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We construct a fully analytic, general relativistic, nonspinning black hole binary spacetime that
approximately solves the vacuum Einstein equations everywhere in space and time for black holes
sufficiently well separated. The metric is constructed by asymptotically matching perturbed Schwarzschild
metrics near each black hole to a two-body post-Newtonian metric far from them and a two-body post-
Minkowskian metric farther still. Asymptotic matching is done without linearizing about a particular time
slice, and thus it is valid dynamically and for all times, provided the binary is sufficiently well separated.
This approximate global metric can be used for long dynamical evolutions of relativistic magneto-
hydrodynamical, circumbinary disks around inspiraling supermassive black holes to study a variety of
phenomena.
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I. INTRODUCTION

The interaction between black holes and matter in the
highly energetic and strong gravitational regime can reveal
invaluable information both about the geometry of these
dark objects, as well as the physics of magnetohydrody-
namics. A particularly interesting astrophysical scenario
is a circumbinary accretion disk that surrounds a super-
massive black hole (SMBH) binary. As the SMBHs slowly
spiral toward each other, plunge and eventually merge,
the interactions between gravity and matter lead to the
emission of strong electromagnetic (EM) radiation and the
formation of jets. Instruments such as Pan-STARRS [1] or
the planned LSST [2] are designed to detect such events
and characterize them up to cosmological distances (see [3]
for a recent review on this subject).
The search and characterization of such energetic events

can be aided by predicting their EM features, but such
predictions require modeling. The modeling of an accretion
disk about an inspiraling, SMBH binary is a challenging
problem because one needs to solve the general relativistic
magnetohydrodynamic (GRMHD) equations—to evolve
the disk, resolve shocks, and instabilities—coupled to
the full Einstein equations—to evolve the SMBH binary.
In spite of the many recent breakthroughs in numerical
relativity [4–6], a full numerical solution to the Einstein-
GRMHD coupled system over many orbits is far too
computationally expensive (see e.g., [7–9]).
The modeling of circumbinary accretion disks would be

greatly aided if one could calculate the SMBH binary
spacetime fully analytically. The freedom to discretize the
spacetime domain most appropriately for the matter evo-
lution without also having to maintain a stable evolution of

the Einstein equations leads to a more efficient and accurate
simulation of the accretion disk. This is because the
Courant condition greatly limits the time step size, making
full numerical simulations of the spacetime impractical
when the characteristic MHD speeds are significantly
smaller than c.
The modeling of compact binaries is well suited to the

post-Newtonian (PN) approximation (see e.g., [10]), where
one solves the Einstein equations in a weak-field and a
slow-motion expansion. The latter is an excellent approxi-
mation to the inspiral of compact objects, since their
orbital velocity is much smaller than the speed of light
until right before they plunge. The former, however, is a
poor approximation to describe black holes, as their
gravitational field is not weak close to the event horizon.
But it is precisely this region that is of most astrophysical
interest—where jets are launched, matter is swallowed up
by the SMBHs, and individual accretion disks may form.
In spite of this, a PN spacetime was used in [11] to study

circumbinary disks, using the HARM3D code [12] to solve
the GRMHD equations. Because the PN approximation
breaks down close to event horizons, Ref. [11] was forced
to excise the region encompassing the binary, precisely
where one may expect very interesting EM and fluid
behavior. Nonetheless, that study showed that a nontrivial
and variable EM signal originated from an overdense
region close to the inner edge of the disk. This lump arose
after many tens of binary orbits, and therefore it had
previously only been seen in Newtonian simulations [13].
The main goal of this paper is to combine the PN

approximation with other black hole perturbation theory
ideas [14] to construct a global, purely analytical spacetime
that is approximately valid everywhere in space (including
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close to the event horizon) and time (up until roughly 10M,
with M the total mass). This metric can then be used as a
background on which to solve the GRMHD equations to
evolve magnetized circumbinary disks everywhere on the
computational domain. In particular, it will allow the BHs
to actually be on the numerical domain, making circum-
binary excision unnecessary and allowing for the modeling
of all relevant physics close to each event horizon. This
includes the study of disk formation around individual
BHs, the relativistic dynamics of gas in the interior
circumbinary region and the formation of jets and shocks.
The global metric will be constructed by first subdivid-

ing the spacetime into three separate regions, where differ-
ent assumptions hold and different approximations can be
used. The inner zone (IZ) is the region sufficiently close
to either black hole where the metric can be described by
a perturbed Schwarzschild or Kerr solution [15–19]. The
near zone (NZ) is the region far away from either black
hole, but less than a gravitational wave wavelength λ from
the binary’s center of mass, such that the metric can be
described by a PN expansion [20]. The far or wave zone
(FZ) is the region outside a gravitational wave wavelength
from the binary’s center of mass, where the metric can be
described by a multipolar post-Minkowskian (PM) expan-
sion [21]. Unlike in a PN expansion, a PM treatment
properly accounts for gravitational wave retardation, which
is essential in the wave zone. Of course, such a subdivision
of the spacetime is only valid when the SMBHs are
sufficiently well separated and slowly inspiraling, breaking
down at separation of roughly 10M.
A global spacetime can then be built from the IZ, NZ and

FZ metrics by asymptotically matching them inside over-
lapping regions of validity, or buffer zones (BZs), where
adjacent metrics are simultaneously valid. The matching
procedure returns a coordinate and parameter transforma-
tion relating adjacent metrics, such that the latter asymptote
to each other in the BZ. Asymptotic matching in GR was
carried out in [14,22–28], but always restricting attention
to a particular spatial hypersurface. In this paper, we are
interested in long, dynamical evolutions, and we thus lift
this restriction, allowing for time-dependent, asymptoti-
cally matched transformations. Once the metrics have been
asymptotically matched, a global spacetime is constructed
through transition functions [27], carefully designed to
avoid introducing spurious errors in the spacetime larger
than those already contained in the individual approximate
metrics.
Such a global metric is an approximate solution to the

vacuum Einstein equations, satisfying the latter only to the
degree that the individual approximate metrics do. In order
to determine the accuracy of the global metric, we compute
the Ricci scalar as a function of time, as shown in Fig. 1, for
two metric perturbation orders, which will be defined in
Sec. II. As expected the Ricci scalar is much smaller for
the second-order metric, growing with time as the inspiral

proceeds and the orbital separation decreases. In this paper,
we focus on nonspinning black hole binaries in a quasi-
circular inspiral trajectories, but the methods introduced
here are valid for general black holes in generic orbits.
The remainder of this paper deals with the details of

this calculation. Section II describes how to construct the
global metric in more detail. Section III shows the degree
to which the global metric satisfies the vacuum Einstein
equations. Section IV concludes and points to future
research. We mainly follow the conventions of Misner,
Thorne and Wheeler [29]. In particular, we use greek
letters ðα; β;…Þ in index lists to denote spacetime indices,
and latin letters ði; j;…Þ to denote spatial indices. The metric
is denoted gμν and it has signature ð−;þ;þ;þÞ. We use the
geometric unit system, where G ¼ c ¼ 1, with the useful
conversion factor 1M⊙ ¼ 1.477 km ¼ 4.926 × 10−6 s.

