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I. INTRODUCTION

Quantum field theory in curved spacetimes [1–4] is the
natural framework for the study of quantum phenomena in
situations where the gravitation itself can be treated classi-
cally. Of special interest is quantum field theory in de Sitter
spacetime. In fact, de Sitter spacetime plays a central role in
most of inflationary models of the early Universe [5–7],
where the energydensity andpressure of the inflaton field act
approximately as a cosmological constant. Moreover, the
amplification of quantum fluctuation during an inflationary
period with an approximately de Sitter background metric,
gives a natural mechanism for generating nearly scale-
invariant spectrum of primordial inhomogeneities, which
can successfully explain the observed cosmic microwave
background anisotropies [8,9]. De Sitter spacetime is also
potentially important for understanding the final fate of the
Universe if the current acceleratedexpansion is due to a small
cosmological constant, which nowadays is a possibility that
is compatible with observations [9–12]. On the other hand,
previous studies of interacting quantum scalar fields in de
Sitter spacetime have revealed that the standard perturbative
expansion gives rise to corrections that secularly grow with
time and/or infrared divergences [13–20], signaling a pos-
sible deficiency of the perturbative approach. This has
motivated several authors to consider alternative techniques
(see for instance [18–27]) and in particular, to use non-
perturbative resummation schemes [28–34].
In the above situations, it is important to study not only

test fields evolving on a fixed background, but also to take
into account the backreaction of the quantum fields on the
dynamics of the spacetime geometry. The backreaction
problem has been explored by a number of authors in the
context of semiclassical gravity (see for instance [35–39]),
where the dynamics of the classical metric is governed by
the so-called semiclasical Einstein equations (SEE).

The SEE are a generalization of the Einstein equations
that contain as a source the expectation value of the
energy-momentum tensor of the quantum matter fields,
hTμνi [1–4]. Self-consistent de Sitter solutions have been
found for the case of free quantum fields [40–44]. The
influence of the initial state of the quantum field on the
semiclassical solutions has been studied in Refs. [45,46].
Since hTμνi is formally a divergent quantity, in order to

address the backreaction problem it is necessary to analyze
the renormalization process. For free and interacting
quantum fields in the one-loop approximation, there are
well-known covariant renormalization methods [1–4]. Our
main goal in this work is to improve the current under-
standing of these methods in the case in which the quantum
effects are taken into account nonperturbatively. For this,
we consider a quantum self-interacting scalar field in the
Hartree approximation, which corresponds to the simplest
nonperturbative truncation to the two-particle irreducible
effective action (2PI EA), introduced by Cornwall et al.
[47]. The Hartree (or Gaussian) approximation involves the
resummation of a particular type of Feynman diagrams
which are called superdaisy (see for instance [48]) to an
infinite perturbative order. This approximation can also be
introduced by means of a variational principle [49,50].
However, the use of the 2PI EA is advantageous for at least
two reasons. First, it provides a framework for resumming
classes of diagrams that can be systematically improved.
Second, for any truncation of the EA, it implies certain
consistency relations between different counterterms that
allow a renormalization procedure that is consistent with
the standard perturbative (loop-by-loop) renormalization
of the bare coupling constants [51]. The latter is crucial
for the consistent renormalization procedure developed in
Ref. [51] for Minkowski spacetime, which in [34] (from
now on paper I), using the same model considered here, we
have extended to general curved background metrics.
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The renormalization problem of the SEE in the Hartree
approximation has been considered previously in [32,52].
However, it has not been analyzed using the consistent
renormalization procedure [51] that we extended to curved
spacetimes in paper I in order to renormalize the field and
gap equations. Our focus in this paper is to prove that the
same set of renormalized parameters leads to SEE that can
be made finite, and independent on the arbitrary scale
introduced by the regularization scheme (which for the
field and gap equations was explicitly shown in paper I), by
suitable renormalizations of the bare gravitational
constants.
We would like to stress that in this article (and in paper I)

we consider the Hartree approximation, despite its limi-
tations, with the main purpose of pushing forward a
rigorous and critical analysis of the resummation pro-
cedure, but having in mind the necessity of an improvement
of the approximation. Indeed, the Hartree approximation
has its drawbacks. For instance, it is unclear whether there
are other diagrams beyond the resummed superdaisy ones
that give comparable contributions. This is so even in
Minkowski spacetime, where it is known that for a scalar
field at finite temperature the Hartree approximation
predicts a first-order phase transition, while the inclusion
of additional diagrams changes this prediction, leading
to a transition of second order (see for instance [53]).
Analogously, as it has been emphasized in paper I, in de
Sitter space it is unknown whether the inclusion of other
diagrams can change the results about the existence of a
broken phase solution for the model we are considering.
More relevantly, even though the regularization procedure
has to do with the UV region, in paper I we have shown that
the results for the effective potential crucially depend on the
renormalization process, a point that has been overlooked
in the previous literature. In summary, paper I and the
present paper contain a detailed analysis of the consistent
renormalization procedure in curved spacetimes. The
particular applications to de Sitter spacetime should be
further scrutinized in order to check whether they are
artifacts of the Hartree approximation or not.
The paper is organized as follows. In Sec. II we introduce

the 2PI EA in curved spacetimes. In Sec. III we present our
model and summarize themain relevant results of paper I for
the renormalization of the mass and coupling constant of the
field. The reader acquainted with paper I may skip this
section. In Sec. IV we show that the same counterterms that
make finite the field and gap equations can also be used to
absorb the nongeometric divergences in the SEE, extending
the consistent renormalization procedure to the gravitational
sector. The geometric divergences can be absorbed into the
usual gravitational counterterms. In Sec. V we analyze the
field, gap and SEE in de Sitter spacetimes. The high
symmetry of these spacetimes allows us to compute
explicitly the two point function and the energy-momentum
tensor, to end with a set of algebraic equations that

determine self-consistently the mean value of the field
and the de Sitter curvature. We will present some numerical
solutions to these equations. In Sec. VI we include our
conclusions. Throughout the paper we set c ¼ ℏ ¼ 1 and
adopt the mostly plus sign convention.

II. THE 2PI EFFECTIVE ACTION

A detailed description to the 2PI EA formalism can be
found in several papers and textbooks, such as [47,54,55].
In this section, in order to make this work as self-contained
as possible and to set the notation, we briefly summarize
the main relevant aspects of the formalism applied to a self-
interacting scalar field ϕ in a general curved spacetime.
The 2PI generating functional can be written as [51]

Γ2PI½ϕ0; G; gμν� ¼ S0½ϕ0; gμν� þ
i
2
Tr lnðG−1Þ

þ i
2
TrðG−1

0 GÞ þ Γint½ϕ0; G; gμν�; (1)

where S0 is the quadratic part of the classical action S
without any counterterms,

iGab
0 ðx; x0Þ ¼ 1ffiffiffiffiffiffi−gp δ2S0½ϕ0; gμν�

δϕaðxÞδϕbðx0Þ
1ffiffiffiffiffiffiffi
−g0

p ; (2)

and

Γint½ϕ0; G; gμν� ¼ Sint½ϕ0; gμν� þ
1

2
Tr

�
δ2Sint
δϕ0δϕ0

G

�

þ Γ2½ϕ0; G; gμν�; (3)

where the functional Γ2 is −i times the sum of all two-
particle-irreducible vacuum-to-vacuum diagrams with lines
given by G and vertices obtained from the shifted action
SFint, which comes from expanding Sint½ϕ0 þ φ� and collect-
ing all terms higher than quadratic in the fluctuating field φ.
Here a; b are time branch indices (with index set fþ;−g in
the usual notation) corresponding to the ordering on the
contour in the “closed-time-path”(CTP) or Schwinger-
Keldysh [54] formalism.
The equations of motion for the field and propagator are

obtained by

δΓ2PI

δϕ0

����
ϕþ¼ϕ−¼ϕ;gμνþ ¼gμν− ¼gμν

¼ 0; (4a)

δΓ2PI

δG

����
ϕþ¼ϕ−¼ϕ;gμνþ ¼gμν− ¼gμν

¼ 0: (4b)

