
Cosmological constraints on Bose-Einstein-condensed scalar
field dark matter

Bohua Li,* Tanja Rindler-Daller,† and Paul R. Shapiro‡

Department of Astronomy and Texas Cosmology Center, The University of Texas at Austin,
2515 Speedway C1400, Austin, Texas 78712, USA

(Received 22 October 2013; published 30 April 2014)

Despite the great successes of the cold dark matter (CDM) model in explaining a wide range of
observations of the global evolution and the formation of galaxies and large-scale structure in the Universe,
the origin and microscopic nature of dark matter is still unknown. The most common form of CDM
considered to date is that of weakly interacting massive particles (WIMPs), but, so far, attempts to detect
WIMPs directly or indirectly have not yet succeeded, and the allowed range of particle parameters has been
significantly restricted. Some of the cosmological predictions for this kind of CDM are even in apparent
conflict with observations (e.g., cuspy-cored halos and an overabundance of satellite dwarf galaxies).
For these reasons, it is important to consider the consequences of different forms of CDM.We focus here on
the hypothesis that the dark matter is comprised, instead, of ultralight bosons that form a Bose–Einstein
condensate, described by a complex scalar field, for which particle number per unit comoving volume is
conserved. We start from the Klein–Gordon and Einstein field equations to describe the evolution of the
Friedmann–Robertson–Walker universe in the presence of this kind of dark matter. We find that, in addition
to the radiation-, matter-, and Λ-dominated phases familiar from the standard CDM model, there is an
earlier phase of scalar-field domination, which is special to this model. In addition, while WIMP CDM is
nonrelativistic at all times after it decouples, the equation of state of Bose–Einstein condensed scalar field
dark matter (SFDM) is found to be relativistic at early times, evolving from stiff (p̄ ¼ ρ̄) to radiationlike
(p̄ ¼ ρ̄=3), before it becomes nonrelativistic and CDM-like at late times (p̄ ¼ 0). The timing of the
transitions between these phases and regimes is shown to yield fundamental constraints on the SFDM
model parameters, particle mass m, and self-interaction coupling strength λ. We show that SFDM is
compatible with observations of the evolving background universe, by deriving the range of particle
parameters required to match observations of the cosmic microwave background (CMB) and the
abundances of the light elements produced by big bang nucleosynthesis (BBN), including Neff , the
effective number of neutrino species, and the epoch of matter-radiation equality zeq. This yields m ≥
2.4 × 10−21 eV=c2 and 9.5 × 10−9 eV−1 cm3 ≤ λ=ðmc2Þ2 ≤ 4 × 10−17 eV−1 cm3. Indeed, our model can
accommodate current observations in which Neff is higher at the BBN epoch than at zeq, probed by the
CMB, which is otherwise unexplained by the standard CDM model involving WIMPs. We also show that
SFDM without self-interaction (also called “fuzzy dark matter”) is not able to comply with the current
constraints from BBN within 68% confidence and is therefore disfavored.
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I. INTRODUCTION

A. Cold dark matter

Since the discovery of the accelerating expanding
Universe, ΛCDM has become the standard cosmological
model as supported by various astronomical observations.
Cosmic microwave background (CMB) observations have
shown that about 25% of the energy density of the present
Universe is comprised of nonbaryonic cold dark matter.
Cold dark matter (CDM) does not interact under

electromagnetism and the strong force and moves non-
relativistically, thus acting like cold, pressureless dust in the
present Universe. Despite these characteristics, its particle
nature is still unknown, and no candidate can be found
within the Standard Model of particle physics (SM). So far,
diverse extensions of the SM have predicted candidate
particles for CDM, among which the most popular ones at
present are in the form of weakly interacting massive
particles (WIMPs) (see [1–3]). WIMPs are collisionless and
massive (> GeV).
The standard collisionless CDM, in a universe perturbed

by Gaussian-random-noise primordial density fluctuations
with a nearly scale-independent primordial power spec-
trum, provides a well-accepted scenario for cosmic struc-
ture formation: the hierarchical clustering of dark matter
fluctuations and the infall of baryons into CDM potential
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wells after recombination, to form galaxies. Despite the
fact that this story line is in good agreement with many
observational constraints, including CMB anisotropy
[4–6], large-scale structure [7,8], and the general properties
of dark-matter-dominated halos [9–11], some crucial issues
on small scales are subject to controversy (see Ref. [12]
for a recent, brief review). First, hierarchical clustering in
the standard CDM model overpredicts the number of
substructures in a halo the size of the Local Group by
an order of magnitude as compared with the number of
satellite galaxies observed in the Local Group, a discrep-
ancy referred to as the “missing satellite problem” (see
Refs. [13–16]). Second, the density profiles of collisionless
CDM halos in N-body simulations show a universal profile
with a central cusp (∼r−1 in the NFW profile [17]), while
observations of low-surface brightness galaxies and dwarf
galaxies mostly favor a flat central slope. This has been
known as the “cuspy core problem” (see Refs. [18–21]).
Furthermore, current dark matter detection experiments,
both direct and indirect ones, have not yet discovered any
compelling signals of WIMPs [22]. As a matter of fact,
while WIMPs are mostly expected to be the lightest
supersymmetric particle in the minimal supersymmetric
Standard Model (MSSM), e.g., neutralinos [23], recent
data from the Large Hadron Collider have found no evidence
of a deviation from the SM on GeV scales, significantly
restricting the allowed region of MSSM parameters [24,25].
All these facts taken together, it is evident that the micro-
scopic nature of dark matter is sufficiently unsettled as to
justify the consideration of alternative candidates for the
CDM paradigm, especially in the hope of resolving the
above difficulties.

B. Bose–Einstein-condensed ultralight particles
as dark matter candidate

We assume that the dark matter particles are described
by a spin-0 scalar field (“scalar field dark matter,” for short;
henceforth, SFDM) with a possible self-interaction. In fact,
one type of bosonic particle suggested as a major candidate
for dark matter is the QCD axion. It is the pseudo-Nambu–
Goldstone boson in the Peccei–Quinn mechanism, pro-
posed as a dynamical solution to the strong CP problem in
QCD. For the axion to be CDM, it has to be very light,
m ∼ 10−5 eV=c2 [26,27].
In addition to the QCD axion, several fundamental scalar

fields have been predicted by a variety of unification
theories, e.g., string theories and other multidimensional
theories [28–31]. The bosonic particles envisaged are
typically ultralight, with masses down to the order of
10−33 eV=c2. This suggests an ultrahigh phase-space
density, leading to the possibility of formation of a Bose–
Einstein condensate (BEC), i.e., a macroscopic occupancy of
the many-body ground state. In principle, for a fixed number
of (locally) thermalized identical bosons, a BEC will form
if nλ3deB ≫ 1, where n is the number density and λdeB is the

de Broglie wavelength. This is equivalent to there being a
critical temperature Tc, below which a BEC can form.
For a nonrelativistic, ideal (i.e., noninteracting) boson

gas, the well-known result for Tc is

Tc ¼
2πℏ2

mkB

�
n

ζð3=2Þ
�

2=3
; (1)

which was used, for example, by Refs. [32,33].
Equation (1) is not an adequate description of the case
considered here, however. For the ultralight particles with
which we are concerned, kBTc=mc2 ≫ 1, so a fully
relativistic treatment is required.
We are interested in a complex scalar field, for which the

presence of dark matter results from the asymmetry
associated with the difference between the number density
of bosons and that of their antiparticles, a conserved charge
density in the comoving frame (see also Appendix B for
more discussion about the charge). A fully relativistic
treatment of Bose–Einstein (BE) condensation was given
by Refs. [34] and [35], including the relationship between
BE condensation and symmetry breaking of a scalar field.
Those authors showed that, for an ultrarelativistic ideal
charged boson gas, described by a complex scalar field,

Tc ¼
ðℏ3cÞ1=2

kB

�
3q
m

�
1=2

; (2)

where q is the charge per unit proper volume. This does
not, however, take self-interaction into account.
Reference [35] showed that, in the case of an adiabatically
expanding boson gas, relevant to cosmology, if the scalar
field has a generic quartic self-interaction, then the bosons
must either be condensed at all temperatures (i.e., at all
times) or else never form a BEC. In this case, the charge per
unit comoving volume, QðQ ¼ qa3Þ, and entropy per unit
comoving volume, S, are both conserved. According to
Eq. (4.7) of that paper, a (local) BEC will exist from the
beginning and remain at all times, if

Q
S
≫

5

4π2kB

�
λ̂

4

�1=2

; (3)

where λ̂ is the dimensionless coupling strength of the
quartic self-interaction, in natural units. Our SFDM has
essentially zero entropy per unit comoving volume. Also,
for the small boson masses that we will be considering, the
conserved charge density in the comoving frame, Q, is
extremely high, given the observed present-day dark matter
energy density ρ̄dmðt0Þ, for Q ≈ ρ̄dmðt0Þ=ðmc2Þ. Therefore,
we are always in the regime described by inequality (3),
and thus the bosons are fully condensed from the time they
are born, i.e., almost all of the bosons occupy the lowest
available energy state.
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Hence, the cosmological Bose–Einstein-condensed
SFDM can be described by a single (coherent) classical
scalar field, of which the value at each point in space equals
that of the local order parameter [36]. Even though the
condensation requires Bose–Einstein statistics in the first
place, i.e., local thermalization (see Refs. [37,38]), we
argue that thermal decoupling within the bosonic dark
matter can occur when the expansion rate exceeds its
thermalization rate, without disturbing the condensate.
Most of the bosons will stay in the ground state (BEC),
and the classical field (SFDM) remains a good description,
analogous to the fact that CMB photons after decoupling
still follow a blackbody distribution. In summary, we
consider the Bose–Einstein condensate as an initial con-
dition for our model, such that we can use and trust the
effective field description throughout the evolution of the
universe up to very early times.
A scalar field description of BEC dark matter has been