II. CONSTRUCTION OF APPROXIMATE
GLOBAL METRIC

In this section, we describe the construction of an
approximate, global spacetime for a nonspinning binary
black hole system in a quasicircular trajectory, during the
inspiral regime. We begin by subdividing the spacetime
into different zones, inside which different approximations

FIG. 1 (color online). L2 norm of the Ricci scalar as a function
of time computed with metrics of two different perturbation
orders (see Sec. II). The norms are computed using a physical
domain extent of ½0;−80;−0.15� to [159.95, 79.95, 0.1] in units
of total mass M. The black hole horizons are excised and a mesh
spacing of 0.05M is used. The black, dotted, vertical lines
indicate instants of time when the binary separations reach
14M, 12M, 10M and 8M, from left to right, respectively. The
evolution is initialized at 20M.
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will be used to obtain approximate metrics. We then
explain how to connect these approximate metrics through
time-dependent asymptotic matching, and conclude with a
description of the transition functions necessary to glue
these asymptotically matched, approximate metrics
together.

A. Subdividing spacetime

We divide the spacetime into the following three
regions:

(i) Inner Zone for BH1 (IZ1) and BH2 (IZ2).
(ii) Near Zone (NZ).
(iii) Far Zone (FZ).

Figure 2 shows a schematic representation of these three
zones on a spatial hypersurface (see also [30]). Black
holes are shown as black, solid circles, with cyan circles
denoting the boundaries of each zone, which are also
listed in Table I.
IZA is defined as the region sufficiently near black hole A

that the metric can be described as a tidally distorted black
hole spacetime. Mathematically, this region can be defined
via rA ≪ r12, where rA is the distance from the Ath black
hole and r12 is the binary’s orbital separation. The IZ metric
can be modeled through black hole perturbation theory,
as in [17–19,31–34]. In this paper, we concentrate on

nonspinning black hole binaries, and thus, the IZ metrics
will be described by a perturbed Schwarzschild solution
either to quadrupole or to octupole order [17,31] in
horizon-penetrating coordinates [28].
A highly desirable feature of the global metric for

numerical purposes is the use of horizon-penetrating
Cook-Scheel harmonic coordinates [35], which we will
employ in the IZs. Such coordinates allow for excision of
the region interior to the event horizons (especially for
matter falling into the black holes). Nonpenetrating coor-
dinates, such as standard PN harmonic coordinates, would
lead to coordinate singularities and numerical difficulties
on the horizons. Asymptotic matching will not spoil the
horizon-penetrating properties of the global metric, since
close to the horizons this metric will be that of the IZ in
proper horizon-penetrating coordinates.
The NZ is the region sufficiently far from either black

hole that the metric can be described through the PN
approximation [10], yet is still much closer than a gravi-
tational wavelength from the binary’s center of mass.
Mathematically, this region can be defined via mA ≪
rA ≪ λ, where mA is the mass of the Ath black hole and
λ is the gravitational wave wavelength. In the PN approxi-
mation, one solves the Einstein equations as an expansion in
both v=c ≪ 1 (slow motion), where v is the binary’s orbital
velocity and c is the speed of light, and Gm=ðRc2Þ ≪ 1
(weak fields), wherem ismA orM ¼ mA þmB, and R is rA
or r12. By construction, the PN approximation models black
holes as point particles, expands the metric aboutMinkowski
spacetime and models retardation in gravitational waves
perturbatively. In this paper, we employ the 2.5PNNZmetric
of [20] for nonspinning black hole binaries.1

The FZ is the region sufficiently far from the binary’s
center of mass that the metric can be described through a
multipolar, PM formalism. Mathematically, this region can
be defined via r ≫ λ, where r is the distance from the center
of mass. In this region, the metric can be obtained via direct

FIG. 2 (color online). Schematic diagram of the spacetime on a
spatial hypersurface. BH1 and BH2 are denoted by filled, solid
black circles, where the orbital separation is r12. The BZs are
denoted with cyan shells, the outer one representing the FZ-NZ
BZ and the two inner ones representing the NZ-IZ BZs (see also
Table I). The circular nature of these BZs is only schematic; in
practice, the BZs should be distorted. The IZ, NZ and FZ are also
shown in this figure.

TABLE I. Spatial regions of validity for the different zones.
rA is the distance from the Ath black hole with mass mA, r
is the distance from the center of mass, and r12 and λ ∼
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r312=ðm1 þm2Þ

p
are the orbital separation and the

gravitational wavelength, respectively. For BZs to exist, the
system must satisfy mA ≪ r12.

Zone Region of validity

IZ1 0 < r1 ≪ r12
IZ2 0 < r2 ≪ r12
NZ mA ≪ rA ≪ λ
FZ r12 ≪ r < ∞
IZ-NZ BZ mA ≪ rA ≪ r12
NZ-FZ BZ r12 ≪ r ≪ λ

1A term of Oðv2NÞ will be said to be of relative NPN order.
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integration of the relaxed Einstein equations [21,23,24], or,
alternatively, via the multipolar formalism in [10,36–38].
Radiative effects are dominant in the FZ and retardation
effects are large. In this paper, we employ a 2.5PN order PM
metric, evaluated explicitly for quasicircular binaries in [28].
For binaries in the inspiral regime, these different zones

overlap in BZs, shown as cyan shells in Fig. 2. Each IZ
overlaps with the NZ, leading to 2 IZ-NZ BZs, while the
NZ overlaps with the FZ in the NZ-FZ BZ. Inside the
IZ-NZ BZ, the IZ’s perturbed Schwarzschild metric and
the NZ’s PN metric are both simultaneously valid.
Similarly, in the NZ-FZ BZ, the NZ’s PN metric and the
FZ’s PM metric are simultaneously valid. The existence of
such BZs is what allows one to carry out asymptotic
matching and construct a global metric.