To arrive at the SEE we extremize the combination
Sg½gμν� þ Γ2PI½ϕ0; G; gμν� with respect to the metric,
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δðSg½gμν� þ Γ2PI½ϕ0; G; gμν�Þ
δgμν

����
ϕþ¼ϕ−¼ϕ;gμνþ ¼gμν− ¼gμν

¼ 0; (5)

where Sg is the gravitational action. As it is well known
[1–3], this equation is formally divergent, with the diver-
gences contained in the vacuum expectation value of the
energy-momentum tensor hTμνi, defined by

hTμνi ¼ −
2ffiffiffiffiffiffi−gp δΓ2PI½ϕ0; G; gμν�

δgμν

����
ϕþ¼ϕ−¼ϕ;gμνþ ¼gμν− ¼gμν

: (6)

It is also well known [1–3] that the renormalization
procedure requires the inclusion of terms quadratic in
the curvature in the gravitational action, so that

Sg ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p fκ−1B ðR − 2ΛBÞ − α1BR2

−α2BRμνRμν − α3BRμνρσRμνρσg; (7)

where Rμνρσ is the curvature tensor, Rμν ¼ Rρ
μρν, and

κB ¼ 8πGB
N , ΛB, αiB (i ¼ 1, 2, 3) are bare parameters

which are to be appropriately chosen to cancel the
divergences in hTμνi.

III. λϕ4 THEORY IN THE HARTREE
APPROXIMATION: RENORMALIZATION
OF THE FIELD AND GAP EQUATIONS

We consider a nonminimally coupled scalar field with
quartic self-coupling in a curved background with metric
gμν. The corresponding classical action reads

Sm½ϕ; gμν� ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ϕð−□þm2

B þ ξBRÞϕ

þ 1

4!
λBϕ

4

�
; (8)

where □ ¼ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp
gμν∂νÞ, g≡ detðgμνÞ. In the

Hartree approximation, which corresponds to the inclusion
of only the double-bubble diagram shown in Fig. 1, the 2PI
effective action is given by

Γ2PI½ϕ0; G; gμν� ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ϕ0ð−□þm2

B2 þ ξB2RÞϕ0 þ
1

4!
λB4ϕ

4
0

�
þ i
2
Tr lnðG−1Þ

−
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
−□þm2

B0 þ ξB0Rþ 1

2
λB2ϕ

2
0

�
Gðx; xÞ − λB0

8

Z
d4x

ffiffiffiffiffiffi
−g

p
G2ðx; xÞ; (9)

where, for the sake of simplicity, we drop the time branch
indices, since for the Hartree approximation it is known that
the CTP formalism gives the same equations of motion than
the usual in-out formalism [55].
Taking the variation with respect to ϕ0 and G we obtain

equations of motion for the mean field and the propagator:

�
−□þm2

B2 þ ξB2Rþ λB4
6

ϕ2
0 þ

λB2
2

½G�
�
ϕ0ðxÞ ¼ 0; (10)

�
−□þm2

B0 þ ξB0Rþ λB2
2

ϕ2
0 þ

λB0
2

½G�
�
Gðx; x0Þ

¼ −i
δðx − x0Þffiffiffiffiffiffiffi

−g0
p ; (11)

with ½G� the coincidence limit of the propagator Gðx; x0Þ.
It is important to note that here we are taking into

account the possibility of having different counterterms for
a given parameter of the classical action Eq. (8). These are
denoted using different subscripts in the bare parameters
that refer to the power of ϕ0 in the corresponding term of
the action. In the Hartree approximation, this point turns
out to be crucial for the implementation of the consistent
renormalization procedure described in [51] . Indeed, as

shown in [51] (see also Appendix A of paper I), there are
various possible n-point functions that can be obtained
from functionally differentiating Γ2PI½ϕ0; G; gμν� with
respect to ϕa and Gab, which in the exact theory must
satisfy certain consistency conditions. On the other hand,
for any truncation of the 2PI EA, the validity of such
consistency conditions is not guaranteed. However, one can
find a relation between the different counterterms by
imposing the consistency conditions at a given renormal-
ization point. Doing this, any possible deviation of the
consistency conditions is finite and under perturbative
control. In other words, had we not allowed for different
counterterms, the diagrams contributing to the consistency
conditions could contain perturbative divergent contribu-
tions which could not be absorbed anywhere.
In our case, the consistency conditions for the two- and

four-point functions, evaluated at ϕ0 ¼ 0, are given by

FIG. 1. 2PI “double-bubble” diagram.
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δ2Γint

δϕ1δϕ2

����
ϕ¼0

¼ 2
δΓint

δG12

����
ϕ¼0

; (12)

and

δ4Γ1PI½ϕ0�
δϕ1δϕ2δϕ3δϕ4

����
ϕ0¼0

¼ 2

�
δ2Γint

δG12δG34

����
Ḡ;ϕ0¼0

þpermsð2;3;4Þ
�

−
1

2

δ4Γint

δϕ1δϕ2δϕ3δϕ4

����
Ḡ;ϕ0¼0

; (13)

where

Γ1PI½ϕ0; gμν� ¼ Γ2PI½ϕ0; Ḡ½ϕ0�; gμν�: (14)

In what follows we consider two different parametriza-
tions of the bare couplings:

m2
Bi ¼ m2 þ δm2

i ¼ m2
R þ δ ~m2

i ði ¼ 0; 2Þ; (15a)

ξBi ¼ ξþ δξi ¼ ξR þ δ~ξi ði ¼ 0; 2Þ; (15b)

λBi ¼ λþ δλi ¼ λR þ δ~λi; ði ¼ 0; 2; 4Þ: (15c)

The first separation corresponds to the minimal subtraction
(MS) scheme (i.e., the counterterms δm2

i , δξi and δλj
(i ¼ 0, 2, j ¼ 0, 2, 4) contain only divergences and no
finite part), while in the second separation m2

R, ξR and λR
are chosen to be the renormalized parameters as defined
from the effective potential (see below).
By imposing the conditions (12) and (13), one can

obtain the following relation between the different counter-
terms [34]:

δm2
0 ¼ δm2

2 ≡ δm2; (16a)

δξ0 ¼ δξ2 ≡ δξ; (16b)

δλ0 ¼ δλ2; (16c)

δλ4 − 3δλ2 ¼ 2ðλ − λRÞ; (16d)

with

δ4Γ1PI½ϕ0�
δϕ1δϕ2δϕ3δϕ4

����
ϕ0¼0

¼ −λRδ12δ13δ14; (17)

where we used ϕi ≡ ϕ0ðxiÞ as a notational shorthand.
Recalling that the effective potential is proportional to
the effective action at a constant value of ϕ0, the renor-
malized self-interaction coupling λR can be also written as

λR ¼ d4Veff

dϕ4
0

����
0

: (18)

With the use of these relations, one can recast Eqs. (10)
and (11) as

�
−□þm2

ph þ ξRR −
1

3
λRϕ

2
0

�
ϕ0ðxÞ ¼ 0; (19)

ð−□þm2
ph þ ξRRÞG1ðx; x0Þ ¼ 0; (20)

where m2
ph is identified with the physical mass of the

fluctuations and satisfies a self-consistent equation (i.e., the
gap equation) that reads

m2
ph þ ξRR ¼ m2 þ δm2 þ ðξþ δξÞR

þ 1

2
ðλþ δλ2Þϕ2

0 þ
1

4
ðλþ δλ2Þ½G1�: (21)

A point that is worth emphasizing here is that these
relations cannot be imposed in an arbitrary spacetime
metric, since the renormalized parameters must be constant,
while the fourth derivative of 1PI EA in Eq. (17) might not.
However, in order to define the renormalized parameters,
one can choose a particular fixed background metric with
constant curvature invariants as the renormalization point at
which the consistency conditions are imposed. In paper I
we considered both Minkowski and de Sitter spacetimes.
Here, for the sake of generality, we will also consider both
renormalization points. Therefore, we define the renormal-
ized parameters as those derived from the effective poten-
tial and evaluated for a fixed de Sitter spacetime with
R ¼ R0,