studied by several authors before; see, for instance,
Refs. [32,39–45]. With regard to the aforementioned initial
condition, one may also envisage a scenario in which the
coherent scalar field is created gravitationally at the end of
inflation, as has been considered, e.g., by Refs. [46–48]. On
the other hand, it might also be that SFDMwas just another
scalar field, in place along with the inflaton before and
during inflation [49,50], emanating from yet earlier initial
conditions. Speculations of that kind are beyond the scope
of this paper. However, we find some interesting early-time
features, which will deserve more discussion in due course.
A prime motivation for studying SFDM has been its

ability to suppress small-scale clustering and hence poten-
tially resolve the dark matter problems mentioned above.
For non-self-interacting particles, λdeB ¼ h=ðmvÞ sets a
natural lower limit to the scale on which equilibrium halos
can form, where v corresponds to the virial velocity of the
galactic halos. While this paper shall deal only with the
consequences of SFDM for the homogeneous background
universe, this argument would suggest that there is a lower
limit to the particle mass for SFDM of m≳ 10−22 eV=c2,
since then λdeB ≲ 1 kpc [44,51], the core size of the dark
matter halo of a typical dwarf spheroidal galaxy in the
present Universe [52]. If self-interaction of SFDM is
included, the associated characteristic gravitational equi-
librium scale lSI is proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ=ðmc2Þ2

p
, where λ

is the dimensional coupling strength of the quartic self-
interaction (related to λ̂ by λ≡ λ̂ ℏ3

m2c), i.e., lSI ≃ 1 kpc if
λ=ðmc2Þ2 ≃ 2 × 10−18 eV−1 cm3, and for this ratio of
λ=ðmc2Þ2, λ≃ 2 × 10−62 eV cm3 when m≃ 10−22 eV
(see Ref. [44] and references therein). Therefore, SFDM
provides λdeB and lSI as two mechanisms to suppress
small-scale structures. When lSI ≫ λdeB, only lSI is
responsible for affecting structure formation. This is
the self-interaction-dominated limit, also known as the
Thomas–Fermi regime; we called it type II BEC-CDM in
Ref. [44]. We will also address the limit in which there

is no self-interaction (i.e., λ≡ 0, also known as fuzzy dark
matter (FDM) in Refs. [42,53]; we called it type I BEC-
CDM in Ref. [44]).
This paper is organized as follows. In Sec. II, we present

the fundamental equations underlying the description of
SFDM with a quartic, positive self-interaction. In Sec. III,
we solve for the homogenous background evolution of a
universe with the same cosmic inventory as ΛCDM, but
with CDM replaced by SFDM, over cosmic time. We
identify three distinctive phases in the evolution of SFDM:
nonrelativistic, dustlike behavior at late times, which is
indicative of the usefulness of SFDM as cold dark matter; a
radiationlike phase at intermediate times; and an even
earlier phase when SFDM behaves as a “stiff” relativistic
fluid. We note that SFDM is relativistic in both the
radiationlike phase and the stiff phase (in this work, the
word “relativistic” does not only refer to radiation but
generally refers to any type of matter for which the ratio of
pressure p to energy density ρ is in the physically allowed
range 1=3 ≤ p=ρ ≤ 1). While the former two phases and
the corresponding constraint from the time of matter-
radiation equality at zeq ∼ 3000 have been identified and
appreciated previously (e.g., in Refs. [41,48]), the latter one
has only been sporadically encountered, and often as a
result of special assumptions; see, e.g., Refs. [50,54,55].
However, we find that the stiff phase is generic for complex
SFDM, no matter which values of the SFDM parameter one
adopts. We will comment more on this later. In Sec. IV, we
present the most important results of this work, namely, the
constraints on the SFDMmodel parameters, boson massm,
and positive boson self-interaction coupling strength λ [or
equivalently λ=ðmc2Þ2, in which the final results will
actually be presented], which follow from the constraints
on the homogeneous background evolution by current
cosmological observations. These include the aforemen-
tioned redshift of matter-radiation equality zeq and the
effective number of neutrino species Neff at the time of big
bang nucleosynthesis (BBN). They constrain the timing
and longevity of the stiff and radiationlike phases of SFDM
and thereby set severe restrictions on the allowed parameter
space. Finally, Sec. V contains detailed discussions on the
many implications of our results, while Sec. VI presents a
brief summary. Appendices A–C contain some more
technical aspects, which have been deferred from the main
text but help to make the presentation more self-contained.
In deriving those constraints on SFDM in concordance

with current cosmological observations, we obtain three
main results. First, we are able to restrict the allowed
parameter space of SFDM severely, despite the fact that we
limit our consideration to the homogeneous background
universe. Second, there, nevertheless, remains a semi-
infinite stripe in parameter space which is in accordance
with observations, including parameter sets which are able
to resolve the small-scale problems of CDM. Third, the
currently favored value of Neff during BBN, which exceeds
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the standard value of 3.046 for a universe containing just
three neutrino species and no extra relativistic species,
excludes the possibility that the dark matter is SFDM with
vanishing self-interaction, i.e., fuzzy dark matter, at >68%
confidence. On the contrary, SFDM with self-interaction
provides a natural explanation of why Neff during BBN
[56] is higher than that inferred from the cosmic microwave
background [6].

II. BASIC EQUATIONS

Wewill assume in this paper that dark matter is described
by a complex field. There are several motivations for
considering a complex rather than a real field, namely,
the U(1) symmetry corresponding to the dark matter
particle number (charge) conservation (see Appendix B
and Ref. [57]), and the richer dynamics of halos, e.g.,
formation of vortices (see Refs. [44,51]).

A. Equation of motion for SFDM

The ground state of a bosonic system can be described by
a classic scalar field theory. We choose the following
generic Lagrangian density of the complex scalar field:

L ¼ ℏ2

2m
gμν∂μψ

�∂νψ − VðψÞ: (4)

The metric signature we adopt here is ðþ;−;−;−Þ.
The potential in the Lagrangian above contains a quadratic
term accounting for the rest mass plus a quartic term
accounting for the self-interaction:

VðψÞ ¼ 1

2
mc2jψ j2 þ λ

2
jψ j4: (5)

This model has been adopted in other works, as well; see,
e.g., Refs. [41], [58], [59]. We choose physical units
throughout, in contrast to the convention usually used in
high-energy particle physics. The main reason is that this is
the first paper in a series of works on the cosmological
behavior of SFDM, which will include the linear and
nonlinear growth of fluctuations. There, we are concerned
with nonrelativistic (c → ∞) and classical limits (ℏ → 0),
where natural units become disadvantageous. For L to have
units of energy density, the field has units of ½ψ � ¼ cm−3=2,
and the unit for the coupling constant is ½λ� ¼ eV cm3.
A value of λ ¼ 2 × 10−62 eV cm3 would correspond to
λ̂ ¼ 2.6 × 10−86. For the purpose of comparison, we take a
look at the dimensionless self-interaction strength of QCD
axions. According to Eqs. (2) and (3) in Ref. [37],
λ̂axion ∼ 10−53, also tiny, for the axion decay constant
f ≃ 1012 GeV.
The quartic term in the above potential models the

two-particle self-interaction. It is a good approximation
to ignore higher-order interactions when the bosonic gas is
dilute, i.e., when the particle self-interaction range is much

smaller than the mean interparticle distance. Moreover,
since particles in non-zero-momentum states can be
neglected, it is sufficient to consider only two-body s-wave
scatterings. This means the coupling coefficient λ is a
constant and related to the s-wave scattering length as
as λ ¼ 4πℏ2as=m, which is effectively the first Born
approximation.
The equation of motion for the scalar field is the

relativistic Klein–Gordon equation,

1ffiffiffiffiffiffi−gp ∂μðgμν
ffiffiffiffiffiffi
−g

p ∂νψÞ þ
m2c2

ℏ2
ψ þ 2λm

ℏ2
jψ j2ψ ¼ 0; (6)

or

gμν∂μ∂νψ − gμνΓσ
μν∂σψ þm2c2

ℏ2
ψ þ 2λm

ℏ2
jψ j2ψ ¼ 0; (7)

where gμν is the metric tensor and Γσ
μν ¼ 1

2
gσρð∂μgρν þ∂νgρμ − ∂ρgμνÞ is the Christoffel symbol, calculated in

Appendix A 1 for the perturbed Friedmann–Robertson–
Walker (FRW) metric. Combining such a metric in the
conformal Newtonian gauge with the Klein–Gordon
equation (7) yields

�
1 − 2

Ψ
c2

� ∂2
tψ

c2
−
�
1þ 2

Φ
c2

�∇2ψ

a2
þ 3da=dt

c2a
∂tψ

−
�
∂tΨþ 3∂tΦþ 6

da=dt
a

Ψ

� ∂tψ

c4

−∇ðΨ − ΦÞ · ∇ψ
c2a2

þm2c2

ℏ2
ψ þ 2λm

ℏ2
jψ j2ψ ¼ 0: (8)

Here, a denotes the scale factor of the expanding FRW
universe, andΨ andΦ are the perturbations to the otherwise
homogeneous metric (see Appendix A, where we summa-
rize some of the more technical but otherwise known
derivations).

B. Einstein field equations

The perturbed metric given by Eq. (A2) is related to the
total mass-energy density of the universe through the
Einstein field equations. With the Ricci tensor calculated
in Appendix A 3, let us consider the contribution from
the time-time component,

R0
0 −

1

2
R ¼ 8πG

c4
T0

0: (9)

In fact, the left-hand side is

BOHUA LI, TANJA RINDLER-DALLER, AND PAUL R. SHAPIRO PHYSICAL REVIEW D 89, 083536 (2014)

083536-4



R0
0 −

1

2
R ¼ ð1 − 2Ψ=c2ÞR00 − R=2

¼ 3ðda=dtÞ2
c2a2

þ 2∇2Φ
c2a2

−
6da=dt
c4a

�
∂tΦþ da=dt

a
Ψ

�
: (10)

Thus, the time-time component (9) becomes

3
ðda=dtÞ2

a2
þ 2

∇2Φ
a2

− 6
da=dt
c2a

�
∂tΦþ da=dt

a
Ψ

�

¼ 8πG
c2

T0
0: (11)

We can evaluate the contribution of the scalar field to the
energy-momentum tensor, using the Lagrangian density in
Eqs. (4) and (A9), which yields

Tμν;SFDM ¼ ℏ2

2m
ð∂μψ

�∂νψ þ ∂νψ
�∂μψÞ

− gμν

�
ℏ2

2m
gρσ∂ρψ

�∂σψ

−
1

2
mc2jψ j2 − λ

2
jψ j4

�
: (12)

Its time-time component is recognized as

T0
0;SFDM ¼ H

¼ ℏ2

2mc2

�
1 − 2

Ψ
c2

�
j∂tψ j2

þ ℏ2

2ma2

�
1þ 2

Φ
c2

�
j∇ψ j2

þ 1

2
mc2jψ j2 þ 1

2
λjψ j4; (13)

whereH is the Hamiltonian density of SFDM. Note thatH
is not invariant under coordinate transformations because
matter is coupled to the gravitational field; hence, the
energy of the bosons is not conserved.