B. Asymptotic matching

1. Basics and prior work

Asymptotic matching is the mathematical technique
that forces two approximate solutions to the same set of
differential equations to asymptotically approach each
other in their overlapping region of validity. This is
achieved through a given coordinate and parameter trans-
formation that relates the coordinates and parameters native
to each approximation. Such transformations are obtained
by setting the asymptotic expansion of the approximate
solutions in the overlapping regions equal to each other.
For the problem at hand, asymptotic matching will be

used to relate the perturbed Schwarzschild black hole
metric of IZA to the two-body PN metric of the NZ.
The NZ and FZ metrics are already asymptotically matched
by construction [10]. Through asymptotic matching, one
obtains a coordinate and parameter transformation to relate
IZA to the NZ, such that the transformed metric of IZA
asymptotes to the NZ metric in the IZA-NZ BZ.
Such a procedure to construct an approximate global

metric is also ideal to compute initial data for binary black
hole simulations. Alvi [22,25] was the first to attempt
such a construction, but ended up carrying out asymptotic
patching rather than matching.2 Yunes et al. [14,26–28]
succeeded in carrying out matching for nonspinning binary
black holes and this data were recently evolved in [40] (see
also [41] for numerical evolutions of superposed tidally
perturbed BHs). Gallouin et al. [30] recently extended this
construction to spinning black hole binaries.
One may be tempted to use such a global “initial data

metric” to obtain one that is valid on a large number of
spatial hypersurfaces. Such a procedure, however, is doomed
to fail from the start. The reason is that all initial data metrics
make explicit use of expansions about t ¼ t0, where t0 labels

the time-parameter of the initial spatial hypersurface. Such
expansions prohibits the use of the initial data metric at
t > t0, rendering them useless for dynamical evolutions.
One may attempt to glue several such initial data metrics
together to generate a 4-dimensional metric. However, this
procedure will introduce inconsistencies in the coordinate
transformations used in the matching procedure, leading to
an invalid metric.
We here take a different route that is guaranteed to

produce a global metric with IZ, NZ and FZ approximate
metrics that asymptotically match each other for all times
(up until the binary’s orbital separation becomes too small).
The procedure is simply to carry out the matching without
assuming ðt − t0Þ=r12 ≪ 1. Fortunately, part of this match-
ing procedure has already been carried out by Taylor and
Poisson [32]. We will use the results of this paper, together
with the formalism of [14,26–28], following closely [28],
to construct the global metric.
We begin by reviewing the work of Taylor and Poisson

[32]. In that paper, they study the geometry of the event
horizon of a nonspinning black hole that is perturbed by a
companion in a quasicircular orbit. Their analysis follows
Poisson’s approach to black hole perturbation theory
[19,31,33,34,42–44], where the metric close to the black
hole (the IZ metric) is expressed in ingoing Eddington-
Finkelstein coordinates. This metric is composed of a
background (the Schwarzschild metric) plus a metric per-
turbation, expressed as the product of certain functions of
radius, tensor spherical harmonics of the angular coordi-
nates, and certain functions of time. The latter characterizes
the external universe (the external perturber) and it is
expanded in terms of electric and magnetic tidal tensors.
Taylor and Poisson [32] asymptotically matched this

metric to a 1PN metric in the IZ-NZ BZ. Their matching
algorithm is different from the one pioneered in [14].
In the latter, the matching transformation consists of both a
parameter and a coordinate transformation, which is
essential because the IZ and NZ metrics are not in the
same coordinate system or gauge. Taylor and Poisson [32],
instead, do a series of coordinate and gauge transformations
on the IZ metric so that the end result is in harmonic
coordinates and the perturbation is in harmonic gauge.
Once this is done, the matching transformation just relates
the parameters between the two metrics (i.e., the tidal
tensors as functions of the NZ parameters).
Nowhere in the Taylor and Poisson analysis [32] is the IZ

or NZ metrics expanded in terms of ðt − t0Þ=r12 ≪ 1, since
they were not interested in initial data. In that paper, they in
fact show by explicit calculation that asymptotic matching
does not require this extra assumption, and thus, the
parameter transformation they find is valid for all times,
as long as a BZ exists. By composing the many coordinate
transformations of [32], one can also obtain a time-
dependent coordinate transformation that relates the IZ
to the NZ metrics.

2When patching, one sets the metrics equal to each other at a
point, instead of in an entire BZ region (for more details see
[14,39]).
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One caveat should be mentioned here before proceeding.
Taylor and Poisson [32] only match the metric components
that are needed to study the evolution of the event horizon,
namely the shift and the lapse, but not the spatial metric.
Moreover, they work only to 1PN order in the NZ and to
quadrupole order in black hole perturbation theory in the
IZ. Therefore, when applying their scheme to our problem,
certain pieces of the 2PN NZmetric will not properly match
to certain pieces of the octupole order IZ metric. In order
for the global metric to match consistently to that order, the
matching calculation would have to be redone, which will
be considered elsewhere.

2. Time-dependent matching

We define the order of the matching calculation as
follows. Let the IZ metric be composed of a background,
such as the Schwarzschild spacetime, plus deformations of
multipole orders up to l ¼ N þ 1, where N is an arbitrary
non-negative integer. Let the NZ metric be a PN metric of
Nth PN order. With these definitions, we define the
following:

(i) First-order matched metric: Constructed from an IZ
metric that consists of the Schwarzschild metric with a
quadrupole deformation (l ¼ 2). This perturbation
depends only on the electric quadrupole Eab and the
magnetic quadrupole Bab. The NZ metric consists of a
1PN metric.

(ii) Second-order matched metric: Constructed from an
IZ metric that consists of the Schwarzschild metric
with a quadrupole and an octupole deformation
(l ¼ 2 and l ¼ 3). This perturbation depends on
the electric quadrupole Eab and the magnetic quadru-
pole Bab, as well as on their time derivatives _Eab and
_Bab, and the electric octupole Eabc and the magnetic
octupole Babc. The NZ metric consists of a 2PN
metric.

