA(l - 25.4)
A

PHYSICAL REVIEW D 89, 084014 (2014)
(6.10)

weighted by sensitivity factors. We also let m; be the rest of M (when calculated to 1PN order). The rest of the M can be
renamed Z2, following MW (3.7d). To the orders we need, they are

) 1
- GmeAx;{u —2s,) — 5 (1 —2s4)173
—Z GmB

B#A Y'AB

V=70 = GmeA (1 —2s5,)x7, (6.11b)

MY* =Tk = GCZmA 1—2s,)x5". (6.11c)

All of these moments can be plugged back into (2.17a) and
(2.17b) to produce the radiation-zone fields, as calculated
from near-zone integrals,

. E _(TV
Ny = 1% = 4G(1 —5)%+2<7> “
U]

2<Iijk>
-= TR (6.12a)
3\ R ijk
i __ 70
K/\/_ %
j'ij_eija a 2 i‘ijk_zeika aj
) A
J Jk
(6.12b)
ij Fijk _ pn(ilka 77alj)
i = (T
3 R P
(6.12¢)
ms+msl Ils va]
Uy =2G¢ s Tl o2 il
vmaatioa() + (),
1 /T
- = 6.12d
() 6120

[(1=0)(1—254) + (1 =254 +4a,)(1 —2s5) + 24, (1 —25,4)(1 _ZSB)]}’

o= %N {/ S (r —2s)A(s, R) ds+/ f*(r —2s)B(s,R)ds

(6.11a)

|

It is worth pointing out the relative post-Newtonian orders
of the terms in these expressions. The lowest order terms,
which will serve as the reference, are those involving m and
my. Relative to those, the other terms in N, enter at 1PN
(those contammg E and Z9) and 1.5PN (Z"/¥) order. The
first term in K, i~ and BX/ is 1PN, while the second in each is
1.5PN beyond the leading order. For W, the my, piece is
IPN. The dipole term has contributions at both 0.5PN and
1.5PN order. The quadrupole piece is relative 1PN order,
and the octupole is 1.5PN.

B. Radiation-zone fields: Radiation-zone contributions

We must also calculate the radiation-zone contributions
to the radiation-zone fields using (2.24a) and (2.24b). In the
radiation zone, there are no compact sources, so 7** and 7,
are made up purely of field terms. For 7#¥, we can use
MW (3.4) and (3.5), which write A* and A§” generically in
terms of N, K, BY, B, and V. For these, we substitute
(6.12a)—(6.124d).

We start with 2. To lowest order, we find

- Le-gpts Loi-o%. 61
V== - —&)—. (6.
87 R* R*

This source has the generic form
1) o
(i, N, 6.14
() =1 (6.14)

with [ = 0 and n = 4. If we restrict ourselves to sources of
this form, (2.24a) can be rewritten as

(6.15)
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where
R+s P
A(s,R) = / ’f]) dp., (6.16a)
R P
R+s P
B(s,R) = / ln(i) dp, (6.16b)
s p
and
R+2s 2s(R
g R+2s 2s(R+5) 6.17)
R Rp
In the / = O case, this is easy, and we find
00 m2 m2
New =he'yy =7G*(1 =07 25 = GL(1 =) o3
(6.18)

These terms are 1.5PN beyond the leading order term in
(6.12a). Since we kept no higher order terms in that

expression, we can also stop here. The total field N =

h* in the radiation zone is just the sum of (6.12a) and
(6.18). The second term in (6.18) is obviously new to
scalar-tensor theory. As we shall see, it turns out not to have
an impact on the final gravitational waves. Otherwise, N in
the radiation zone has exactly the same form as in GR,
modified only by the addition of the factors G(1 — {), both
explicitly and in the definitions of Z9.