III. HOMOGENOUS BACKGROUND UNIVERSE

A. Mass-energy content of the FRW universe
and the Friedmann equation

In this paper, we will consider a universe with the same
cosmic inventory as the basic ΛCDM model except that
CDM is replaced by SFDM (we will call it ΛSFDM model
from now on). We will use the set of cosmological
parameters from the recent Planck data release [6] (listed
as basic in Table I) to solve for the evolution of the
homogeneous background universe below. From those we
derive some other cosmological parameters needed for

the calculation. Note again that here Ωdmh2 refers to the
present-day SFDM energy density instead of CDM. We
will see later that SFDM indeed behaves as CDM at
present. Ωrh2 accounts for the ordinary radiation compo-
nent, i.e., photons and the Standard Model neutrinos. For
simplicity, the neutrinos are considered as massless so that
the total matter density fraction today is Ωm ¼ Ωb þΩdm,
where Ωb stands for the baryon density fraction at present.
The density fraction of the cosmological constant
is ΩΛ ¼ 1 −Ωm − Ωr.
The expansion of the homogeneous FRW universe is

governed by the Friedmann equation, which is a special
case of Eq. (11),

H2ðtÞ≡
�
da=dt
a

�
2

¼ 8πG
3c2

½ρ̄rðtÞ þ ρ̄bðtÞ þ ρ̄ΛðtÞ þ ρ̄SFDMðtÞ�; (14)

where we have ρ̄rðtÞ ¼ Ωrρ0;crit=a4 for radiation, ρ̄bðtÞ ¼
Ωbρ0;crit=a3 for baryons, ρ̄ΛðtÞ ¼ ΩΛρ0;crit for the cosmo-
logical constant, and the SFDM energy density ρ̄SFDMðtÞ
defined in the next section. The critical energy density at
the present epoch is

ρ0;crit ¼
3H2

0c
2

8πG
: (15)

Here is a technical detail: during the electron-positron
annihilation that occurs around 0.5 MeV, ρ̄r does not
simply evolve as a−4 since photons get heated. Hence,
we need to calculate the cosmic thermal history exactly, i.e.,
the photon temperature T as a function of a during that
period, to acquire the evolution of ρ̄r. This effect will be
reflected on the solutions in Sec. IV B (see Chapter 3 in
Ref. [26] for a standard treatment).
As for SFDM, we will see in the next section that ρ̄SFDM

evolves through three phases which can be characterized by
different equations of state.

B. Evolution of scalar field dark matter

In the case of the unperturbed homogeneous universe
where Ψ ¼ Φ ¼ 0, the scalar field is only a function of

TABLE I. Cosmological parameters. The values in the left
column (basic) are quoted from the Planck collaboration: central
values of the 68% confidence intervals for the base ΛCDMmodel
with PlanckþWPþ highL data; see Table 5 in Ref. [6].
We calculate those in the right column (derived).

Basic Derived

h 0.673 Ωmh2 0.14187
Ωbh2 0.02207 Ωrh2 4.184 × 10−5

Ωdmh2 0.1198 zeq 3390
TCMB=K 2.7255 ΩΛ 0.687
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time; i.e., its energy-momentum tensor is diagonal. Hence,
SFDM can be treated as a perfect fluid characterized by
energy density ρ̄, pressure p̄, and 4-velocity uμ (for brevity,
we omit the subscript SFDM in this section). The corre-
sponding energy-momentum tensor is

Tμν ¼ ðρ̄þ p̄Þuμuν=c2 − gμνp̄; (16)

where u0 ¼ c and ui ¼ 0 for the homogeneous background
universe. In fact, the energy density and pressure can be
derived from Eqs. (12) and (16),

ρ̄ ¼ T0
0 ¼

ℏ2

2mc2
j∂tψ j2 þ

1

2
mc2jψ j2 þ 1

2
λjψ j4; (17)

p̄ ¼ − Ti
i ¼

ℏ2

2mc2
j∂tψ j2 −

1

2
mc2jψ j2 − 1

2
λjψ j4: (18)

Without perturbation terms in Eq. (8), the equation of
motion for homogeneous SFDM is then

ℏ2

2mc2
∂2
tψ þ ℏ2

2mc2
3da=dt

a
∂tψ þ 1

2
mc2ψ þ λjψ j2ψ ¼ 0:

(19)

It can be transformed into an equivalent form, namely, the
energy conservation equation, given the expressions for ρ̄
and p̄ above,

∂ρ̄
∂t þ

3da=dt
a

ðρ̄þ p̄Þ ¼ 0: (20)

Note that this is also one of the conservation laws of
the energy-momentum tensor T0ν

;ν ¼ 0, which is not
surprising since the energy-momentum tensor is the
Noether current of the spacetime translational symmetry
and its conservation laws hold when the field follows the
equation of motion (19).
If there were an explicit equation of state (EOS), relating

p̄ to ρ̄, we could solve for the evolution of the entire
background universe directly by combining it with Eq. (20)
and the Friedmann equation (14). As we show below, this is
only possible in certain limits of w̄≡ p̄=ρ̄, but the SFDM
will pass through these limits as it evolves. Hence, it will be
instructive to identify these phases of its evolution first,
before we solve the general evolution equation in detail.
One of the basic behaviors of a scalar field is oscillation

over time [60], characterized by its changes in phase θ.
The oscillation angular frequency is defined as ω ¼ ∂tθ,
the same as in Appendix B. We will see that the scalar field
behaves differently whether ω predominates over the
expansion rate H or the contrary (oscillation vs roll).

1. Scalar field oscillation faster than Hubble
expansion (ω=H ≫ 1)

In this regime, the oscillation angular frequency can be
derived as (see Appendix B)

ω ¼ mc2

ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λ

mc2
jψ j2

r
: (21)

If ω is much larger than the Hubble expansion rate H, the
exact cosmological time evolution of the scalar field will be
hard to solve numerically, given that the necessary time step
is essentially too tiny (∝ 1=ω). Instead, we follow the
evolution of the time-average values of ρ̄ and p̄ over several
oscillation cycles. Multiplying the field equation (19) by ψ�
and then averaging over a time interval that is much longer
than the field oscillation period, but much shorter than the
Hubble time, results in (see Refs. [58,60] and Appendix B
for a detailed derivation)

ℏ2

2mc2
hj∂tψ j2i ¼

1

2
mc2hjψ j2i þ λhjψ j4i: (22)

Combining this relation with the expressions for energy
density and pressure yields

hρ̄i ¼ mc2hjψ j2i þ 3

2
λhjψ j4i

≈mc2hjψ j2i þ 3

2
λhjψ j2i2; (23)

hp̄i ¼ 1

2
λhjψ j4i ≈ 1

2
λhjψ j2i2: (24)

The equation of state is then

hp̄i ¼ m2c4

18λ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6λhρ̄i

m2c4

r
− 1

!
2

(25)

or, equivalently,

hw̄i≡ hp̄i
hρ̄i ¼

1

3

"
1

1þ 2mc2

3λhjψ j2i

#
; (26)

as found also in Ref. [61] for a real scalar field. This
equation of state (25) was also derived in Ref. [62], in the
context of boson stars. This approach will be called the fast
oscillation approximation in this paper:
(1) CDM-like phase—nonrelativistic (hw̄i ¼ 0):

As the universe expands, the dark matter energy
density will continuously decrease to the point when
the rest-mass energy density dominates the total
SFDM energy density, i.e., 3

2
λhjψ j2i2 ≪ mc2hjψ j2i.

In this limit, Eq. (25) reduces to
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hp̄i ≈ λ

2m2c4
hρ̄i2 ≈ 0; (27)

thus, SFDM behaves like nonrelativistic dust. Its self-
interaction is weak, so that on large scales SFDM is
virtually collisionless. Therefore, it evolves like CDM,
following the familiar relation,

hρ̄i ∝ a−3: (28)

Then, the field amplitude decays as jψ j ∝ a−3=2, and
the scale factor goes as a ∼ t2=3.

(2) Radiationlike phase—relativistic (hw̄i ¼ 1=3):
At some point early enough, the SFDM will be so
dense that the quartic term in the energy density
(23), the self-interaction energy, dominates, i.e.,
3
2
λhjψ j2i2 ≫ mc2hjψ j2i. In this limit, Eq. (25)

reduces to

hp̄i ≈ 1

3
hρ̄i ≈ 1

2
λhjψ j2i2; (29)

thus, the SFDM behaves like radiation. The time
evolution is accordingly

hρ̄i ∝ a−4; (30)

while the field amplitude decays as jψ j ∝ a−2 with the
scale factor a ∼ t1=2.
It is important to note that SFDM without self-
interaction, i.e., when λ ¼ 0, does not undergo this
radiationlike phase. This has severe implications for
such models, as will be discussed in Sec. V D.