Of course, nothing prevents us from using the most
accurate PN metric in the NZ that is available, possibly
resummed in some way. However, this does not imply
the IZ metric will asymptotically match the NZ metric to
higher order.
The global metrics will be constructed as follows. We

take the results of [28], which are formally valid only about
a given spatial hypersurface, and perform a “temporal
resummation”3: we replace terms that depend on powers of
ωt in the coordinate and parameter transformation of [28],

with ω the orbital frequency, by functions of the PN orbital
trajectories and velocities. For example, a term of the form
ωt can be temporally resummed into sinωt, which is
proportional to the y component of the trajectory of
body 1. Similarly, a term of the form −ω2t can be
temporally resummed into−ω sinωt, which is proportional
to the x component of the velocity of body 1.
Note that the operation of temporal resummation is not

unique. For example, a term of the form ω2t2 can be
temporally resummed either by sin2ωt or by 2ð1 − cosωtÞ.
So how does one choose the proper resummation? Here we
will be guided by the work of Taylor and Poisson [32]. We
cannot use their transformations directly because they work
in a different gauge and coordinate system. However, we
can use the tensorial structure of their results as guiding
principles to properly carry out the temporal resummation.
As we will show next, using this insight, we can temporally
resum the work of [28] to obtain an IZ metric that formally
asymptotically matches the NZ metric to first order in all
components and for all times. As explained in the caveat
of the last subsection, we cannot use the work of Taylor
and Poison to gain insight into temporal resummation at
second-order in matching, since they work to first-order.
Second-order, temporally resummed, asymptotic matching
will have to be derived from first principles, as we will
study in a future paper.

3. First-order matching

Based on [32], we here resum the time dependence of the
coordinate transformation found in [28]. First, we prepare
various functions, as motivated by [32]. Let us define
~xi ¼ f~x; ~y; ~zg as the coordinates centered on BH1,

~x ¼ x −m2r12
M

cosϕ; (1)

~y ¼ y −m2r12
M

sinϕ; (2)

~z ¼ z; (3)

where ~r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2 þ ~z2

p
is the radial coordinate from

BH1. The orbital phase evolution ϕ ¼ ϕðtÞ and the
evolution of the orbital separation r12 ¼ r12ðtÞ can be
calculated in the PN formalism and must be evaluated in
the same way as in the NZ PN metric. Keep in mind,
however, that these quantities are both time dependent,
and thus their temporal evolution must be included
when computing the Jacobian of the coordinate
transformation.
Let us also define the coordinates centered on BH1 that

are corotating with the binary:

~xc ¼ ~x cosϕþ ~y sinϕ;

~yc ¼ ~y cosϕ − ~x sinϕ: (4)

3Resummation is a mathematical technique whereby a (pos-
sibly divergent) series expansion is replaced by a single function,
whose Taylor expansion is identical to the original series. Many
types of resummations exist in the literature, such as Padé
resummation [39]. Temporal resummation amounts to a particu-
lar trigonometric resummation on the time variable only.

APPROXIMATE BLACK HOLE BINARY SPACETIME VIA … PHYSICAL REVIEW D 89, 084008 (2014)

084008-5



These quantities arise from the inner products ~xix̂ðpÞi
and ~xiv̂ðpÞi respectively, where x̂ðpÞi and v̂ðpÞi denote
the unit vectors of the PN particles’ locations from the
center of mass and their velocities. Note also that ~xc ∼ ~xþ
ϕðtÞ~y and ~yc ∼ ~y − ϕðtÞ~x for small ϕðtÞ ≪ 1. If we neglect
radiation-reaction, ϕðtÞ ¼ ωt ¼ v12t=r12, so small ϕðtÞ
means an expansion in t=r12 ≪ 1, precisely the expansion
used in [28].
Let us now follow Taylor and Poisson [32] and introduce

quantities similar to their Eqs. (7.21) and (7.22):

_A ¼ 1

2

m2ðm2 þ 2MÞ
Mr12

;

Ri ¼ f0; 0; Rzg;

Rz ¼ − 1

2

m2ð4M −m2Þ sinϕ cosϕ
Mr12ð1þ ðm2 −m2

2=M − 3MÞ=ð2r12ÞÞ
: (5)

The vector Ri shown above is obtained by simple integra-
tion, Ri ¼ R

dt _Ri ¼ _Rit, where _Ri is given in [32], and the
last equality holds because _Ri is constant in time, when one

neglects radiation reaction. Of course, direct integration of
_Ri in [32] would lead to a term proportional to ωt in the
spatial sector of the coordinate transformation, which is
unacceptable and has here been temporally resummed. We
empirically find that resumming ωt through sinϕ cosϕ
leads to proper matching at first order. Of course, the
resummed form of Rz shown above reduces exactly to the
Taylor-Poisson expression for ωt ≪ 1. On the other hand,
we temporally resum A ¼ R

dt _A ¼ R
dr12 _Aðdr12=dtÞ−1,

where the rate of change of the orbital separation
dr12=dt is calculated from the balance law (for example,
see [10]), because this term enters the time component of
the coordinate transformation only, which evolves in the
radiation reaction timescale, as we will see below. We could
have resummed Ri similarly to A, but we find that this is not
necessary to the order we work here.
Then, taking into account the form of the coordinate

transformation in Ref. [32], the following transformation is
obtained as an extension of that in Ref. [28]:

T ¼ t− m2 ~ycffiffiffiffiffiffi
r12

p ffiffiffiffiffi
M

p þ 5

384

ðm2 þ 2MÞðr312 − r12ðt0Þ3Þ
M2m1

þ
�
−1

2

m2 ~y
ffiffiffiffiffi
M

p
~x~r2

r129=2
þ 1

2

m2 ~yc
ffiffiffiffiffi
M

p
~r2

r127=2
þ 5

2

m2 ~y~x3
ffiffiffiffiffi
M

p

r129=2
− 2

~x2
ffiffiffiffiffi
M

p
~ym2

r127=2
−m2 ~yc ~xcðm2 − 2MÞffiffiffiffiffi

M
p

r125=2
þ 1

2

m2 ~ycð−5Mþm2Þffiffiffiffiffi
M

p
r123=2

�
;

X ¼ ~xþ
�
−1

2

m2
2 sinϕ~yc
Mr12

þ ~x

�
_A− 1

2

m2
2

Mr12

�
þ 1

2

m2ð−2~x~xc þ cosϕ~r2Þ
r122

�
− ~yRz;

Y ¼ ~yþ
�
1

2

m2
2 cosϕ~yc
Mr12

þ ~y
�
_A− 1

2

m2
2

Mr12

�
þ 1

2

m2ð−2~y~xc þ sinϕ~r2Þ
r122

�
þ ~xRz;

Z ¼ zþ
�
z

�
_A− 1

2

m2
2

Mr12

�
−m2z~xc

r122

�
: (6)

The IZ1 metric components are expressed in terms
of the coordinates fT; X; Y; Zg; the transformation from
ft; x; y; zg to fT; X; Y; Zg, therefore, provides a means by
which we can relate points in the NZ to those in the IZ1 (with
similar transformations for IZ2 after the 1↔2 exchange
symmetry transformation). As mentioned earlier, notice that
the temporal piece of the transformation contains the orbital
separation, r12ðt0Þ, at a point in time, t0, to describe the
orbital evolution used to calculate the radiation reaction
timescale; we set t0 to be the initial time of a simulation.
Note that we have only discussed the resummation of

the coordinate transformation and have not mentioned
resumming the parameter transformation. The pieces of
this transformation that are needed to be resummed are the
relations of the multipole tidal fields as functions of the PN
parameters. Such temporal resummation was already car-
ried out in the Appendices of [28], and will thus not be
presented again here.