It turns out that there are no relevant radiation-zone
contributions to K'; to the order we need, (6.12b) is the
complete expression in the radiation zone. To calculate
B’C"_ o We use

oo
=

2 2 1
21— 2™ L gre = (R — s
e G*(1-¢) TRy Z( C)R4] (N 0 )

(6.19)

We use the same method as for Ne_ s, except that here we
have two different (/, n) combinations, (2, 4) and (0, 4), and
thus two integrals (6.15) to evaluate. Doing so gives

ij il 2 2 i L oo ms g
Bl =hl =G (1-0) FNJ+G C(l—@)FNJ.

(6.20)

These terms are added to (6.12c) to produce the final
expression for BY. They enter at 1.5PN beyond the leading
order. Finally, for the scalar, we need 7, to lowest order. It is
given by

1 2w, 1 m?
P 2 (VU2 = —Gx(, — )
T en <3+2w0 >( ) =570~ 0%

6.21)

PHYSICAL REVIEW D 89, 084014 (2014)
For a source of the form (6.14), (2.24b) reduces to

2. R
Ue_y = §N<L> (/ f(z—2s5)A(s,R)ds
0

n / * f(z—29)B(s. R)ds), (6.22)
R

with A(s,R) and B(s,R) defined just as in (6.16a)
and (6.16b). The source has (I,m) = (4,0), and the
result is

m;
Ve p = —2G* (4 =) ek (6.23)

which adds to W, (6.12d), at 1.5PN order.

C. Radiation-zone contributions to the GWs

Now that we have the fields in the radiation
zone, we need to evaluate the gravitational waveform.
Fundamentally, this just means continuing the procedure
for calculating 4" in Sec. VI B to higher order. While doing
so, we drop non-TT terms and terms that drop off faster
than 1/R.

For simplicity, we will treat contributions from A" and
Ay separately. We will also do the calculation order by
order. We must be careful doing so: The expressions for A/
and Ay in MW are sorted by post-Newtonian order in the
near zone. In the radiation zone, the ordering can be slightly
different. For instance, while K’ is at 0.5PN order relative to
N in the near zone, it is at 1PN relative order in the radiation
zone. Furthermore, time derivatives in the radiation zone do
not increase the post-Newtonian order relative to spatial
derivatives.

The lowest order term in A is proportional to NN/,
(Now that we are dealing with GWs, we can ignore
the non-TT Y term.) We first plug in the OPN mono-
pole pieces of N. As seen in Sec. VI B, the resulting 4"
scales like 1/R? and, as such, dies off in the far-away
zone. At the next order, NN+ generates cross terms
between the OPN piece of N and the 1PN pieces
(including both the energy E and the mass quadrupole Z%).
Other terms which contribute at the same order are
NUK), NBJ), and NB, all featuring the OPN piece
of N and the 1PN piece of the other field. The last term
is found in (4.4c) of [41]; its two time derivatives place it
at higher order in the near-zone counting scheme.

Our expressions for the fields have several unevaluated
spatial derivatives; the expression for AY adds more.
When we evaluate them, we must remember that the
moments are functions of retarded time, 7—=1¢— R,
so that, for instance, 9.2 = —Z°N°. Completing all
the derivatives and converting products of N’ to STF
products, we find
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Here we have ignored 6 terms, which are non-TT.
Careful examination shows that we also should ignore
terms proportional to N/, which will only produce
non-TT terms in h”. This eliminates the term with
monopole-monopole coupling (i.e., the one proportional
to mE) and leaves only those with monopole-mass
quadrupole couplings. In the end, we have to evaluate
(6.15) for [=4,n=3-6; [ =2,n=3-6; and [ =0,
n =2-4. Adding everything up, changing from N
back to NL, and discarding more non-TT terms which
arise along the way, we find

4G(1—Om
R

i

4.
7v Zi(z—s)l .
[12 —|—A ds TY(t—s) n2R+s

(6.25)

We have made a slight change of variable from (6.15):
s — s/2. This is done to match the first term in WW
(5.8); we see that the two expressions are equal except
for a factor G?(1 —¢)? in the scalar-tensor case. [Recall
that the moment Z" contains the factor G(1 —¢).] Later,
we will also bring the first term under the integral, as in
|

|
WW, but for now we leave it separate. This is to
emphasize the difference in the two pieces: The first
relies on the instantaneous (but retarded) value of 7,
4
while the second requires a weighted integral of <I>’7 over
the entire past history of the source. It is the lowest order
“tail” term.