2. Scalar field oscillation slower than Hubble
expansion (ω=H ≪ 1)

The Hubble parameter increases as one goes back in
time, eventually exceeding the oscillation frequency, and
the fast oscillation approximation will break down. There is
no simple explicit equation of state then. In this case, one
has to solve the coupled equations (14), (17), (18), and (20)
exactly, with which we will be concerned in the next
section. Nonetheless, one can still find a heuristic quali-
tative description, as follows:
(1) Stiff phase—relativistic limit (w̄ ¼ 1):

At sufficiently early times, the expansion rate is
much greater than the oscillation frequency,
ω=H ≪ 1. The energy density and pressure are both
dominated by the first, kinetic term of Eqs. (17) and
(18), for ðj∂tψ j=jψ jÞ2 ∝ H2. Therefore,

p̄ ≈ ρ̄ ≈
ℏ2

2mc2
j∂tψ j2: (31)

This stiff EOS implies that the sound speed almost
reaches the speed of light, the maximal value possible,

which is an analog to the incompressible fluid in
Newtonian gas dynamics, where the sound speed is
infinity. In this case,

ρ̄ ∝ a−6; (32)

and it can be shown that ∂tψ ∝ a−3, and hence
ψ ∝ loga, where a ∼ t1=3. The physical picture of
the stiff phase is that, at such an early epoch, the
Hubble time is much smaller than the oscillation
period so that the complex scalar field cannot even
complete one cycle of spin; instead, it rolls down the
potential well. The field value now evolves as j log aj,
which increases moderately compared with power
laws as a → 0, suggesting that no undesirable blowup
occurs in this very early universe.

C. Evolution of the FRW homogeneous background
universe with SFDM

Now we are ready to calculate the full evolution history
of the homogeneous background universe, in which
SFDM follows different equations of state (either explicit
or implicit) at different cosmic epochs, while the other
components can be treated straightforwardly as explained
in Sec. III A.

1. Numerical method

We have seen in Sec, III B 1 that SFDM oscillates rapidly
in comparison with the Hubble expansion rate at later times
in the cosmic history. When ω=H ≫ 1, the fast oscillation
approximation can be applied, and we are able to use the
equation of state (25) for the time-average SFDM energy
density and pressure. From the energy conservation
equation (20), we see that as long as the oscillation is
much faster than the rate at which the scale factor changes,
the time evolution of the SFDM energy density should
be quite smooth, with minute oscillation amplitude, since
the oscillations in ρ̄SFDM and p̄SFDM cancel out through
integration. Therefore, ρ̄SFDM should almost equal its time-
average value hρ̄SFDMi, which is even true in the real scalar
field case [43]. Furthermore, we can convert the energy
conservation equation (20) as

d
da

hρ̄SFDMi þ
3ðhρ̄SFDMi þ hp̄SFDMiÞ

a
¼ 0; (33)

so that it can be coupled to the equation of state (25) to
solve for the evolution of hρ̄SFDMi and hp̄SFDMi as a
function of scale factor a, by integrating from the
present-day backward to the point where ω=H ¼ 200 (still
well into the fast oscillation regime). We then solve the
Friedmann equation (14) with ρ̄SFDM replaced by hρ̄SFDMi.
The resulting time-average Hubble expansion rate hH2i
should be almost the same as its exact value, since
ρ̄SFDM ≃ hρ̄SFDMi. The present-day values are inferred from
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Table I. We will refer to the solution obtained above as the
“late-time solution,” during the period in which time
averages are excellent approximations to the exact values.
At earlier times up to the big bang, the system has to be

solved exactly, since ω=H decreases and the fast oscillation
approximation becomes invalid. Combining Eqs. (17) and
(18), the equation of state is implicitly given by the coupled
ordinary differential equations

∂tðρ̄SFDM − p̄SFDMÞ

¼ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ

m2c4
ðρ̄SFDM − p̄SFDMÞ

r
; (34)

ℏ2

2m2c4

�
∂tBþ 3da=dt

a
B

�

¼ 2p̄SFDM −
m2c4

4λ

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ

m2c4
ðρ̄SFDM − p̄SFDMÞ

r
− 1

�2

; (35)

where the auxiliary variable B is defined as B≡mc2∂tjψ j2.
We will refer to it as the “early-time solution.” One can
verify that, if the left-hand side of Eq. (35) is zero, i.e.,
Hubble expansion is negligible, the equation of state
reduces to the one in Eq. (25) in the limit ω=H ≫ 1.
We solve for the time dependence of ρ̄SFDM, p̄SFDM, and
scale factor a by solving the combination of the Friedmann
equation (14), the energy conservation equation (20), along
with Eqs. (34) and (35), using a fourth-order Runge–Kutta
solver. The integration starts from the point where we cease
to apply the fast oscillation approximation at ω=H ¼ 200,

as mentioned above, back to the big bang, in a way that it
matches the late-time solution. The matching is not trivial,
since there are three variables in the late-time solution
(hρ̄SFDMi, hp̄SFDMi, and a) but four variables in the early-
time solution (ρ̄SFDM, p̄SFDM, a, and B). For details on the
matching condition, see Appendix C.

2. Numerical solution: Evolution of the fiducial model

Anticipating our later results with regard to the cosmo-
logically allowed range of SFDM particle parameters, we
will henceforth adopt the following fiducial values for
particle mass and self-interaction coupling strength:

ðm; λÞfiducial ¼ ð3 × 10−21 eV=c2; 1.8 × 10−59 eV cm3Þ;
λ=ðmc2Þ2 ¼ 2 × 10−18 eV−1 cm3: (36)

In this work, it is more convenient to work with the ratio
λ=ðmc2Þ2 rather than λ, as will be seen in the rest of the
paper. The evolution for this fiducial SFDM model is
shown in Figs. 1 and 2. The smooth transition between the
two parts of the solution (early time and late time) follows
from the correctness of the matching conditions (see
Appendix C). The evolution of the SFDM energy density
ρ̄SFDM in Fig. 1 (left-hand plot) shows not only the
transition of SFDM from CDM-like to radiationlike around
a ∼ 10−4 but that at an even earlier time, a≲ 10−10, SFDM
follows, indeed, a stiff equation of state. The evolution of
the equation of state is plotted in Fig. 1 (right-hand plot),
where we can also clearly see the transition from the stiff
phase to the radiationlike phase to the CDM-like phase.
The evolution of the energy content in our fiducial model

can be found in Fig. 3. The energy density of SFDM

FIG. 1 (color online). Left-hand plot: Evolution of the SFDM energy density ρ̄SFDM vs scale factor a. The SFDM parameters are
m ¼ 3 × 10−21 eV=c2 and λ=ðmc2Þ2 ¼ 2 × 10−18 eV−1 cm3 (fiducial model). The vertical solid line depicts the epoch of matter-
radiation equality aeq from Table I, while the cross indicates the point after which SFDM is well described as fully nonrelativistic matter
(CDM-like). Right-hand plot: Evolution of the equation of state w̄ ¼ p̄SFDM=ρ̄SFDM. The solid curve corresponds to the fiducial model
plotted in the left panel. The other curves represent models with the same massm but different ratios of λ=ðmc2Þ2 in unit of eV−1 cm3, as
seen in the legend. The vertical dotted lines depict the epoch of neutron-proton freeze-out an=p and the epoch of light-element production
anuc, respectively (see Sec. IV B). The larger the value of λ=ðmc2Þ2, the longer lasts the radiationlike phase of SFDM; this provides
constraints on this ratio from CMB observations of aeq and Neff during BBN; see Secs. IVA and IV B.
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ρ̄SFDM ∝ a−6 surpasses that of radiation ρ̄r ∝ a−4 in the stiff
phase of SFDM. Hence, the expansion rate in the stiff phase
is higher,H ∝ a−3, than that in the radiation-dominated era,
H ∝ a−2. This is a “scalar-field-dark-matter-dominated”
era, before the radiation-dominated era. Here, the transition
time from the stiff phase to the radiationlike phase depends
on both λ=ðmc2Þ2 and m. This can be understood by
realizing that the transition happens when the first term
(kinetic term, which depends on m) and the third term
(self-interaction term, which depends on λ) on the rhs of
Eqs. (17) and (18) become of equal order. Another way to
see this is that the equations which we solve when the scalar
field oscillation is slower than the Hubble expansion rate
involve both these two parameters [see Eqs. (34) and (35)].
After the stiff-to-radiation transition, the energy fraction of
SFDM reaches a “plateau” as well as that of the regular
radiation component, since both components have radia-
tionlike equations of state. This already implies that the
kinetic term diminishes to the point where it is comparable
to the self-interaction term [see Eq. (22)], as the scalar field
oscillation becomes faster than the Hubble expansion
rate, which is verified below. Therefore, the height of
the plateau, i.e., the energy fraction of SFDM in the
radiationlike phase, is determined by λ=ðmc2Þ2 alone
because the equations for the fast oscillation approximation
only concern this ratio [see Eq. (25)]. It should be noted
that the plateau height would vanish if there were no self-
interaction (λ ¼ 0); see also Sec. V D.
The energy fraction of SFDM starts to rise from the

plateau value after a second transition from the radiation-
like phase to the CDM-like phase. The energy density of
SFDM evolves as ρ̄SFDM ∝ a−3 like standard CDM and
the expansion rate as H ∝ a−3=2 when SFDM dominates.
The background evolution of the fiducial model is then the
same as the basic ΛCDM model.

It is interesting to note that, in the ΛSFDM model, dark
matter dominates over the other cosmological components
twice during the cosmic history, first in the stiff-matter
phase, where it is highly relativistic, and later when it
behaves as pressureless dust, as in the standard scenario of
CDM. As we will see in the next section, there are indeed

FIG. 2 (color online). Left-hand plot: Hubble parameter HðaÞ vs scale factor a for our fiducial SFDM model with m ¼ 3 ×
10−21 eV=c2 and λ=ðmc2Þ2 ¼ 2 × 10−18 eV−1 cm3. Right-hand plot: Evolution of the ratio of the oscillation angular frequency and
Hubble parameter, ω=H, for that same model. The vertical solid line depicts the epoch of matter-radiation equality aeq from Table I.
The vertical dotted lines depict the beginning of the neutron-proton ratio freeze-out an=p and the epoch of light-element production anuc,
respectively (see Sec. IV B).