M2
R ≡ d2Veff

dϕ2
0

����
ϕ0¼0;R¼R0

¼ M2
phðϕ0 ¼ 0; R ¼ R0Þ; (22a)

ξR ≡ d3Veff

dRdϕ2
0

����
ϕ0¼0;R¼R0

¼ dM2
ph

dR

����
ϕ0¼0;R¼R0

; (22b)

λR ≡ d4Veff

dϕ4
0

����
ϕ0¼0;R¼R0

¼ 3
d2M2

ph

dϕ2
0

����
ϕ0¼0;R¼R0

− 2λR; (22c)

where we are using the notation M2
R ¼ m2

R þ ξRR. In
particular, the limit R0 → 0 could be taken to recover the
usual renormalized parameters defined in Minkowski
spacetime.
In order to obtain the renormalized gap equation it is

useful to consider the adiabatic expansion of the propagator
at the coincidence limit:
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½G1� ¼
1

8π2

�
m2

ph

μ2

�ϵ=2X
j≥0

½Ωj�ðm2
phÞ1−jΓ

�
j − 1 −

ϵ

2

�

≡ 1

4π2ϵ

�
m2

ph þ
�
ξR −

1

6

�
R

�
þ 2TFðm2

ph; ξR; R; ~μÞ; (23)

where ϵ ¼ n − 4, ΓðxÞ is the Gamma function, and
the Schwinger-DeWitt coefficients ½Ωj� are scalars of
adiabatic order 2j built from the metric and its derivatives
and satisfy certain recurrence relations. In the second line,
we have used the explicit expressions for the coefficients
½Ω0� ¼ 1 and ½Ω1� ¼ −ðξR − 1=6ÞR, given in [56], we have
expanded for ϵ → 0 and we have redefined μ → ~μ to absorb
some constant terms, defining

TFðm2
ph; ξR; R; ~μÞ ¼

1

16π2

��
m2

ph þ
�
ξR −

1

6

�
R

�
ln

�
m2

ph

~μ2

�

þ
�
ξR −

1

6

�
R − 2Fðm2

ph; fRgÞ
�
;

(24)

where the function Fðm2
ph; fRgÞ contains the adiabatic

orders higher than two, is independent of ϵ and μ, and
satisfies the following properties:

Fðm2
ph; fRgÞjRμνρσ¼0 ¼ 0; (25a)

dFðm2
ph; fRgÞ

dm2
ph

����
Rμνρσ¼0

¼ 0; (25b)

dFðm2
ph; fRgÞ
dR

����
Rμνρσ¼0;ϕ0¼0

¼ 0: (25c)

Taking into account the relations in Eq. (16) between the
counterterms, the gap equation can be made finite with the
use of the following MS counterterms:

δm2 ¼ −
λ

16π2ϵ

m2

1þ λ
16π2ϵ

; (26a)

δξ ¼ −
λ

16π2ϵ

ðξ − 1
6
Þ

1þ λ
16π2ϵ

; (26b)

δλ2 ¼ −
λ

16π2ϵ

λ

1þ λ
16π2ϵ

: (26c)

Once made finite and written in terms of the MS
parameters, it reads

m2
ph þ ξRR ¼ m2 þ ξRþ 1

2
λϕ2

0 þ
λ

32π2

×

��
m2

ph þ
�
ξR −

1

6

�
R

�
ln

�
m2

ph

~μ2

�

þ
�
ξR −

1

6

�
R − 2Fðm2

ph; fRgÞ
�
: (27)

Here, the explicit dependence on the renormalization scale
~μ should be compensated with an implicit ~μ-dependence on
the finite MS parameters m2ð ~μÞ, ξð~μÞ and λð~μÞ. Indeed, the
invariance of this equation under changes of ~μ becomes
manifest when we express it in terms of the renormalized
quantitiesm2

R, ξR and λR. The latter are related to the former
ones by

m2
R ¼ m2 þ λ

16π2
½R0

dFdS
dR jm2

R;R0
− FdSðm2

R; R0Þ�
½1 − λ

32π2
lnðm2

R
~μ2
Þ�

; (28a)

�
ξR −

1

6

�
¼

ðξ − 1
6
Þ − λ

16π2
dFdS
dR jm2

R;R0

½1 − λ
32π2

− λ
32π2

lnðm2
R
~μ2
Þ�

; (28b)

λR ¼ λ

½1 − λ
32π2

− λ
32π2

lnðm2
R
~μ2
Þ − λ

32π2
ððξR−1

6
ÞR0

m2
R

− 2 dFdS
dm2

ph
jm2

R;R0
Þ�
:

(28c)

Two useful ~μ-independent combinations follow immedi-
ately from these relations:

m2
B

λB2
¼ m2

λ
¼ m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2
(29)

and

ðξB − 1
6
Þ

λB
¼ ðξ − 1

6
Þ

λ

¼ ðξR − 1
6
Þ

λR

þ ðξR − 1
6
Þ

32π2

��
ξR −

1

6

�
R0

m2
R
− 2

dFdS

dm2
ph

����
m2

R;R0

�

þ 1

16π2
dFdS

dR

����
m2

R;R0

≡ ðξR − 1
6
Þ

λR
þ JðR0; m2

R; ξRÞ;

(30)

where λ�R is defined by

1

λ�R
≡ 1

λR
þ 1

32π2
: (31)

Using these parameters, the self-consistent equation form2
ph

can be written as
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m2
ph ¼ m2

R þ λ�R
2
ϕ2
0 þ

λ�R
32π2

��
m2

ph þ
�
ξR −

1

6

�
R
�
ln
�
m2

ph

m2
R

�
þ ðm2

ph −m2
RÞ
�
2
dFdS

dm2
ph

����
m2

R;R0

−
ðξR − 1

6
ÞR0

m2
R

�

þ2

�
FdSðm2

R; R0Þ þ
dFdS

dR

����
m2

R;R0

ðR − R0Þ − Fðm2
ph; RÞ

��
: (32)

Finally, as will be needed for the renormalization of the energy-momentum tensor in the next section, we write the results
for the counterterms associated to the non-MS renormalized parameters defined in Eq. (15):

δ ~m2 ≡m2
B −m2

R ¼ −
m2

B

32π2
m2

R

ðm2
R

λ�R
þ ðξR−1

6
ÞR0

32π2
Þ

�
2

ϵ
þ ln

�
m2

R

~μ2

�
− 2

dFdS

dm2
ph

����
m2

R;R0

�
; (33)

δ~ξ≡ ξB − ξR ¼ −
ðξB − 1

6
Þ

32π2
fðξR − 1

6
Þ½2ϵ þ 1þ lnðm2

R
~μ2
Þ� þ 2 dFdS

dR jm2
R;R0

g
½ðξR−1

6
Þ

λR
þ J�

; (34)

δ~λ≡ λB2 − λR ¼ −
λB2λR
32π2

�
2

ϵ
þ 1þ ln

�
m2

R

~μ2

�
þ ðξR − 1

6
ÞR0

m2
R

− 2
dFdS

dm2
ph

����
m2

R;R0

�
: (35)

Note that the well-known one-loop results can be
recovered from these expressions, making the replace-
ments m2

B → m2
R, ξB → ξR, λB2 → λR, and R0 → 0 on

the right-hand sides.