The expression (6.25) turns out to be 1.5PN order
beyond the Newtonian quadrupole. Therefore, we only
need to go one-half order higher to find the 2PN wave-
form. In this case, the source will include contributions
from the same four terms in A’/ as before, but they will now
be cross terms between the OPN piece of N and the 1.5PN
pieces of N, K', B, and B"/. Note that all of the 1.5PN
pieces coming from radiation-zone integrals (those propor-
tional to m? or m2) will generate only non-TT terms in /4",
Similarly, the term NN-'N*/ in A¥ should contribute at this
order, but any piece of h' it generates will also be non-TT.
In the end, the relevant piece of the source will contain
only monopole-mass octupole and monopole-current
quadrupole couplings. After a great deal of algebra, we
find it to be

1 m Zabe i—abc :Z'abc 10 j:abc 1 g’)abc ( >
i .. G(1-8) = | (35 35 15 = 2 Niabet
‘ el QI#K F PR TPE IR SR)
o _— @
257ebli 57l g5kl joabliN o
Y s = _2 _ N)ab)
3R 3R 9 R 9 R
107 1070 870 20
e o V) BV
+< 7R 7R 7R 3 )
jcg jca Sjca . ) )
8 gy °Y N(ab(z) J)bc
+< P8 e IR ) €
8jCi SjCl 16‘76 c(i jlac Rra
+<§R3 st R +33<>e1> N}+--~ (6.26)

We must evaluate (6.15) for [ =5,n =3-7;,1=3,n = 3-7,

and [ = 1, n = 2-5. The final result for the GWs is
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These terms are again identical to the GR results [the remainder of WW (5.8)], except for a factor of G2(1 — )2

Now we examine the waveform produced by the Ay i piece of 7'/. We will mainly be concerned with the term in Ay which
is proportional to W'/, The lowest order contribution from this term involves the OPN monopole pieces of W. The
resulting 4" was calculated in Sec. VI B and shown to scale like 1/R?, making it irrelevant in the far-away zone. Because
W contains nonvanishing dipole terms, the next highest order source is only 0.5PN beyond the leading order. It consists of
monopole-dipole couplings,

76 ¢ _ja 278 27l agN
G(1— 6 6=+ 2 )Nl o (222 4 28 4 TR 6.28
e +4 ( )RzK &R ) +<5R3+5R2+5R> * 6:28)

However, each piece of this source will generate a term in i proportional to N, N/, or 5, all of which are non-TT. Moving
on to the next order, there are three types of terms in 7//: a monopole-monopole coupling (the cross term of m;, and m;),
monopole-quadrupole couplings, and dipole-dipole couplings. The first generates only non-TT terms in h. The second is
analogous to the monopole-quadrupole terms in A, while the third has no counterpart there. The total source at this order
(without non-TT terms) can be written as

y 1 gab o qeb g e
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(6.29)

This requires integrals with [ = 4,n = 2-6; 1 = 2,n = 2-6; and [ = 0, n = 2—-6. Many of these can be reused from earlier
calculations; however, some are brand new. The final expression for the GWs is

- 4G(1=0)m 1 i A1 —=C (1 [t o) 1eginn 1
ij _ s _ ij 2 i (NI (N g = (i) (i)
h R 1215 —I—R z 6/_OOIS(T )Z4(7)dx 6IS Iy — ISI "7l (6.30)

(Recall that the scalar dipole moment Z'. includes a factor of ¢, which will cancel the 1/¢ in front of the second term.) This is
an entirely new contribution to the GWs at 1.5PN order, featuring a new type of hereditary integral without a logarithmic
factor. We will discuss it further in Sec. VII B.