FIG. 3 (color online). Evolution of the fractions Ωi of the
energy density of each cosmic component i with SFDM of
mass m ¼ 3 × 10−21 eV=c2 and self-interaction λ=ðmc2Þ2 ¼ 2 ×
10−18 eV−1 cm3 (fiducial model) represented by the thick curves.
Different components are depicted with different line styles, as
labeled in the legend. The solid vertical line corresponds to aeq.
On the lower left part of the figure, the thin curves represent the
constraint from BBN. The solid one refers to a universe with a
constant Neff of the central value in Eq. (40), and the two dash-
dotted ones refer to such universes withNeff of the 1σ limits there.
The dotted vertical lines indicate the beginning of the neutron-
proton ratio freeze-out an=p and the epoch of light-element
production anuc, respectively.
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constraints to be derived from both epochs. Also, the
radiation-dominated era of the universe basically coincides
with the radiationlike phase (plateau) of SFDM, since both
of the SFDM transitions occur rapidly.
We would like to verify that the fast oscillation approxi-

mation discussed in Sec. III B 1 is indeed applicable for the
fiducial model, for large enough a, where we solve for the
evolution of the time averages of ρ̄SFDM and p̄SFDM, instead
of solving for their exact values. In other words, we would
like to see that its condition ω=H ≫ 1 is fulfilled during
that era, for our fiducial model. The plot of ω=H can be
found in Fig. 2 (right-hand plot). Apparently, ω=H > 200
for all a therein, justifying the fast oscillation approxima-
tion at later times.

IV. CONSTRAINTS ON PARTICLE PARAMETERS
FROM CMB AND BBN MEASUREMENTS

A. Constraint from zeq
As has been noted before [41,48,50], the transition of

SFDM from the radiationlike phase to the CDM-like phase
must happen early enough to be in agreement with the
redshift of matter-radiation equality zeq determined by the
CMB temperature power spectrum, since its shape is
subject to the early integrated Sachs–Wolfe (ISW) effect,
which depends upon zeq [63]. In other words, in order to
preserve zeq, SFDM should be well into the CDM-like
phase at zeq. Before we proceed, it should be marked that
the requirement above actually prohibits any freedom in
choosing one of the initial conditions Ωdmh2, the present-
day SFDM density parameter, which must be the same as
that in the six-parameter base ΛCDM model (see Table I).
In fact, one can derive from the definition of zeq that

1þ zeq ≡ 1

aeq
¼ Ωbh2 þΩdmh2

Ωrh2
; (37)

where aeq is the scale factor at matter-radiation equality.
This justifies our choice of Ωdmh2.
The requirement that SFDM be fully nonrelativistic at zeq

sets a constraint on the SFDM particle parameters, which is
illustrated in Fig. 1. The redshift of matter-radiation equal-
ity zeq, according to Table I, is marked as the vertical solid
line in every plot. We define the cross in the left-hand plot
to be the point at which hw̄i≡ hp̄i=hρ̄i (neglecting the
subscript SFDM here) is 0.001, a tiny deviation from zero,
and consider SFDM after this point as fully nonrelativistic.
We can see that for the fiducial model this point is indeed
early enough compared with zeq. In fact, only the ratio
λ=ðmc2Þ2 is constrained by this requirement, as it alone
determines the radiation-to-matter transition point of
SFDM, resulting in

λ

ðmc2Þ2 ≤ 4 × 10−17 eV−1 cm3: (38)

This is the upper bound which would make the cross in the
left-hand plot of Fig. 1 lie on top of the vertical line
indicating zeq, i.e., the marginal case where SFDM has just
fully morphed into CDM at matter-radiation equality (see
also the right-hand plot for the evolution of hw̄i in the
marginal case). Equation (38) implies that even SFDMwith
large values of λ andm, as adopted in some of the literature,
is able to fulfill this constraint (this is in the self-interaction-
dominated limit, since large m indicates small λdeB).
The choice of the threshold 0.001 is artificial, though.

If we relax it to 0.01, i.e., consider SFDM as fully
nonrelativistic when hw̄i is less than 0.01, the correspond-
ing constraint on λ=ðmc2Þ2 would become λ=ðmc2Þ2 ≤
4.2 × 10−16 eV−1 cm3, allowing a broader range of values.
To determine this threshold, we need to calculate the CMB
power spectrum for given SFDM particle parameters and
see the range of them that preserves the early ISW effect.
We plan this for future work.

B. Constraint from Neff during big bang
nucleosynthesis

The abundances of the big bang nucleosynthesis (BBN)
products set a constraint on the Hubble expansion rate at
that time, which depends on the total energy density of the
relativistic species, parametrized by an effective number of
relativistic degrees of freedom, also known as an effective
number of neutrino species, Neff (see Ref. [56] for a recent
review). Thus, measurements of the primordial abundance
of helium and deuterium can constrain the expansion
rate or, equivalently, Neff during BBN. In the ΛCDM
model, where there are only three SM neutrino species,
Neff; standard ¼ 3.046 [64]. In contrast, in the ΛSFDM
model, if SFDM is relativistic, then it will contribute to
Neff as an extra relativistic component, and the constraints
on Neff consequently put control on the properties of
SFDM, i.e., its particle parameters, again.
The standard BBN scenario consists of two stages, the

freeze-out of the neutron fractional abundance and the
production of light elements combining free neutrons into
nuclei, each affected by the expansion rate at its own epoch.
The attempts to determine Neff from BBN usually fit a
cosmological model with constant extra number of neutrino
species ΔNeff ≡ Neff − Neff;standard, e.g., with a constant
portion of sterile neutrinos, to the primordial abundances of
light elements extrapolated from observations. However, in
ΛSFDM, the ΔNeff caused by SFDM is changing over time
as its equation of state varies during different eras.
Therefore, we must study the evolution of Neff throughout
BBN, which is an extended period from the beginning
of the neutron-proton ratio freeze-out around Tn=p ¼
1.293 MeV (the difference between the neutron and
the proton mass) to the epoch of nuclei production around
Tnuc ≈ 0.07 MeV.
In a ΛSFDM model, we infer the Neff during BBN,

namely, from Tn=p to Tnuc, from the energy density of
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relativistic SFDM ρ̄SFDM, which is determined by the
particle parameters. In fact, SFDM is completely relativistic
then and is the only source for ΔNeff,

ΔNeff

Neff; standard
¼ ρ̄SFDM

ρ̄ν
; (39)

where ρ̄ν is the total energy density of the SM neutrinos.
We compare the Neff obtained this way to the measured
value (constant over time) and impose a conservative
constraint that the Neff during BBN be all the time within
1σ of the measured value,

Neff ¼ 3.71þ0.47
−0.45 ; (40)

which we adopt from Ref. [56]. We shall adopt this 68%
confidence interval in constraining the parameters of
SFDM in what follows. We note that while the standard
ΛCDM model with Neff; standard ¼ 3.046 is inconsistent
with the 1σ constraint, it is, nevertheless, consistent within

95% confidence. Ideally, we need to fit our model not to
such a constant Neff value but to the data of primordial
abundances directly by deriving those for ΛSFDM with a
BBN code, which is intended as our future work.
The result is plotted in Fig. 4. The upper plots show the

Hubble expansion rate of ΛSFDM universes with different
particle parameters normalized to the expansion rate of the
basicΛCDM universe, which is an equivalent illustration of
the evolution of Neff , as in the lower plots. The thin curves
are benchmarks. The solid ones refer to a universe with a
constant Neff of the central value in Eq. (40), and
the dashed-dotted ones refer to such universes with Neff
of the 1σ limits there. Note that in the upper plots for the
normalized expansion rate these thin curves are not straight
lines due to the electron-positron annihilation. After this
event, the neutrinos contribute less to the total energy
density of the Universe as their energy density fraction
shrinks because they are decoupled and do not get heated.
In each plot, the thick curves denote different models of

(λ=ðmc2Þ2, m), according to the legend. The solid ones

FIG. 4 (color online). Upper plots: Evolution of the normalized Hubble expansion rateHðaÞ=HΛCDMðaÞ vs scale factor a. Lower plots:
Evolution of the effective number of neutrino species, Neff , vs scale factor a. The thick curves represent the evolution of ΛSFDMmodels
with various particle parameters. In the left-hand plots, m is fixed. In the right-hand plots, λ=ðmc2Þ2 is fixed. The solid ones again
correspond to our fiducial model with SFDM parameters m ¼ 3 × 10−21 eV=c2 and λ=ðmc2Þ2 ¼ 2 × 10−18 eV cm3; see the legends for
the corresponding values of ðλ=ðmc2Þ2; mÞ of each thick curve, in units of (eV−1 cm3, eV=c2). Among the thin curves, the solid (dashed-
dotted) ones refer to universes with constant Neff at the central value (68% confidence limits) of the measured Neff (40). The error bar in
the lower plots is from the result of CMB measurements, Neff ¼ 3.36� 0.34 [6].
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represent the fiducial model again; it complies with the
constraint mentioned above (40). It can be seen that these
curves all reach the plateau, i.e., the radiationlike phase,
before the epoch of light-element production anuc. The
plateau height is purely determined by λ=ðmc2Þ2, as
explained in Sec. III C 2. In the left-hand plots, where
we fix m, the higher the λ=ðmc2Þ2, the higher the plateau.
Meanwhile, earlier at an=p the transition from the stiff phase
to the radiationlike phase may not have finished, and the
value of Neff can be higher than its plateau, which is a
function of both λ=ðmc2Þ2 and m. In the right-hand plots,
models with the same λ=ðmc2Þ2, but different m, have the
same plateau height but diverge with a different rate as we
go back in time: the lower the m, the later the transition to
the radiationlike phase is. Therefore, the evolution of Neff
during BBN restricts both SFDM particle parameters,
λ=ðmc2Þ2 and m. This constraint is demonstrated in the
next section and Fig. 5.
Note that this constraint is also illustrated in Fig. 3,

where the definitions of the thin curves between an=p and
anuc, among which one is solid and two are dashed-dotted,
are the same as above, and the fraction of the SFDM energy
density ΩSFDM is restricted by the two dashed-dotted
curves, which correspond to the 1σ limits of Neff in