IV. RENORMALIZATION OF THE
SEMICLASSICAL EINSTEIN EQUATIONS

So far we have dealt with Eqs. (19) and (20), that give the
dynamics of ϕ0 and G for a given choice of metric gμν.
However these equations do not take into account the effect
of the quantum field on the background geometry. In order
to assess whether this backreaction is important or not, we
must deal with the SEE, obtained from the stationarity
condition given in Eq. (5) with the gravitational action
Eq. (7) and the definition of the vacuum expectation value
of the energy-momentum tensor given in Eq. (6). The
resulting equations are

κ−1B Gμν þ ΛBκ
−1
B gμν þ α1B

ð1ÞHμν þ α2B
ð2ÞHμν

þ α3BHμν ¼ hTμνi; (36)

where κB ¼ 8πGB. An explicit expression for the tensors
ð1;2ÞHμν and Hμν can be found for instance in [56].
The renormalization procedure then involves the calcu-

lation of hTμνi and the regularization of its divergences. The
divergences can be of either one of two types, independent
of the field ϕ0 and therefore only geometrical, or otherwise
ϕ0-dependent either explicitly or implicitly through
m2

phðϕ0Þ. The SEE are renormalizable if, with the same
choice of counterterms as for the field and gap equations,

the nongeometrical divergences can be completely dealt
with. In order to absorb the geometrical divergences in the
renormalization of the parameters of the gravitational part
of the action, κ−1B , ΛB and αiB, these divergences must be
proportional to the tensors that appear on the left-hand side
of Eq. (36) (note that in four spacetime dimensions the
tensors ð1;2ÞHμν and Hμν are not all independent).
We will follow the usual procedure and define the

renormalized energy-momentum tensor as

hTμνiren ¼ hTμνi − hTμνiad4; (37)

where the fourth adiabatic order is understood as the
expansion containing up to four derivatives of the metric
and up to two derivatives of the mean field [56]. Our goal in
this section is to show that with the choice of the counter-
terms for the field and gap equations, hTμνiad4 only contains
geometric divergences that can be absorbed into the bare
gravitational constants.
The expectation value hTμνi can be formally

computed from the definition Eq. (6). One can show
that [55]

hTμνi ¼ Tμνðϕ0Þ þ hTf
μνi þ λB2

32
½G1�2gμν; (38)

where the first term is the classical energy-momentum
tensor evaluated at ϕ0
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Tμνðϕ0Þ ¼ −
2ffiffiffiffiffiffi−gp δSm

δgμν

¼ ð1 − 2ξBÞϕ0;μϕ0;ν − 2ξBϕ0;μνϕ0

þ 2ξBgμνϕ0□ϕ0 þ ξBϕ
2
0Gμν

þ
�
2ξB −

1

2

�
gμνϕ

;λ
0 ϕ0;λ −

m2
B

2
gμνϕ2

0

−
λB4
4!

gμνϕ4
0: (39)

The second term is formally the mean value of the energy-
momentum tensor of a free field, constructed with the two-
point function G1. More explicitly, it can be written as
[56,57]

hTf
μνi ¼ −

1

2
½G1;μν� þ

ð1 − 2ξBÞ
4

½G1�;μν

þ
�
ξB −

1

4

�
gμν
2

□½G1� þ ξBRμν
½G1�
2

: (40)

As a side point, we mention that one could also derive
Eq. (38) using a different approach: take the classical
energy-momentum tensor for the action Eq. (8), evaluate
for ϕ ¼ ϕ0 þ φ and then expand on the fluctuation φ.
Afterward take the expectation value h…i and recall
that in the Hartree approximation one can write the
expectation values of products of fields in terms of ϕ0

and hφ2i ¼ ½G1�=2 (and derivatives), using that

hφ3i ¼ 0; (41a)

hφ4i ¼ 3

4
½G1�2: (41b)

For the renormalization it is useful to separate, in the
expressions for Tμνðϕ0Þ and hTf

μνi, the bare couplings into
the corresponding renormalized parts and the nonminimal
subtraction counterterms

Tμνðϕ0Þ ¼ Tμνðϕ0ÞjB¼R þ δ~ξð−ϕ2
0;μν þ gμν□ϕ2

0 þ ϕ2
0GμνÞ

−
δ ~m2

2
ϕ2
0gμν (42)

hTf
μνi ¼ hTf

μνijB¼R þ δ~ξ

2
ð−½G1�;μν þ gμν□½G1� þ Rμν½G1�Þ;

(43)

where B ¼ R is a notational shorthand to indicate a
replacement of the bare couplings with the renormalized
ones. It will be also useful to write separately the interaction
term in the classical energy momentum tensor

Tμνðϕ0ÞjB¼R ¼ Tμνðϕ0ÞjB¼R;free −
λB4
4!

ϕ4
0gμν: (44)

Note that while there are no divergences in Tμνðϕ0ÞjB¼R;free,
the quantity hTf

μνijB¼R still has divergences that arise from
the coincidence limit of G1 and of its derivatives. Recall
Eq. (20), which implies that in our case the two-point
function is that of a field of mass m2

ph and curvature
coupling ξR.
We are now ready to show that the counterterms already

chosen to renormalize the mean field and gap equations
also cancel the nongeometrical divergences in hTμνi. The
third term of Eq. (38) as well as the terms that were isolated
in Eq. (43) involve ½G1� and its derivatives, and therefore
they can be expressed in terms of m2

ph and the bare
couplings by using that the physical mass is defined by
the equality of Eqs. (11) and (20), which in a more
convenient form reads

λB2
4

½G1� ¼ m2
ph − ~δξR −m2

B −
λB2
2

ϕ2
0: (45)

With this replacement we have

hTμνi ¼ Tμνðϕ0ÞjB¼R;free þ hTf
μνijB¼R þ ð3λB2 − λB4Þ

4!
ϕ4
0gμν

þ 2δ~ξ

λB2
½−m2

ph;μν
þ gμν□m2

ph þGμνm2
ph� þ

m4
ph

2λB2
gμν

−m2
ph
m2

B

λB
gμν þ

δ~ξ2

λB2
ð1ÞHμν − 2δ~ξ

m2
B

λB2
Gμν

þm2
B

2

m2
B

λB
gμν þ ðm2

R −m2
phÞ

ϕ2
0

2
gμν: (46)

Here the term proportional to ϕ4
0 is already finite because of

the relation Eq. (16d) between the counterterms, and thus
equal to λRϕ

4
0gμν=12. The fourth, fifth and sixth terms

contain the nongeometrical divergences that will have to be
canceled by those from hTf

μνijB¼R. The remaining terms
contain purely geometrical divergences.
It is worth it to emphasize that the divergences in

Eq. (46) are proportional to simple poles in ϵ. Indeed,
from the definition of δ~ξ ¼ ξB − ξR and the relations (31) it
is straightforward to see that

δ~ξ

λB2
¼

�
1

λR
−

1

λB2

��
ξR −

1

6

�
þ J; (47a)

δ~ξ2

λB2
¼ λB2

�ðξR − 1
6
Þ

λR
þ J

�
2

− 2

�
ξR −

1

6

��ðξR − 1
6
Þ

λR
þ J

�

þ ðξR − 1
6
Þ2

λB2
; (47b)
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which are exact expressions. Note that λ−1B2 contains just a
simple pole,

1

λB2
¼ 1

λ
þ 1

16π2ϵ
: (48)

We now expand hTμνi up to the fourth adiabatic
order. We will use the explicit expressions for the coinci-
dence limit of G1 and its derivatives that are given in
Ref. [56]. The fourth adiabatic order expansion for
h ~Tμνi≡ hTf

μνijB¼R is

h ~Tμνiad4 ¼
1

16π2

�
m2

ph

μ2

�ϵ=2�1
2
m4

phgμνΓ
�
−2 −

ϵ

2

�
þm2

ph

�
1

2
½Ω1�gμν þ

�
ξR −

1

6

�
Rμν

�
Γ
�
−1 −

ϵ

2

�

þ
�
1

2
½Ω2�gμν þ

�
ξR −

1

6

�
Rμν½Ω1� − ½Ω1;μν� þ

�
1

2
− ξR

�
½Ω1�;μν

þ
�
ξR −

1

4

�
gμν□½Ω1�

�
Γ
�
−
ϵ

2

��
; (49)

where the expressions for ½Ω1�, ½Ω2� and ½Ω1;μν� can be found in the Appendix A of [56]. Notice however that here these
contributions are expressed in terms of ξR instead of ξB. Expanding for ϵ → 0, regrouping the geometric terms to form the
appropriate tensors and separating the divergent part one arrives at

h ~Tμνiad4 ¼
1

16π2ϵ

�
−
1

2
m4

phgμν þ 2m2
ph

�
ξR −

1

6

�
Gμν þ

1

90
½ð2ÞHμν −Hμν�

−
�
ξR −

1

6

�
2ð1ÞHμν þ 2

�
ξR −

1

6

�
ðgμν□m2

ph −m2
ph;μν

Þ
�

þ m4
ph

64π2
gμν

�
1

2
− ln

�
m2

ph

~μ2

��
þ m2

ph

16π2

�
ξR −

1

6

�
Gμν ln

�
m2

ph

~μ2

�

þ 1

32π2

�
1

90
ðð2ÞHμν −HμνÞ −

�
ξR −

1

6

�
2ð1ÞHμν

þ 2

�
ξR −

1

6

�
ðgμν□m2

ph −m2
ph;μν

Þ�
�
1þ ln

�
m2

ph

~μ2

��
: (50)