At the next order, the WU W+ term in Aj i begins to contribute to the source. However, like the NN*'N/ piece of A, it
produces only non-TT terms in h' and can be ignored. In the WU~ term, we have monopole-dipole couplings (OPN
monopole—1.5PN dipole and 1PN monopole—0.5PN dipole), a triple-monopole coupling (from W._ /), monopole-octupole
couplings, and dipole-quadrupole couplings. The first and second of these produce only non-TT terms in the final
waveform. The other two types of terms give
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This requires integrals with [ =5,n =2-7; [ =3,n =2-7; and [ = 1,n = 2-7. The final answer is
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This is a new piece of the waveform at 2PN order.

VII. RESULTS

A. Final tensor waveform

To find the final tensor waveform, we add the contributions from the near and radiation zones. The near-zone contribution
is found by inserting the differentiated two-body Epstein-Wagoner moments into (2.21). For the radiation-zone pieces
(6.25), (6.27), (6.30), and (6.32), we bring the instantaneous terms inside the integrals. Then we write the moments Z¢, 7€,
72, and their derivatives explicitly in terms of relative two-body variables. Finally, we sum the four pieces to find the
complete radiation-zone contribution.
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The final tensor waveform can be written as a post-Newtonian expansion,
i1 = 2900 bii | piagii 1 pgil 4 P2QY. 4 PR2QY 1 P20+ PO+ Oy, (D)
o R N N N -\ €’")rr .

where the superscripts on P denote the PN order of each term. For clarity, we have separated out the 1.5PN and 2PN
near-zone terms from the radiation-zone terms at the same order. We find
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B. Discussion

We can check that the expressions above reduce to the
correct GR result, WW (6.11), by taking a =1 and
(=8 =7=p; =056 =j;=0. The expressions have
been arranged to facilitate this comparison. (For a complete
comparison, we also set G = 1.)

At Newtonian order, the only difference from GR is the
presence of a multiplying the total mass m and the total
factor of 1 — { out front. The same is true at 0.5PN order.
More substantial differences begin at 1PN order, with the
appearance of the parameters 7 and f3;. The quantities S,
and S_ show up at 1.5PN order, with §; and 7; appearing at
2PN order. Although the expressions are very complicated,
especially at 1.5PN order and above, they still depend only
on this relatively small set of parameters. The parameter set
is also identical to that needed to describe the equations of
motion; there are no additional dependences on the
coupling w(¢) or the sensitivities of the bodies.

Most of the terms have the same form as in general
relativity, albeit with highly modified coefficients. The first
exception occurs at 1.5PN order. For Iy, to contribute to
the GWs at this order, one of four palnngs must exist: a
1.5PN term in the two-body EW moment with the OPN
equations of motion, a 1PN term with 0.5PN equations of
motion, a 0.5PN term with 1PN equations of motion, or a
OPN term with 1.5PN equations of motion. In general
relativity, I}, contains no terms at 0.5PN and 1.5PN order.
There are also no 0.5PN or 1.5 PN terms in the equations of
motion, so Iy, does not contribute to the waves at 1.5PN
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order. (Only the three- and five-index moments contribute.)
However, in scalar-tensor theory, E]W contains a 1.5PN
contribution arising from the surface moment. This is a
consequence of the O(pe®/?) term in 7%/, which scales like
three time derivatives of the scalar dipole moment Z:. In
addition, dipole radiation reaction introduces 1.5PN terms
in the equations of motion. Together, both of these effects
produce a new 1.5PN term in the final gravitational
waveform. This is the last term in (7.2d); note how it does
not depend on the direction to the source N. [If one
constructs the waveform using (2.19a) instead of (2.21),
the same term comes solely from the O(pes/ 2) piece of 7/.]

The scalar dipole moment also affects the contribution
from IEJW, producing terms in the final waveform at 2PN
order which were not present in GR. They can be seen in
(7.2f) as those which depend only on one power of N. Here,
the scalar dipole enters in three ways: First, the surface
moment produces a 2PN term, again a consequence of Z'. in
7'/, Second, as discussed in Sec. V, the radiation of linear
momentum at 1.5PN order affects the conversion to relative
coordinates, generating another 2PN piece in the two-body
moment. Finally, the 1.5PN piece of the equations of
motion enters time derivatives of the lowest order
(0.5PN) piece of IiJ%,.