Eq. (40). Again, these thin curves, which represent the
energy fractions of extra radiation in models with constant
Neff , slightly drop because of the electron-position anni-
hilation. While Neff characterizes the SFDM energy
density [see Eq. (39)], the relation between ΩSFDM and
Neff has a simple analytical form during the plateau. The
total energy density of a ΛSFDM universe during the
radiation-dominated era is proportional to

2þ 2NeffðplateauÞ ·
7

8

�
4

11

�
4=3

¼
�
2þ 2Neff;standard ·

7

8

�
4

11

�
4=3
�

×
1

1 −ΩSFDMðplateauÞ
: (41)

Thus, if SFDM reaches the plateau before anuc, the 68%
confidence interval of Neff (40) can be converted to that of
ΩSFDM during the plateau (its plateau height), using the
equation above,

0.028 ≤ ΩSFDMðplateauÞ ≤ 0.132: (42)

Consequently, we can use either Eq. (40) or (42) to
constrain the SFDM parameter λ=ðmc2Þ2, in terms of the
plateau height, of those models in which SFDM has
reached the radiationlike phase by the end of BBN.
The result is

9.5 × 10−19 eV−1 cm3 ≤ λ=ðmc2Þ2
≤ 1.5 × 10−16 eV−1 cm3; (43)

as will be seen in Fig. 5. It should be also heeded that, in
principle, SFDM does not have to reach the plateau by anuc,
and the result above (43) is not applicable for those models.

C. Result: Allowed SFDM particle parameter space

Combining the results from the above two sources of
constraints, we can confine the allowed region in the
parameter space of SFDM, or ultralight bosonic particle,
see Fig. 5 for the parameter space plot. The constraint from
zeq is given by the solid vertical line; the region on its left
side is allowed, as shown by Eq. (38). For the constraint
from Neff during BBN, we sample the parameter space to
obtain the critical parameter values which marginally fulfill
the 1σ limits (40). The two shaded bands correspond to the
constraints thatNeff be within 1σ at an=p and anuc, as labeled
respectively. For each band, the thick solid (dashed)
boundary curve refers to the upper (lower) 1σ limit of
Neff . The intersection of these two bands represents the
range of parameters that is consistent with the Neff
constraint within 1σ throughout BBN. It is easily seen
from the figure that all allowed choices of (λ=ðmc2Þ2, m)
from the Neff constraint indeed correspond to models in
which SFDM has reached the radiationlike phase by the

FIG. 5 (color online). Parameter space of SFDM (λ=ðmc2Þ2,
m). The solid vertical line represent the upper bound on
λ=ðmc2Þ2, which makes SFDM complete its transition from
radiationlike to CDM-like (i.e., hw̄i ¼ 0.001) just before the
observed zeq. The arrow indicates that the region on the left side
of the solid vertical line is allowed by this constraint from zeq.
The two shaded bands are the allowed regions derived from the
constraints that Neff be within the 1σ interval of the value
measured by BBN, at an=p and anuc, as labeled respectively.
For each band, the thick solid (dashed) boundary curve corre-
sponds to the upper (lower) 1σ limit of the measured value of Neff
in Eq. (40). The final allowed region is crosshatched, after
combining all constraints. Our fiducial model, indicated by the
star at m ¼ 3 × 10−21 eV=c2, lies on the dotted vertical line at
λ=ðmc2Þ2 ¼ 2 × 10−18 eV−1 cm3, which corresponds to a radius
of an equilibrium halo around 1 kpc.
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end of BBN, so that λ=ðmc2Þ2 must be bounded within the
asymptotic vertical lines (43) explained in the last section.
This fact is completely due to the present-day measured
Neff value (40). Should the 68% confidence interval of Neff
be broadened, models in which SFDM had not reached the
plateau by the end of BBN might also be allowed. Such
models would not lie within the asymptotic vertical bounds
of λ=ðmc2Þ2 in the parameter space, as mentioned at the end
of the last section.
The final allowed region is given by combining all the

constraints, leaving the crosshatched area. The dotted
vertical line, where the fiducial model sits, has the value
λ=ðmc2Þ2 ¼ 2 × 10−18 eV−1 cm3, which corresponds to
models with parameters for an equilibrium halo of size
about 1 kpc; see Eq. (44) in Sec. VA. We can see that it lies
within the allowed region, for high enough particle massm.
The significance of this result will be discussed in Sec. VA.

V. DISCUSSION

A. Relation between Neff and smallest dark
matter structure

We mentioned in the introduction that standard CDM
meets challenges on small scales (mainly the cuspy-core
problem and the missing satellites problem), which could
be possibly resolved if dark matter clustering is prohibited
below certain scales. As a matter of fact, it has been pointed
out in previous literature, e.g., Refs. [41,44,65], that self-
interacting SFDM implies a minimum length scale ∼lSI for
a virialized object. This is due to the self-interaction
pressure of SFDM (27). Though it is negligible compared
with the energy density, as we pointed out in Sec. III B 1
(i.e., SFDM behaves as colllisionless dust on large scales),
this self-interaction pressure affects the dynamics of small-
scale nonlinear structures in the dark matter, just as thermal
gas pressure does for the baryons.
In fact, Eq. (27) is an n ¼ 1 polytropic equation of

state p ∝ ρ2, for which the coefficient is proportional to
λ=ðmc2Þ2. This is true even for the inhomogeneous case, if
we replace the background hp̄SFDMi and hρ̄SFDMi by local
values. Therefore, the minimum length scale in the self-
interaction-dominated limit is then given by the radius of a
virialized n ¼ 1 polytrope,

R ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

4πGm2

r
¼ πc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

4πGðmc2Þ2
s

; (44)

which is a function of λ=ðmc2Þ2 only [41]. Note that R ∝ lSI
up to a factor of order unity, and it is more precise to use R
for purposes with regard to a virialized dark matter halo.
On the other hand, we verified in Sec. IV B that as Neff

reaches the plateau (SFDM reaches the radiationlike
phase), its value is also purely determined by λ=ðmc2Þ2.
Therefore, we can plot the polytrope radius against Neff
corresponding to the plateau, revealing a hitherto unnoticed

relation between the scale of the smallest dark matter
structures and the number of relativistic species in the
radiation-dominated era; see Fig. 6.
The plot shows that higher Neff implies stronger self-

interaction pressure and hence a larger minimum scale for
dark matter structure. The constraints discussed in the
above section give the allowed window of the minimum
length scale, which is the segment of the curve between the
left dotted vertical line, the lower 1σ limit from the BBN
measurement, and the solid vertical line, the bound from
the constraint on λ=ðmc2Þ2 by zeq; see Eq. (38). We can see
that our fiducial model which corresponds to a minimum
length scale of 1.1 kpc lies within the allowed window. It is
a satisfactory result since this is about the scales where the
small-scale CDM problems start to be significant from
observations [19–21]. We should also note that the allowed
window for the minimum length scale is subject to changes
in future observational results from CMB and BBN.

B. Imprints on the CMB from a time varying Neff

Besides BBN, the angular power spectrum of the CMB
temperature fluctuations can also be used to constrain the
expansion rate of the Universe during the radiation-
dominated era by the ratio of the Silk damping scale θD
to the sound horizon scale θ� [6]. This provides a different
constraint on Neff from that described above from BBN.
While the expansion rate depends upon the number of
relativistic species present as well, it should be noted,

FIG. 6 (color online). Radius of a virialized, polytropic SFDM
halo, which forms during the matter-dominated era, as a function
of Neff during the radiation-dominated era. The relation is shown
by the solid curve, on which the star represents our fiducial model.
The polytrope radius is considered as the minimum length scale of
structures. The two dashed-dotted vertical lines indicate the 1σ
limits of Neff from BBN measurements, while the dashed vertical
line indicates the central value of Neff from CMB measurements
(the latter is the same as in Fig. 4, lower plots). The solid vertical
line denotes the upper bound of Neff during the plateau so as to
fulfill the constraint from fixed zeq.
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though, that because of its possible evolution the Neff
affecting the CMB power spectrum is not the same as the
Neff during BBN. The former concerns its value during
the epoch spanned by the moment at which the smallest
angular scale probed (l ∼ 3000) enters the horizon,
zentry ∼ 6 × 104, to that of matter-radiation equality at
zeq ∼ 3 × 103, as pointed out in Ref. [66]. By contrast,
the BBN constraint probesNeff at z≳ znuc ∼ 3 × 108. In the
ΛSFDM model, Neff evolves over time in such a way that
Neff is (at most) its plateau value at zentry and finally reduces
to the standard value of 3.046 when SFDM becomes fully
nonrelativistic (before zeq, as explained in Sec. IVA).
Therefore, the plateau value of Neff during the radiation-
dominated era serves as an upper bound for what is
responsible for the expansion rate from zentry to zeq.
However, a complication arises that the ratio of θD=θ�

does not only depend on the expansion rate during the
period mentioned above but also on the primordial Helium
abundance YP, since the damping tail is subject to the
number density of free electrons ne [5]. Actually,

θD=θ� ∝

ffiffiffiffiffi
H
ne

s
∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H

1 − YP

s
; (45)

where H refers to the Hubble expansion rate between zentry
and zeq. We also know that YP is dependent upon Neff
during BBN (an increase in Neff results in a higher YP).
Therefore, the relativistic degrees of freedom suggested
by CMB measurements, e.g., Neff ¼ 3.36� 0.34 given by
PlanckþWPþ highL [6] (again, models with constant
Neff are fitted to the data), is in fact an imprint from both
Neff during BBN at early times (through YP) and its later
evolution from zentry to zeq (throughH), in ΛSFDM. In fact,
Eq. (45) implies that θD=θ� increases when either H or YP
increases, provided a higher Neff at the respective epoch,
which then suggests that Neff given by CMBmeasurements
is between the Neff during BBN and the Neff from zentry to
zeq (the exact relation requires the calculation of linear
growth). We then note that SFDM naturally provides an
explanation for the difference between the Neff values
currently measured from BBN and CMB, in which the
BBN value is larger than the CMB value.