Replacing Eq. (50) into Eq. (46) one can verify that the nongeometrical divergences in Eq. (46) cancel out. This result shows
the renormalizability of the SEE within the consistent renormalization approach.
In order to complete the analysis, we write the full expression for the fourth adiabatic order, which we separate in its

divergent and convergent parts:

hTμνiad4 ¼ hTμνidivad4 þ hTμνiconad4; (51)

with

hTμνidivad4 ¼
1

90

1

32π2

�
2

ϵ
þ 1þ ln

�
m2

R

~μ2

��
ðð2ÞHμν −HμνÞ − 2δ~ξ

�
m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2

�
Gμν þ δ~ξ

�ðξR − 1
6
Þ

λR
þ J

�
ð1ÞHμν

þ δ ~m
2

�
m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2

�
gμν −

m4
R

64π2
gμν; (52)

and
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hTμνiconad4 ¼ Tμνðϕ0ÞjB¼R;free þ
λR
12

ϕ4
0gμν þ

�
m2

R

2
−m2

ph

��
m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2

�
gμν

þ m4
ph

64π2

�
32π2

λ�R
þ 1

2
þ
�
ξR −

1

6

�
R0

m2
R
− 2

dFdS

dm2
ph

����
m2

R;R0

�
gμν

þ 1

16π2

�
2m2

phGμν −
�
ξR −

1

6

�
ð1ÞHμν þ 2gμν□m2

ph − 2m2
ph;μν

�
dFdS

dR

����
m2

R;R0

þ 1

32π2

�
−
m4

ph

2
gμν þ 2m2

ph

�
ξR −

1

6

�
Gμν þ

1

90
ðð2ÞHμν −HμνÞ

−
�
ξR −

1

6

�
2ð1ÞHμν þ 2

�
ξR −

1

6

�
ðgμν□m2

ph −m2
ph;μν

Þ
�
ln

�
m2

ph

m2
R

�

−
m2

ph

16π2

�
ξR −

1

6

�
Gμν þ ðm2

R −m2
phÞ

ϕ2
0

2
gμν þ

m4
R

64π2
gμν: (53)

As anticipated, the divergent part contains purely geometric
divergences. The convergent part is field dependent, finite,
and written in terms of the renormalized parameters (there-
fore independent of ~μ). To ensure the correct one-loop limit
of the cosmological constant counterterm, we included the

finite contribution − m4
R

64π2
gμν in hTμνidivad4.

Now we can add and subtract hTμνiad4 in the right-hand
side of the SEE

κ−1B ðGμνþΛBgμνÞþα1B
ð1ÞHμνþα2B

ð2ÞHμνþα3BHμν

¼½hTμνi−hTμνiad4�þhTμνidivad4þhTμνiconad4; (54)

where the quantity between square brackets on the
right-hand side is defined as hTμνiren. Renormalization is
completed by absorbing hTμνidivad4 into a redefinition of the
bare gravitational constants of the left-hand side. Then the
renormalized gravitational parameters read

κ−1B ¼ κ−1R þ m2
B

8π2

��
ξR −

1

6

��
1

ϵ
þ 1

2
þ 1

2
ln

�
m2

R

~μ2

��

−
dFdS

dR

����
m2

R;R0

�
; (55a)

ΛBκ
−1
B ¼ ΛRκ

−1
R −

m2
Bm

2
R

32π2

�
1

ϵ
þ 1

2
ln

�
m2

R

~μ2

�
−
dFdS

dm2
ph

����
m2

R;R0

�

−
m4

R

64π2
; (55b)

α1B ¼ α1R −
ðξB − 1

6
Þ

16π2

��
ξR −

1

6

��
1

ϵ
þ 1

2
þ 1

2
ln

�
m2

R

~μ2

��

−
dFdS

dR

����
m2

R;R0

�
; (55c)

α2B ¼ α2R þ 1

1440π2

�
1

ϵ
þ 1

2
þ 1

2
ln

�
m2

R

~μ2

��
; (55d)

α3B ¼ α3R −
1

1440π2

�
1

ϵ
þ 1

2
þ 1

2
ln
�
m2

R

~μ2

��
: (55e)

These are consistent with the well-known one-loop results
when replacing the bare parameters in the right-hand side
(in the counterterms) by the renormalized ones and setting
R0 → 0, thus justifying the choice of hTμνidivad4 in Eq. (52).
As it happens for the field parameters, the relation between
the bare and renormalized expressions is ~μ-dependent.
Finally, the renormalized SEE are

κ−1R Gμν þ ΛRκ
−1
R gμν þ α1R

ð1ÞHμν þ α2R
ð2ÞHμν

þ α3RHμν ¼ hTμνiren þ hTμνiconad4; (56)

which, as expected, are expressed only in terms of
renormalized parameters.

V. INTERACTING FIELDS IN
DE SITTER SPACETIME

In this section we apply the previous results to de Sitter
spacetime with ds2 ¼ −dt2 þ e2Htd~x2, and compute
explicitly the renormalized energy-momentum tensor,
and the SEE. We then consider both the field equation
and the SEE to analyze the existence of self-consistent
solutions.

A. Gap and semiclassical Einstein equations

In de Sitter spacetime, the solution of Eq. (20) for the
propagator, which is the one of a free field with massm2

ph, is
known exactly for an arbitrary number of dimensions n.
The expression for the coincidence limit ½G1� is
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½G1� ¼
2Hn−2

ð4πμ2Þn=2 Γ
�
1 −

n
2

�
Γðn−1

2
þ νnÞΓðn−12 − νnÞ

Γð1
2
þ νnÞΓð12 − νnÞ

;

(57)

where ν2n¼ðn−1Þ2
4

−
m2

ph

H2 −ξRnðn−1Þ and R ¼ nðn − 1ÞH2.
To make use of the results of previous sections we need

to extract the function FdSðm2
ph; RÞ, defined in Eq. (23),

from this exact expression. For this, we set n ¼ 4þ ϵ and
expand for ϵ → 0, holding R fixed. Doing this, as shown in
detail in paper I, we obtain the following expression for the
function Fðm2

ph; fRgÞ in de Sitter spacetime

FdSðm2
ph; RÞ ¼ Rfðm2

ph=RÞ

¼ −
R
2

��
m2

ph

R
þ ξR −

1

6

��
ln

�
R

12m2
ph

�

þgðm2
ph=Rþ ξRÞ

�
−
�
ξR −

1

6

�
−

1

18

�
; (58)

with

gðyÞ≡ ψþ þ ψ− ¼ ψ

�
3

2
þ ν4ðyÞ

�
þ ψ

�
3

2
− ν4ðyÞ

�
;

(59)

and R ¼ 12H2, ψðxÞ ¼ Γ0ðxÞ=ΓðxÞ is the digamma func-
tion and ν4ðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − 12y

p
. From this equation one can

check that this function has all the expected properties: it is
written only in terms of renormalized parameters, it is
independent of ϵ and ~μ, and it satisfies the correct limits
Eqs. (25a), (25b) and (25c).
Therefore, the renormalized equation for the physical

mass m2
ph we are going to solve self-consistently together

with the SEE we calculate below, can be written as

m2
ph ¼ m2

R þ λ�R
2
ϕ2
0 þ

λ�R
32π2

�
m2

ph þ
�
ξR −

1

6

�
R

�

×

�
ln

�
R

12m2
R

�
þ gðm2

ph=Rþ ξRÞ
�

−
λ�R
32π2

�
ξR −

1

9

�
R: (60)

In de Sitter spacetime all geometrical quantities can be
written in terms of only R and gμν. In n dimensions they are

Rμν ¼
R
n
gμν; (61a)

Gμν ¼
�
1

n
−
1

2

�
Rgμν; (61b)

ð1ÞHμν ¼
1

2

�
1 −

4

n

�
R2gμν; (61c)

ð2ÞHμν ¼
1

2n

�
1 −

4

n

�
R2gμν; (61d)

Hμν ¼
1

nðn − 1Þ
�
1 −

4

n

�
R2gμν: (61e)

In fact, any 2nd-rank tensor is proportional to the metric, so
that

½G1;μν� ¼
1

n
½□G1�gμν: (62)

De Sitter invariance also implies that any scalar function
has vanishing derivative, and in particular that ½G1� is
independent of spacetime coordinates. The energy-
momentum tensor will also be proportional to gμν.
Indeed, from the general expression Eq. (38) together with
Eqs. (39) and (40), and using Eq. (61), we obtain

hTμνi ¼
�
−
m2

B

2
ϕ2
0 −

λB4
4!