Other interesting deV1ati0ns from general relativity occur
in (7.2e) and (7.2g). The radiation-zone integrals produce
two types of terms, those which depend on the instanta-
neous (but retarded) values of the source moments and
those which depend on the integrated history of the source
up until the waves are emitted. The latter terms are known
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as hereditary terms. (The distinction is best seen in Sec. VI
C, since the final results have the instantaneous terms
brought inside the integrals.) In GR, all hereditary terms up
to 2PN order are so-called “tail integrals,” with logarithmic
factors in their integrands. Tails result from the scattering
of the waves off the background curvature. They arise from
the final term in (2.9). If moved to the left-hand side of
the reduced wave equation, it represents a modification
of the flat-spacetime wave operator. The tails thus ensure
that the waves propagate outward on the true null cones of
the background spacetime, rather than the null cones of
the fictitious flat spacetime used to formulate the relaxed
field equations. At 1.5PN order, the tail term arises from
a coupling of the monopole and mass quadrupole.
The instantaneous terms at that order have the same
coupling. At 2PN order, both tail and instantaneous terms
feature monopole-mass octupole and monopole-current
quadrupole couplings.

Scalar-tensor theory adds no new tail integrals to the
ones already present in general relativity. While we do find
a new monopole-mass quadrupole coupling at 1.5PN order,
as well as a new monopole-mass octupole coupling at 2PN
order (this time involving the quantities m,, Zy, and k),
these terms are all instantaneous. Instead, we find an
entirely different type of hereditary term at 1.5PN and
2PN orders, one which does not have a logarithmic factor in
the integrand. Terms like these are sourced by the energy of
the gravitational waves themselves. In general relativity, the
first one appears at 2.5PN order, with a mass quadrupole-
mass quadrupole coupling. It contains the lowest order
piece of the nonlinear gravitational-wave memory, or
Christodoulou memory [54-57]. Specifically, the multipli-
cation of the two quadrupole moments leads to a contri-
bution at zero frequency (a “DC” term), in addition to the
usual oscillatory terms. This DC term grows secularly
throughout the inspiral of the system and causes a perma-
nent change in a detector, a “memory” of the passing GW
signal. While the memory term formally enters the wave-
form at 2.5PN order, its effective post-Newtonian order is
reduced by the integration over the entire history of the
system. In fact, because the memory integrand is approx-
imately multiplied by the (2.5PN) radiation-reaction time
scale, the lowest order memory term effectively enters the
GR waveform at OPN order. With such a strong signal,
it may be possible to detect the memory effect with
gravitational-wave detectors [57,58].

In scalar-tensor theory, the 1.5PN nonlogarithmic inte-
gral contains a new, lower order memory effect with a mass
dipole-mass dipole coupling. Because the lowest order
radiation reaction is now also at 1.5PN order, this term
should effectively enter the waveform at OPN order, with
the quadrupole-quadrupole memory at higher order.
(The exact PN ordering of the memory terms will depend
on the specifics of the scalar-tensor theory and the compact
object sensitivities.) Scalar-tensor theory also produces
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instantaneous dipole-dipole terms at 1.5PN order. Like
the hereditary term, they contain DC components; however,
since they are not integrated over the binary’s history, their
effect remains at 1.5PN order. They are equivalent to the
nonhereditary, zero-frequency terms Arun et al. discovered
at 2.5PN order in general relativity [61].

By contrast, the new 2PN hereditary term does not
contain a memory effect. While it has the same basic form
as the 1.5PN term (i.e., no logarithm in the integrand), the
beating between the mass dipole and mass quadrupole
produces no DC component. The same is true for the new
instantaneous terms with this coupling. This result is
equivalent to the lack of a 0.5PN memory effect (appearing
formally at 3PN order) in general relativity: In that case, the
beating is between the mass quadrupole and mass octupole,
resulting in no zero-frequency terms [6].