With this resummed coordinate and parameter trans-
formation, one can carry out several tests to check whether
the temporal resummation was successful. First, we
checked that the above transformation agrees exactly with
that of [28] in the ωt ≪ 1 limit, i.e., when t=r12 ≪ 1. This
automatically implies that the IZ and NZmetrics matches to
first order in the BZ for t ≪ r12. Second, we evaluated the
transformation at a point on the horizon and plotted it as a
function of time. We found that the transformation above
takes this point to a trajectory identical to that of the NZ
PN point particles, as expected. Third, we asymptotically
expanded the transformed first-order IZ metric in the BZ
and the NZ 1PN metric in the BZ (both without expanding
in t=r12 ≪ 1). We then compared every single metric
component and found that they were identical in the BZ.
This then proves that the temporally resummed trans-
formation leads to first-order asymptotic matching for all
times (as long as a BZ exists).

BRUNO C. MUNDIM et al. PHYSICAL REVIEW D 89, 084008 (2014)

084008-6



Before proceeding, we should mention that the trans-
formation above is technically different from that in [32]. In
particular, we did not use the contribution to the trans-
formation presented in their Eq. (6.16), and we changed the
sign of the second term in the right-hand side of their
Eq. (5.5). Their transformation and ours need not agree
because Taylor and Poisson start with an IZ metric in a
different gauge and coordinate system than the one used
here. The functional form of the transformation, however, is
indeed the same, which was crucial to select the proper
temporal resummation. Ultimately, what really matters for
our purposes is that the above transformation has been
found to satisfy the asymptotic matching equations to
first order.

4. Second-order matching

At second order in the matching, the problem becomes
dramatically more complicated. Obviously, part of the com-
plication is that the metrics in the IZ and NZ are themselves
longer and more complicated (2PN versus 1PN, octupole
deformation versus quadrupole). Symbolic manipulation
software, such as Maple, can barely handle the necessary
calculations presented herewith our computational resources.
But besides this, the main problem with temporally resum-
ming the second-order matching transformation is that we
have no guidance as to how to properly do it, because
Taylor and Poisson only worked to first order. Without such
guidance, there is an infinite number of ways in which the
resummation can be carried out and not all will actually
lead to a properly, second-order matched global metric.
In spite of these difficulties, wewill proceed and attempt to

temporally resum the transformationof [28] at secondorder in
matching. First, let us take the temporally resummed trans-
formation in Eq. (6) and expand it in t=r12 ≪ 1. Comparing
this to the second-order transformation in [28], one finds that
the transformations do not agree. More in detail, the latter
contains terms that do not arise upon expanding Eq. (6) in
t=r12 ≪ 1 and, the expanded version of Eq. (6) generated
terms that are not contained in the second-order transforma-
tion of [28]. Clearly, additional termsmust be added to Eq. (6)
to properly match at second order.
Let us then try to temporally resum the difference

between the second-order transformation of [28] and the
t=r12-expanded version of Eq. (6). Using some guidance
from the first-order matching calculation (but of course, as
explained above, this guidance is limited), one can tempo-
rally resum the difference. The result is truly formidable, and
thus, wewill show it in Appendix B. Adding this resummed
difference to Eq. (6) then provides a full, temporally
resummed coordinate transformation to second-order in
the matching. But of course, we have no guarantee that this
particular choice of temporal resummation is the correct one,
i.e., the one that leads to full asymptotic matching at second
order for all times.

As in the first-order matching case, we can analytically
investigate this last issue to see how well the second-order
metric performs. First, we checked that the temporally
resummed second-order transformation agrees exactly with
that of [28] in the ωt ≪ 1 limit, i.e., when t=r12 ≪ 1. As
before, this automatically implies that the the IZ and NZ
metrics match to second-order in the BZ at t ≪ r12.
Second, we evaluated the transformation at a point on
the horizon and plotted it as a function of time. Again, we
found that the second-order transformation takes this point
to a trajectory identical to that of the NZ PN point particles.
Third, and perhaps most importantly, we asymptotically
expanded the transformed IZ metric in the BZ and the NZ
metric in the BZ (both without expanding in t=r12 ≪ 1).
This time, however, we did not find that all metric
components matched in the BZ. That is, the temporally
resummed second-order metric is not properly asymptoti-
cally matched for all times.
For example, the off-diagonal spatial parts of the metric

(e.g. g12, g13 and g23) do not match at second order. At first
order in the matching, one needs not worry about these
components, as they simply do not enter the 1PN metric or
the transformed IZ metric. Of course, at second-order in
the matching, the 2PN NZ metric does have nonzero
off-diagonal, spatial-spatial components, and these must
be properly matched by the transformed IZ metric. In order
to achieve this, we modified the resummed, second-order
transformation so that many of the terms in the ðx; yÞ
component would match. This required not only adding
terms at Oðv4Þ to the transformation, but also some at
Oðv5Þ [28]. Given this analysis, it would seem that to
complete the matching at second-order for all times, Oðv6Þ
pieces may be needed in the t=r12 ≪ 1 expanded trans-
formation, which are currently unknown. Needless to say,
in spite of this improvement, the ðy; zÞ or ðx; zÞ components
continue not to match at second order.
One may here wonder whether this second-order,

temporally resummed matching transformation is better
than the first-order one, since after all it does not properly
lead to asymptotic matching in all components for all times.
Evaluating the metric components, however, we empiri-
cally find that the second-order transformed IZ metric is
actually much closer to the NZ metric in the BZ for all time.
The improvement is roughly a factor of 5 relative to the
first-order matching transformation. Of course, we suspect
that if second-order, time-dependent matching were carried
out properly and from first principles, the improvement
between first and second-order matching would be even
better (perhaps a factor of 7 or 10), but such an analysis will
have to wait to future work.