ϕ4
0 þ ξBϕ

2
0

�
1

n
−
1

2

�
R −

1

2n
½□G1�

−
m2

B

4
½G1� þ

1

4
½□G1� þ ξB

½G1�
2

�
1

n
−
1

2

�
R

−
λB2
8

ϕ2
0½G1� −

λB2
32

½G1�2
�
gμν: (63)

Once again we use Eq. (45) to make the previous
expression simpler, and we put n ¼ 4þ ϵ,

hTμνi ¼
�
−
m2

B

2
ϕ2
0 −

ξB
4
ϕ2
0R −

λB4
4!

ϕ4
0 −

1

8

�
m2

B þ λB2
2

ϕ2
0

�

× ½G1� þ
1

4

�
4

4þ ϵ
− 1

�

×

�
ξBϕ

2
0R −

1

2
ðm2

ph − δ~ξRÞ½G1�
��

gμν: (64)

Here we cannot set ϵ ¼ 0 in the denominator yet, as it is
multiplied by both the bare parameters and ½G1� that contain
poles in ε that could give finite terms. After some manipu-
lations and dropping terms that vanish for ϵ → 0, it reads

hTμνi ¼
�
1

2

�
δ ~m2 þ

�
1þ ϵ

4þ ϵ

�
δ~ξR

��
m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2

�

þ
�

4

4þ ϵ

�
ϵδ~ξ

8

�ðξR − 1
6
Þ

λR
þ J

�
R2

þ 1

2

�
m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2

�
ðm2

R −m2
phÞ

−
1

4
ðm2

ph þ ξRRÞϕ2
0 þ

λR
12

ϕ4
0 þ

1

128π2

×

�
m2

ph þ
�
ξR −

1

6

�
R

�
2
�
gμν: (65)

To compute the renormalized expectation value,
hTμνiren ¼ hTμνi − hTμνiad4, we evaluate hTμνiad4 [given
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in Eq. (51)] in de Sitter spacetime, using the n-dimensional
geometrical expressions Eq. (61). Separating the result
again in hTμνiad4 ¼ hTμνidivad4 þ hTμνiconad4, up to order ϵ these
two terms read

hTμνidivad4 ¼
�

1

64π2
R2

2160
þ 1

2

�
δ ~m2 þ

�
1þ ϵ

4þ ϵ

�
δ~ξR

�

×

�
m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2

�
þ
�

4

4þ ϵ

�
εδ~ξ

8

×

�ðξR − 1
6
Þ

λR
þ J

�
R2 −

m4
R

64π2

�
gμν; (66)

hTμνiconad4 ¼
�

m2
R
2

�
m2

R
λ�R

þ ðξR−1
6
ÞR0

32π2
þ m2

R
32π2

�
þ m2

ph

64π2

�
ξR − 1

6

�
R

þ m4
ph

64π2

�
32π2

λ�R
þ 1

2
þ ðξR − 1

6
ÞR0

m2
R

− 2
dFdS

dm2
ph

����
m2

R;R0

�

−
m2

ph

64π2

�
m2

ph þ
�
ξR −

1

6

�
R

�
ln

�
m2

ph

m2
R

�

−
m2

phR

32π2
dFdS

dR

����
m2

R;R0

−m2
ph

�
m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2

�

−
�
m2

ph þ
ξR
2
R

�
ϕ2
0

2
þ λR
12

ϕ4
0

�
gμν: (67)

The first term of Eq. (66) is finite and is the source of the
trace anomaly [1]. Then we have

hTμνiren ¼ −
1

64π2

�
m2

ph

��
32π2

λ�R
þ ðξR − 1

6
ÞR0

m2
R

−2
dFdS

dm2
ph

����
m2

R;R0

�
ðm2

ph −m2
RÞ − 16π2ϕ2

0

−
�
m2

ph þ
�
ξR −

1

6

�
R

�
ln

�
m2

ph

m2
R

�

− 2R
dFdS

dR

����
m2

R;R0

− 2m2
R
dFdS

dm2
ph

����
m2

R;R0

�

−
1

2

�
ξR −

1

6

�
2

R2 þ R2

2160

�
gμν: (68)

To make contact with the known free and one-loop
expressions, we use Eq. (32) to arrive at a more familiar
result

hTμνiren ¼ −
1

64π2

�
2m2

ph

�
FdSðm2

R; R0Þ − R0

dFdS

dR

����
m2

R;R0

−m2
R
dFdS

dm2
ph

����
m2

R;R0

− Fðm2
ph; RÞ

�

−
1

2

�
ξR −

1

6

�
2

R2 þ R2

2160

�
gμν: (69)

Setting R0 → 0 and using Eq. (58) for FdS gives an
expression that is exactly the same as in the one-loop
calculation [56], provided m2

ph ¼ m2
R þ λRϕ

2
0=2 instead of

being the solution of the self-consistent Eq. (60).
Furthermore, it is straightforward that the usual free field
limit [1] is satisfied, as m2

ph → m2
R when λR → 0.

Turning finally to the SEE, on the right-hand side we
have

hTμνiren þ hTμνicon
¼

�
−
1

4
ðm2

ph þ ξRRÞϕ2
0 þ

λR
12

ϕ4
0

�
gμν

−
1

64π2

�
32π2

�
m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2

�
ðm2

ph −m2
RÞ

−m4
R þ R2

2160
−
1

2

�
m2

ph þ
�
ξR −

1

6

�
R

�
2
�
gμν; (70)

while on the left-hand side we have
Gμν þ ΛRgμν ¼ ð−R=4þ ΛRÞgμν, as the quadratic tensors
ð1ÞHμν, ð2ÞHμν and Hμν vanish for n ¼ 4. Then, canceling
the gμν that appears on both sides, we have:

M2
pl

�
−
R
4
þΛR

�
¼−

1

8π

�
R2

2160
þ 32π2

�
m2

R

λ�R
þðξR − 1

6
ÞR0

32π2

�
× ðm2

ph−m2
RÞ−m4

R

þ16π2ðm2
phþ ξRRÞϕ2

0− 64π2
λR
12

ϕ4
0

−
1

2

�
m2

phþ
�
ξR−

1

6

�
R

�
2
�
; (71)

where Mpl is Planck’s mass, and κR ¼ 8π=M2
pl.