It is instructive to examine the waveform in a few special
cases. For binary black holes, s; = s, = 1/2, and all sensi-
tivity derivatives vanish. This means thata = 1 — ¢, and all of
the rest of our scalar-tensor parameters (7, 3;, 8;, 7:» S, and
S_) vanish. The 2.5PN equations of motion derived in MW
then have the exact same form as in general relativity, except
for a factor 1 — ¢ multiplying each instance of the total mass
m. That is, the equations of motion for a binary with masses
(my, m,) in general relativity are identical to those for a binary
with rescaled masses (m;/(1—¢),m,/(1 —¢)) in scalar-
tensor theory. Since the masses of the bodies are defined by
their Keplerian motion, this rescaling is unmeasurable.
Therefore, to 2.5PN order, the motion of two black holes
in scalar-tensor theory is indistinguishable from the motion in
GR. MW predicted that the gravitational waves produced by
binary black holes would be similarly indistinguishable from
those produced in GR. We see here that the conjecture is
correct, at least to 2PN order in the tensor gravitational waves.

As discussed in MW, this result is not surprising. Hawking
originally showed that stationary, asymptotically flat black
holes in vacuum are identical in both theories [62], leading to
conjectures that the same might be true for black hole binaries.
Still, this work shows only that the theories are indistinguish-
able to 2.5PN order in the dynamics and 2PN order in the
radiation. It remains for future work to investigate whether
indistinguishability holds to all post-Newtonian orders. (See
MW for precise details of a conjecture on this point.) There is
good evidence thatitdoes: Yunes et al. [27] proved it, but only
to lowest order in the mass ratio. Healy et al. [63] used
numerical relativity simulations to show that any initial scalar
field in the system is quickly radiated away, after which the
holes behave identically to the general relativity case. Possible
caveats which may break indistinguishability include the
introduction of a potential for the scalar field or a time-varying
scalar field at infinity [64,65]. It would be interesting to
investigate the dynamics and radiation in such scenarios.

For a system containing one neutron star (say, body 1) and
one black hole (body 2), s, = 1/2,55 =0, and 5,” = 0.
Then ¢ = 1 — £, and all other parameters vanish except
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& ZIL_C(I—Zsl)zEQ (7.3)

and

S, =8_= %a_l/z(l —2s1). (7.4)

For the opposite choice of bodies, S_ has the opposite
sign. Notably, &% =82 =38.S_=Q/(4{). Through
IPN order, only @, 7 =0, and f; =0 appear in the
expressions for the waves, and so the waves are identical
to those in GR (after mass rescaling). At 1.5PN order,
deviations start to occur. However, the deviations are
always parametrized by &;, (S%, ¢(S?, or (S.S..
Therefore, through 2PN order, the tensor waveform for
a mixed black hole-neutron star system differs from the
general relativity waveform only by the single parameter
Q. This is again equivalent to a result found by MW for
the equations of motion. Because Q contains no infor-
mation on the derivatives of the coupling function w(¢)
(i.e., the parameters 4; and 4,), we cannot, at 2PN order,
formally distinguish the waveform produced in the Brans-
Dicke theory [w(¢p) = wy] from that produced in a
general scalar-tensor theory of the type we consider.
The only difference will be that for a given neutron star
of a certain central density and total number of baryons,
different scalar-tensor theories will produce different
results for the neutron star mass m; and sensitivity s;.
One can imagine using gravitational waves to measure
masses and sensitivities for a wide variety of sources
and then producing a mass-sensitivity relation, much like
the neutron-star mass-radius relations used to study the
nuclear equation of state. This relation could then
be used to rule out various models of the coupling
function w(¢).