C. Global metric

Once the IZ metrics have been transformed with the first
or second-order, temporally resummed transformations,
one must still glue each IZ metric to the NZ metric with
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proper transition functions. The global metric is then
simply the weighted average

gμν ¼ ð1 − ffarÞffnear½finner;1gðNZÞμν þ ð1 − finner;1ÞgðIZ1Þμν �
þ ð1 − fnearÞ½finner;2gðNZÞμν þ ð1 − finner;2ÞgðIZ2Þμν �g
þ ffarg

ðFZÞ
μν ; (7)

where the transition functions, ffar, fnear, finner;1 and finner;2
are summarized in Appendix A. The Maple scripts and
C codes for the global, IZ, NZ and FZ metrics are all freely
available online as “Supplemental Material” in [28].We have
modified these scripts to include the temporally resummed
matching transformation and to optimize them for speed.
Figure 3 shows how the several metric pieces contribute

to the global second-order matched metric. Observe on
the left panel how smoothly the IZ and NZ metric pieces
approach each other in the BZ to make up the global metric.
Furthermore, note on the right panel how each metric piece
leads to different violations of the Ricci scalar. In particular
violations outside the validity region of the several metric
pieces become much larger than the ones resulting from the
global metric.

III. NUMERICAL ANALYSIS

Using the metric in Eq. (7), we calculate the Einstein
tensorGμν (or Ricci tensor Rμν, Ricci scalar R, Hamiltonian
constraint H, and momentum constraint Mi) to determine
the accuracy of our approximations. Our computation does
not depend on the Arnowitt-Deser-Misner (ADM, or 3þ 1)
decomposition [45], so we emphasize four dimensional

quantities in our analysis below. We will here show that the
Einstein tensor vanishes to the appropriate order not only at
an initial moment of time, but on a sequence of time slices
or arbitrary spatial extent, as expected.

A. Basic equations

An exact binary black hole vacuum spacetime must
satisfy the ten vacuum Einstein equations Rμν ¼ 0. Hence,
deviations of R ¼ gμνRμν from zero are a measure of the
error introduced in our analytical construction. We here use
the conventions in [29] to evaluate the Ricci scalar. Another
approach to estimate the error on a given time slice is to
calculate the violation of the Hamiltonian and momentum
constraints. We follow here the standard conventions, for
example in [46], to compute these quantities.
Traditionally, the numerical relativity community eval-

uates the quality and correctness of the numerical solutions
to the Einstein equations by monitoring the violation of the
Hamiltonian and momentum constraints, as a function of
space, time, and resolution. In analytical relativity, how-
ever, one usually computes the Einstein tensor to determine
the correctness of approximate solutions. We have calcu-
lated all of these quantities and found that they present
similar behavior. In this section, we present the Ricci scalar
as a measure of the accuracy of the global metric.
But how should one interpret this measure? In vacuum

GR, the Ricci scalar must vanish identically. The global
metric constructed here, however, is approximate, and
thus this scalar does not vanish identically. Physically, this
error can be interpreted as a (possibly energy-condition-
violating) nonvacuum component of spacetime, such as a

FIG. 3 (color online). Left: Comparison of the volume element,
ffiffiffiffiffiffi−gp

, for the several different metric pieces composing the global,
second-order matched metric, viz., the IZ, the NZ and the FZ metrics. Right: Absolute value of Ricci scalar computed with these metric
pieces. The vertical dotted lines mark the boundaries of each zone.
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noncollisional fluid or dust, since the Ricci scalar must be
equal to the trace of the stress-energy tensor.
One would like to assess if this error is small enough to

be negligible relative to other errors contained in the
modeling of the system. This, of course, depends on the
problem one is considering. In this paper, the problem one
would eventually like to solve is the evolution of a black
hole binary with a circumbinary accretion disk. It is thus
natural to compare this error to the total mass present in
the domain, which is dominated by the black hole masses in
the IZs and the NZ. We plan on exploring further this
interpretation in future work, computing the total amount of
“fake” mass that would be felt by a magnetized disk as a
function of the distance to the binary’s center of mass.
Before presenting a numerical analysis of the above

calculations, we give rough estimates of the location of the
horizon and the innermost stable circular orbit (ISCO). This
will help us understand the numerical result better. For a
single Schwarzschild black hole with mass m, the event
horizon is located at rHor;Sch ¼ 2m and rHor;Harm ¼ m in
Schwarzschild and PN harmonic coordinates respectively,
while the ISCO of a test particle in such a spacetime
is at rISCO;Sch ¼ 6m and rISCO;Harm ¼ 5m, respectively.
Therefore, very roughly, the event horizon of the global
metric for a binary system of comparable masses is located
at rA;Hor ¼ 0.5M for A ∈ ð1; 2Þ and the ISCO is at
rA;ISCO ¼ 2.5M in PN harmonic coordinates, where M ¼
m1 þm2 is the total mass.

B. Numerical method and convergence tests

Our global approximate metric and associated analysis
routines were implemented and tested both in a standalone
code and in the HARM3D code. The former allowed us to
perform point-wise tests of the routines anywhere on
the 4-dimensional manifold. The latter provided a platform
to efficiently study the routines as a time series of
3-dimensional slices, appropriately chosen to cover the
regions around each black hole. HARM3D [12,47,48] is a
GRMHD code originally developed to study accretion
disks around single black holes. It has recently been
redesigned to handle any kind of analytic metric, including
black hole binary metrics such as ours. For a review of its
capabilities, please refer to [11].
While the metric used in this paper is purely analytic, we

chose to calculate its first and second derivatives numeri-
cally when computing the Einstein equations. We used
fourth order finite difference approximations to the con-
tinuum derivative operators in a Cartesian coordinate
system. Several different resolutions were employed to
make sure the quantities presented are in the convergence
regime to the continuum solution. We have avoided
implementing an analytic version of the metric derivatives
mainly due to the analytical complexity of the metric
components themselves. An implementation of the analytic
representation of second order mixed derivatives in time
and space, for example, would not be efficient or advanta-
geous from a computational point of view.