B. Self-consistent de Sitter solutions

The backreaction problem consists in solving simulta-
neously the mean field Eq. (19), the m2

ph Eq. (60) and the
SEE (71) self-consistently for the mean field ϕ0, the
physical mass m2

ph and the scalar curvature of de Sitter
spacetime R. This is a closed system of equations for a
given set of parameters m2

R, ξR, λR and ΛR, whose
physically interesting solutions in a cosmological scenario
are those with both R andM2

ph ¼ m2
ph þ ξRR positive. The

second condition comes from the fact thatM2
ph is the mass

HARTREE APPROXIMATION IN CURVED SPACETIMES … PHYSICAL REVIEW D 89, 084013 (2014)

084013-11



of the propagator, and it is a well-known fact that the
equation

□G1ðx; x0Þ ¼ 0; (72)

has no de Sitter invariant solutions.
The gap Eq. (60) is in itself a self-consistent equation for

m2
phðϕ0; RÞ, at fixed ϕ0 and R. Following paper I, in the

small mass approximation (y≡M2
ph=R ≪ 1) we have

gðyÞ≃ −1=4yþ 11=6 − 2γE þ 49y=9 an thus the gap
equation becomes a quadratic equation for y,

AdSy2 þ
�
BdS −

λRϕ
2
0

2R

�
yþ CdS ¼ 0; (73)

where the coefficients are

AdS ¼ 1 −
λR
32π2

�
a

�
R
R0

�
− gðy0Þ

−
�
y0 −

1

6

�
g0ðy0Þ −

49

54

�
; (74a)

BdS ¼ −
�
R0

R
y0 þ ξR

�
1 −

R0

R

��

þ λR
32π2

�
1

4
þ 1

6

�
a

�
R
R0

�
− gðy0Þ −

�
y0 −

1

6

�
g0ðy0Þ

�

þ
�
1 −

R0

R

��
y0 −

1

6

�
−
�
y0 −

1

6

�
2

g0ðy0Þ
�
; (74b)

CdS ¼ −
λR

768π2
; (74c)

with

aðxÞ≡ 11=6 − 2γE þ lnðxÞ; (75)

and y0 ¼ yðϕ0 ¼ 0; R ¼ R0Þ ¼ m2
R=R0 þ ξR. The solution

can be expressed analytically

M2
phðϕ0; RÞ

¼ −ðRBdS −
λRϕ

2
0

2
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½RBdS −

λRϕ
2
0

2
�2 − 4R2AdSCdS

q
2AdS

:

(76)

Here the “plus” branch was selected as the only real and
positive solution (under the assumption that both AdS > 0
and BdS > 0, see paper I). This solution shall then be
inserted into the mean field Eq. (19), which in de Sitter
spacetime reads

dVeff

dϕ0

����
ϕ̄0

¼
�
M2

phðϕ̄0; RÞ −
1

3
λRϕ̄

2
0

�
ϕ̄0 ¼ 0: (77)

This equation admits both symmetric solutions with ϕ̄0 ¼ 0
and solutions that spontaneously break the Z2 symmetry,

ϕ̄2
0 ¼

3

λR
M2

phðϕ̄0; RÞ: (78)

In other words, the effective potential Veffðϕ0; RÞmay have
other extrema besides the one in ϕ0 ¼ 0. The analysis of
the effective potential has been done in paper I.
Studying the full backreaction problem by including the

SEE (71) brings a new parameter into play, namely the
cosmological constant ΛR, as well as a new mass scaleM2

pl.
In paper I, R was considered fixed (i.e. as a parameter) and
the effective potential and its minima were studied in order
to find values of the remaining parameters m2

R, ξR, λR and
R0 at which both symmetric and broken phase solutions
exist. Considering R to be fixed makes sense under the
assumption that the effect of the quantum field on the
background curvature is small, and therefore it is possible
to decouple the SEE from the field and gap equations. If
this is indeed the case, the value of R becomes effectively
independent of ϕ0 and m2

ph, and is simply given by the
parameter ΛR.
The aim of this section is to find some examples of self-

consistent solutions involving all three equations and all
three degrees of freedom. To this end, we take as a starting
point some sets of values of the parameters m2

R, ξR, λR and
R0 that were already shown in paper I to allow both
symmetric and broken phase solutions. Then we look for
solutions of ϕ0, m2

ph and R for various values of ΛR and
analyze how these differ from the classical solution. If this
difference is small, then the backreaction can be indeed
ignored, otherwise it should be taken into account.
One further point of discussion is whether the parameters

R0 and ΛR should be related or not. If this were to be the
case, a sensible way of fixing one given the other would be
to use the classical solution R0 ¼ 4ΛR.

1. Symmetric phase

As mentioned above, the effective potential always has
an extreme in ϕ0 ¼ 0. Furthermore, it is easily shown that it
must be a minimum as a consequence of both the restriction
given by the Hartree approximation that M2

ph > 0, and the
fact that

d2Veff

dϕ2
0

����
ϕ̄0¼0

¼ M2
phðϕ̄0 ¼ 0; RÞ > 0: (79)

We solve the system of equations by setting ϕ0 ¼ 0 in
Eq. (76) to obtain M2

ph as a function only of R and then
substituting into the SEE (71) to obtain an equation of the
form

ΛR ¼ IsðRÞ: (80)
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where Is depends also on the parametersm2
R, ξR, λR and R0.

The subindex s stands for symmetric.

2. Broken phase

In this phase, the solution given in Eq. (78) to the field
equation already implies M2

ph > 0. It is important to note

that the reason why the ϕ̄0 ≠ 0 solutions are allowed is the
presence of the λR term in Eq. (77), which comes as a
consequence of imposing the 2PI consistency relations.
Otherwise, the absence of such term would require that for
ϕ̄0 ≠ 0 we had M2

ph ¼ 0, and as mentioned before for that
case there is no de Sitter invariant vacuum [52].
Replacing the nonvanishing solution to the field Eq. (78)

into the gap equation in its quadratic form Eq. (73) (small
mass approximation), we obtain a new quadratic equation
for the nonsymmetric extrema of the potential ϕ̄0

2ðRÞ,
namely,

λR
3
ϕ̄0

2ðRÞ

¼
−ðRBdS −

λRϕ̄0
2

2
Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½RBdS −

λRϕ̄0
2

2
�2 − 4R2AdSCdS

q
2AdS

:

(81)

Both branches give a solution with M2
ph > 0, the smaller

being the maximum and the larger the minimum of the
effective potential. Following the analysis described in
paper I, one can show that the condition for the existence of
symmetry breaking solutions is

BdS − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

2
− AdS

�
jCdSj

s
> 0: (82)

Once again, replacing ϕ0ðRÞ and M2
phðRÞ into the SEE

gives an equation of the form

ΛR ¼ IbðRÞ: (83)

The subindex b stands for broken. Note that in general
IbðRÞ will be different from IsðRÞ.

3. Results

In what follows we present the results in terms of the
relative deviation ðR − RclÞ=Rcl of the backreaction sol-
utions R with respect to the classical solution Rcl ¼ 4ΛR as
a function of ΛR, for both the symmetric and broken
phases, when they exist.
Let us first analyze the case where R0 ¼ 4ΛR. This

means that the renormalized parameters are defined at the
value of scalar curvature that the spacetime would have if
the backreaction were negligible. It is remarkable that in
this case no broken phase solutions exist. As an example, in
Fig. 2 we have plotted the relative deviation for different
values of the coupling constant λR, from bottom up:
λR ¼ 0.1, 0.2 and 0.5, with all curves corresponding to
the symmetric phase and m2

R ¼ 10−5M2
pl. On the left panel

the coupling to the curvature is minimal ξR ¼ 0, while
on the right panel ξR ¼ 4 × 10−3. It is interesting to see
that, due to the quantum corrections, the curvature R can be
both larger or smaller than the classical one depending on
the value of ΛR. Notice that solutions do not exist for all
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FIG. 2 (color online). Relative deviation of the backreaction solution for the de Sitter spacetime curvature with respect to the classical
solution, ðR − RclÞ=Rcl as a function of ΛR for different values of the coupling constant λR. The fixed parameters are R0 ¼ 4ΛR,
m2

R ¼ 10−5M2
pl. The left panel corresponds to ξR ¼ 0 and the right panel to ξR ¼ 4 × 10−3. All curves correspond to the symmetric

phase (which is the only possible phase when R0 ¼ 4ΛR). From bottom up: λR ¼ 0.1 (blue dashed line), λR ¼ 0.2 (red dotted-dashed
line), λR ¼ 0.5 (brown dotted line). Notice that for small enough values of ΛR the curves are continued by black solid lines, indicating
the regions where M2

ph ≥ R=10.
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values of ΛR. On the one hand, it can be seen that the
approximation M2

ph ≪ R breaks down for small enough
values of ΛR. In order to make this explicit, in Fig. 2 and in
the following, black solid lines are used whenever
M2

ph ≥ R=10. On the other hand, since we are considering
only cases where the effective potential for ϕ0 is well
defined, there is a (λR-dependent) lower bound for the sum
m2