Before we can completely understand what the meas-
urement of gravitational waves from a compact binary
will tell us about scalar-tensor theories of gravity, we
must first derive the gravitational-wave phasing. To do
so, we will need the rate at which the binary loses energy
to gravitational waves, both tensor and scalar. The next
paper in our series will derive the scalar waves. The
process is identical to that presented in this paper, with
two complications. First, we cannot eliminate non-TT
terms in the scalar case; indeed, for a scalar, TT is not
defined. This will lead to more surviving terms and a
need for care when reusing parts of this analysis.
Second, and more daunting, the scalar “EW moments”
defined by (2.19b) begin with a monopole moment,
which has relative order -1PN compared to the tensor
two-index moment. The next piece, a dipole moment, has
order -0.5PN. Therefore, to obtain the 2PN scalar wave-
form, we will need to compute the source 7,(z,x’) to
O(pe?), or 3PN order.
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APPENDIX A: POTENTIALS

Here we present a list of potentials which appear in MW
and this paper. All potentials are defined in terms of the p*
density. The fundamental integrals are defined in (3.2) and
(3.202)—(3.20f). Some of the potentials involve generaliza-
tions of these fundamental integrals, like X, or X/, which
are defined in the obvious ways.

U=3x(1), U;=3(1),
Vi=Zxi(1), ’/—2”(1),
o, =X(1), = (v?),
®,=Z(U). P =ZXV).
(I)Zx EE(US)’ q)ﬁs ZEX(US)
X=x(1), X,=X,(1),
Vs T(U), st =3(U,),
DL = X(V7), Y=7Y(1),
X' =Xi(1), X, = X(1),
X, =X(U), Xy, = X(Uy),
X5 =X,(U). X5, =X,(Uy).
y _ 1
P{=PUUY).  Py=Pj=— U
y o ) 1
Py = P(USUY), Py =Py =& —S UL,
G15P(02)’ GlsEP(Ug)’
GZ = P(UU)? GZS = P(UUS)7
G, = —P(U*VH), Gy, = —P(U}VY),
G, = P(VHVI),  Gs=-P(VUY),
Ge=P(UUDY), Gy = P(U®Y),
3
Gy = P(UMVH) + 7 P(U v),
H=P(UPY), H,=PUPY),
s=P(UYPY),  H:=PUPY). (A1)
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APPENDIX B: PRODUCTS OF UNIT VECTORS

Both (4.16) and (6.15) rely on the use of symmetric,
trace-free (STF) products of unit vectors. They can be
found using the formula

2] (20—2p— 1)t

R p—DI

n<L> = (—l)pw[nL 2P5P "— Sym(q)]
Zp:() I

(BI)

Angle braces on indices define a tensor as being STF.
Here we use the convention that capital letters denote the
dimensionality of products: There are / indices on the STF
tensor, p Kronecker deltas (with 2p total indices among
them), and / — 2p unit vectors. We use [//2] to denote the
largest integer less than or equal to [//2. The expression
sym(gq) stands for all the other distinct terms which result
from permuting the indices on #~>”§”. There are a total of
q=1/[(1—-2p)!(2p)"] terms, including the one shown.
The STF tensors we need are

At — pii _ L s,

(B2a)
Aliik) — piik _ % (A'S* + pl stk + ki), (B2b)
plikl) — pikl _ % (A + sym(6)]
+ % (876K + 5k + 57157%), (B2c)
plijkim) _ pijkim _ é [Alksm 4 sym(10)]
n 61—3 [Ai§7 s + sym(15)], (B2d)
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ﬁ(ijklmn} — pijkimn

|

T [Atkgmn 4 sym(15)]
|

+ 5 [AlsM s 4 sym(45)]

[617K 5 4 sym(15)]. (B2e)

693

These expressions can be used to convert back and forth
between STF and non-STF products as needed.

Many times in this work we need to evaluate averages of
unit tensors over a spherical surface. Defining

() =4, [ ve.pae. (®3)
it can be shown that
((a"))) = 0. (B4)
Converting to non-STF tensors, we find
() = G2 +omlg). @)

where ¢ = (I — 1)!!, for [ even. Specifically, we need the
following:

(B6a)
((AUklY) = s (876K + 5*sI! + 5157F). (B6b)

For [ odd, ((At)) = 0.
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