C. Early stiff-matter phase

We have seen in Sec. III B 2 that SFDM undergoes a stiff
phase, when p̄SFDM ≈ ρ̄SFDM and ρ̄SFDM ∝ a−6. This feature
of scalar fields has been noted before in models where the
scalar field describes the post-inflation universe or dark
energy; see, e.g., Refs. [54,67,68]. In Ref. [50], this feature
was found for SFDM without self-interaction. However,
these authors did not find the accompanying constraint on
the particle parameters and also were limited to analytic
treatment, while we calculate the evolution numerically and
explore the parameter space where the stiff phase is

important. The first suggestion of a stiff equation of state
for the baryonic fluid in the early universe seems to have
been by Refs. [69,70]. The possibility of pre-BBN non-
standard expansion histories, which includes a component
decaying as a−6, has been considered, e.g., in Refs. [71]
and [55]. However, the stiff components studied there do
not undergo any transition, i.e., always decay as a−6, unlike
our model.
In a ΛSFDM universe, the stiff phase can last until BBN

occurs due to the constraints on the expansion rate. As we
have seen in Sec. IV B, for all viable models the stiff phase
completely ends before anuc. An interesting question is
whether the stiff phase before an=p will affect baryonic
processes so as to leave an imprint on BBN products. In
fact, the free neutron abundance is subject to beta decay,
which has happened ever since neutrons have existed,
going as e−t=τn with the neutron decay time τn. Thus, the
number of free neutrons left for nucleosynthesis depends on
the age of the Universe, t, since the QCD phase transition.
Now, if t ¼ 1=ð3HÞ in the stiff phase, instead of the
radiation-era dependence, t ¼ 1=ð2HÞ, this will change
the number of available free neutrons before anuc. The
change in the age of the Universe is marginal, though, with
a factor of 1=3, instead of 1=2, to multiply the decay factor.
As shown in the left-hand plot of Fig. 2, the Hubble time at
the epoch of the stiff-radiation transition is ≲1s ≪ τn,
which actually applies to all viable models. It is thus
safe enough to constrain SFDM parameters only dur-
ing BBN.
As far as the QCD phase transition is concerned, which

happens somewhere between 150 and 300 MeV, there is
still a lot of ongoing work to understand those processes in
full. However, the relaxation time of the strong force is so
tiny, in contrast to the Hubble time, that the QCD transition
takes place in chemical equilibrium all the time, without a
freeze-out timing issue. Therefore, we think the universe
can be in the SFDM-dominated era in the stiff phase with a
higher expansion rate, as suggested by our model, and yet
accomplish a standard hadron era.

D. Implications for fuzzy dark matter

Our analysis above is valid for an arbitrary value of λ.
It is natural, therefore, to ask what the implications of our
constraints are for the limiting case of λ ¼ 0. SFDM
without self-interaction, λ≡ 0, or fuzzy dark matter, is
left with the quadratic potential in Eq. (5). Its popularity is
reflected by numerous previous investigations; see, e.g.,
Refs. [39,43,72]. One reason is that, even without the
self-interaction pressure associated with nonzero λ, FDM
still provides a mechanism to suppress structures on scales
below λdeB, as a result of quantum pressure due to the
Heisenberg uncertainty principle. Since it is an important
special case of the model we have investigated, we devote
this subsection to summarizing the implications for this
model from our analysis.
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Without the self-interaction term, FDM has only two
evolutionary phases, the early relativistic, stiff-matter phase,
followed by the nonrelativistic, CDM-like phase. For values
of m which are large enough to make this transition occur
before the BBN epoch, the redshift of matter-radiation
equality, zeq, is unaffected because of the absence of the
plateau (the radiationlike phase). Nevertheless, BBN sets a
constraint on the only parameter left, the mass m. Since the
kinetic term in the SFDM energy density (17) goes inversely
with m, the transition between stiff and dustlike equation of
state happens later with decreasing mass. In fact, according
to Fig. 5, if we accept the 1σ limits on Neff allowed by BBN
to constrain m, there is no value of m for which λ ¼ 0 can
be consistent, which indicates a rejection of the FDM
model at ≥ 1σ. We highlight this result, since FDM with
m ∼ 10−23–10−22 eV=c2 has been a very popular candidate
in the literature because the minimum length scale∼λdeB that
corresponds to such particle mass is roughly 1 kpc, as
mentioned in the introduction. Again, we should admit that,
placing a less tight constraint, e.g., within 2σ, FDM may be
able to fit BBN measurements.

VI. CONCLUSIONS

We presented the cosmological evolution of a universe in
which dark matter is comprised of ultralight self-interacting
bosonic particles, which form a Bose–Einstein condensate,
described by a classical complex scalar field (SFDM).
We solved the Klein–Gordon and Einstein field equations
for the time dependence of an FRW universe with this form
of dark matter and placed constraints on the SFDM particle
mass m and self-interaction coupling strength λ [or equiv-
alently λ=ðmc2Þ2] from cosmological observations.
Unlike standard CDM, which is always nonrelativistic

once it decouples from the background, SFDM has an
evolving equation of state. As a result, there are four eras
in the evolution of a homogeneous ΛSFDM universe:
the familiar radiation-dominated, matter-dominated, and
Lambda-dominated eras common to standard ΛCDM
as well but also an earlier era dominated by SFDM with
a stiff equation of state. Then, p̄≃ ρ̄ ∝ a−6, and a ∝ t1=3.
The manifestation of this era does not depend on whether
self-interaction has been included or not. It appears in fuzzy
dark matter models with λ≡ 0 as well. The timing and
longevity of this era (or the stiff phase of SFDM), however,
depend on the particular values of SFDM particle param-
eters, m along with λ=ðmc2Þ2. It is necessary to ensure that
the stiff phase is ending when big bang nucleosynthesis
begins. This finding is a special novelty of our analysis. At
intermediate times, SFDM is radiationlike, with p̄≃ ρ̄=3.
Finally, SFDM must transition to the CDM-like phase
before the epoch of matter-radiation equality and thereafter
behaves as a pressureless dust.
The effect of this SFDM equation of state evolution on

the expansion rate and mass-energy content of the universe
enables us to place constraints on m and λ=ðmc2Þ2, by

using Neff at BBN, and zeq measured by CMB anisotropy.
We find that m ≥ 2.4 × 10−21 eV=c2 and 9.5×
10−19 eV−1cm3≤λ=ðmc2Þ2≤4×10−17 eV−1cm3. While we
are able to place more stringent bounds on these particle
parameters than the previous literature, there remains a
large range of SFDM parameters, which provides an
expansion history in conformity with cosmological obser-
vations. Our investigations thereby contribute to previous
efforts in establishing SFDM as a viable dark matter
candidate. Work is in progress to study the linear and
nonlinear growth of structures in a ΛSFDM universe, in
order to find out which part of the parameter space of
SFDM is able to explain observations on all scales
self-consistently.
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APPENDIX A: BASIC EQUATIONS IN A
PERTURBED FRIEDMANN–ROBERTSON–

WALKER METRIC

The general perturbed FRW metric in the comoving
frame has the form

ds2 ¼ ð1þ 2Ψ=c2Þc2dt2 − 2aðtÞwicdtdxi

− a2ðtÞ½ð1 − 2Φ=c2Þδij þHij�dxidxj; (A1)

where the perturbed quantities jΨj=c2; jΦj=c2; jwij, and
jHijj are all ≪ 1.

1. Conformal Newtonian gauge

We can apply the conformal Newtonian gauge if only
scalar perturbations are permitted, where the metric reduces
to [73]

ds2 ¼ ð1þ 2Ψ=c2Þc2dt2 − a2ðtÞð1 − 2Φ=c2Þδijdxidxj;
(A2)

or

g00 ¼ 1þ 2
Ψ
c2

; gij ¼ −a2ðtÞ
�
1 − 2

Φ
c2

�
δij;

g00 ¼ 1 − 2
Ψ
c2

; gij ¼ −
1

a2ðtÞ
�
1þ 2

Φ
c2

�
δij:

The corresponding Christoffel symbols are [74]
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Γ0
00 ¼

1

c3
∂tΨ; Γ0

i0 ¼
1

c2
∂iΨ;

Γi
00 ¼

1

c2a2
∂iΨ; Γi

j0 ¼
�
−

1

c3
∂tΦþ da=dt

ca

�
δij;

Γ0
jk ¼

�
−
a2

c3
∂tΦþ ada=dt

c

�
1 − 2

Ψ
c2

− 2
Φ
c2

��
δjk;

Γi
jk ¼ −

1

c2
ð∂kΦδij þ ∂jΦδik − ∂iΦδjkÞ: (A3)

2. Klein–Gordon equation

The variation of the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lðψ ;ψ�; ∂μψ ; ∂μψ

�Þ; (A4)

with g ¼ detðgμνÞ, yields

δS¼
Z

d4x
ffiffiffiffiffiffi
−g

p

×

� ∂L
∂ð∂μψÞ

∂μδψþ∂L
∂ψ δψþ ∂L

∂ð∂μψ
�Þ∂μδψ

�þ ∂L
∂ψ�δψ

�
�

¼
Z

d4x

��
−∂μ

� ffiffiffiffiffiffi
−g

p ∂L
∂ð∂μψÞ

�
þ ffiffiffiffiffiffi

−g
p ∂L

∂ψ
�
δψ

þ
�
−∂μ

� ffiffiffiffiffiffi
−g

p ∂L
∂ð∂μψ

�Þ
�
þ ffiffiffiffiffiffi

−g
p ∂L

∂ψ�

�
δψ�
�
: (A5)

For arbitrary δψ and δψ�, δS ¼ 0 only when both inte-
grands in the expression above are constantly zero, which
yields the Euler–Lagrangian equation

1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p ∂L
∂ð∂μψÞ

�
−
∂L
∂ψ ¼ 0: (A6)

Upon inserting the Lagrangian (4), one recovers Eq. (7).