FIG. 4 (color online). Left: Convergence factor Qh computed using three different grid resolutions: h ¼ 0.05M, h ¼ 0.025M and
h ¼ 0.0125M, respectively, corresponding to 10, 20 and 40 points across the horizon radius. Observe that this factor is almost
everywhere close to 16, which corresponds to fourth-order convergence. The magenta regions in this panel show areas that converge
faster that fourth-order, while red regions show areas that converge slower, possibly due to zero-crossings of the solution error function.
Right: L2 norm of the Ricci scalar difference for different levels of refinement as a function of time. The L2 norm is calculated over a
sector of the simulation domain that ranges from ½−12;−12;−0.75� to [12, 12, 0.75] with uniform resolutions following a 2∶1 Cartesian
grid spacing ratio, where the coarsest grid has a mesh spacing of 0.05M.
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In our battery of tests, the first and most fundamental one
is related to the convergence of the numerical solution to
the analytic solution. Recall that we employed fourth-order,
finite-difference approximations to the derivative operators.
One way to assess the convergence rate is to look at the

local convergence factor QhðtÞ for a discrete solution
function uh defined as

QhðtÞ ¼ u4h − u2h

u2h − uh
¼ 2p þOðhÞ; (8)

FIG. 5 (color online). Absolute value of the Ricci scalar along the x axis (left) using the first and second-order metrics at a separation of
20M and (right) using the second-order metric at different separations. The mesh spacing is dx ¼ 0.0125M, roughly 40 grid points along
the horizon radius (unless indicated otherwise, the same resolution is used in all other figures). The thick purple vertical lines show the
location of the event horizon, while the black ones show the boundary of the different zones. Observe how smoothly the violations to the
Einstein equations increase as the orbital separation shrinks.

FIG. 6 (color online). Comparison of the absolute value of the Ricci scalar calculated with the first order (left) and the second order
(right) metrics at t ¼ 10756.60M, corresponding to an orbital separation of 14.13M, when the initial separation was 20M. The color
scale is logarithmic and fixed to emphasize the regions that saturate the interval ½10−7; 10−1�. The concentric dotted lines centered around
the black hole and the origin indicate where the IZ-NZ BZ and the NZ-FZ BZ start and end respectively.
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where p is the order of the finite-difference approximation
employed (p ¼ 4 here).
Let us now prove that our numerical implementation of

Ricci scalar does indeed converge to its analytic nonzero
value to fourth order, locally and globally in time. The left
panel of Fig. 4 shows the convergence factor in a linear
color scale ranging from 14 to 18. This figure shows that
most of Qh stays in that range, suggesting fourth-order
convergence. The star-ray pattern (regions where the
convergence factor saturates the color scale) corresponds
to regions where the discrete-solution, error function

crosses zero and, therefore, cannot be appropriately repre-
sented with finite (double) machine precision. The right
panel of the same figure shows the convergence of the Ricci
scalar as a function of time. In particular, this figure shows
the L2 norm of the difference of the Ricci scalar evaluated
with different levels of resolution. The factor between
the two curves, corresponding to the difference between
medium and high levels of resolution and between low and
medium ones, is close to 24 as one can verify visually. Both
panels reassure us of the correctness of our finite difference
implementation.

FIG. 7 (color online). Absolute value of the Ricci scalar calculated with the first-order (left) and the second-order (right) global metric
at an initial separation of 20M (top) and after 10756.60M of evolution, when the separation is 14.13M (bottom). The color scale is
logarithmic and fixed to emphasize the regions that saturates the interval ½10−7; 10−1�. The concentric dotted and dashed lines around
each black hole indicate where the IZ-NZ BZ starts and where the ISCO would be located for an individual black hole, respectively.
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C. Accuracy of global metric

We turn our attention next to how the Ricci scalar
behaves as a function of the perturbative approximation
order of the global metric and as a function of time.
When we introduced our time resummation procedure to
adapt the initial data metric to a global metric, we could
have introduced artifacts or overlooked matching assump-
tions that could have led to undesirable errors. Figure 5
addresses these concerns by showing the Ricci scalar along
the x axis. The left panel shows this scalar computed with
the first and the second-order metrics at a separation of
20M. The right panel shows the scalar computed with the
second-order metric at several instances of time in the
evolution, starting from a separation of 20M and ending at
8M. The different spacetime zones are marked with vertical
lines. Observe that the magnitude of the Ricci scalar
decreases as the order of the approximation increases.
Furthermore, the violations increase slowly and smoothly
as the orbital separation shrinks. These figures show that no
artifacts or pathologies have been introduced in the global
metric.
As a way of verifying that the second-order metric

introduces fewer violations to the Einstein equations than
the first-order one, we have extended our analysis to a
domain consisting of a two dimensional slice, the z ¼ 0
plane, including one of the black holes, its IZ, NZ, and BZ.
The slice is taken at a time t ¼ 10756.60M (chosen because
the BHs are again on the x axis) when the binary separation
is r12 ¼ 14.13M after starting from r12 ¼ 20M at t ¼ 0M.
Figure 6 makes it clear that the trends observed above
remain, i.e., that the more accurate the global metric, the
closer the Ricci scalar is to zero. Thus, the smallness of the
Ricci scalar computed with the second order metric is not
due to plotting along the x axis. In addition, this figure
shows that the Ricci scalar decreases away from the black
hole as expected from an approximation that asymptotically
approaches Minkowski spacetime.
Finally, let us include both black holes in the domain and

focus our attention on the region between them and their
immediate vicinity. Figure 7 shows the Ricci scalar
computed with the first (left panels) and second-order
metrics (right panels) at an initial separation of 20M (top
panels) and at t ¼ 10756.60M later (bottom panels),
corresponding to a separation of 14.13M. This figure
shows several interesting features. First, the second order
metric is globally more accurate than the first-order metric
as expected. Second, the accuracy of the approximations
deteriorate with shrinking orbital separation, as expected
for our construction. Third, the largest violations are in
the IZ-NZ BZ, just outside where the ISCO would be if
the black hole were isolated. These violations correspond
to the “humps” observed originally in [14] when con-
structing initial data. Fourth, the Ricci scalar decreases
towards the perpendicular bisector of the line joining
both black holes.