R=Rþ ξR [58], which will be violated for large enough
values of ΛR.
Let us now analyze cases where R0 is considered to be

fixed and independent of ΛR. In Fig. 3, the left panel
corresponds to the symmetric phase, while the right panel
to the broken one. It can be seen that the backreaction is
more significant in the broken phase (e.g. the deviation is
about 1% for ΛR ≃ 0.04M2

pl, R0 ≃ 10−27M2
pl and

m2
R ¼ 5 × 10−30M2

pl), while in the symmetric phase the
solution stays closer to the classical one. The difference
between the backreaction and classical solutions may
become important for larger values of the cosmological
constant (not shown in the figure). Indeed, it can be shown
that the backreaction solution for the curvature R vanishes
in the large (super-Planckian) ΛR limit. However, adopting
an effective field theory perspective, here we are restricting
the parameter space to sub-Planckian values.
As in general the broken phase solution is possible only

for a suitable choice of the parameters [34], in the right
panel, the values of R0 had to be carefully chosen to be in
the narrow window where broken phase solutions exist, and
they disappear below a small parameter-dependent value of
ΛR (under 10−3M2

pl in the shown examples). One can verify
that, depending on the values of the parameters, the
approximation M2

ph ≪ R may break down. For the values
considered in the left panel of Fig. 3 this happens for small

enough values of ΛR, while for the ones in the right panel
the approximation remains valid.
The backreaction for the case of a nonminimal coupling

to the curvature is illustrated in Fig. 4, where the left (right)
panels correspond to the symmetric (broken) phase sol-
utions. The upper panels illustrate the dependence of the
solutions on the coupling to the curvature ξR, while in the
lower panels the coupling ξR is fixed and different values
for R0 are considered. In particular, from the figure on the
bottom left, it can be seen that in the symmetric case, the
effect of the quantum corrections may both increase or
decrease the value of the de Sitter spacetime curvature R
with respect to the classical one, depending on the value of
ΛR. In the symmetric phase there are self-consistent
solutions for large values of ΛR, while in the broken phase
they exist only forΛR below a (parameter-dependent) upper
bound. Notice that there is also an upper bound for R0

below which, under our approximations, no broken phase
solution exist regardless the value of ΛR. On the other hand,
one can verify that the approximation M2

ph ≪ R breaks
down for small enough values of ΛR in the broken phase,
and also in the symmetric case but only when R0 is smaller
than a (parameter-dependent) critical value. However, as it
can be seen from the examples considered in the two
figures on the left panels, for larger values of R0, there are
symmetric phase solutions where the approximation breaks
down for large values of ΛR instead, while remaining valid
all the way to ΛR → 0. In these latter cases, we can
conclude that there is a divergence of the relative deviation
in this limit, which indicates that as Rcl → 0, the curvature
R goes to a finite positive value. Therefore, for this set of
parameters the backreaction is crucial to determine the
spacetime curvature.
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FIG. 3 (color online). The same as in Fig. 2, but for different values of the curvature R0 associated to the renormalization point. Left
panel: symmetric phase solutions for R0 ¼ 0 (blue dashed line) and R0 ¼ 10−3M2

pl (red dotted-dashed line) with fixed parameters
m2

R ¼ 10−4M2
pl, ξR ¼ 0, and λR ¼ 0.1. The curves are practically indistinguishable, illustrating the solutions are quite independent on

R0. Right panel: broken symmetry solutions for R0 ¼ 7 × 10−28M2
pl (blue dashed line), R0 ¼ 10−27M2

pl (red dotted-dashed line), and
R0 ¼ 1.25 × 10−27M2

pl (brown dotted line) where the fixed parameters are m2
R ¼ 5 × 10−30M2

pl, ξR ¼ 0, and λR ¼ 0.1. In this case, the
values of R0 were chosen to be in the small range where a broken phase solution exists.
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VI. CONCLUSIONS

In this paper we have considered a self-interacting scalar
field with Z2 symmetry in a general curved spacetime. In
order to include some nonperturbative quantum effects of
the scalar field, we have worked within the Hartree (or
Gaussian) approximation to the 2PI EA.
Our first goal has been to show that in this approximation

the “consistent renormalization procedure” described in
[51] for flat spacetime can be extended to curved space-
times to make finite not only the mean field and gap
equations of the matter sector of the theory (which has been
shown in paper I), but also the SEE, which also involve the
gravitational sector. That is, we have shown that the same
set of counterterms can be used to renormalize the SEE
(along with the usual gravitational counterterms that are
needed even for free fields). In order to maintain the
covariance of the regularized theory, we have used dimen-
sional regularization.

In Sec. V, we have applied our results to de Sitter
spacetimes. We have considered the explicit form of the
mean value and gap equations, computed in paper I,
together with the SEE for these particular spacetimes,
and we have found some self-consistent de Sitter solutions.
The simultaneous solution of the resulting algebraic equa-
tions allowed us to discuss the occurrence of spontaneous
symmetry breaking and, at the same time, to assess the
effect of quantum fluctuations on the classical metric. An
important conclusion of our analysis is that the importance
of the backreaction depends strongly on the value of the
curvature at the renormalization point R0. We have found
both self-consistent solutions where the backreaction is
important and solutions where it is not, depending on the
values of the parameters. In particular, we have found self-
consistent de Sitter solutions for vanishing cosmological
constant ΛR ¼ 0, where the quantum effects play a
crucial role.
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FIG. 4 (color online). The deviation ðR − RclÞ=Rcl vs. ΛR for the backreaction solutions corresponding to the symmetric (on the left)
and broken (to the right) phases. Upper panels: three curves corresponding to different values of the coupling to the curvature:
ξR ¼ 4 × 10−3 (blue dashed line), ξR ¼ 10−2 (red dotted-dashed line), and ξR ¼ 2 × 10−2 (brown dotted line), where the fixed
parameters arem2

R ¼ 10−7M2
pl, λR ¼ 0.1 and R0 ¼ 10−2M2

pl. Lower panels: four different curves illustrating the dependence on the value
of R0 for m2

R ¼ 10−7M2
pl, ξR ¼ 4 × 10−3, and λR ¼ 0.1: R0 ¼ 10−2M2

pl (blue dashed line), R0 ¼ 5 × 10−3M2
pl (red dotted-dashed line),

R0 ¼ 10−3M2
pl (brown dotted line), and R0 ¼ 10−28M2

pl (green dashed line). Notice that for the last two values of R0 no broken phase
solutions exist.
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Regarding the IR issues, on the one hand, it is known that
for massless fields the propagator has a singular behavior in
the IR; on the other hand, it is also known that for
sufficiently light fields secularly growing contributions
do appear when standard perturbation theory is used,
indicating a breakdown of the perturbation theory. As
was already pointed out in previous works, resumming
loop diagrams may improve the perturbative expansion and
in particular it could lead to an effective mass, which would
remedy the singular behavior in the IR associated to
massless fields. As can be noted from Eq. (69), no
dangerous contribution shows up in our result for the
renormalized expectation value of the energy momentum
tensor. This is in part due to the resummation we are
employing, but also notice that dangerous (secularly
growing) terms that may contribute to the propagator
appear suppressed by a factor m2

ph in the expression for
the energy momentum tensor. Indeed, as explicitly shown
in [20], performing a resummation (which in that paper has
been done by means of the dynamical renormalization
group technique) one obtains a contribution in the self-
energy that shifts the effective mass which appears in the

equation of motion for the propagator. A similar mecha-
nism takes place in the Hartree approximation. In fact, in
the formalism we used, the mass of the propagator is
obtained as a self-consistent solution of the resummed gap
equation and is positive. Consequently, as for massive
fields the propagator does not present an IR singular
behavior and the expectation value of the energy momen-
tum tensor depends on the propagator and its derivatives,
no IR dangerous contribution is expected to appear in our
results.
It would be interesting to analyze the spontaneous

symmetry breaking and existence of self-consistent solu-
tions beyond the Hartree approximation, including the
setting-sun diagram in the calculation of the effective
action. We hope to address these issues in a future work.
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