3. Einstein field equations and curvature tensor

The Einstein–Hilbert action is defined as

SH ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGc−4
þ L

�
: (A7)

The Einstein field equations can be derived from the
principle of least action with variation in gμν:

0¼ δSH

¼
Z

d4x
�
δð ffiffiffiffiffiffi−gp

RÞ
16πGc−4

þδð ffiffiffiffiffiffi
−g

p
LÞ
�

¼
Z

d4x

�
−

ffiffiffiffiffiffi−gp
16πGc−4

�
Rμν−

1

2
gμνR

�
þδð ffiffiffiffiffiffi−gp

LÞ
δgμν

�
δgμν:

(A8)

Defining the energy-momentum tensor as

Tμν ≡ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
Lðgμν; ∂ρgμνÞÞ
δgμν

¼ 2
δL
δgμν

− gμνL; (A9)

the field equations are thus

Rμν −
1

2
gμνR ¼ 8πG

c4
Tμν: (A10)

The Riemann curvature tensor is defined as

Rρ
σμν ¼ ∂μΓ

ρ
σν − ∂νΓρ

σμ þ Γρ
μαΓρ

σν − Γρ
ναΓρ

σμ: (A11)

With the Christoffel symbols (A3), we can calculate the
diagonal Ricci tensor to first order in jΨj=c2; jΦj=c2,

Rμν ≡ Rρ
μρν;

R00 ¼ −
3

c2
d2a=dt2

a
þ 1

c2a2
∇2Ψþ 3

c4
∂2
tΦ

þ 3da=dt
c4a

ð∂tΨþ 2∂tΦÞ;

Rii ¼
ad2a=dt2 þ 2ðda=dtÞ2

c2

�
1 − 2

Ψ
c2

− 2
Φ
c2

�

−
ada=dt

c4
ð6∂tΦþ ∂tΨÞ − a2

c4
∂2
tΦ

þ 1

c2
∇2Φ −

1

c2
∂2
i ðΨ − ΦÞ:

Consequently the Ricci scalar is

R≡ gμνRμν

¼ −
6

c2

�
d2a=dt2

a
þ ðda=dtÞ2

a2

�

þ 2

c2a2
∇2ðΨ − ΦÞ − 2

c2a2
∇2Φþ 6∂2

tΦ
c4

þ 6da=dt
c4a

ð∂tΨþ 4∂tΦÞ

þ 12

c4

�
d2a=dt2

a
þ ðda=dtÞ2

a2

�
Ψ:

APPENDIX B: OSCILLATION AND CHARGE
OF THE COMPLEX SCALAR FIELD IN A

HOMOGENEOUS FRIEDMANN–ROBERTSON–
WALKER METRIC

Let us write the equation of motion with the homo-
geneous FRW metric (19), again,

ℏ2

2mc2
∂2
tψ þ ℏ2

2mc2
3da=dt

a
∂tψ þ 1

2
mc2ψ þ λjψ j2ψ ¼ 0:

(B1)
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Now, we will decompose the complex scalar field as

ψ ¼ jψ jeiθ; (B2)

where jψ j is the amplitude of the scalar field and θ is its
phase. They are both real functions. Inserting this decom-
position into the equation of motion above yields

ℏ2

2mc2
ð∂2

t jψ j − jψ jð∂tθÞ2Þ þ
ℏ2

2mc2
3da=dt

a
∂tjψ j

þ 1

2
mc2jψ j þ λjψ j3 ¼ 0; (B3)

ℏ2

2mc2
ð2∂tjψ j∂tθ þ jψ j∂2

t θÞ

þ ℏ2

2mc2
3da=dt

a
jψ j∂tθ ¼ 0: (B4)

We first look at Eq. (B3). It is the phase that carries the
major oscillation behavior for a complex scalar field,
while the time dependence of the amplitude is smooth.
In the fast oscillation regime, in which the Hubble
expansion rate H ¼ da=dt

a is minute compared with ∂tθ,
we also assume that ∂tjψ j=jψ j ≪ ∂tθ (which is not always
the case). We can then neglect the terms involving ∂tjψ j
and H in Eq. (B3) and obtain

−
ℏ2

2mc2
jψ jð∂tθÞ2 þ

1

2
mc2jψ j þ λjψ j3 ¼ 0: (B5)

We define the angular oscillation frequency as ω≡ ∂tθ.
Rearranging the equation above yields

ω ¼ mc2

ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λ

mc2
jψ j2

r
; (B6)

which can be also viewed as the dispersion relation in the
zero-momentum case of our complex scalar field. We should
bear in mind that the relation (B6) is only valid when
ω ≫ H. In the case of a free field (λ ¼ 0), the frequency
reduces to the particle mass,ω ¼ mc2=ℏ, as one may expect.

Let us turn to Eq. (B4). It can be exactly integrated once
[75], giving

∂tða3jψ j2∂tθÞ ¼ 0:

Therefore, we can see that a3jψ j2∂tθ is conserved over
cosmic time. In fact, it is proportional to the conserved
charge density Q, defined in Sec. I B,

a3jψ j2∂tθ ¼ Q
mc2

ℏ
: (B7)

In the case of a complete BEC, antibosons are nearly
annihilated away so that the charge basically equals the
total number of condensed bosons (see Refs. [34,76,77]).
The conservation of the charge or, equivalently, the
conservation of the charge density Q results from the
global U(1) symmetry of the Lagrangian density (4).
This is a distinct feature in contrast to a real scalar field.
Since a real field does not possess phase information θ,
there is no global U(1) symmetry and no nontrivial
charge. In fact, the boson is its own antiboson for a real
scalar field.

APPENDIX C: MATCHING CONDITIONS OF
THE EARLY-TIME AND LATE-TIME

SOLUTIONS

The integration of the equations for the early-time
solution is performed backward in time from the matching
point with the late-time solution, at ω=H ¼ 200. This
matching condition requires that the starting values of p̄,
ρ̄, and the scale factor a for the early-time solution
are given by hp̄i, hρ̄i, and a at the matching point
in the late-time solution, with the value of B there set
as follows (we omit the subscript SFDM in this appendix).
The starting value of B should be determined, in principle,
by the following equation. Summing Eqs. (17) and (18)
yields

ρ̄þ p̄ ¼ ℏ2

mc2
j∂tψ j2 ¼

ℏ2

mc2
ðð∂tjψ jÞ2 þ jψ j2ð∂tθÞ2Þ ¼

ℏ2

mc2

�ð∂tjψ j2Þ2
4jψ j2 þ ðjψ j2∂tθÞ2

jψ j2
�

¼ ℏ2

mc2jψ j2
�
1

4

�
B
mc2

�
2

þ ðQmc2=ℏÞ2
a6

�
¼ ℏ2

2ðρ̄ − p̄Þ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λðρ̄ − p̄Þ

ðmc2Þ2
s

þ 1

!

×

�
1

4

�
B

mc2

�
2

þ ðQmc2=ℏÞ2
a6

�
: (C1)

Therefore, if we know the conserved charge density Q
precisely, we should be able to calculate the exact value
of B. Unfortunately, this is not practical, for Q is so huge
(for a BEC) that the last term on the right-hand side of

Eq. (C1) is greater than the term involving B by many
orders of magnitude. As a matter of fact, in the fast
oscillation regime, the term involving B is always sub-
dominant to the term involving Q for a BEC, justifying
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our assumption that ∂tjψ j=jψ j ≪ ∂tθ (in the slow oscil-
lation regime, it is the converse). Thus, though we know
that Q ≈ ρ̄dmðt0Þ=ðmc2Þ, even a tiny error in Q will lead to
a big variation in the value of B, making it impossible to
use Eq. (C1) to determine B.
Nevertheless, we have confirmed by testing different

starting values of B that changing B does not affect the
time-average values of the SFDM energy density ρ̄ and
pressure p̄, only causing different oscillation amplitudes of
p̄. Recall that the evolution of ρ̄ is always smooth (see
Sec. III C 1). The expansion history of the homogeneous
background universe is thus unaffected despite the uncer-
tainty in B, since the Friedmann equation (14) only
concerns ρ̄, and hence we are free to choose the starting
value of B, within the range derived from Eq. (C1), which
corresponds to the range of uncertainty in the exact value of
Q. Here is another remarkable feature of the complex
scalar field: although the SFDM pressure shows oscil-
lation generically, the amplitude of this oscillation is always
a small fraction of the mean value for subdominant B
values, as oscillations mainly manifest in the phase.
This is distinct from the real field case again, as for a real
scalar field, w̄ ¼ p̄=ρ̄ oscillates between −1 and 1
(see Ref. [43]).
In this work, we choose the starting value of B for the

early-time solution in a way that makes the early-time
solution smoothly match onto the late-time solution,

particularly in p̄, with zero oscillation amplitude. To see
that, subtracting Eq. (18) from Eq. (17) yields

B ¼ mc2∂tjψ j2 ¼
mc2∂tðρ̄ − p̄Þ
mc2 þ 2λjψ j2

¼ ∂tðρ̄ − p̄Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λðρ̄ − p̄Þ=ðmc2Þ2

p : (C2)

The starting value of B is then taken as

Bmatch ¼
∂tðhρ̄i − hp̄iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4λðhρ̄i − hp̄iÞ=ðmc2Þ2
p

¼ ∂thρ̄ið1 − ∂hp̄i=∂hρ̄iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λðhρ̄i − hp̄iÞ=ðmc2Þ2

p
¼ −

da=dt
a

ðhρ̄i þ hp̄iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λðhρ̄i − hp̄iÞ=ðmc2Þ2

p
×

�
2þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6λhρ̄i=ðmc2Þ2
p �

; (C3)

where we assume that the matching point lies within the
radiationlike phase of SFDM. With such a starting value of
B, the derived evolution of w̄ ¼ p̄=ρ̄ from the integration of
the exact equations connects smoothly to that of the late-
time solution for hp̄i=hρ̄i, with no oscillation, as shown in
the right-hand plot of Fig. 1.
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