IV. CONCLUSIONS

We have constructed a global, approximate spacetime
metric that describes a nonspinning, black hole binary
system in a quasicircular inspiral trajectory. This metric is
built by asymptotically matching approximate metrics (a
perturbed Schwarzschild metric, a two-body PN metric,
and a multipolar PM metric) with a time-dependent trans-
formation. We have evaluated the Ricci scalar as a function
of time to determine how accurately this global metric
satisfies the vacuum Einstein equations. We have found that
indeed the metric constructed is as accurate as expected,
with dominant errors arising due to uncontrolled remain-
ders in the different approximations.
Our immediate goal is to use this metric to study a variety

of astrophysical phenomena related to black hole binary
spacetimes, such as the MHD evolution of accretion disks
around SMBH mergers starting from astrophysically rel-
evant initial conditions, the associated emission of electro-
magnetic radiation from such mergers, and the formation
of jets. Upcoming work in this arena will be published in
separate papers.
The specific spacetime work carried out here could be

expanded in different directions. Perhaps the obvious first
step is to repeat the matching calculation from first
principles, without assuming ðt − t0Þ=r12 ≪ 1, as is done
in (almost) all previous GR matching studies. Doing so to
highest order possible in the matching may provide a
more accurate transformation, which would thus reduce
the magnitude of the uncontrolled remainders in the
present metric. Another possible direction for future
research would be to repeat this analysis for spinning
black hole binaries. Recently, Ref. [30] used the per-
turbed Kerr metric of [18] and the NZ PN metric of [49] to
compute an asymptotically matched metric on a short slab
of spatial hypersurfaces. This asymptotically matched
metric is then sufficient to construct a global metric,
following the temporal-resummation prescription devel-
oped here.
Another possible avenue for future research would be to

consider more generic orbits. In this paper, we focused on
quasicircular, nonspinning inspirals, neglecting orbital
eccentricity and precession. Recent work on eccentric
inspirals [50–52] could be used to extend the work in
[14,26,28,30] and construct an asymptotically matched
spacetime for binaries in eccentric orbits.
Finally, it may be desirable to reconsider the construc-

tion of a global metric in a coordinate system that is better
adapted to numerical simulations. One such set of coor-
dinates are the ADM-TT ones, for example used in the PN
work of [26,53–56]. One could start by constructing an
asymptotically matched metric using ADM-TT coordi-
nates in the NZ, as was done for example in [26]. Of
course, one would have to extend this work to next order
in matching, which was accomplished in [28] using
harmonic coordinates. If this is done without assuming
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an expansion about an initial spatial hypersurface, then the
resulting global metric would be valid for all times, while
a BZ exists.
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APPENDIX A: TRANSITION FUNCTIONS

When constructing a global metric, appropriate transition
functions must be used to avoid introducing spurious error
[27]. In this paper, we used the following piecewise
function in the BZs:

fðr; r0; w; q; sÞ ¼

8>><
>>:

0; r ≤ r0;

1
2

n
1þ tanh

h
s
π

�
χðr; r0; wÞ − q2

χðr;r0;wÞ
�io

; r0 < r < r0 þ w;

1; r ≥ r0 þ w;

(A1)

where χðr; r0; wÞ ¼ tan½πðr − r0Þ=ð2wÞ�, and r0, w, q and s
are parameters. References [14,26,28] discuss this transition
function in great detail. This function satisfies the Franken-
stein conditions of [27] for an appropriate set of parameters.

The transition functions in different BZs will
have slightly different parameters [28]. We used the
following throughout the paper (unless otherwise
mentioned):

FIG. 8 (color online). Left: L2 norm of the Ricci scalar along the x axis computed with the second-order metric for different choices of
s in the NZ-FZ BZ transition function. Observe that an appropriate choice of transition function parameter leads to a smaller “bump” in
the Ricci scalar in the NZ-FZ BZ. Right: Behavior of ffar ¼ fðr; λ=5; λ; 1; sÞ, dffar=dr and jd2ffar=dr2j for various values of s. Observe
that the choice s ¼ 1.4 leads to a better behaved transition.
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fnear ¼ fðx; 2.2m2 −m1r12=M; r12 − 2.2M; 1; 1.4Þ;
finner;A ¼ fðrA; 0.256rTA; 3.17ðM2r512Þ1=7; 0.2; r12=MÞ:

(A2)

The transition radius rTA ¼ ðm3
Ar

5
12=MÞ1=7 was derived by

requiring that the uncontrolled remainders of the approx-
imations in the IZ and NZ be comparable. The transition
function in the NZ-FZ BZ was also given in [28] by
Eq. (A1) with the parameters r0 ¼ λ=5, w ¼ λ, q ¼ 1 and
s ¼ 2.5, where λ ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r312=M

p
in the Newtonian limit. We

found that this transition function leads to a rather large
“bump” in the Ricci scalar jRj around x=M ≈ 200, where
the transition between the NZ and FZ metrics occurs as
shown in the left panel of Fig. 8.
In order to remove this undesired behavior, let us study

this transition function as a function of s at r12=M ¼ 20.
The right panel of Fig. 8 shows ffar as well as its derivatives
dffar=dr and jd2ffar=dr2j for various values of s. This
figure suggests that any value of s between 1.3 and 1.5
would lead to a better behaved NZ-FZ transition, so we here
choose s ¼ 1.4. We have verified that with this choice of s,
the Frankenstein theorems of [27] are still satisfied.

APPENDIX B: SOME DETAILS TO CONSTRUCT
THE GLOBAL METRIC

In this appendix, we present in more detail the equations
used to construct the global metric. In order not to duplicate
equations in previous studies, let us first describe which
equations we have used from previously published papers.
For ease of reading, Eq. (n) from Ref. [28] will be denoted as
Eq. (JM-n). For theNZ, the PNmetric is given in Eq. (JM-4.1)
(see also Eq. (7.2) of Ref. [20] for completeness). Orbital
information required to calculate the metric is taken from
Ref. [10]. For example, the phase evolution for quasicircular,
nonspinning inspirals is given inEq. (234) ofRef. [10]. TheFZ
metric is obtained fromEq. (JM-6.3)withEq. (JM-6.1), which
is determined by the sourcemultipoles in Eq. (JM-6.2). The IZ
metricisgivenbyEq.(JM-3.2)withEq.(JM-3.3).Thismetric is
prescribed by multipole tidal fields in IZ coordinates fT; X;
Y; Zg. The multipole tidal fields are given in Eq. (JM-B.1).
The temporally resummed coordinate transformation

found in this paper (i.e., the mapping between the IZ
coordinates fT; X; Y; Zg and the PN harmonic coordinates
ft; x; y; zg) to second order in the matching is explicitly

T ¼ t − m2 ~ycffiffiffiffiffiffi
r12

p ffiffiffiffiffi
M

p þ 5
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þ
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The second-order transformed IZ metric under the PN harmonic coordinates is calculated by using the above equations.
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